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ABSTRACT

ALGORITHMS FOR MASSIVE, EXPENSIVE, OR OTHERWISE
INCONVENIENT GRAPHS

SEPTEMBER 2020

DAVID TENCH

B.Sc., LEHIGH UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew McGregor

A long-standing assumption common in algorithm design is that any part of the input is
accessible at any time for unit cost. However, as we work with increasingly large data sets,
or as we build smaller devices, we must revisit this assumption. In this thesis, I present some
of my work on graph algorithms designed for circumstances where traditional assumptions
about inputs do not apply.

1. Classical graph algorithms require direct access to the input graph and this is not
feasible when the graph is too large to fit in memory. For computation on massive graphs
we consider the dynamic streaming graph model. Given an input graph defined by as a
stream of edge insertions and deletions, our goal is to approximate properties of this graph
using space that is sublinear in the size of the stream. In this thesis, I present algorithms
for approximating vertex connectivity, hypergraph edge connectivity, maximum coverage,
unique coverage, and temporal connectivity in graph streams.

2. In certain applications the input graph is not explicitly represented, but its edges may
be discovered via queries which require costly computation or measurement. I present two
open-source systems which solve real-world problems via graph algorithms which may
access their inputs only through costly edge queries. MESH is a memory manager which
compacts memory efficiently by finding an approximate graph matching subject to stringent
time and edge query restrictions. PathCache is an efficiently scalable network measurement
platform that outperforms the current state of the art.
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CHAPTER 1

INTRODUCTION

When designing and analyzing algorithms it is typically assumed that the input is easily
accessible. For example, when designing an algorithm to sort an array of integers we assume
that we can write to or read from any position in the array at any moment, and each such
operation can be performed very quickly. In such a case we say that we have random access
to the input, meaning that any part of the input may be accessed at any time for unit cost.

The vast growth in recent years of the scope of computing and data science challenges
often leads to circumstances which complicate this standard model of computation. For
instance, the input we wish to run an algorithm on may be massive – larger than can fit
in the RAM of available computers. An input may be distributed across many different
storage devices, or accessible only via noisy or expensive sensors. Such conditions have the
potential to violate the random access assumption: perhaps we are only able to access some
subset of the input at any time, or maybe we pay a significant cost for any access operation.

In this thesis we investigate algorithmic challenges in two broad settings where aspects
of the random access assumption fail: the streaming domain, where a massive input is only
accessible as an arbitrarily-ordered sequence of elements and working memory is sharply
limited; and query-accessible inputs, for which accessing a piece of the input requires the
algorithm to pay a high price in computation time, energy, money, durability, or some other
scarce resource.

1.1 The Graph Streaming Setting

Massive graphs arise in many applications. Popular examples include the web-graph,
social networks, and biological networks but, more generally, graphs are a natural abstraction
whenever we have information about both a set of basic entities and relationships between
these entities. Unfortunately, it is not possible to use existing algorithms to process many
of these graphs; many of these graphs are too large to be stored in main memory and are
constantly changing. Rather, there is a growing need to design new algorithms for even
basic graph problems in the relevant computational models.

In Chapters 2, 3, and 4, we consider algorithms in the data stream and linear sketching
models. In the data stream model, a sequence of edge insertions (and possibly deletions)
defines an input graph and the goal is to solve a specific problem on this graph given only
one-way access to the input sequence and limited working memory. While insert-only graph
streaming has been an active area of research for almost a decade, it is only relatively recently
algorithms have been found that handle insertions and deletions [6–8, 75, 93, 94, 107]. We
refer to streams with insertions and deletions as dynamic graph streams. The main technique
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used in these algorithms is linear sketching where a random linear projection of the input
graph is maintained as the graph is updated. To be useful, we need to be able to a) store the
projection of the graph in small space and b) solve the problem of interest given only the
projection of the graph. While linear sketching is a classic technique for solving statistical
problems in the data stream model, it was long thought unlikely to be useful in the context
of combinatorial problems on graphs. Not only do linear sketches allow us to process edge
deletions (a deletion can just be viewed as a “negative” insertion) but the linearity of the
resulting data structures enables a rich set of algorithmic operations to be performed after the
sketch has been generated. In fact, it has been shown that any dynamic streaming algorithm
can be implemented via linear sketches [108]. Linear sketches are also a useful technique
for reducing communication when processing distributed graphs. For a recent survey of
graph streaming and sketching see [114].

Graph streams can also be modeled with different assumptions about the order of arrival
of elements in the stream. There are several variants: in the arbitrary order model, the
stream consists of the edges of the graph in arbitrary order. In the adjacency list model, all
edges that include the same node are grouped together. In the random order model, the
order in which the edges arrive in stream is chosen uniformly at random from all possible
orderings. Both the arbitrary order model and the adjacency list model generalize naturally
to hypergraphs where each edge could consists of more than two nodes. The arbitary order
model has been more heavily studied than the adjacency list model but there has still been a
significant amount of work in the latter model [14, 15, 26, 78, 88, 103, 116–118]. For further
details, see a recent survey on work on the graph stream model [114].

In Chapter 4, we introduce the notion of a temporal graph stream, which defines a
temporal graph via a sequence of edge updates. A temporal graph T = (V,A), A ⊂
V ×V ×N in the streaming setting is defined by a sequence of edge insertions a ∈ A where
each edge update contains a timestamp indicating the time at which the edge appeared or
disappeared from the temporal graph. In this thesis, we consider insert-only temporal graph
streams.

1.1.1 Preliminaries and Notation

Graphs Preliminaries. A hypergraph is specified by a set of vertices V = {v1, . . . , vn}
and a set of subsets of V called hyperedges. In Chapter 2 and in parts of Chapter 3 we
assume all hyperedges have cardinality at most d for some constant d. The special case
when all hyperedges have cardinality exactly two corresponds to the standard definition of a
graph. All graphs and hypergraphs discussed in this dissertation will be undirected except
when specified otherwise. It will be convenient to define the following notation: Let δG(S)
be the set of hyperedges that cross the cut (S, V \ S) in the hypergraph G where we say
a hyperedge e crosses (S, V \ S) if e ∩ S 6= ∅ and e ∩ (V \ S) 6= ∅. For any hyperedge
e, define λe(G) to be the minimum cardinality of a cut that includes e. A spanning graph
H = (V,E) of a hypergraph G = (V,E) is a subgraph such that |δH(S)| ≥ min(1, |δG(S)|)
for every S ⊂ V .

Linear Sketches and Applications. Many of the streaming algorithms in this thesis use
linear sketches.

2



Definition 1 (Linear Sketches). A linear measurement of a hypergraph on n vertices is
defined by a set of coefficients {ce : e ∈ Pr(V )} where Pr(V ) is the set of all subsets of V
of size at most d. Given a hypergraph G = (V,E), the evaluation of this measurement is
defined as

∑
e∈E ce. A sketch is a collection of (non-adaptive) linear measurements. The

cardinality of this collection is referred to as the size of the sketch. We will assume that the
magnitude of the coefficients ce is poly(n). We say a linear measurement is local for node v
if the measurement only depends on hyper-edges incident to v, i.e., ce = 0 for all hyper-edges
that do not include v. We say a sketch is vertex-based if every linear measurement is local to
some node.

Linear sketches have long been used in the context of data stream models because it is
possible to maintain a sketch of the stream incrementally. Specifically, if the next stream
update is an insertion or deletion of an edge, we can update the sketch by simply adding or
subtracting the appropriate set of coefficients. Sketches are also useful in distributed settings.
In particular, the model considered by Becker et al. [19] was as follows: suppose there are
n + 1 players P1, . . . , Pn and Q. The input for player Pi is the set of (hyper-)edges that
include the ith vertex of a graph G. Player Q wants to compute something about this graph
such as determining whether G connected. To enable this, each of the players P1, . . . , Pn
simultaneously sends a message about their input to Q such that the set of these n messages
contains sufficient information to complete Q’s computation. In the case of randomized
protocols, we assume that all players have access to public random bits. The goal is to
minimize the maximum length of the n messages that are sent to Q. If a vertex-based sketch
exists for the problem under consideration, then for each linear measurement, there is a
single player that can evaluate this message and send it to Q.

1.1.2 Connectivity Results in Dynamic (Hyper-)Graph Streams

In Chapter 2, we present sketch-based dynamic graph algorithms for three basic graph
problems: computing vertex connectivity, graph reconstruction, and hypergraph sparsifi-
cation. All our algorithms run in (low) polynomial time, typically linear in the number of
edges. However, our primary focus is on space complexity, as is the convention in much of
the data streams literature.

Vertex Connectivity. To date, the main success story for graph sketching has been about
edge connectivity, i.e., estimating how many edges need to be removed to disconnect
the graph, and estimating the size of cuts. We present the first dynamic graph stream
algorithms for vertex connectivity, i.e., estimating how many vertices need to be removed to
disconnect the graph. While it can be shown that edge connectivity is an upper bound for
vertex connectivity, the vertex connectivity of a graph can be much smaller. Furthermore,
the combinatorial structure relevant to both quantities is very different. For example,
edge-connectivity is transitive1 whereas vertex-connectivity is not. A celebrated result by
Karger [95] bounds the number of near minimum cuts whereas no analogous bound is known
for vertex removal. Feige et al. [60] discuss issues that arise specific to vertex connectivity
in the context of approximation algorithms and embeddings.

1If it takes at least k edge deletions to disconnect u and v and it takes at least k edge deletions to disconnect
v and w, then it takes at least k edge deletions to disconnect u and w.
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In Section 2.1, we present two sketch-based algorithms for vertex connectivity. The first
algorithm uses O(kn polylog n) space and constructs a data structure such that, at the end
of the stream, it is possible to test whether the removal of a queried set of at most k vertices
would disconnect the graph. We prove that this algorithm is optimal in terms of its space
use. The second algorithm estimates the vertex connectivity up to a (1 + ε) factor using
O(ε−1kn polylog n) space where k is an upper bound on the vertex connectivity.

No stream algorithms were previously known that supported both edge insertions and
deletions. Existing approaches either use Ω(n2) space [140] or only handle insertions [56].
With only insertions, Eppstein et al. [56] proved that O(kn polylog n) space was sufficient.
Their algorithm drops an inserted edge {u, v} iff there already exists k vertex-disjoint paths
between u and v amongst the edges stored thus far. Such an algorithm fails in the presence
of edge deletions since some of the vertex disjoint paths that existed when an edge was
ignored need not exist if edges are subsequently deleted.

Graph Reconstruction. Our next result relates to reconstructing graphs rather than esti-
mating properties of the graph. Becker et al. [19] show that is possible to reconstruct a
µ-degenerate graph (that is, a graph for which all induced subgraphs have a vertex of degree
at most µ) given an O(µ polylog n) size sketch of each row of the adjacency matrix of the
graph. In Section 2.2, we define the µ-cut-degeneracy and show that the strictly larger class
of graphs that satisfy this property can also be reconstructed given an O(µ polylog n)-size
sketch of each row. Moreover, even if the graph is not µ-cut-degenerate we show that we
can find all edges with a certain connectivity property. This will be an integral part of our
algorithm for hypergraph sparsification. For this purpose, we also prove the first dynamic
graph stream algorithms for hypergraph connectivity in this section. We also extend the
vertex connectivity results to hypergraphs.

Hypergraph Sparsification. Hypergraph sparsification is a natural extension of graph
sparsification. Given a hypergraph, the goal is to find a sparse weighted subgraph such
that the weight of every cut in the subgraph is within a (1 + ε) factor of the weight of the
corresponding cut in the original hypergraph. Estimating hypergraph cuts has applications
in video object segmentation [81], network security analysis [148], load balancing in
parallel computing [29], and modelling communication in parallel sparse-martix vector
multiplication [28].

Kogan and Krauthgamer [101] recently presented the first stream algorithm for hyper-
graph sparsification in the insert-only model. In Section 2.3, we present the first algo-
rithm that supports both edge insertions and deletions. The algorithm uses O(n polylog n)
space assuming that size of the hyperedges is bounded by a constant. This result is
part of a growing body of work on processing hypergraphs in the data stream model
[54,101,133,138,144]. There are numerous challenges in extending previous work on graph
sparsification [7, 8, 75, 93, 94] to hypergraph sparsification and we discuss these in Section
2.3. In the process of overcoming these challenges, we also identify a simpler approach for
graph sparsification in the data stream model.
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1.1.3 Coverage Results in Data Streams

In Chapter 3, we present algorithms for the Max-k-Cover and Max-k-UniqueCover
problems in the data stream model. The input to both problems are m subsets of a universe
of size n and a value k ∈ [m]. In Max-k-Cover, the problem is to find a collection of at
most k sets such that the number of elements covered by at least one set is maximized.
In Max-k-UniqueCover, the problem is to find a collection of at most k sets such that the
number of elements covered by exactly one set is maximized. These problems are closely
related to a range of graph problems including matching, partial vertex cover, and capacitated
maximum cut.

In the stream model, we assume k is given and the sets are revealed online. Our goal
is to design single-pass algorithms that use space that is sublinear in the input size. The
following algorithms are for insert-only streams except where specified otherwise. Our main
algorithmic results are as follows.

• If sets have size at most d, there exist single-pass algorithms using O(dd+1kd) space
that solve both problems exactly. This is optimal up to logarithmic factors for constant
d.

• If each element appears in at most r sets, we present single pass algorithms using
Õ(k2r/ε3) space that return a 1 + ε approximation in the case of Max-k-Cover and
2 + ε approximation in the case of Max-k-UniqueCover. We also present a single-pass
algorithm using slightly more memory, i.e., Õ(k3r/ε4) space, that 1 + ε approximates
Max-k-UniqueCover.

In contrast to the above results, when d and r are arbitrary, any constant pass 1 + ε approxi-
mation algorithm for either problem requires Ω(ε−2m) space but a single pass O(mk/ε2)
space algorithm exists. In fact any constant-pass algorithm with an approximation better
than e1−1/k requires Ω(m/k2) space when d and r are unrestricted. En route, we also obtain
an algorithm for the parameterized version of the streaming SetCover problem.

Relationship to Graph Streaming.

To explore the relationship between Max-k-Cover and Max-k-UniqueCover and various
graph stream problems, it makes sense to introduce to additional parameters beyond m (the
number of sets) and n (the size of the universe). Specifically, throughout the chapter we
let d denote the maximum cardinality of a set in the input and let r denote the maximum
multiplicity of an element in the universe where the multiplicity is the number of sets the
element appears.2 Then an input to Max-k-Cover and Max-k-UniqueCover can define a
(hyper)graph in one of the following two natural ways:

(1) First Interpretation: A sequence of (hyper-)edges on a graph with n nodes of maxi-
mum degree r (where the degree of a node v corresponds to how many hyperedges
include that node) and m hyperedges where each hyperedge has size at most d. In the

2Note that d and r are dual parameters in the sense that if the input is {S1, . . . , Sm} and we define
Ti = {j : i ∈ Sj} then d = maxj |Sj | and r = maxi |Ti|.
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case where every set has size d = 2, the hypergraph is an ordinary graph, i.e., a graph
where every edge just has two endpoints. With this interpretation, the graph is being
presented in the arbitrary order model.

(2) Second Interpretation: A sequence of adjacency lists (where the adjacency list for
a given node includes all the hyperedges) on a graph with m nodes of maximum
degree d and n hyperedges of maximum size r. In this interpretation, if every element
appears in exactly r = 2 sets, then this corresponds to an ordinary graph where each
element corresponds to an edge and each element corresponds to an edge. With this
interpretation, the graph is being presented in the adjacency list model.

Under the first interpretation, the Max-k-Cover problem and the Max-k-UniqueCover
problem when all sets have exactly size 2 naturally generalize the problem of finding a
maximum matching in an ordinary graph in the sense that if there exists a matching with
at least k edges, the optimum solution to either Max-k-Cover and Max-k-UniqueCover will
be a matching. There is a large body of work on graph matchings in the data stream
model [5, 27, 47, 48, 57, 63, 74, 76, 89, 90, 102–104, 113, 150] including work specifically
on solving the problem exactly if the matching size is bounded [38, 40]. More precisely,
Max-k-Cover corresponds to the partial vertex cover problem [111]: what is the maximum
number of edges that can be covered by selecting k nodes. For larger sets, the Max-k-Cover
and Max-k-UniqueCover are at least as hard as finding partial vertex covers and matching in
hypergraphs.

Under the second interpretation, when all elements have multiplicity 2, Max-k-UniqueCover
corresponds to finding the capacitated maximum cut, i.e., a set of at most k vertices such
that the number of edges with exactly one endpoint in this set is maximized. In the offline
setting, Ageev and Sviridenko [4] and Gaur et al. [68] presented a 2 approximation for
this problem using linear programming and local search respectively. The (uncapacitated)
maximum cut problem was been studied in the data stream model by Kapralov et al. [91,92];
a 2-approximation is trivial in logarithmic space3 but improving on this requires space that is
polynomial in the size of the graph. The capacitated problem is a special case of the problem
of maximizing a non-monotone sub-modular function subject to a cardinality constraint.
This general problem has been considered in the data stream model [16, 32, 35, 80] but in
that line of work it is assumed that there is oracle access to the function being optimized,
e.g., given any set of nodes, the oracle will return the number of edges cut. Alaluf et al. [9]
presented a 2 + ε approximation in this setting, assuming exponential post-processing time.
In contrast, our algorithm does not assume an oracle while obtaining a 1 + ε approximation
(and also works for the more general problem Max-k-UniqueCover).

1.1.4 Temporal Graph Streams

Graphs are extremely general and useful structures which can elegantly represent many
aspects of real-world structures such as social networks, disease spreading models, and the
Internet. However, one aspect of all of these structures that the traditional view of graphs
does not accomodate is temporality. For example, consider disease-tracking on a real-time

3It suffices to count the number of edges M since there is always a cut whose size is between M/2 and M .
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stream of physical contact events between people. Say Alice has the flu. She shakes Bob’s
hand, and then Bob later shakes Charlie’s hand. We could attempt to model this with a graph
G with nodes {A,B,C} and edges {(A,B), (B,C)} where Alice is represented by node A,
Bob by node B, Charlie by node C, and edges represent infection-spreading handshakes.
We can use this graph to conclude that Charlie is susceptible to infection because there is
a path from Alice to him. However, this graph representation would also suggest that if
Charlie was the one who started with the flu, Alice is susceptible to infection since there
is a path from Charlie to Alice as well. This is incorrect, since Alice interacts with Bob
before he can be infected by Charlie. By not taking the time at which these edges occurred
into account, this graph representation fails to adequately represent the spread of disease.
We would like some model that allows us to determine who is at risk of infection from
some patient zero, perhaps through an indirect chain of time-ordered contact events. To
capture such dynamics, we use temporal graphs whose edges are augmented with set of
timestamps which indicate times at which the edge exists. In our example, we replace G
with temporal graph T with nodes {A,B,C} and edges {(A,B, 1), (B,C, 2)} where edges
are now triples: a pair of endpoints and a timestamp. Note that the path from A to C uses
edges with increasing timestamps, suggesting infection can spread along this path, while
the path from C to A uses edges with decreasing timestamps, ruling out the possibility of
infection spreading in the reverse direction. We say that there is a time-respecting path from
A to C but not from C to A.

Mertzios et al. [122] give an algorithm that computes short time-respecting paths from
a source node s to all other nodes in O(n poly(τ)) time where τ denotes the number of
distinct timestamps in the temporal graph. Menger’s theorem, which states that the maximum
number of node-disjoint s to t paths is equal to the minimum number of nodes that must
be removed in order to separate s from z [121], does not hold for time-respecting paths in
temporal graphs [23, 99]. However, Mertzios et. al. [122] recently proved a reformulated
temporal analogue of Menger’s theorem that holds for temporal graphs.

Researchers have noted that temporal analogues of graph problems tend to have higher
complexity. Bhadra & Ferreira [24] demonstrate that computing strongly connected compo-
nents of directed temporal graphs is NP-Complete. Michail & Spirakis [124] show that a
temporal analogue of the maximum matching problem, where one must find a maximum
matching whose edges have distinct timestamps, is NP-Complete as well. They also prove
that a temporal analogue of the Graphic Traveling Salesman Problem cannot be approxi-
mated within multiplicative factor cn for some constant c > 0 unless P = NP . For the
standard and more general TSP, its temporal analogue is APX-Hard even if its edge costs
are constrained to {1, 2}.

The study of temporal graphs is in its infancy [123] and to date no one has considered
algorithms on temporal graphs in the streaming domain. It will be useful to study these
structures at scale. For instance, in the spirit of our infection example, we may wish to
track the spread of disease through a large, densely connected population. What can we
accomplish by storing a small summary of the massive stream of connection events?

We begin the study of temporal graph streams by considering variations of reachability
problems, which involve determining whether or not there exists a time-respecting path
between nodes in the temporal graph. We demonstrate strong lower bounds for many
versions of this problem, but also find several versions that admit space-efficient algorithms.
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We also present some conjectures about the overall hardness of streaming temporal graph
reachability.

1.2 Graph Algorithms for Systems Challenges

A significant portion of the work in this dissertation consists of applications of graph
algorithms to practical systems challenges, resulting in open-source software which we
show both analytically and empirically to be effective and efficient. In this thesis, we
present two such completed projects: MESH, a memory manager that is capable of memory
compaction in C and C++ (a feat long thought impossible), and PathCache, an efficiently
scalable network measurement platform that outperforms the current state of the art.

1.2.1 Memory Compaction Powered by Graph Algorithms

Memory consumption is a serious concern across the spectrum of modern computing
platforms, from mobile to desktop to datacenters. For example, on low-end Android
devices, Google reports that more than 99% of Chrome crashes are due to running out
of memory when attempting to display a web page [79]. On desktops, the Firefox web
browser has been the subject of a five-year effort to reduce its memory footprint [142]. In
datacenters, developers implement a range of techniques from custom allocators to other ad
hoc approaches in an effort to increase memory utilization [135, 139].

A key challenge is that, unlike in garbage-collected environments, automatically reducing
a C/C++ application’s memory footprint via compaction is not possible. Because the
addresses of allocated objects are directly exposed to programmers, C/C++ applications
can freely modify or hide addresses. For example, a program may stash addresses in
integers, store flags in the low bits of aligned addresses, perform arithmetic on addresses
and later reference them, or even store addresses to disk and later reload them. This hostile
environment makes it impossible to safely relocate objects: if an object is relocated, all
pointers to its original location must be updated. However, there is no way to safely update
every reference when they are ambiguous, much less when they are absent.

Existing memory allocators for C/C++ employ a variety of best-effort heuristics aimed at
reducing average fragmentation [86]. However, these approaches are inherently limited. In
a classic result, Robson showed that all such allocators can suffer from catastrophic memory
fragmentation [137]. This increase in memory consumption can be as high as the log of the
ratio between the largest and smallest object sizes allocated. For example, for an application
that allocates 16-byte and 128KB objects, it is possible for it to consume 13× more memory
than required.

Chapter 5 introduces MESH, a plug-in replacement for malloc that, for the first
time, eliminates fragmentation in unmodified C/C++ applications. MESH combines novel
randomized algorithms with widely-supported virtual memory operations to provably reduce
fragmentation, breaking the classical Robson bounds with high probability. We focus here
on the randomized graphalgorithms which power MESH and proofs of their solution quality
and runtime. Because MESH operates on live memory contents of active programs, it
operates under extreme time pressure and in essence cannot afford to observe every edge
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in the graph. Instead it must find a solution by making a limited number of edge queries
which take valuable time to answer. MESH generally matches the runtime performance of
state-of-the-art memory allocators while reducing memory consumption; in particular, it
reduces the memory of consumption of Firefox by 16% and Redis by 39%.

1.2.2 Efficient Network Measurement via Graph Discovery

Despite its engineered nature, the Internet has evolved into a collection of networks
with different–and sometimes conflicting–goals, where understanding its behavior requires
empirical study of topology and network paths. This problem is compounded by networks’
desire to keep their routing policies and behaviors opaque to outsiders for commercial or
security-related reasons. Researchers have worked for over a decade designing tools and
techniques for inferring AS level connectivity and paths [109, 110]. However, operators
seeking to leverage information about network paths or researchers requiring Internet paths
to evaluate new Internet-scale systems are often confronted with limited vantage points
for direct measurement and myriad data sets, each offering a different lens on AS level
connectivity and paths.

Predicting network paths is crucial for a variety of problems impacting researchers,
network operators and content/cloud providers. Researchers often need knowledge of
Internet routing to evaluate Internet-scale systems (e.g., refraction routing [146], Tor [51],
Secure-BGP [71]). For network operators, network paths can aid in diagnosing the root cause
of performance problems like high latency or packet loss. Content providers debugging
poor client-side performance require the knowledge of the set of networks participating in
delivering client traffic to root-cause bottleneck links. While large cloud providers, like
Amazon, Google and Microsoft are known to develop in-house telemetry for global network
diagnostics, small companies, ISPs and academics often lack such visibility and data.

Understanding and predicting Internet routes is confounded by several factors. Internet
paths are dependant on several deterministic but not public phenomena: route advertisements
made via BGP and best path selection algorithms based on private business relationships.
Additionally, factors like load balancing via ECMP, intermittent congestion on network
links, control plane mis-configurations and BGP hijacks also impact network paths.

Standard diagnostic tools like traceroute provide limited visibility into network paths
since the user can only control the destination of a traceroute query, the source being her
own network. Tools like reverse traceroute [97] rely on the support of IP options to shed
light on the reverse path towards one’s network. In addition to requiring the support for IP
options from Internet routers, these techniques require active probing from the client (or
a set of vantage points distributed on the Internet). Active probing is not only expensive
in terms of amount of traffic generated (traceroutes, pings etc.) but also provides limited
visibility into the network state.

In Chapter 6, we design and develop PathCache, which predicts network paths between
arbitrary sources and destinations on the Internet by developing probabilistic models of
routing from observed network paths. For this purpose, PathCache, leverages existing
data and control plane measurements (such as stale traceroutes and BGP routing data),
optimizing use of existing data plane measurement platforms, and applying routing models
when empirical data is absent. Specifically, the challenge is to select a bounded number of
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path measurement queries to make towards some destination which maximize the amount of
network topology (modeled as a directed graph with the destination as the ”root”) discovered.
Using provably efficient algorithms, PathCache consumes millions of traceroutes from public
measurement platforms every hour and updates the probabilistic routing model using newly
acquired information. We offer PathCache as a service at https://www.davidtench.
com/deeplinks/pathcache. In its present form, the PathCache REST API allows
users to query network paths between sources and destinations (IP address, BGP routed prefix
or autonomous system). In addition to providing the predicted paths, PathCache provides
confidence values associated with each network path based on historical information.

PathCache complements the approach of existing path-prediction systems [98, 109] by
developing efficient algorithms for measuring the routing behavior towards all BGP prefixes
on the Internet. When measuring paths towards each BGP prefix, PathCache maximizes
discovery of the network topology with a constrained measurement budget, both globally
and per vantage point. PathCache’s strategy for exploring network paths discovers 4X more
AS-hops than other well known strategies used in practice today.
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CHAPTER 2

VERTEX AND HYPEREDGE CONNECTIVITY IN DYNAMIC
GRAPH STREAMS

A growing body of work addresses the challenge of processing dynamic graph streams:
a graph is defined by a sequence of edge insertions and deletions and the goal is to construct
synopses and compute properties of the graph while using only limited memory. Linear
sketches have proved to be a powerful technique in this model and can also be used to
minimize communication in distributed graph processing.

We present the first linear sketches for estimating vertex connectivity and constructing
hypergraph sparsifiers. Vertex connectivity exhibits markedly different combinatorial struc-
ture than edge connectivity and appears to be harder to estimate in the dynamic graph stream
model. Our hypergraph result generalizes the work of Ahn et al. [6] on graph sparsification
and has the added benefit of significantly simplifying the previous results. One of the main
ideas is related to the problem of reconstructing subgraphs that satisfy a specific sparsity
property. We introduce a more general notion of graph degeneracy and extend the graph
reconstruction result of Becker et al. [19].

2.1 Vertex Connectivity

A natural approach to determining vertex connectivity could be to try to mimic the
algorithm of Cheriyan et al. [36]. They showed that the union of k disjoint “scan first search
trees” (a generalization of breadth-first search trees) can be used to determine if a graph
is k vertex connected. A similar approach worked in data stream model for the case of
edge-connectivity (which we discuss in further detail in the next section) but in that case the
trees to be constructed could be arbitrary. Unfortunately, we can show that any algorithm
for constructing a scan-first search tree in the data stream model requires Ω(n2) space even
when there are no edge deletions.

A scan first search tree (SFST) of a graph [36] is defined as follows: The tree is initially
empty, all vertices except the root (chosen arbitrarily) are unmarked, and all vertices are
unscanned. At each step we scan an marked but unscanned vertex. For each vertex x that is
being scanned, all edges from x to unmarked neighbors of x are added to the tree and the
unmarked neighbors are marked. This continues until no marked but unscanned vertices
remain.

Theorem 2. Any data stream algorithm that constructs a SFST with probability at least 3/4
requires Ω(n2) space.
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Proof. The proof is by a reduction from the communication problem of indexing [1].
Suppose Alice has a binary string x ∈ {0, 1}n2 indexed by [n] × [n] and Bob wants to
compute xi,j for some index (i, j) ∈ [n]× [n] that is unknown to Alice. This requires Ω(n2)
bits to be communicated from Alice to Bob if Bob is to learn xi,j with probability at least 3/4.
Suppose we have a data stream algorithm for constructing an SFST. Alice creates a graph on
nodes T ∪ U ∪ V ∪W where T = {t1, . . . , tn}, U = {u1, . . . , un}, V = {v1, . . . , vn}, and
W = {w1, . . . , wn}. She adds edges {tk, u`} and {v`, tk} for each `, k such that x`,k = 1.
Alice runs the scan-first search algorithm and sends the contents of her memory to Bob. Bob
adds the edge {ui, vi}. Note that any SFST includes all neighbors of ui or vi. In particular,
xi,j = 1 iff at least one of {tj, ui} or {vi, wj} is present in the SFST constructed. Hence,
the algorithm must have used Ω(n2) space.

To avoid this issue, we take a different approach based on finding arbitrary spanning
trees for the induced graph on a random subset of vertices.1 We will use the following result
for finding these spanning trees.

Theorem 3 (Ahn et al. [6]). For a graph on n vertices, there exists a vertex-based sketch of
size O(n polylog n) from which we can construct a spanning forest with high probability.

Note that in this section we restrict our attention to graphs rather than hypergraphs.
However, in the next section we will explain how the vertex connectivity results extend to
hypergraphs.

2.1.1 Warm-Up: Vertex Connectivity Queries

For i = 1, 2, . . . , R := 16 · k2 lnn, let Gi be a graph formed by deleting each vertex
in G with probability 1 − 1/k. Let Ti be an arbitrary spanning forest of Gi and define
H = T1 ∪ T2 ∪ . . . ∪ TR.

Lemma 4. Let S be an arbitrary collection of at most k vertices. With high probability,
H \ S is connected iff G \ S is connected.

Proof. First we note that H has the same set of vertices as G with high probability. This
follows because the probability a given vertex is not in H is (1− 1/k)R ≤ exp (()− 16 ·
k · lnn) = n−16k and hence by an application of the union bound, all vertices in G are also
in H with probability at least 1− n−(16k−1). Then since H is a subgraph of G, then G \ S
disconnected implies H \ S disconnected. It remains to prove that G \ S connected implies
H \ S connected.

Assume G \ S is connected. Consider an arbitrary pair of vertices s, t 6∈ S and let
s = v0 → v1 → v2 → . . . → v` = t be a path between s and t in G \ S. Then note that
there is a path between vi and vi+1 in H \ S if there exists Gi such that Gi ∩ S = ∅ and

1We note that the idea of subsampling vertices was recently explored by Censor-Hillel et al. [30, 31]. They
showed that if each vertex of a k-vertex-connected graph is subsampled with probability p = Ω(

√
log n/k)

then the resulting graph has vertex connectivity Ω(kp2). We do not make use of this result in our work as it
does not lead to an approximation factor better than

√
k.
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vi, vi+1 ∈ H \ S. This follows because if {vi, vi+1} ∈ Gi and Gi ∩ S = ∅ then Ti \ S either
contains {vi, vj} or a path between between vi and vj . Hence,

P [vi and vi+1 are connected in Ti \ S] ≥ 1/k2(1− 1/k)k

and therefore

P [vi and vi+1 are disconnected in Ti \ S for all i ∈ [R]] ≤ (1−1/k2(1−1/k)k)R ≤ 1/n4 .

Taking the union bound over all ` < n pairs {vi, vi+1}, we conclude that s and t are
connected in H \ S with probability at least 1− 1/n3. By applying the union bound again,
with probability at least 1− 1/n2, s is connected in H \ S to all other vertices.

Our algorithm constructs a spanning forest for each of G1, . . . , GR using the algorithm
referenced in Theorem 3. Note that since each Gi has O(n/k) vertices with high probability,
we can construct these R trees in R · O(n/k polylog n) = O(nk polylog n) space. This
gives us the following theorem.

Theorem 5. There is a sketch-based dynamic graph algorithm that uses O(kn polylog n)
space to test whether a set of vertices S of size at most k disconnects the graph. The query
set S is specified at the end of the stream.

We next prove that the above query algorithm is space-optimal.

Theorem 6. Any dynamic graph algorithm that allows us to test, with probability at least
3/4, whether a queried set of at most k vertices disconnects the graph requires Ω(kn) space.

Proof. The proof is by a reduction from the communication problem of indexing [1].
Suppose Alice has a binary string x ∈ {0, 1}(k+1)·n indexed by [k + 1] · [n] and Bob wants
to compute xi,j for some index (i, j) ∈ [k + 1] · [n] that is unknown to Alice. This requires
Ω(nk) bits to be communicated from Alice to Bob if Bob is to be successful with probability
at least 3/4. Consider the protocol where the players create a bipartite graph on vertices
L ∪ R where L = {l1, . . . , lk+1} and R = {r1, . . . , rn}. Alice adds edges {li, rj} for all
pairs (i, j) such that xi,j = 1. Alice runs the algorithm and sends the state to Bob. Bob adds
edges {r`, r`′} for all `, `′ 6= j and deletes all vertices in L except li. Now rj is connected to
the rest of the graph iff the xi,j = 1.

2.1.2 Vertex Connectivity

For i = 1, 2, . . . , R := 160 · k2ε−1 lnn, let Gi be a graph formed by deleting each vertex
in G with probability 1− 1/k. As before, let Ti be an arbitrary spanning forest of Gi and
define H = T1 ∪ T2 ∪ . . . ∪ TR.

Theorem 7. Let S be a subset of V of size k. Consider any pair of vertices u, v ∈ V \ S
such that there are at least (1 + ε)k vertex-disjoint paths between u and v in G. Then,

P [u and v are connected in GS] ≥ 1− 4/n10k

where GS = ∪i∈U(S)Gi and U(S) = {i : Gi ∩ S = ∅} is the set of sampled graphs with no
vertices in S.
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Proof. We first argue that |U(S)| is large with high probability. Then E [|U(S)|] = (1 −
1/k)kR ≥ R/4. By an application of the Chernoff bound:

P [|U(S)| ≤ 1/2 ·R/4] ≤ e−1/4·R/4·1/3 < 1/n10k .

In the rest of the proof we condition on event |U(S)| ≥ r := R/8.
Note that there are t ≥ εk vertex-disjoint paths between u and v in G \ S. Call these

paths P1, . . . , Pt. For each Pi, let ai be the edge incident to u, let ci be the edge incident to
v, and let Bi be the remaining edges in Pi. Note that ai and ci need not be distinct and Bi

could be empty.

Claim 1. The followings three probabilities are each larger than 1− 1/n10k:

P [ai ∈ GS for at least 3t/4 values of i]

P [Bi ⊆ GS for at least 3t/4 values of i]

P [ci ∈ GS for at least 3t/4 values of i] .

Proof. Each edge in Bi is not present in GS with probability (1 − 1/k2)r. Hence, by the
union bound, P [Bi 6⊆ GS] ≤ |Bi|(1− 1/k2)r. Also by the union bound,

P [Bi 6⊆ GS for more than t/4 values of i]

<

(
t

t/4

)
(n(1− 1/k2)r)t/4

< exp
(
t ln 2 + (lnn− r/k2)t/4

)
< 1/n10k .

The proofs for ai and ci are entirely symmetric so we just consider ai. Consider the set
U ′(S) = U(S) ∩ {j : u ∈ Gj}. Note that for j ∈ U ′(S) we have P [ai ∈ Gj] = 1/k and by
the union bound,

P
[
ai 6∈ ∪j∈U ′(S)Gj for at least t/4 values of i

]
≤

(
t

t/4

)
(1− 1/k)|U

′(S)|t/4

≤ 2texp
(
−|U ′(S)|t

(4k)

)
.

Let E be the event that |U ′(S)| ≤ |U(S)|/(2k). Then, by an application of the Chernoff
bound:

P [ai 6∈ GS for at least t/4 values of i]
≤ P [E]

+P
[
ai 6∈ ∪j∈U ′(S)Gj for at least t/4 values of i | ¬E

]
≤ exp (−1/4 · |U(S)|/k · 1/3)

+P
[
ai 6∈ ∪j∈U ′(S)Gj for at least t/4 values of i | ¬E

]
≤ exp (−1/4 · r/k · 1/3) + 2texp (−r/(2k) · t/(4k))

< 1/n10k .
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It follows from the claim that there exists i such that Pi ∈ GS (and therefore u and v
are connected in GS) with probability at least 1− 3/n10k. The conditioning on |U(S)| ≥ r
decreases this by another 1/n10k.

Corollary 8. If G is (1 + ε)k-vertex-connected then H is k-vertex-connected with high
probability. If H is k-vertex connected then G is k-vertex connected.

Proof. The first part of the corollary follows from Theorem 7 by applying the union bound
over all O(nk) subsets of size at most k and O(n2) choices of u and v. Note that u and v
connected in GS implies u and v are connected in H since H includes a spanning forest of
GS . The second part is implied by the fact H is a subgraph of G.

As in the previous section, our algorithm is simply to construct H be using the algorithm
referenced in Theorem 3 to construct T1, . . . , TR. We can then run any vertex connectivity
algorithm onH in post-processing. Since eachGi hasO(n/k) vertices with high probability,
we can construct these R trees in R ·O(n/k · polylog n) = O(nkε−1 polylog n) space. This
gives us the following theorem.

Theorem 9. There is a sketch-based dynamic graph algorithm that usesO(knε−1 polylog n)
space to distinguish (1 + ε)k-vertex connected graphs from k-connected graphs.

2.2 Reconstructing Hypergraphs

We next present sketches for reconstructing cut-degenerate hypergraphs. Recall that
a hypergraph is µ-degenerate if all induced subgraphs have a vertex of degree at most µ.
Cut-degeneracy is defined as follows.

Definition 10. A hypergraph is µ-cut-degenerate if every induced subgraph has a cut of size
at most µ.

The following lemma establishes that this is a strictly weaker property than µ-degeneracy.

Lemma 11. Any hypergraph that is µ-degenerate is also µ-cut-degenerate. There exists
graphs that are µ-cut-degenerate but not µ-degenerate.

Proof. Since the degree of a vertex v is exactly the size of the cut ({v}, V \ {v}) it
is immediate that µ-degeneracy implies µ-cut-degeneracy. For an example that µ-cut-
degenerate does not imply it is µ-degenerate consider the graph G on eight vertices
{v1, v2, v3, v4, u1, u2, u3, u4} with edges {vi, vj}, {ui, uj} for all i, j except i = 1, j = 4
and edges {v1, u1} and {v4, u4}. Then G has minimum degree 3 and is therefore not
2-degenerate while it is 2-cut-degenerate.

Becker et al. [19] showed how to reconstruct a µ-degenerate graph in the simultaneous
communication model if each player sends an O(µ polylog n) bit message. We will show
that it is also possible to reconstruct any µ-cut-degenerate with the same message complexity.
Even if the graph is not cut-degenerate, we show that is possible to reconstruct all edges
with a certain connectivity property. We will subsequently use this fact in Section 2.3.
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2.2.1 Skeletons for Hypergraphs

We first review the existing results on constructing k-skeletons [6] that we will need for
our new results. In doing so, we generalize the previous work to the case of hypergraphs.
In particular, this leads to the first dynamic graph algorithm for determining hypergraph
connectivity.

Definition 12 (k-skeleton). Given a hypergraph H = (V,E), a subgraph H ′ = (V,E ′) is a
k-skeleton of H if for any S ⊂ V , |δH′(S)| ≥ min(|δH(S)|, k).

In particular, any spanning graph is a 1-skeleton and it can be shown that F1∪F2∪. . .∪Fk
is a k-skeleton [6] ofG if Fi is a spanning graph ofG\(∪i−1

j=1Fj). The next lemma establishes
that given an arbitrary k-skeleton of a graph we can exactly determine the set of edges with
λe(G) ≤ k − 1.

Lemma 13. Let H be a k-skeleton of G then λe(H) ≤ k − 1 iff λe(G) ≤ k − 1.

Proof. Since H is a subgraph λe(H) ≤ λe(G) and hence λe(G) ≤ k − 1 implies λe(H) ≤
k− 1. Using the fact that H is a k-skeleton λe(H) ≥ min(k, λe(G)) and hence, if λe(H) ≤
k − 1 it must be that λe(G) ≤ k − 1.

Constructing Spanning Graphs. For each vertex vi ∈ V , define the vector ai ∈ {−1, 0, 1, 2,
. . . , d− 1}α where α =

∑d
i=2

(
n
i

)
is the number of possible hyperedges of size at most d:

aie =


|e| − 1 if i = min e and e ∈ E
−1 if i ∈ e \min e and e ∈ E
0 otherwise

where e ranges over all subsets of V of size between 2 and d and min e denotes the smallest
ID of a node in e. Observe that these vectors have the property that for any subset of vertices
{vi}i∈S , the non-zero entries of

∑
i∈S a

i correspond exactly to δ(S). This follows because
the only subsets of

{|e| − 1,−1,−1, . . . ,−1︸ ︷︷ ︸
|e|−1

}

that sum to zero are the empty set and the entire set. Hence, the e-th coordinate of
∑

i∈S a
i

is zero iff either e 6∈ E or e ⊂ S or e ⊂ V \ S.
The rest of algorithm proceeds exactly as in the case of (non-hyper) graphs [6] and a

reader that is very familiar with the previous work should feel free to skip the remainder of
Section 2.2.1. We construct the sketches Ma1, . . . ,Man where M is chosen according to
a distribution over matrices Rk·α where k = polylog(α). The distribution has the property
that for any a ∈ Rd, it is possible to determine the index of a non-zero entry of a given Ma
with probability 1− 1/ poly(n). Such as distribution is known to exist by a result of Jowhari
et al. [87]. Given Ma1, . . . ,Man we can find an edge across an arbitrary cut (S, V \ S).
To do this, we compute

∑
i∈SMai = M(

∑
i∈S a

i). We can then determine the index of
a non-zero entry of

∑
i∈S a

i which corresponds to an element of δ(S) as required. It may
appear that to test connectivity we need to test all 2n−1 − 1 possible cuts. Since the failure
probability for each cut is only inverse polynomial in n this would be problematic. However,
it is possible to be more efficient and only test O(n) cuts. See Ahn et al. [6] for details.
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Theorem 14 (Spanning Graph Sketches). There exists a vertex-based sketch A of size
O(n polylog n) such that we can find a spanning graph of a hypergraph G from A(G) with
high probability.

Note the above theorem can be substituted for Theorem 3 and the resulting algorithms
for vertex connectivity go through for hypergraphs unchanged.

Constructing k-skeletons. As mentioned above, it suffices to find F1, . . . , Fk such that
Fi is a spanning graph of G \ (∪i−1

j=1Fj). Do to this we use k independent spanning graph
sketchesA1(G),A2(G), . . . ,Ak(G) as described in the previous section. We may construct
F1 from A1(G) because this is the functionality of a spanning graph sketch. Assuming we
have already constructed F1, . . . , Fi−1 we can construct Fi from:

Ai(G− F1 − F2 . . .− Fi−1) = Ai(G)−
i−1∑
j=1

Ai(Fj) .

Theorem 15 (k-Skeleton Sketches). There exists a vertex-based sketch B of size
O(kn polylog n) such that we can find of a k-skeleton a hypergraph G from B(G) with high
probability.

2.2.2 Beyond k-Skeletons

One might be tempted as ask whether it was necessary to use k independent spanning
graph sketches A1, . . . ,Ak rather that reuse a single sketch A. If each application of the
sketchA fails to return a spanning graph with probability δ, one might hope to use the union
bound to argue that the probability that A fails on any of the inputs G,G− F1, G− F1 −
F2, . . . , G − F1 − . . . − Fk−1 is at most kδ. But this would not be a valid application of
the union bound! The union bound states that for any fixed set of t events B1, . . . , Bt, we
have P [B1 ∪ . . . ∪Bt] ≤

∑
i P [Bi]. The issue is that the events in the above example are

not fixed, i.e., they can not be specified a priori, since spanning graph Fi is determined by
the randomness in the sketch.2 We belabor this point because, while the union bound was
not applicable in the above case, we will need it to prove our next result in a situation that is
only subtly different and yet the union bound is valid.

2.2.2.1 Finding the light edges

Given a graph G = (V,E) and a postive integer k, recursively define

Ei = {e ∈ E : λe(G \
i−1⋃
j=1

Ei) ≤ k}

2Another way to see that using the same sketch cannot work is that if it were possible to repeatedly remove
each spanning graph from the sketch of the original graph, we would be able to reconstruct the entire graph
using only a sketch of size O(npolylog n). Clearly this is not possible because it requires at Ω(n2) bits to
specify an arbitrary graph on n vertices.
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and denote the union of these sets as:

lightk(G) =
⋃
i≥1

Ei .

Note that if G is µ cut-degenerate then lightµ(G) = E. Furthermore, there is at most n
values of i such that Ei is non-empty since removing each non-empty set Ei from the graph
increases the number of connected components.

Suppose B(G) is a sketch that returns an arbitrary (k + 1)-skeleton of G with failure
probability δ = 1/ poly(n). Then, since E1, E2, . . . , En are sets defined solely by the input
graph (and not any randomness in a sketch) we can specify the fixed events

Bi = “We fail to return a (k + 1)-skeleton sketch of
G− E1 − . . .− Ei given B(G− E1 − . . .− Ei)”

and therefore use the union bound to establish that the probability that we find a (k + 1)-
skeleton of each of the relevant graphs with failure probability at most nδ = 1/ poly(n).

We can therefore find the sets E1, E2, . . . , En as follows. Let Si be an arbitrary (k + 1)
skeleton of G − E1 − . . . Ei−1. Assuming we have already determined E1, . . . , Ei−1, we
can find Si using:

B(G− E1 − E2 . . .− Ei−1) = B(G)−
i−1∑
j=1

B(Ej) .

Then, by appealing to Lemma 13, we know that we can then uniquely determine Ei given
Si.

Theorem 16. There exists a vertex-based sketch of size Õ(kn) from which lightk(G) can
be reconstructed for any hypergraph G. In the case of a k-cut-degenerate graph, this is the
entire graph.

2.2.2.2 What are the light edges?

In this section, we restrict our attention to graphs rather than hypergraphs and show that
the set of edges in lightk(G) can be defined in terms of the notion of strong connectivity
introduced by Benczúr and Karger [20].

Lemma 17. lightk(G) = {e : ke ≤ k} where k{u,v} is the maximum k such that there is a
set S ⊂ V including u and v such that the induced graph on S is k-edge-connected.

Proof. Define te to be the minimum value of k such that e ∈ lightk(G). We prove that
te = ke and the result follows. To show ke ≥ te suppose te = t and then note that e
survives when we recursively remove edges with edge connectivity t− 1. But the remaining
components in this graph are at least (t − 1) + 1 = t connected so ke ≥ t. To show that
ke ≤ te, suppose ke = k. Then there exists a vertex induced subgraph H containing e that is
k-connected. But when we recursively remove edges with edge connectivity at most k − 1
then no edge in H can be removed. Hence, te > (k − 1) and so te ≥ k.
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2.3 Hypergraph Sparsification

In this final section, we present a vertex-based sketch for constructing a sparsifier of a
hypergraph. This yields the first dynamic graph stream algorithm for constructing a sparsifier
of a hypergraph. As an added bonus, our approach gives an algorithm and analysis that is
significantly simpler than previous work on the specific case of graph sparsification [7, 75].

Definition 18 (Hypergraph Sparsifier). A weighted subgraph H = (V,E ′, w) of a hyper-
graph G = (V,E) is a sparsfier if for all S ⊂ V ,

∑
e∈δH(S) w(e) = (1± ε)|δG(S)|.

Previous approaches to sparsification in the dynamic stream model relied on work by
Fung et al. [67]. To construct a graph sparsifier, they showed that it was sufficient to
independently sample every edge in the graph with probability O(ε−2λ−1

e log n). Using
their work required coopting their machinery and modifying it appropriately (e.g., replacing
Chernoff arguments with careful Martingale arguments). Another downside to the previous
approach is that the Fung et al. result does not seem to extend to the case of hypergraphs.3

Using our new-found ability (see the previous section) to find the entire set of edges that
are not k-strong, we present an algorithm that a) has a simpler, and almost self-contained,
analysis and b) extends to hypergraphs. Our approach is closer in spirit to Benczúr and
Karger’s original work on sparsification [20] which in turn is based on the following result
by Karger [96]: if we sample each edge with probability p ≥ p∗ = cε−2λ−1 log n where λ
is the cardinality of the minimum cut and c ≥ 0 is some constant, and weight the sampled
edges by 1/p then the resulting graph is a sparsifier with high probability.

The idea behind our algorithm is as follows. For a hypergraph G, if we remove the
hyperedges lightk(G) where k = 2cε−2 log n, then every connected component in the
remaining hypergraph has minimum cut of size greater than 2cε−2 log n. Hence, for each of
these components p∗ ≤ 1/2. Therefore, the graph formed by sampling the hyperedges in
G \ lightk(G) with probability 1/2 (and doubling the weight of sampled hyperedges) and
adding the set of hyperedges in lightk(G) with unit weights is a sparsifier of G. We then
repeat this process until there are no hyperedges left to sample.

Algorithm.

(1) Generate a series of graphs G0, G1, G2 . . . where Gi is formed by deleting each
hyperedge in Gi−1 independently with probability 1/2 and G0 = G.

(2) For i = 0, 1, 2, . . . , ` = 3 log n:

(a) Let Fi = lightk(Hi) where k = O(ε−2(log n+ r)) where Hi = Gi \ (F0 ∪F1 ∪
F2 ∪ . . . ∪ Fi−1)

(3) Return
⋃`
i=0 2i · Fi where 2i · Fi is the set of hyperedges in Fi where each is given

weight 2i.

Analysis. The following lemma uses an argument due to Karger [95] combined with a
hypergraph cut counting result by Kogan and Krauthgamer [101].

3For the reader familiar with Fung et al. [67], the issue is finding a suitable definition of cut-projection for
hypergraphs and then proving a bound on the number of distinct cut-projections.
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Lemma 19. 2Hi+1 ∪ Fi is a (1 + ε)-sparsifier for Hi.

Proof. It suffices to prove that 2Hi+1 is a (1 + ε)-sparsifier for Hi \ Fi. Furthermore, it
suffices to consider each connected component of Hi \ Fi separately.

Let C be an arbitrary connected component of Hi \ Fi and note that C has a minimum
cut of size at least k. Let C ′ be the graph formed by deleting each hyperedge in C with
probability 1/2. Consider a cut of size t in C and let X be the number of hyperedges in
this cut that are in C ′. Then E [X] = t/2 and by an application of the Chernoff bound,
P [|X − t/2| ≥ εt/2] ≤ 2exp (−ε2t/6).

The number of cuts of size at most t is exp (O(dt/k + t/k · log n)) by appealing to
a result by Kogan and Krauthgamer [101]. By an application of the union bound, the
probability that there exists a cut of size t such that the number of hyperedges in the
corresponding cut in C ′ is not (1± ε)t/2 is at most

2exp
(
−ε2t/6

)
· exp (O(dt/k + t/k · log n)) .

This probability is less than 1/n10 if k ≥ cε−2(log n+d) for some sufficiently large constant
c. Hence, taking the union bound over all t ≥ k ensures that with probability at least 1/n8,
for every cut in C, the fraction of edges in the corresponding cut in C ′ is (1± ε)/2.

Theorem 20.
⋃`
i=0 2i · Fi is a (1 + ε)`-sparsifier of G where ` = 3 log n.

Proof. The theorem follows by repeatedly applying Lemma 19. Specifically,

(1) F`−1 is a (1 + ε) sparsifier for H`−1 since H` is the empty graph with high probability.

(2) 2H`−1∪F`−2 is a (1+ε)-sparsifier forH`−2 and so 2F`−1∪F`−2 is a (1+ε)2-sparsifier
for H`−2

(3) 2H`−2 ∪ F`−3 is a (1 + ε)-sparsifier for H`−3 and so 4F`−1 ∪ 2F`−2 ∪ F`−3 is a
(1 + ε)3-sparsifier for H`−3

We continue in this way until we deduce
⋃`
i=0 2i ·Fi is a (1+ε)`-sparsifier forH0 = G0.

By re-parameterizing ε← ε/(2`) and using the sketches from Section 2.2, we establish
the next theorem.

Theorem 21. There exists a vertex-based sketch of size Õ(ε−2n) from which we can con-
struct a (1 + ε) hypergraph sparsifier.
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CHAPTER 3

MAXIMUM COVERAGE IN THE DATA STREAM MODEL:
PARAMETERIZED AND GENERALIZED

3.1 Introduction

We consider the Max-k-Cover and Max-k-UniqueCover problems in the data stream
model. The input to both problems are m subsets of a universe of size n and a value k ∈ [m].
In Max-k-Cover, the problem is to find a collection of at most k sets such that the number of
elements covered by at least one set is maximized. In Max-k-UniqueCover, the problem is to
find a collection of at most k sets such that the number of elements covered by exactly one
set is maximized. In the stream model, we assume k is provided but that the sets are revealed
online and our goal is to design single-pass algorithms that use space that is sub-linear in
the input size.

Max-k-Cover is a classic NP-Hard problem that has a wide range of applications includ-
ing facility and sensor allocation [105], information retrieval [11], influence maximization in
marketing strategy design [100], and the blog monitoring problem where we want to choose
a small number of blogs that cover a wide range of topics [138]. It is well-known that the
greedy algorithm, which greedily picks the set that covers the most number of uncovered
elements, is a e/(e− 1) approximation and that unless P = NP , this approximation factor
is the best possible [61].

Max-k-UniqueCover was first studied in the offline setting by Demaine et al. [49]. A
motivating application for this problem was in the design of wireless networks where we
want to place base stations that cover mobile clients. Each station could cover multiple
clients but unless a client is covered by a unique station the client would experience too
much interference. Demaine et al. [49] gave a polynomial time O(log k) approximation.
Furthermore, they showed that Max-k-UniqueCover is hard to approximate within a factor
O(logσ n) for some constant σ under reasonable complexity assumptions. Erlebach and van
Leeuwen [58] and Ito et al. [85] considered a geometric variant of the problem and Misra
et al. [126] considered the parameterized complexity of the problem. This problem is also
closely related to Minimum Membership Set Cover where one has to cover every element
and minimizes the maximum overlap on any element [52, 106].

In the streaming set model, Max-k-Cover and the related SetCover problem1 have both
received a significant amount of attention [15, 34, 55, 78, 82, 83, 120, 138]. The most relevant
result is a single-pass 2 + ε approximation using Õ(kε−2) space [16, 120] although better
approximation is possible in a similar amount of space if multiple passes are permitted [120]

1That is, find the minimum number of sets that cover the entire universe.
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or if the stream is randomly ordered [129]. In this chapter, we almost exclusively consider
single-pass algorithms where the sets arrive in an arbitrary order. The unique coverage
problem has not been studied in the data stream model although it, and Max-k-Cover, are
closely related to various graph problems that have been studied.

3.1.1 Our Results

Our main results are the following single-pass stream algorithms2:

(A) Bounded Set Cardinality. If all sets have size at most d, there exists a Õ(dd+1kd) space
data stream algorithm that solves Max-k-UniqueCover and Max-k-Cover exactly. We
show that this is nearly optimal in the sense that any exact algorithm requires Ω(kd)
space.

(B) Bounded Multiplicity. If all elements occurs in at most r sets, we present the following
algorithms:

• (B1) Max-k-UniqueCover: There exists a 2 + ε approximation algorithm using
Õ(ε−3k2r) space.

• (B2) Max-k-UniqueCover: We show that the approximation factor can be im-
proved to 1 + ε at the expense of increasing the space use to Õ(ε−4k3r).

• (B3) Max-k-Cover: There exists a 1+ε approximation algorithm using Õ(ε−3k2r)
space.

In contrast to the above results, when d and r are arbitrary, constant pass 1+ε approximation
algorithm for either problem requires Ω(ε−2m) space [14].3 We also generalize of lower
bound for Max-k-Cover [120] to Max-k-UniqueCover to show that any constant-pass algo-
rithm with an approximation better than e1−1/k requires Ω(m/k2) space. We also present
a single-pass algorithm with an O(log min(k, r)) approximation for Max-k-UniqueCover
using Õ(k2) space, i.e., the space is independent of r and d but the approximation factor
depends on r. This algorithm is a simple combination of a Max-k-Cover algorithm due
to [120] and an algorithm for Max-k-UniqueCover in the offline setting due to Demaine et
al. [49]. Finally, our Max-k-Cover result (B3) algorithm also yields a new multi-pass result
for SetCover. See Section 3.4.4 for details.

3.1.2 Technical Summary

Our results are essentially streamable kernelization results, i.e., the algorithm “prunes”
the input (in the case of Max-k-UniqueCover and Max-k-Cover this corresponds to ignoring
some of the input sets) to produce a “kernel” in such a way that a) solving the problem
optimally on the kernel yields a solution that is as good (or almost as good) as the optimal
solution on the original input and b) the kernel is streamable and sufficiently smaller than the
original input such that it is possible to find an optimal solution for the kernel in significantly

2Throughout we use Õ to denote that logarithmic factors of m and n are being omitted.
3The lower bound result by Assadi [14] was for the case of Max-k-Cover but we will explain that it also

applies in the case of Max-k-UniqueCover.
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less time than it would take to solve on the original input. In the field of fixed parameter
tractability, the main requirement is that the kernel can be produced in polynomial time. In
the growing body of work on streaming kernelization [37–39] the main requirement is that
the kernel can then be constructed using small space in the data stream model. Our results
fits in with this line of work and the analysis requires numerous combinatorial insights into
the structure of the optimum solution for Max-k-UniqueCover and Max-k-Cover.

Our technical contributions can be outlined as follows.

• Results (A) and (B3) rely on various structural and combinatorial observations. At
a high level, Result (A) uses the observation that each set of any Max-k-Cover or
Max-k-UniqueCover solution intersects any maximal set of disjoint sets. The main
technical step is to demonstrate that storing a small number of intersecting sets suffices
to preserve the optimal solution.

• The 1 + ε and 2 + ε approximations for Max-k-Cover and Max-k-UniqueCover, i.e.,
results (B1) and (B3), are based on a very simple idea of first collecting the largest
O(rk/ε) sets and then solving the problem optimally on these sets. This can be done
in a space efficient manner using existing sketch for F0 estimation in the case of
Max-k-Cover and a new sketch we present the case of Max-k-UniqueCover. While
the approach is simple, showing that it yields the required approximations requires
some work and builds on a recent result by Manurangsi [111]. We also extend the
algorithm to the model where sets can be inserted and deleted in a non-trivial way.

3.1.3 Comparison to related work.

In the context of streaming algorithms, for the Max-k-Cover problem, McGregor and
Vu [119] showed that any approximation better than 1/(1− 1/e) requires Ω(m/k2) space.
For the more general problem of streaming submodular maximization subject to a cardinality
constraint, Feldman et al. [64] very recently showed a stronger lower bound that any
approximation better than 2 requires Ω(m) space. Our results provide a route to circumvent
these bounds via parameterization on k, r, and d.

Result (B3) leads to a parameterized algorithm for streaming SetCover. This new
algorithm uses Õ(rk2nδ + n) space which improves upon the algorithm by Har-Peled et
al. [78] that uses Õ(mn1/δ+n) space, where k is an upper bound for the size of the minimum
set cover, in the case rk2 � m. Both algorithms use O(1/δ) passes and yield an O(1/δ)
approximation.

In the context of offline parameterized algorithms, Bonnet et al. [25] showed that Max-
k-Cover is fixed-parameter tractable in terms of k and d. However, their branching-search
algorithm is not streamable. Misra et al. [126] showed that the maximum unique coverage
problem in which the aim is to maximize the number of uniquely covered elements u
without any restriction on the number of sets in the solution is fixed-parameter tractable.
This problem admits a kernel of size 4u. On the other hand, they showed that the budgeted
version of this problem (where each element has a profit and each set has a cost and the goal
is maximize the profit subject to a budget constraint) is W [1]-hard when parameterized by
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the budget 4. In this context, our result shows that a parameterization on both the maximum
set size d and the budget k is possible (at least when all costs and profits are unit).

3.2 Preliminaries

3.2.1 Notation and Parameters

Throughout the chapter, m will denote the number of sets, n will denote the size of the
universe, and k will denote the maximum number of sets that can be used in the solution.
Given input sets S1, S2, . . . , Sm ⊂ [n], let

d = max
i
|Si|

be the maximum set size and let

r = max
j
|{i : j ∈ Si}|

be the maximum number of sets that contain the same element.

3.2.2 Structural Preliminaries

Given a collection of sets C = {S1, S2, . . . , Sm}, we say a sub-collection C ′ ⊂ C is a
matching if the sets in C ′ are mutually disjoint. C ′ is a maximal matching if there does not
exist S ∈ C \ C ′ such that S is disjoint from all sets in C ′. The following simple lemma
will be useful at various points in the chapter.

Lemma 22. For any input C, let O ⊂ C be an optimal solution for either the Max-k-Cover
or Max-k-UniqueCover problem. Let Mi be a maximal matching amongst the input set of
size i. Then every set of size i in O of size intersects some set in Mi.

Proof. Let S ∈ O have size i. If it was disjoint from all sets in Mi then it could be added to
Mi and the resulting collection would still be a matching. This violates the assumption that
Mi is maximal.

The next lemma extends the above result to show that we can potentially remove many
sets from each Mi and still argue that there is an optimal solution for the original instance
amongst the sets that intersect a set in some Mi.

Lemma 23. Consider an input of sets of size at most d. For i ∈ [d], let Mi be a maximal
matching amongst the input set of size i and let M ′

i be an arbitrary subset of Mi of size
min(k + dk, |Mi|). Let Di be the collection of all sets that intersect a set in M ′

i . Then⋃
i(Di∪M ′

i) contains an optimal solution to both the Max-k-UniqueCover and Max-k-Cover
problem.

4In the Max-k-UniqueCover problem that we consider, all costs and profits are one and the budget is k.
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Proof. If |Mi| = |M ′
i | for all 1 ≤ i ≤ d then the result follows from Lemma 22. Suppose

that If not, let j = max{i ∈ [d] : |Mi| > |M ′
i |}. Let O be an optimal solution and let Oi be

all the sets in O of size i. We know that every set in Od ∪Od−1 ∪ . . . ∪Oj+1 is in⋃
i≥j+1

(Di ∪M ′
i) =

⋃
i≥j+1

(Di ∪Mi) .

Hence, the number of elements (uniquely) covered by O is at most the number of elements
(uniquely) covered by Od ∪ Od−1 ∪ . . . ∪ Oj+1 plus kj since every set in Oj ∪ . . . ∪ O1

(uniquely) covers at most j additional elements. But we can (uniquely) cover at least the
number of elements (uniquely) covered by Od ∪Od−1 ∪ . . .∪Oj+1 plus kj. This is because
Mj contains k + dk disjoint sets of size j and at least k + dk − kd = k of these are disjoint
from all sets in Od ∪Od−1 ∪ . . . ∪Oj+1. Hence, there is a solution amongst

⋃
i≥j(Di ∪M ′

i)
that is at least as good as O and hence is also optimal.

3.2.3 Sketches and Subsampling

Coverage Sketch. Given a vector x ∈ Rn, F0(x) is defined as the number of elements
of x which are non-zero. If given a subset S ⊂ {1, . . . , n}, we define xS ∈ {0, 1}n to be
the characteristic vector of S (i.e., xi = 1 iff i ∈ S) then given sets S1, S2, . . . note that
F0(xS1 + xS2 + . . .) is exactly the number of elements covered by S1 ∪ S2 ∪ . . .. We will
use the following result for estimating F0.

Theorem 24 ( [17, 45]). There exists an Õ(ε−2 log δ−1)-space algorithm that, given a set
S ⊆ [n], can construct a data structure M(S), called an F0 sketch of S, that has the
property that the number of distinct elements in a collection of sets S1, S2, . . . , St can be
approximated up to a 1 + ε factor with probability at least 1− δ given the collection of F0

sketchesM(S1),M(S2), . . . ,M(St).

Note that if we set δ � 1/(poly(m) ·
(
t
k

)
) in the above result we can try collection

of k sets amongst S1, S2, . . . , St and get a 1 + ε approximation for the coverage of each
collection with high probability.

The Subsampling Framework. Assuming we have v such that OPT /2 ≤ v ≤ OPT.
Let h : [n]→ {0, 1} be a hash function that is Ω(ε−2k logm)-wise independent. We run our
algorithm on the subsampled universe U ′ = {u ∈ U : h(u) = 1}. Furthermore, let

P [h(u) = 1] = p =
ck logm

ε2v

where c is some sufficiently large constant. Let S ′ = S ∩ U ′ and let OPT′ be the optimal
unique coverage value in the subsampled set system. The following result is from McGregor
and Vuj [120]. We note that the proof is the same except that the indicator variables now
correspond to the events that an element being uniquely covered (instead of being covered).
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Lemma 25. With probability at least 1− 1/ poly(m), we have that

pOPT(1 + ε) ≥ OPT′ ≥ pOPT(1− ε)

Furthermore, if S1, . . . , Sk satisfies UC({S ′1, . . . , S ′k}) ≥ pOPT(1− ε)/t then

UC({S1, . . . , Sk}) ≥ OPT(1/t− 2ε) .

We could guess v = 1, 2, 4, . . . , n. One of the guesses must be between OPT /2 and
OPT which means OPT′ = O(ε−2k logm). Furthermore, if we find a 1/t approximation
on the subsampled universe, then that corresponds to a 1/t−2ε approximation in the original
universe. We note that as long as v ≤ OPT and h is Ω(ε−2k logm)-wise independent, we
have (see [141], Theorem 5):

P [UC({S ′1, . . . , S ′`}) = p · UC({S1, . . . , S`})± εpOPT]

≥1− exp (−Ω(k logm))

≥1− 1/mΩ(k) .

This gives us Lemma 25 even for when v < OPT /2. However, if v ≤ OPT /2, then OPT′

may be larger than O(ε−2k logm), and we may use too much memory. To this end, we
simply terminate those instantiations. Among the instantiations that are not terminated, we
return the solution given by the smallest guess.

Unique Coverage Sketch. For unique coverage, our sketch of a set corresponds to sub-
sampling the universe via some hash function h : [n]→ {0, 1} where h is chosen randomly
such that for each i, P [h(i) = 1] = p for some appropriate value p. Specifically, rather
processing an input set S, we process S ′ = {i ∈ S : h(i) = 1}. Note that |S ′| has size
p|S| in expectation. This approach was use by McGregor and Vu [120] in the context of
Max-k-Cover and extends easily to Max-k-UniqueCover via the subsampling approach in
3.2.3. The consequence is that if there is a streaming algorithm that finds a t approxima-
tion, we can turn that algorithm into a t(1 + ε) approximation algorithm in which we can
assume that OPT = O(ε−2k logm) with high probability5 by running the algorithm on a
subsampled sets rather than the original sets. Note that this also allows us to assume input
sets have size O(ε−2k logm) since |S ′| ≤ OPT. Hence each “sketched” set can be stored
in B = O(ε−2k logm log n) bits.

Algorithm with Ω(m) Memory. We will use the above sketches in a more interesting
context later in the chapter, note that they immediately imply a trivial algorithmic result.
Consider the naive algorithm that stores every set and finds the best solution; note that this
requires exponential time. We note that since we can assume OPT = O(ε−2k logm), each
set has size at most O(ε−2k logm). Hence, we need Õ(ε−2mk) memory to store all the
sets. This approach was noted in [120] in the context of Max-k-Cover but also apples to
Max-k-UniqueCover. We will later explain that for a 1 + ε approximation, the above trivial
algorithm is optimal up to polylogarithmic factors for constant k.

5Throughout this chapter, we say an algorithm is correct with high probability if the probability of failure
is inversely polynomial in m.
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3.3 Exact Algorithms

Let C be the input sets. In this section we will initially assume all input sets have
size exactly d and will show that there exists a single-pass data stream algorithm that uses
Õ(dd+1kd) space and returns a collection of sets C ′ ⊂ C such that the optimal solution for
either the maximum coverage or unique coverage problem when restricted to C ′ is equal to
the optimal solution with no such restriction. We will subsequently generalize this to the
case when sets can have any size at most d. In this section we will assume that r can be
unbounded, e.g., an element in the universe could appear in m of the input sets.

3.3.1 Warm-Up Idea

Appealing to Lemma 22, we know that sets in an optimal solution to maximum coverage
or maximum unique coverage intersect with a maximal matching. Hence, a natural approach
is to construct a maximimal matching A greedily as the sets arrive along with any set that
intersects a set in A. If the maximal matching ever exceeds size k then we have an optimal
solution to Max-k-Cover and Max-k-UniqueCover that covers dk elements and hence we
can ensure |A| ≤ k. However, a set in A could intersect with Ω(m) other sets in the worst
case6 The main technical step in the algorithm in the next section is a way to carefully store
only some of the sets that intersect A such that we can bound the number of stored sets in
terms of k and d and yet still assume that stored sets include an optimal solution to either
Max-k-Cover or Max-k-UniqueCover.

3.3.2 Algorithm

(1) Let A and Xu (for all u ∈ [n]) be empty sets. Each will correspond to a collection of
sets. Let b = d(k − 1).

(2) Process the stream and let S be the next set:

(a) If S is disjoint from all sets in A and |A| < k, add S to A.

(b) If u ∈ S ∩ S ′ for some S ′ ∈ A:

i. Add S to Xu if there does not exist a subset T ⊂ (S \ {u}) that occurs as
subset of (b+ 1)d−1−|T | sets in Xu.

(3) Return the best solution in C ′ = A ∪ (
⋃
uXu).

3.3.3 Analysis

We start with the following combinatorial lemma7.
6It can be bounded in terms of d and r however. Specifically, each set can intersect with at most d(r − 1)

other sets. However, in this section we are assuming r is unbounded so this bound does not help us here.
7For the interested reader who is familiar with the relevant combinatorial results, we note that we can prove

a similar lemma to the one here via the Sunflower Lemma [10, 134]. In particular, one can argue that there
exists a sufficiently large sunflower amongst {S ∈ X : T ∗ is a subset of S} whose core includes T ∗. With
some small adjustment to the subsequent theorem, this would be sufficient for our purposes. However, we
instead include this version of the lemma because it is simpler and self-contained.
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u v SS’

Figure 3.1: An example where all sets have size 4. Suppose the three dotted sets are currently stored in Xu.
If S intersects u, it may not be added to Xu even if S is in an optimal solution O. In the above diagram,
the elements covered by sets in O \ {S} are shaded (note that the sets in O other than S are not drawn). In
particular, if a subset T of S \ {u} is a subset of many sets currently stored in Xu, it will not be added. For
example, T = {v} already occurs in the three subsets currently in Xu and, for the sake of a simple diagram,
suppose 3 is the threshold for the maximum number of times a subset may appear in sets in Xu. Our analysis
shows that there always exists a set S′ in Xu that is “as good as” S in the sense that S′ ∩ S = T ∪ {u} and all
the elements in S′ \ S are elements not covered by sets in O \ {S}.

Lemma 26. Let X = {S1, S2, . . .} be a collection of distinct sets where each Si ⊂ [n] and
|Si| = a. Suppose for all T ⊆ [n] with |T | ≤ a there exists at most

`|T | := (b+ 1)a−|T |

sets in X that contain T . Furthermore suppose there exists a set T ∗ such that this inequality
is tight. Then, for all B ⊂ [n] disjoint from T ∗ with |B| ≤ b there exists Si ∈ X such that
T ∗ ⊂ Si and |Si ∩B| = 0.

Proof. If |T ∗| = a then T ∗ ∈ X and this set satisfies the necessary conditions. Henceforth,
assume |T ∗| < a. Consider the `|T ∗| sets in X that are supersets of T ∗. Call this collection
X ′. For any x ∈ B, there are at most `|T ∗|+1 sets that include T ∗ ∪ {x}. Since there are b
choices for x, at most

b`|T ∗|+1 = b(b+ 1)a−|T
∗|−1 < (b+ 1)a−|T

∗| = `|T ∗|

sets in X ′ contains an element in B. Hence, at least one set in X does not contain any
element in B.

For any collection of sets F , let f(F ) be the maximum coverage of at most k sets in F
and let g(F ) be the maximum unique coverage of at most k set in F .

Theorem 27. The output of the algorithm satisfies f(C ′) = f(C) and g(C ′) = g(C).

29



Proof. Let C0 be the union of A and all sets that intersect a set in A, i.e.,

C0 = {S ∈ A} ∪ {S ∈ C : |S ∩ S ′| > 0 for some S ′ ∈ A} .

Note that every set in the optimum solution of maximum coverage intersects with some set
in A and hence f(C0) = f(C). For i ≥ 1 consider,

Ci = C0 \ {first i sets in stream that are not in output C ′} .

We will next argue that for any i ≥ 0, f(Ci+1) = f(Ci) and the theorem follows.
Let O be an optimum solution in Ci and let {S} = Ci \ Ci+1. If S 6∈ O then clearly

f(Ci+1) = f(Ci) since O ⊆ Ci+1. If S ∈ O but not in Ci+1 then let u ∈ S be the node for
which we contemplated adding S to Xu but didn’t because of the additional requirements.

Claim 2. There exists S ′ in Xu such that f((O \ {S}) ∪ {S ′}) = f(Ci) as required.

Proof of Claim. If S was not added to Xu there exists a subset of T ∗ ⊂ (S \ {u}) that is
a subset of (b + 1)d−1−|T ∗| sets in Xu. Let X be the collection of sets of size a = d − 1
formed by removing u from each of the sets in Xu. Note that X satisfies the assumptions of
Lemma 26. Let B be the set of at most b = d(k − 1) elements in the set

B = {v : v ∈ S ′′ for some S ′′ ∈ O} \ S .

By Lemma 26, there exists a set S ′ in X such that T ∗ ⊂ S ′ and |(S ′ \ T ∗) ∩B| = 0. Hence,
f((O \ {S}) ∪ {S ′}).

The proof for unique coverage, i.e., g(), is identical.

Lemma 28. The space used by the algorithm is Õ(dd+1kd).

Proof. Recall that one of the requirements for a set S to be added to Xu is that the number
of sets in Xu that are supersets of any subset of S \ {u} of size t is at most (b + 1)d−1−t.
This includes the empty subset and since every set in Xu is a superset of the empty set, we
deduce that

|Xu| ≤ (b+ 1)d−1−0 = (b+ 1)d−1.

Since |A| ≤ k, the number of sets that are stored is at most

|A|+
∑

u∈∪S∈A

|Xu| ≤ |A|+ d|A| · (b+ 1)d−1

≤ |A|+ d|A| ·O((dk)d−1)

= O((dk)d) .
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3.3.4 Generalization to Sets of Different Size

In the case where sets may have any size at most d, we run the algorithm described in
Section 3.3.2 in parallel for stream sets of each size t ∈ [d]. By appealing to Lemma 23,
we know that an optimal maximum overage or maximum unique coverage intersects with
the union of maximal matchings of sets of size t for each t. We again rely on Lemma 26
to establish that we can store only some of the sets that intersect these matchings and still
retain an optimal solution to either coverage problem. We describe the algorithm below.

(1) Let At and Xu,t (for all u ∈ [n] and t ∈ [d]) be empty sets. Each will correspond to a
collection of sets. Let b = d(k − 1).

(2) Process the stream and let S be the next set and let t = |S|:

(a) If S is disjoint from all sets in At and

|At| <

{
dk + k if t < d

k if t = d

then add S to At.

(b) If u ∈ S ∩ S ′ for some S ′ ∈ At:
i. Add S to Xu,t if there does not exist a subset T ⊂ (S \ {u}) that occurs as

subset of (b+ 1)t−1−|T | sets in Xu.

(3) Return C ′′ = (
⋃
tAt) ∪

(⋃
u,tXu,t

)
.

Theorem 29. The output of the algorithm satisfies f(C ′′) = f(C) and g(C ′′) = g(C).

Proof. Let

C0 =
⋃
t

({S ∈ At} ∪ {S ∈ C : |S ∩ S ′| > 0 for some S ′ ∈ A}) .

Define Ci, O, and S as in the proof of Theorem 27. By Lemma 23, f(C0) = f(C) since
there is an optimum solution of maximum coverage in which every set intersects with some
set At. Let u ∈ S be the node which prevented us from adding S to Xu,t. We now prove an
analog of Claim 2 which implies that for any i ≥ 0, f(Ci+1) = f(Ci).

Claim 3. There exists S ′ in Xu,t such that f((O \ {S}) ∪ {S ′}) = f(Ci) as required.

Proof of Claim. If S was not added to Xu,t there exists of a subset of T ∗ ⊂ (S \ {u}) that
is a subset of (b + 1)t−1−|T ∗| sets in Xu. Let X be the collection of sets of size a = t − 1
formed by removing u from each of the sets in Xu. X satisfies the assumptions of Lemma
26. Let B be the set of at most b = d(k − 1) elements in the set

B = {v : v ∈ S ′′ for some S ′′ ∈ O} \ S .

By Lemma 26, there exists a set S ′ in X such that T ∗ ⊂ S ′ and |(S ′ \ T ∗) ∩B| = 0. Hence,
f((O \ {S}) ∪ {S ′})
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Again, the proof is identical for unique coverage.

Lemma 30. The space used by the algorithm is Õ(dd+1kd).

Proof. For all t, |Xu,t| ≤ (b + 1)t−1. Since |Ad| ≤ k and |At| = O(dk) for t < k, the
number of sets stored is at most:

d∑
t=1

|At|+ ∑
u∈

⋃
S∈At

|Xu,t|


≤ O(d2k + d2k(1 + (b+ 1) + . . .+ (b+ 1)d−2) + dk(b+ 1)d−1)

= O((dk)d) .

We summarize the result as a theorem.

Theorem 31. There exists a single-pass, Õ(dd+1kd)-space algorithm that yields an exact
solution to Max-k-Cover and Max-k-UniqueCover.

3.3.5 An Algorithm for Insert/Delete Streams

Chitnis et. al. [38] introduce a sketching primitive Sampleγ,d suitable for insert/delete
data streams which is capable of randomly sampling a diverse selection of sets. Sampleγ,d
first assigns a color to each element from γ colors uniformly at random using a d-wise
independent hash function. Each set in C is therefore associated with the multiset of colors
assigned to its elements (a ”color signature”). By maintaining an `0-sampler for all sets of
each color signature, It is possible to sample one set of each color signature from Sampleγ,d
at the end of stream. The following lemma establishes that these sampled sets are likely to
include optimal solutions for maximum coverage and maximum unique coverage.

Lemma 32. LetC ′ be the collection of sets sampled from Sample4k2d2,d. Then P [f(′C) = f(C)] ≥
3/4 and P [g(C ′) = g(C)] ≥ 3/4.

Proof. Let M be an optimal solution to Max-k-Cover and let c : U → [γ] be the coloring
of sets defined by Sample4k2d2,d. Order the k sets in M arbitrarily and let mi be the ith
set in this ordering. We will argue that with good probability, the ith set’s color signature
has no colors in common with any earlier set in the ordering, except for those of elements
which are already covered. More formally, let col(S) := {w|c(e) = w|e ∈ S} and let Hi

denote the event |col(mi) ∩ col(
⋃
j<imj)| = |mi ∩ (

⋃
j<imj)|. Note that if Hi occurs then

Sample4k2d2,d either returns mi or some other set with the same color signature which can
replace mi in the optimal solution (since its color signature guarantees its intersection with
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the rest of the optimal solution is not greater than mi’s). Since our hash function is d-wise
independent:

P [Hi] ≥
(

1− i · d
γ

)d
=

(
1− i

4k2d

)d
≈ e−i/4k

2

.

The above inequality holds because the earlier i edges have at most i · d unique colors. If Hi

occurs for all 0 ≤ i ≤ k − 1,

k−1∏
i=0

P [Hi] ≥
k−1∏
i=0

e−i/4k
2

= exp

(
−

k−1∑
i=0

(i/4k2)

)

= exp
(
−(k − 1)(k − 2)

4k2

)
≥ e−1/4 ≥ 3/4.

A Sample4k2d2,d sketch maintains an `0 sketch for each of γd color signatures, requiring
tO((kd)2d) space. Additionally, the d-wise independent hash function mapping nodes to
4k2d2 colors uses O(d log(4k2d2) = Õ(d) space, so the entire Sample4k2d2,d sketch requires
tO((kd)2d) space. Constructing log(k) Sample4k2d2,d sketches in parallel8 guarantees that
f(′C) = f(C) and g(′C) = g(C) with probability 1− 1/ poly(k). This gives the following
theorem.

Theorem 33. There exist randomized single-pass algorithms using Õ((kd)2d) space and
allowing deletions that yield an exact solution to Max-k-Cover and Max-k-UniqueCover.

3.4 Approximation Algorithms

In this section, we present a variety of different approximation algorithms where the
space used by the algorithm is independent of d but, in some cases, may depend on r.

3.4.1 Unique Coverage: 2 + ε Approximation

In this section, we present a 2 + ε approximation for unique coverage. The algorithm
is simple but the analysis is non-trivial. The algorithm stores the ηk largest sets where
η = dr/εe and finds the best unique coverage achievable by selecting at most k of these sets.

We will present an algorithm with a 1 + ε approximation in the next subsection with
the expense of an extra k/ε factor in the space use. However, the algorithm in this section
is appealing in the sense that it is much simpler and can be extended to insertion-deletion
streams. The analysis of this approach may also be of independent interest.

Let C ′ be the ηk sets of largest size. To find the best solution C ′′ amongst C ′, we use
the unique coverage sketches presented in the Section 3.2. Note that to find the ηk largest
sets we just store the sizes of sets sketched so far along with their unique coverage sketches.
Finally, we return the best solution C ′′ using most k sets in C ′ based on the unique coverage
sketches that we store. Recall that each unique coverage sketch requires Õ(k/ε2) space. We
have the following result.

8Note that each Sample4k2d2,d sketch has a different random coloring.
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Theorem 34. There exists a randomized single-pass algorithm using Õ(ε−2ηk) = Õ(ε−3k2r)
space algorithm that 2 + ε approximates Max-k-UniqueCover.

Proof. Let the sizes of the ηk largest sets be (with arbitrarily tie-breaking) be d1 ≥ d2 ≥
. . . ≥ dηk and let

d∗ :=
d1 + . . .+ dk

k
and d′ :=

dk+1 + . . .+ dηk
(η − 1)k

.

Let O be an optimal collection of sets for Max-k-UniqueCover. First, we observe that for
each set S ∈ O \ C ′, we have that |S| ≤ dηk ≤ d′. Hence,

OPT ≤ f(O ∩ C ′) +
∑

S∈O\C′
|S| ≤ h(C ′′) + kd′ .

where h() is a function of a collection of sets that returns the number of elements that are
covered by exactly one of these sets. Thus, if kd′ < 0.5 OPT, then it is immediate that the
number of elements uniquely covered by our solution is h(C ′′) > 0.5 OPT.

Now we consider the case kd′ ≥ 0.5 OPT. For the sake of analysis, consider randomly
partitioning C ′ into a set C ′1 of size k and C ′2 = C ′ \ C ′1. Observe that

E [h(C ′1)]

=
∑
S∈C′

E [# of elements uniquely covered by S in C ′1]

=
∑
S∈C′

∑
u∈S

P [S ∈ C ′1 and u is uniquely covered in C ′1]

≥
∑
S∈C′

∑
u∈S

P [S ∈ C ′1]−
∑

S′∈C\{S}:u∈S′
P [S ∈ C ′1, S ′ ∈ C ′1]


≥
∑
S∈C′
|S|
(
ε/r − (r − 1)(ε/r)2

)
≥ ηk · d′

(
ε/r − r(ε/r)2

)
≥ kd′ (1− ε) ≥ (1− ε) OPT /2 .

We note that it is possible to improve the result slightly by setting η =
√

2/ε for the
bound of for E [h(C ′1)] in the proof of Theorem 34 as follows:

34



E [h(C ′1)] =
∑
S∈C′

E [# of elements uniquely covered by S in C ′1]

≥
∑
S∈C′

∑
i∈S

k

ηk

(η − 1)k

ηk − 1

=
1

η
·
(

(η − 1)k

ηk − 1

)∑
S∈C′
|S|

>
η − 1

η2
(kd∗ + (η − 1)kd′)

≥ OPT(1/η − 1/η2 + (1− 1/η)20.5)

= OPT(0.5− 0.5/η2)

= (0.5− ε) OPT .

The space used in resulting algorithm scales with ε−2.5 rather than ε−3 as implied by the
analysis for general r.

Extension to Insert/Delete Streams

We now explain how the above approach can be extended to the case where sets may be
inserted and deleted. In this setting, it is not immediately obvious how to select the largest
ηk sets; the approach used when sets are only inserted does not extend. Note that in this
model we can set m to be that maximum number of sets that have been inserted and not
deleted at any prefix of the stream rather than the total number of sets inserted/deleted.

However, we can extend the result as follows. Suppose the sketch of a set for ap-
proximating maximum unique coverage requires B bits; recall from Section 3.2.3 that
B = kε−2 polylog(n,m) suffices. We can encode such a sketch of a set S as an integer
i(S) ∈ [2B]. Suppose we know that exactly ηk sets have size at least some threshold t. We
will remove this assumption shortly. Consider the vector x ∈ [N ] where N = 2B that is
initially 0 and then is updated by a stream of set insertions/deletions as follows:

(1) When S is inserted, if |S| ≥ t, then xi(S) ← xi(S) + 1.

(2) When S is deleted, if |S| ≥ t, then xi(S) ← xi(S) − 1.

At the end of this process x ∈ {0, 1, . . . , ,m}2B , `1(x) = ηk, and reconstruct the sketches
of largest ηk sets given x. Unfortunately, storing x explicitly in small space is not possible
since, while we are promised that at the end of the stream `1(x) = ηk, during the stream it
could be that x is an arbitrary binary string with m one’s and this requires Ω(m) memory to
store. To get around this, it is sufficient to maintain a linear sketch of x itself that support
sparse recovery. For our purposes, the CountMin Sketch [46] is sufficient although other
approaches are possible. The CountMin Sketch allows x to reconstructed probability 1− δ
using a sketch of size

O(logN + ηk log(ηk/δ) logm) = O(ηkε−2 polylog(n,m)) .

To remove the assumption that we do not know t in advance, we consider values:

t0, t1, . . . , tdlog1+εme where ti = (1 + ε)i .
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We define vector x0, x1, . . . ∈ {0, 1, . . . , ,m}2B where xi is only updated when a set of size
≤ ti but > ti−1 is inserted/deleted. Then there exists i such that ≤ ηk sets have size ≤ ti−1

and the sketches of these sets can be reconstructed from x0, . . . , xti−1 . To ensure we have
ηk sets, we may need some additional sketches corresponding to sets of size > ti−1 and
≤ ti but unfortunately there could be m such sets and we are only guaranteed recover of
xti when it is sparse. However, if this is indeed the case we can still recover enough entries
of xt1 by first subsampling the entries at the appropriate rate (we can guess sampling rate
1, 1/2, 1/22, . . . 1/m) in the standard way. Note that we can keep track of `1(xi) exactly for
each i using O(logm) space.

The next section presents algorithms for maximum coverage and set cover using a similar
approach based on keeping a set of the largest elements seen so far.

3.4.2 Maximum Coverage and Set Cover

In this section, we generalize the approach of Manurangsi [111] and combine that with
F0-sketch to obtain a 1+ε approximation using Õ(ε−3k2r) space for the maximum coverage
problem.

Manurangsi [111] showed that for the maximum k-vertex cover problem, the Θ(k/ε)
vertices with highest degrees form a 1 + ε approximation kernel. That is, there exist k
vertices among those that cover (1− ε) OPT edges. We now consider a set system in which
an element belongs to at most r sets (this can also be viewed as a hypergraph where each set
corresponds to a vertex and each element corresponds to a hyperedge; we then want to find
k vertices that touch as many hyperedges as possible).

We begin with the following lemma that generalizes the aforementioned result in [111].
We may assune that m� Crk/ε for some large constant C; otherwise, we can store all the
sets.

Lemma 35. Suppose m > drk/εe. Let K be the collection of drk/εe sets with largest sizes
(tie-broken arbitrarily). There exist k sets in K that cover (1− ε) OPT elements.

Proof. Let O denote the collection of k sets in some optimal solution. Let Oin = O ∩K
and Oout = O \K. We consider a random subset Z ⊂ K of size |Oout|. We will show that
the sets in Z ∪ Oin cover (1− ε) OPT elements in expectation; this implies the claim.

Let χ(Z) denote the set of elements covered by the sets in Z. Let [E ] denote the indicator
variable for event E . We rewrite

|χ(Z ∪ Oin)| = |χ(Oin)|+ |χ(Z)| − |χ(Oin) ∩ χ(Z)| .
Furthermore, the probability that we pick a set S in K to add to Z is

p :=
|Oout|
|K|

≤ k

kr/ε
=
ε

r
.

Next, we upper bound E [|χ(Oin) ∩ χ(Z)|]. We have

E
[
|χ(Oin) ∩ χ(Z)|

]
≤

∑
u∈χ(Oin)

∑
S∈K:u∈S

P [S ∈ Z]

≤
∑

u∈χ(Oin)

rp ≤ |χ(Oin)| · ε .
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We lower bound E [|χ(Z)|] as follows.

E [|χ(Z)|]

≥ E

∑
S∈K

|S|[S ∈ Z]−
∑

S′∈K\{S}

|S ∩ S ′|[S ∈ Z ∧ S ′ ∈ Z]


≥
∑
S∈K

|S|p− ∑
S′∈K\{S}

|S ∩ S ′|p2


≥
∑
S∈K

(
|S|p− r|S|p2

)
≥ p(1− pr)

∑
S∈K

|S| ≥ p(1− ε)
∑
S∈K

|S| .

In the above derivation, the second inequality follows from the observation that P [S ∈ Z ∧ S ′ ∈ Z] ≤
p2. The third inequality is because

∑
S′∈K\{S} |S ∩ S ′| ≤ r|S| since each element belongs

to at most r sets.
For all S ∈ K, we must have have

|S| ≥
∑

Y ∈Oout |Y |
|Oout|

≥ |χ(Oout)|
|Oout|

.

Thus,

E [|χ(Z)|] ≥ p (1− ε) |K| |χ(Oout)|
|Oout|

= p (1− ε) |χ(Oout)|
p

= (1− ε)|χ(Oout)| .

Putting it together,

E
[
|χ(Z ∪ Oin)|

]
≥ |χ(Oin)|+ (1− ε)|χ(Oout)| − |χ(Oin)| · ε
≥ (1− ε) OPT .

With the above lemma in mind, the following algorithm’s correctness is immediate.

(1) Store F0-sketches of the kr/ε largest sets, where the failure probability of the sketches
is set to 1

poly(n)(mk)
.

(2) At the end of the stream, return the k sets with the largest coverage based on the
estimates given by the F0-sketches.

We restate our result as a theorem.

Theorem 36. There exists a randomized one-pass, Õ(k2r/ε3)-space, algorithm that with
high probability finds a 1 + ε approximation to Max-k-Cover.
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3.4.3 Unique Coverage: 1 + ε Approximation

The approximation factor in the previous section can be improved to 1 + ε at the expense
of an extra factor of k/ε in the space. Recall in Section 3.3.1 that there exists an algorithm
for solving Max-k-UniqueCover exactly by storing O(kdr) sets, i.e., with Õ(kd2r) space.
Combining this with the Subsampling Framework discussed in Section 3.2.3, we may
assume d ≤ OPT = O(ε−2k logm). This immediately implies the following theorem.

Theorem 37. There exists a randomized one-pass algorithm using Õ(ε−4k2r) space that
finds a 1 + ε approximation of Max-k-UniqueCover.

Note that the same approach would work for Max-k-Cover but we present a better result
in Section 3.4.2.

3.4.4 Unique Coverage: O(log min(k, r)) Approx.

We now present an algorithm whose space does not depend on r but the result comes at
the cost of increasing the approximation factor to O(log(min(k, r))). It also has the feature
that the running time is polynomial in k in addition to being polynomial in m and n.

The basic idea is as follows: We consider an existing algorithm that first finds a 2
approximation for the Max-k-Cover problem. Let the corresponding solution be C ′. The
algorithm then finds the best solution of Max-k-UniqueCover among the sets in C ′.

Let z∗ be a guess such that (1 − ε) OPT∗ ≤ z∗ ≤ OPT∗ where OPT∗ is the value of
the optimal Max-k-Cover.

(1) Initialize T = ∅ which will store sets from the stream.

(2) For each set S in the stream, if |T | < k and

|(∪A∈TA) ∪ S| − |∪A∈TA| ≥ z∗/(2k) ,

then add S to T and store S in the memory.

(3) Return the best solution Q (in terms of unique coverage) among the sets in T .

The following theorem captures the above algorithm.

Theorem 38. There exists a randomized one-pass, Õ(k2)-space, algorithm that with high
probability finds a O(log min(k, r)) approximation of Max-k-UniqueCover.

Proof. It has been shown in previous work [16, 120] that T is a 2 + ε approximation of
Max-k-Cover. Demaine et al. [49] proved that Q is an O(log min(k, r)) approximation of
Max-k-UniqueCover. In fact, they presented a polynomial time algorithm to find Q from T
such that the number of uniquely covered elements is at least

Ω(1/ log k) · |∪A∈TA| ≥ Ω(1/ log k) · 1/2 ·OPT∗ ≥ Ω(1/ log k) ·OPT .

We note that OPT∗ ≤ kOPT. Otherwise, one can find a set that covers more than OPT
elements which is a contradiction.
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The above algorithm needs to keep track of the elements being covered by T at all
points during the stream. This requires Õ(OPT∗) = Õ(kOPT) space. Furthermore,
storing the sets in T needs Õ(kOPT) space. Finally, guessing z∗ entails a O(ε−1 log OPT)
factor. Thus, the algorithm uses Õ(ε−1kOPT) space which could be translated into another
algorithm that uses Õ(ε−3k2) space after using the subsampling framework. For the purpose
of the proving the claimed approximation factor we can set ε to a small constant.

Application to Parameterized Set Cover.

We parameterize the set cover problem as follows. Given a set system, either A) output
a set cover of size αk if OPT ≤ k where α the approximation factor or B) correctly declare
that a set cover of size k does not exist.

Theorem 39. There exists a randomized, O(1/δ)-pass, Õ(rk2n1/δ + n)-space, algorithm
that with high probability finds a O(1/δ) approximation of the parameterized set cover
problem.

Proof. In each pass, we run the algorithm in Theorem 36 with parameters k and ε = 1/nδ/3

on the remaining uncovered elements. The space use is Õ(rk2n1/δ + n). Here, we need
additional Õ(n) space to keep track of the remaining uncovered elements.

Note that if OPT ≤ k, after each pass, the number of uncovered elements is reduced by
a factor 1/nδ/3. This is because if n′ is the number of uncovered elements at the beginning
of a pass, then after that pass, we cover all but at most n′/nδ/3 of those elements. After
i passes, the number of remaining uncovered elements is O(n1−iδ/3); we therefore use at
most O(1/δ) passes until we are done. At the end, we have a set cover of size O(k/δ).

If after ω(1/δ) passes, there are still remaining uncovered elements, we declare that such
a solution does not exist.

Our algorithm improves upon the algorithm by Har-Peled et al. [78] that uses Õ(mn1/δ +
n) space for when rk2 � m and also yields an O(1/δ) approximation.

Extension to Insert/Delete Streams

The result can be extended to the case where sets are inserted and deleted using the same
approach as that used for unique coverage.

3.5 Lower Bounds

3.5.1 Lower Bounds for Exact Solutions

As observed earlier, any exact algorithm for either the Max-k-Cover or Max-k-UniqueCover
problem on an input where all sets have size d will return a matching of size k if one exists.
However, by a lowerbound due to Chitnis et al. [38] we know that determining if there exists
a matching of size k in a single pass requires Ω(kd) space. This immediately implies the
following theorem.

Theorem 40. Any single-pass algorithm that solves Max-k-Cover or Max-k-UniqueCover
exactly with probability at least 9/10 requires Ω(kd) space.

39



3.5.2 Lower bound for a e1−1/k approximation

The strategy is similar to previous work on Max-k-Cover [119, 120]. However, we need
to argue that the relevant probabilistic construction works for all collections of fewer than
k sets since the unique coverage function is not monotone. This extra argument will also
allow us to show that the lower bound also applies to bi-criteria approximation in which we
are allowed to pick more than k sets (this is not the case for Max-k-Cover).

We make a reduction from the communication problem k-player set disjointness, denoted
by DISJ(m, k). In this problem, there are k players where the ith player has a set Si ⊆ [m].
It is promised that exactly one of the following two cases happens a) NO instance: All the
sets are pairwise disjoint and b) YES instance: There is a unique element v ∈ [m] such that
v ∈ Si for all i ∈ [k] and all other elements belong to at most one set. The (randomized)
communication complexity, for some large enough constant success probability, of the
above problem in p-round, one-way model is Ω(m/(pk)) even if the players may use public
randomness [33]. We can assume that |S1 ∪ S2 ∪ . . . ∪ Sk| ≥ m/4 via a padding argument.

Theorem 41. Any constant-pass randomized algorithm with an approximation better than
e1−1/k for Max-k-UniqueCover requires Ω(m/k2) space.

Proof. Consider a sufficiently large n where k divides n. For each i ∈ [m], let Pi be a
random partition of [n] into k sets V i

1 , . . . , V
i
k such that an element in the universe U = [n]

belongs to exactly one of these sets uniformly at random. In particular, for all i ∈ [m] and
v ∈ U ,

P
[
v ∈ V i

j ∧ (∀j′ 6= j, v /∈ V i
j′)
]

= 1/k .

The partitions are chosen independently using public randomness before receiving the
input. For each player j, if i ∈ Sj , then they put V i

j in the stream. Note that the stream
consists of Θ(m) sets.

If the input is a NO instance, then for each i ∈ [m], there is at most one set V i
j in the

stream. Therefore, for each element v ∈ [n] and any collection of ` ≤ k sets V i1
j1
, . . . , V i`

j`
in

the stream,

P
[
v is uniquely covered by V i1

j1
, . . . , V i`

j`

]
= `/k · (1− 1/k)`−1

≤ `/k · e−(`−1)/k .

Therefore, in expectation, µ` := E
[
h({V i1

j1
, . . . , V i`

j`
})
]
≤ `/k · e−(`−1)/kn where h() is the

number of elements that are uniquely covered. By an application of Hoeffding’s inequality,

P
[
h({V i1

j1
∪ . . . ∪ V i`

j`
}) > µ` + εe−(k−1)/k · n

]
≤exp

(
−2ε2e−2(`−1)/kn

)
≤exp

(
−Ω(ε2n)

)
≤ 1

m10k
.

The last inequality follows by letting n = Ω(ε−2k logm). The following claim shows
that for large k, in expectation, picking k sets is optimal in terms of unique coverage.

Lemma 42. The function g(`) = `/k · e−(`−1)/kn is increasing in the interval (−∞, k] and
decreasing in the interval [k,+∞).
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Proof. We take the partial derivative of g with respect to `

∂g

∂`
=
e(1−`)/k(k − `)

k2
· n

and observe that it is non-negative if and only if ` ≤ k.

By appealing to the union bound over all
(
m
1

)
+ . . .+

(
m
k−1

)
+
(
m
k

)
≤ O(mk+1) possible

collections ` ≤ k sets, we deduce that with high probability, for all collections of ` ≤ k sets
S1, . . . , S`,

h({S1, . . . , S`}) ≤ µ` + εe−(k−1)/k · n
≤ `/k · e−(`−1)/kn+ εe−(k−1)/k · n
≤ (1 + ε)e−1+1/kn .

If the input is a YES instance, then clearly, the maximum k-unique coverage is n. This is
because there exists i such that i ∈ S1 ∩ . . . ∩ Sk and therefore V i

1 , . . . , V
i
k are in the stream

and these sets uniquely cover all elements.
Therefore, any constant pass algorithm that finds a (1 + 2ε)e1−1/k approximation of

Max-k-UniqueCover for some large enough constant success probability implies a protocol
to solve DISJ(m, k). Thus, Ω(m/k2) space is required.

Remark. Since g(`) is decreasing in the interval [k,m], the lower bound also holds for
bi-criteria approximation where the algorithm is allows to pick more than k sets.

3.5.3 Lower bound for 1 + ε approximation

Assadi [14] presents a O (m/ε2) lower bound for the space required to compute a
1 + ε approximation for Max-k-Cover when k = 2, even when the stream is in a random
order and is allowed constant passes. This is accomplished via a reduction to multiple
instances of the Gap-Hamming Distance problem on a hard input distribution, where an
input with high maximum coverage corresponds to a YES answer for some Gap-Hamming
Distance instance, and a low maximum coverage corresponds to a NO answer for all GHD
instances. This hard distribution has the additional property that high maximum coverage
inputs also have high maximum unique coverage, and low maximum coverage inputs have
low maximum unique coverage. Therefore, the following corollary holds:

Corollary 43. Any constant-pass randomized algorithm with an approximation factor 1 + ε
for Max-k-UniqueCover requires Ω(m/ε2) space.
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CHAPTER 4

TEMPORAL GRAPH STREAMS

Temporal graphs incorporate the notion of time into the structure of traditional graphs
to model time-dependent phenomena in applications such as information sharing, disease
spreading, Internet routing, and more. In a temporal graph, edges are augmented with
timestamps: labels which indicate at which moments in time the edge can be said to exist.
Temporal graphs are a recent topic of study and no one has yet considered the problem
of designing algorithms to compute properties of temporal graphs at scale. We introduce
the notion of a temporal graph stream, where a temporal graph is defined via a sequence
of temporal edge updates, and ask whether various properties of a temporal graph can be
computed given sequential access to the stream and space sublinear in the size of the stream.

The significance and interpretation of edge timestamps may appear to vary with the
algorithmic problem being considered, as well as the intended application. For instance, in
this chapter we concern ourselves with reachability, where timestamps indicate moments at
which the edge is traversable. In contrast, Mikhail et al. [124] consider the problem of finding
a maximum matching where all edges in the matching have distinct timestamps. However,
the idea that timestamps represent times at which an edge is traversible is central to existing
work. For instance, the above temporal constraint on maximum matching is motivated as
a technique for algorithms computing temporal versions of traveling salesman problems,
which require a matching of temporally distinct edges to construct an approximately optimal
traveling salesman tour. From this it is clear that connectivity in temporal graphs is a
fundamental problem and a natural first topic of study.

We begin our study of temporal reachability in the data stream setting. In the non-
temporal graph setting, a graph is connected iff there is a path between any two nodes in the
graph. In temporal graphs, the fact that edges exist at some times and not others complicates
our notion of a path. We consider journeys, paths on a temporal graph whose edges have
strictly increasing timestamps. Given access to a stream defining T and O(n polylog(n))
space, can we determine whether T has a journey between arbitrary nodes (s, t) ∈ V ?

We begin investigating this question by considering various simpler versions of it. In
particular we consider forward reachability where the task is to find all nodes reachable
from some source node, and backward reachability where the task is to find all nodes from
which some destination node is reachable. In Section 4.2, we prove lower space bounds on
the problem of detecting forward journeys. In Section 4.3, we provide sketching algorithms
for tracing randomly sampled backward journeys and estimating the number of backward
journeys, and prove lower bounds for some other backwards reachability variants. In Section
4.4 we consider a generalization of the above problems where we trace journeys that depart
before a certain timestep, and prove a strong lower bound on this generalized problem.
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4.1 Preliminaries

We borrow some notation and definitions from [123].

Definition 44. A temporal graph T is an ordered pair of disjoint sets (V,A) such that
A ⊂

(
V
2

)
× N. We refer to A as the set of time-edges of T . For e = (uv, t) ∈ A, we refer to

t as the timestamp of e. Let τ denote the number of distinct timestamps in A. A directed
temporal graph D is an ordered pair of disjoint sets (V,A′) such that A′ ⊂ V × V ×N. For
e = (u, v, t) ∈ A′, we refer to to u as the tail of e and v as the head of e.

Throughout this chapter we refer to classical graphs whose edges do not vary with time
as static graphs.

As in static graphs, the notion of a path and resulting ideas of reachability and connec-
tivity are fundamental to the study of temporal graphs. We begin with an investigation of
these concepts.

Definition 45. A temporal (or time-respecting) walk W on T is an alternating sequence
of nodes and times {u1, t1, u2, t2, . . . , tk−1, uk} where (uiui+1, ti) ∈ A ∀i ∈ [k − 1] and
ti < ti+1 ∀i ∈ [k − 2]. We call t1 the departure time of W , tk−1 its arrival time, and
tk−1 − t1 + 1 its duration. A journey (or temporal/time-respecting path) J is a temporal
walk with pairwise distinct nodes. We say that a node v is reachable from node u iff there is
a journey from u to v.

Note that T can have a journey from u to v but not have a journey from v to u. We define
the reachability matrix R ∈ {0, 1}n×n of T such that Ri,j = 1 if there exists a journey from
i to j and 0 otherwise.1

In the streaming temporal graph setting, we assume that T is revealed via a stream of
time-edge updates. A time-respecting stream is one whose time-edges arrive in increasing
timestamp order.

4.2 Forward Reachability Problems

We consider some basic reachability problems in the temporal streaming setting. Typi-
cally, this means computing some portion of the reachability matrix, when the portion to be
computed may be revealed before or after the stream. A natural temporal reachability prob-
lem to consider is forward reachability, where we must determine the set of nodes reachable
from node s in T . If time-edges in the temporal graph represent infection-spreading contact
events between people in a disease model, we can think of this forward reachability problem
as tracking the spread of infection starting from person s. This forward reachability problem
is equivalent to computing Rs,∗, the sth row of the reachability matrix.

Theorem 46. Computing Rs,∗ in a time-respecting stream requires Θ̃(n) space if s is known
before the stream.

1We adopt the convention that there is always a journey from a node to itself, so Ri,i = 1 ∀i.
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Proof. A very simple algorithm suffices. Initialize matrix M s ∈ {0, 1}n×τ such that
M s

s,0 = 1 and 0 everywhere else. When the algorithm finishes, M s
∗,i will represent the state

of Rs,∗ during timestep i. Process the stream of edges as follows: When the time-edge
(uv, i) arrives in stream, if it is the first time-edge with timestamp i, set M s

∗,i = M s
∗,i−1 and

then delete M s
∗,i−2. Then set M s

u,i = max{M s
u,i,M

s
v,i−1} and M s

v,i = max{M s
v,i,M

s
u,i−1}.

Let t′ be the timestamp of the last time-edge in the stream. At the end of the stream, return
M s
∗,t′ .

Proof of correctness follows by a simple induction argument on timesteps. Since we
delete columns as we go, we only ever represent two columns at any time in memory and
therefore use O(n) space.

We now prove the lower bound via a reduction from the communication problem of
indexing. See the proof of Theorem 2 in Chapter 2 for details on the indexing problem.
Suppose that we have a streaming algorithm that computes the problem. Alice constructs an
input for the algorithm as follows: First, she creates a graph on nodes {g} ∪ V ∪ {c} with
|V| = n, and indicates to the algorithm to compute Rg,∗. Then for each j ∈ [n], Alice adds
(gvj, 1) to the stream iff aj = 1 where a is her binary string. She then sends the contents of
her memory to Bob who has index b. Bob adds time-edge (vbc, 2) to the stream and has it
return Rg,c. This solves the index problem since Rg,c = 1 iff time-edge (gvb, 1) appeared in
the stream which occurred iff ab = 1. Since the indexing problem requires space Ω(n), this
streaming algorithm must also use space Ω(n).

We might next ask whether it is possible to compute Rs,∗ in small space even when s is
not revealed until after the stream. This is essentially equivalent to computing all of R, even
if we are allowed to fail to find Rs,∗ with constant probability (since we can simply repeat
such a procedure log(n) times in parallel to acheive a failure probability polynomially small
in n).

Conjecture 47. Computing Rs,∗ in a time-respecting stream with probability 3/4 requires
Ω(n2) space if s is not known until after the stream.

We now prove Ω(n2) lower bounds for some generalizations of this problem. It turns
out that for these generalizations, we can prove an Ω(n2) lower bound for an even simpler
task: computing Rs,z for s, z ∈ V even if both s and z known before the stream.

Theorem 48. Computing Rs,z of a directed temporal graph D in a time-respecting stream
with success probability 9/10 requires Ω(n2) space even if s and z are known before the
stream.

Proof. We prove via a reduction from the index problem. Suppose there exists a streaming
algorithm that computes the problem with probability at least 9/10. Alice, who has binary
string a ∈ {0, 1}n2 , constructs an input for the streaming algorithm as follows: First, she
creates a graph on nodes {g} ∪ U ∪ V ∪ {c} with |U| = |V| = n, and indicates to the
algorithm to compute Rg,c. Alice maps each index of a to a unique node pair in U × V via a
one-to-one function f : [n2]→ [n]× [n]. For convenience, denote the nodes in this unique
pair as fu(i) and fv(i) for each input i. For each i ∈ [n2], Alice adds directed time-edge
(g, ui, 1) to the stream. Then for each i ∈ [n], Alice adds directed time-edge (fu(i), fv(i), 2)
to the stream iff ai = 1. She then sends the contents of her memory to Bob who has index
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Figure 4.1: The construction used in the proof of Theorem 49. Note how any journey from uk and vl must
have an edge with timestamp less than l − k, with the exception of edge e = (ukvl, l − k). Therefore there is
a journey from g to c iff e is added to the stream.

b. Bob adds time-edge (fv(b), c, 3) to the stream and asks the algorithm to return the value
Rg,c. Note that there is at most 1 journey from g to c, which is {g, 1, fu(b), 2, fv(b), 3, c}
and this journey exists only when directed time-edge (fu(b), fv(b), 2) has been added to the
stream which occurs only when ab = 1. Since solving the indexing problem with probability
9/10 requires space Ω(n2), our streaming algorithm must also require space Ω(n2).

The above proof relies on the fact that there are no journeys from nodes in V to nodes in
U . For the next problem we consider, this is not true and so we need to carefully define the
index-to-node-pair function f to account for this.

Theorem 49. Computing Rs,z in a non-time-respecting stream with success probability
9/10 requires Ω(n2) space even if s and z are known before the stream.

Proof. Once again we prove this via a reduction to the index problem, using nearly the same
proof as that of Theorem 48. The idea is to construct a temporal graph such that there is a
journey from g to c iff Alice inserts the time-edge that corresponds to Bob’s index b.

Suppose there exists a streaming algorithm that computes the problem with probability
at least 9/10. Alice, who has binary string a ∈ {0, 1}n2 , constructs an input for the
streaming algorithm as follows: First, she creates a graph on nodes {g} ∪ U ∪ V ∪ {c} with
|U| = |V| = 2n, and indicates to the algorithm to compute Rg,c. Order the nodes in U and
V arbitrarily, and let uj denote the jth node of U in this ordering and likewise let vj denote
the jth node of V . Alice maps each index i of a to a unique node pair in U × V via the
functions f(i) = bi/nc and h(i) = bi/nc+ i mod n+ 1. Note that f(i) < h(i) ∀i ∈ [n2].
Then for each index i, if ai = 1 Alice computes adds time-edge ei = (uf(i)vh(i), h(i)− f(i))
to the stream. Then Alice sends the contents of her memory to Bob who has index b. Bob
adds time-edges (guk, l − k − 1) and (vlc, n+ 1) where f(b) = k and h(b) = l. There is a
journey from g to c iff there is a journey from uk to vl with departure time l − k or greater.
The following lemma establishes that such a journey exists iff ab = 1, completing the proof.

Claim 4. For any uk ∈ U and vl ∈ V , there is at most one journey from uk to vl with
departure time ≥ l − k. If such a journey exists, it is the single time-edge (ukvl, l − k).

45



Proof. Recall that all journeys among nodes in U and V must be composed of edges of
strictly increasing timestamps. Certainly if time-edge (ukvl, l − k) exists then it is a journey
from uk to vl. We will prove the lemma by demonstrating that any other path between uk
and vl must include an edge with timestamp less than l− k and therefore cannot be part of a
journey from g to vl.

Consider a journey ψ from uk to vl with more than one time-edge. Since the subgraph
on U ∪ V is bipartite, ψ must begin with time-edge (ukvp, p− k) for some node vp ∈ V \ vl.
Consider the next two time-edges in ψ, (vpuq, q − p) and (uqvr, r − q) for some uq ∈ U
and vr ∈ V . Since timestamps strictly increase along the journey, r − q > q − p and so
r = (r − q) + (q − p) + p > p. Repeating this argument for all subsequent pairs of edges
in the journey yields l > p. As a result, (ukvp, p − k) occurs before (ukvl, l − k) and ψ’s
departure time is less than l − k.This idea is illustrated in Figure 4.1.

Due to Alice’s construction, time-edge (ukvl, l−k) is added to the stream iff ab = 1.

4.3 Backwards Reachability Problems

We now consider the backward reachability problem, where given a node z we must
determine the set of nodes U such that there exists a journey from u to z for all u ∈ U .
In our example disease-spreading interpretation, we can think of backward reachability as
finding the set of all potential patient zeros who could have infected person z. Backward
reachability is equivalent to computing R∗,z, the zth column of the reachability matrix.

Similar to Conjecture 47, computing R∗,z is essentially equivalent to computing all of R.
We first focus our attention on more modest goals: using sketches to estimate F0(R∗,z) or to
sample a nonzero element of R∗,z uniformly at random. Then we will prove some lower
bounds for generalizations of the backwards problem.

Consider an initially empty temporal graph T which will be defined by a time-respecting
temporal graph stream, and let T (t) denote T after the stream has delivered all time-edges
with timestamp t or less. Denote its reachability matrix RT (t). RT (0) = In, the identity
matrix of size n. Given RT (t−1) and the A(t), the set of time-edges with timestamp exactly
t, we can perform set of simple linear operations on the columns of RT (t− 1) to compute
RT (t). Let RT

i,j(t) denote the value of RT (t) at row i and column j, and let RT
i,∗(t) and

RT
∗,j(t) denote the ith row and jth column of RT (t) respectively.

Lemma 50. Let Bt(t) denote the Let Au(t) = {v : (uv, t) ∈ A(t)} ∪ {u}. RT
∗,u(t) =∨

v∈Au(t) R
T
∗,v(t− 1) where

∨
denotes the bitwise OR operation.

Proof. Denote the set for which there exists a journey from u to v with arrival time ≤ t′ as
ψ(v, t′). From the definition of journey we have

ψ(u, t) = ψ(u, t− 1) ∪
⋃

v∈Au(t)

ψ(v, t− 1)

RT
∗,γ(t

′) is a binary encoding of set ψ(γ, t′) and we can perform the union operation via
bitwise OR on these binary encodings.
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We can essentially perform OR operations on the columns by summing them together.
Define BT (0) = In and BT

∗,u(i) =
∑

v∈Au(i) B
T
∗,v(i − 1) ∀i ∈ [τ ]. If we treat all nonzero

elements of BT as equal to 1, then we can simply sum the appropriate columns together
instead of performing bitwise OR (treating any nonzero entry as equivalent to 1). This
means we can sketch the columns of RT of the matrix using any linear sketch and update
by summing different column sketches. Using existing sketches, we can immediately
perform tasks in small space like estimating F0(R∗,z) or to sample a nonzero element of
R∗,z uniformly at random.

However, this summing approach introduces a complication we must address. Elements
of RT (t) may be as large as 2t. For example, if the stream contains time-edges (u, v, i)
for each i ∈ [τ ], then RT

u,v(t) = 2τ . F0 and `0 sketches (which we use below) use space
dependent on log(σ) where σ is the maximum value which elements in the sketched vector
can take on, so in our example the presence of large values would incur an additional τ space
factor. However, [115] outlines alternative versions of F0 and `0 sketches which sketch each
vector element mod p for some large random prime p� n, eliminating this extra τ space
factor and leading to the following theorem:

Theorem 51. There is a sketch-based time-respecting temporal graph stream algorithm that
usesO(nε−2 log(1/δ)) space that (1+ε)-approximates F0(R∗,z) with probability 1−δ, and a
sketch-based time-respecting temporal graph stream algorithm usingO(n polylog(n) log(1/δ))
space that samples a nonzero element of R∗,z with probability 1− δ.

4.4 Departure Reachability

So far we have been considering journeys which may depart and arrive at any time. We
might however want to determine whether a journey with a departure time greater than
some constant k exists between some nodes u and v. To accomodate this, we define the
departure-reachability matrix D of a temporal graph T to be an n× n× τ matrix where
Du,v,t = 1 iff there is a journey from u to v with departure time t or greater, and 0 otherwise.

Theorem 52. Computing Ds,z,t in a time-respecting stream with success probability 9/10
requires Ω(n2) space if t and s are not known before the stream, even if z is known.

Proof. The proof is nearly identical to that of Theorem 49. We assume there exists a
streaming algorithm that finds Ds,z,t. Alice follows exactly the same procedure to construct
the temporal graph stream, except that she asks the algorithm to compute Ds′,c,t′ for some
not-yet-known value of t′ and some not-yet-specified node s′. Bob, instead of adding edge
(guk, l − k) to the stream, indicates that t′ = l − k and s′ = uk. Then by Claim 4 there is a
journey from uk to c with departure time ≥ l − k iff time-edge (ukvl, l − k) is added to the
stream, which by Alice’s construction occurs iff ab = 1.
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CHAPTER 5

MESH

Programs written in C/C++ can suffer from serious memory fragmentation, leading to
low utilization of memory, degraded performance, and application failure due to memory
exhaustion. This chapter introduces MESH, a plug-in replacement for malloc that, for the
first time, eliminates fragmentation in unmodified C/C++ applications. MESH combines
novel randomized algorithms with widely-supported virtual memory operations to provably
reduce fragmentation, breaking the classical Robson bounds with high probability. We focus
here on the randomized algorithms which power MESH and proofs of their solution quality
and runtime. MESH generally matches the runtime performance of state-of-the-art memory
allocators while reducing memory consumption; in particular, it reduces the memory of
consumption of Firefox by 16% and Redis by 39%.

5.1 Introduction

Despite nearly fifty years of conventional wisdom indicating that compaction is impossi-
ble in unmanaged languages, this chapter shows that it is not only possible but also practical.
It introduces MESH, a memory allocator that effectively and efficiently performs compacting
memory management to reduce memory usage in unmodified C and C++ applications.

Crucially and counterintuitively, MESH performs compaction without relocation; that
is, without changing the addresses of objects. This property is vital for compatibility with
arbitrary C/C++ applications. To achieve this, MESH builds on a mechanism which we call
meshing, first introduced by Novark et al.’s Hound memory leak detector [131]. Hound
employed meshing in an effort to avoid catastrophic memory consumption induced by its
memory-inefficient allocation scheme, which can only reclaim memory when every object
on a page is freed. Hound first searches for pages whose live objects do not overlap. It then
copies the contents of one page onto the other, remaps one of the virtual pages to point to
the single physical page now holding the contents of both pages, and finally relinquishes the
other physical page to the OS. Figure 5.1 illustrates meshing in action.

MESH overcomes two key technical challenges of meshing that previously made it both
inefficient and potentially entirely ineffective. First, Hound’s search for pages to mesh
involves a linear scan of pages on calls to free. While this search is more efficient than
a naive O(n2) search of all possible pairs of pages, it remains prohibitively expensive for
use in the context of a general-purpose allocator. Second, Hound offers no guarantees that
any pages would ever be meshable. Consider an application that happens to allocate even
one object in the same offset in every page. That layout would preclude meshing altogether,
eliminating the possibility of saving any space.
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physical memory
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(a) Before: these pages are candidates for “mesh-
ing” because their allocated objects do not overlap.
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free

allocated

virtual memory

physical memory

(b) After: both virtual pages now point to the first
physical page; the second page is now freed.

Figure 5.1: MESH in action. MESH employs novel randomized algorithms that let it efficiently find and then
“mesh” candidate pages within spans (contiguous 4K pages) whose contents do not overlap. In this example,
it increases memory utilization across these pages from 37.5% to 75%, and returns one physical page to the
OS (via munmap), reducing the overall memory footprint. MESH’s randomized allocation algorithm ensures
meshing’s effectiveness with high probability.

MESH makes meshing both efficient and provably effective (with high probability) by
combining it with two novel randomized algorithms. First, MESH uses a space-efficient
randomized allocation strategy that effectively scatters objects within each virtual page,
making the above scenario provably exceedingly unlikely. Second, MESH incorporates
an efficient randomized algorithm that is guaranteed with high probability to quickly find
candidate pages that are likely to mesh. These two algorithms work in concert to enable
formal guarantees on MESH’s effectiveness. Our analysis shows that MESH breaks the
above-mentioned Robson worst case bounds for fragmentation with high probability [137],
as memory reclaimed by meshing is available for use by any size class. This ability to
redistribute memory from one size class to another enables Mesh to adapt to changes in an
application’s allocation behavior in a way other segregated-fit allocators cannot.

We implement MESH as a library for C/C++ applications running on Linux or Mac OS X.
MESH interposes on memory management operations, making it possible to use it without
code changes or recompilation by setting the appropriate environment variable to load the
MESH library (e.g., export LD PRELOAD=libmesh.so on Linux). Our evaluation
demonstrates that our implementation of MESH is both fast and efficient in practice. It
generally matches the performance of state-of-the-art allocators while guaranteeing the
absence of catastrophic fragmentation with high probability. In addition, it occasionally
yields substantial space savings: replacing the standard allocator with MESH automatically
reduces memory consumption by 16% (Firefox) to 39% (Redis).

5.1.1 Contributions

This chapter describes the MESH system, focusing on its core meshing algorithm. It
presents theoretical results that guarantee MESH’s efficiency and effectiveness with high
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probability (S5.4). Other components of the MESH system design and empirical evaluation
of its performance are briefly summarized to contextualize the algorithm and analysis.

5.2 Overview

This section provides a high-level overview of how MESH works and gives some intuition
as to how its algorithms and implementation ensure its efficiency and effectiveness, before
diving into detailed description of MESH’s algorithms (S5.3), implementation (S5.3.4), and
its theoretical analysis (S5.4).

5.2.1 Remapping Virtual Pages

MESH enables compaction without relocating object addresses; it depends only on
hardware-level virtual memory support, which is standard on most computing platforms
like x86 and ARM64. MESH works by finding pairs of pages and merging them together
physically but not virtually: this merging lets it relinquish physical pages to the OS.

Meshing is only possible when no objects on the pages occupy the same offsets. A key
observation is that as fragmentation increases (that is, as there are more free objects), the
likelihood of successfully finding pairs of pages that mesh also increases.

Figure 5.1 schematically illustrates the meshing process. MESH manages memory at the
granularity of spans, which are runs of contiguous 4K pages (for purposes of illustration,
the figure shows single-page spans). Each span only contains same-sized objects. The figure
shows two spans of memory with low utilization (each is under 40% occupied) and whose
allocations are at non-overlapping offsets.

Meshing consolidates allocations from each span onto one physical span. Each object
in the resulting meshed span resides at the same offset as it did in its original span; that is,
its virtual addresses are preserved, making meshing invisible to the application. Meshing
then updates the virtual-to-physical mapping (the page tables) for the process so that both
virtual spans point to the same physical span. The second physical span is returned to the
OS. When average occupancy is low, meshing can consolidate many pages, offering the
potential for considerable space savings.

5.2.2 Random Allocation

A key threat to meshing is that pages could contain objects at the same offset, preventing
them from being meshed. In the worst case, all spans would have only one allocated object,
each at the same offset, making them non-meshable. MESH employs randomized allocation
to make this worst-case behavior exceedingly unlikely. It allocates objects uniformly at
random across all available offsets in a span. As a result, the probability that all objects will
occupy the same offset is (1/b)n−1, where b is the number of objects in a span, and n is the
number of spans.

In practice, the resulting probability of being unable to mesh many pages is vanishingly
small. For example, when meshing 64 spans with one 16-byte object allocated on each (so
that the number of objects b in a 4K span is 256), the likelihood of being unable to mesh any
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of these spans is 10−152. To put this into perspective, there are estimated to be roughly 1082

particles in the universe.
We use randomness to guide the design of MESH’s algorithms (S5.3) and implementation

(S5.3.4); this randomization lets us prove robust guarantees of its performance (S5.4),
showing that MESH breaks the Robson bounds with high probability.

5.2.3 Finding Spans to Mesh

Given a set of spans, our goal is to mesh them in a way that frees as many physical pages
as possible. We can think of this task as that of partitioning the spans into subsets such that
the spans in each subset mesh. An optimal partition would minimize the number of such
subsets.

Unfortunately, as we show, optimal meshing is not feasible (S5.4). Instead, the al-
gorithms in Section 5.3 present practical methods for finding high-quality meshes under
real-world time constraints. We show that solving a simplified version of the problem (S5.3)
is sufficient to achieve reasonable meshes with high probability (S5.4).

5.3 Algorithms & System Design

MESH comprises three main algorithmic components: allocation (S5.3.1), deallocation
(S5.3.2), and finding spans to mesh (S5.3.3). Unless otherwise noted and without loss of
generality, all algorithms described here are per size class (within spans, all objects are same
size).

5.3.1 Allocation

Allocation in MESH consists of two steps: (1) finding a span to allocate from, and
(2) randomly allocating an object from that span. MESH always allocates from a thread-
local shuffle vector – a randomized version of a freelist The shuffle vector contains offsets
corresponding to the slots of a single span. We call that span the attached span for a given
thread.

If the shuffle vector is empty, MESH relinquishes the current thread’s attached span (if
one exists) to the global heap (which holds all unattached spans), and asks it to select a
new span. If there are no partially full spans, the global heap returns a new, empty span.
Otherwise, it selects a partially full span for reuse. To maximize utilization, the global
heap groups spans into bins organized by decreasing occupancy (e.g., 75-99% full in one
bin, 50-74% in the next). The global heap scans for the first non-empty bin (by decreasing
occupancy), and randomly selects a span from that bin.

Once a span has been selected, the allocator adds the offsets corresponding to the free
slots in that span to the thread-local shuffle vector (in a random order). MESH pops the first
entry off the shuffle vector and returns it.
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SPLITMESHER(S, t)

1 n = length(S)
2 Sl, Sr = S[1 : n/2], S[n/2 + 1 : n]
3 for (i = 0, i < t, i+ +)
4 len = |Sl|
5 for (j = 0, j < len, j + +)
6 if MESHABLE (Sl(j), Sr(j + i % len))
7 Sl ← Sl \ Sl(j)
8 Sr ← Sr \ Sr(j + i % len)
9 MESH(Sl(j), Sr(j + i % len))

Figure 5.2: Meshing random pairs of spans. SPLITMESHER splits the randomly ordered span list S into
halves, then probes pairs between halves for meshes. Each span is probed up to t times.

5.3.2 Deallocation

Deallocation behaves differently depending on whether the free is local (the address
belongs to the current thread’s attached span), remote (the object belongs to another thread’s
attached span), or if it belongs to the global heap.

For local frees, MESH adds the object’s offset onto the span’s shuffle vector in a random
position and returns. For remote frees, MESH atomically resets the bit in the corresponding
index in a bitmap associated with each span. Finally, for an object belonging to the global
heap, MESH marks the object as free, updates the span’s occupancy bin; this action may
additionally trigger meshing.

5.3.3 Meshing

When meshing, MESH randomly chooses pairs of spans and attempts to mesh each
pair. The meshing algorithm, which we call SPLITMESHER (Figure 5.2), is designed
both for practical effectiveness and for its theoretical guarantees. The parameter t, which
determines the maximum number of times each span is probed (line 3), enables space-time
trade-offs. The parameter t can be increased to improve mesh quality and therefore reduce
space, or decreased to improve runtime, at the cost of sacrificed meshing opportunities. We
empirically found that t = 64 balances runtime and meshing effectiveness, and use this
value in our implementation.

SPLITMESHER proceeds by iterating through Sl and checking whether it can mesh each
span with another span chosen from Sr (line 6). If so, it removes these spans from their
respective lists and meshes them (lines 7–9). SPLITMESHER repeats until it has checked
t ∗ |Sl| pairs of spans.

5.3.4 Implementation

We implement MESH as a drop-in replacement memory allocator that implements mesh-
ing for single or multi-threaded applications written in C/C++. Its current implementation
work for 64-bit Linux and Mac OS X binaries. MESH can be explicitly linked against
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by passing -lmesh to the linker at compile time, or loaded dynamically by setting the
LD PRELOAD (Linux) or DYLD INSERT LIBRARIES (Mac OS X) environment variables
to point to the MESH library. When loaded, MESH interposes on standard libc functions to
replace all memory allocation functions.

MESH combines traditional allocation strategies with meshing to minimize heap usage.
Like most modern memory allocators [21,22,59,69,130], MESH is a segregated-fit allocator.
MESH employs fine-grained size classes to reduce internal fragmentation due to rounding
up to the nearest size class. MESH uses the same size classes as those used by jemalloc for
objects 1024 bytes and smaller [59], and power-of-two size classes for objects between 1024
and 16K. Allocations are fulfilled from the smallest size class they fit in (e.g., objects of size
33–48 bytes are served from the 48-byte size class); objects larger than 16K are individually
fulfilled from the global arena. Small objects are allocated out of spans (S5.2), which are
multiples of the page size and contain between 8 and 256 objects of a fixed size. Having at
least eight objects per span helps amortize the cost of reserving memory from the global
manager for the current thread’s allocator.

Objects of 4KB and larger are always page-aligned and span at least one entire page.
MESH does not consider these objects for meshing; instead, the pages are directly freed to
the OS.

MESH’s heap organization consists of four main components. MiniHeaps track occu-
pancy and other metadata for spans. Shuffle vectors enable efficient, random allocation out of
a MiniHeap. Thread local heaps satisfy small-object allocation requests without the need for
locks or atomic operations in the common case. Finally, the global heap manages runtime
state shared by all threads, large object allocation, and coordinates meshing operations. We
omit detailing discussion of these components of MESH in this document.

5.4 Analysis

This section shows that the SPLITMESHER procedure described in S5.3.3 comes with
strong formal guarantees on the quality of the meshing found along with bounds on its run-
time. In situations where significant meshing opportunities exist (that is, when compaction
is most desirable), SPLITMESHER finds with high probability an approximation arbitrarily
close to 1/2 of the best possible meshing in O (n/q) time, where n is the number of spans
and q is the global probability of two spans meshing.

To formally establish these bounds on quality and runtime, we show that meshing can be
interpreted as a graph problem, analyze its complexity (S5.4.1), show that we can do nearly
as well by solving an easier graph problem instead (S5.4.2), and prove that SPLITMESHER

approximates this problem with high probability (S5.4.4).

5.4.1 Formal Problem Definitions

Since MESH segregates objects based on size, we can limit our analysis to compaction
within a single size class without loss of generality. For our analysis, we represent spans as
binary strings of length b, the maximum number of objects that the span can store. Each
bit represents the allocation state of a single object. We represent each span π with string s
such that s (i) = 1 if π has an object at offset i, and 0 otherwise.
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Figure 5.3: An example meshing graph. Nodes correspond to the spans represented by the strings
01101000, 01010000, 00100110, and 00010000. Edges connect meshable strings (corresponding
to non-overlapping spans).

Definition 53. We say two strings s1, s2 mesh iff
∑

i s1 (i) · s2 (i) = 0. More generally, a
set of binary strings are said to mesh if every pair of strings in this set mesh.

When we mesh k spans together, the objects scattered across those k spans are moved to
a single span while retaining their offset from the start of the span. The remaining k − 1
spans are no longer needed and are released to the operating system. We say that we “release”
k − 1 strings when we mesh k strings together. Since our goal is to empty as many physical
spans as possible, we can characterize our theoretical problem as follows:

Problem 1. Given a multi-set of n binary strings of length b, find a meshing that releases
the maximum number of strings.

A Formulation via Graphs: We observe that an instance of the meshing problem, a string
multi-set S, can naturally be expressed via a graph G(S) where there is a node for every
string in S and an edge between two nodes iff the relevant strings can be meshed. Figure 5.3
illustrates this representation via an example.

If a set of strings are meshable, then there is an edge between every pair of the corre-
sponding nodes: the set of corresponding nodes is a clique. We can therefore decompose
the graph into k disjoint cliques iff we can free n − k strings in the meshing problem.
Unfortunately, the problem of decomposing a graph into the minimum number of disjoint
cliques (MINCLIQUECOVER) is in general NP-hard. Worse, it cannot even be approximated
up to a factor m1−ε unless P = NP [151].

While the meshing problem is reducible to MINCLIQUECOVER, we have not shown that
the meshing problem is NP-Hard. The meshing problem is indeed NP-hard for strings of
arbitrary length, but in practice string length is proportional to span size, which is constant.

Theorem 54. The meshing problem for S, a multi-set of strings of constant length, is in P .

Proof. We assume without loss of generality that S does not contain the all-zero string s0;
if it does, since s0 can be meshed with any other string and so can always be released, we
can solve the meshing problem for S \ s0 and then mesh each instance of s0 arbitrarily.

55



Rather than reason about MINCLIQUECOVER on a meshing graph G, we consider the
equivalent problem of coloring the complement graph Ḡ in which there is an edge between
every pair of two nodes whose strings do not mesh. The nodes of Ḡ can be partitioned into
at most 2b − 1 subsets N1 . . . N2b−1 such that all nodes in each Ni represent the same string
si. The induced subgraph of Ni in Ḡ is a clique since all its nodes have a 1 in the same
position and so cannot be pairwise meshed. Further, all nodes in Ni have the same set of
neighbors.

Since Ni is a clique, at most one node in Ni may be colored with any color. Fix some
coloring on Ḡ. Swapping the colors of two nodes in Ni does not change the validity of the
coloring since these nodes have the same neighbor set. We can therefore unambiguously
represent a valid coloring of Ḡ merely by indicating in which cliques each color appears.

With 2b cliques and a maximum of n colors, there are at most (n+ 1)c such colorings
on the graph where c = 22b . This follows because each color used can be associated with
a subset of {1, . . . , 2b} corresponding to which of the cliques have node with this color;
we call this subset a signature and note there are c possible signatures. A coloring can be
therefore be associated with a multi-set of possible signatures where each signature has
multiplicity between 0 and n; there are (n + 1)c such multi-sets. This is polynomial in n
since b is constant and hence c is also constant. So we can simply check each coloring for
validity (a coloring is valid iff no color appears in two cliques whose string representations
mesh). The algorithm returns a valid coloring with the lowest number of colors from all
valid colorings discovered.

Note that the runtime of the above algorithm is at least exponential in the string length.
While technically polynomial for constant string length, the running time of the above
algorithm would obviously be prohibitive in practice and so we never employ it in MESH.
Fortunately, as we show next, we can exploit the randomness in the strings to design a much
faster algorithm.

5.4.2 Simplifying the Problem: From MINCLIQUECOVER to MATCHING

We leverage MESH’s random allocation to simplify meshing; this random allocation
implies a distribution over the graphs that exhibits useful structural properties. We first make
the following important observation:

Observation 1. Conditioned on the occupancies of the strings, edges in the meshing graph
are not three-wise independent.

To see that edges are not three-wise independent consider three random strings s1, s2, s3

of length 4, each with exactly 2 ones. It is impossible for these strings to all mesh mutually
since if we know that s1 and s2 mesh, and that s2 and s3 mesh, we know for certain that
s1 and s3 cannot mesh. More generally, conditioning on s1 and s2 meshing and s1 and s3

meshing decreases the probability that s1 and s3 mesh. Below, we quantify this effect to
argue that we can mesh near-optimally by solving the much easier MATCHING problem
on the meshing graph (i.e., restricting our attention to finding cliques of size 2) instead of
MINCLIQUECOVER. Another consequence of the above observation is that we will not be
able to appeal to theoretical results on the standard model of random graphs, ErdHos-Renyi
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graphs, in which each possible edge is present with some fixed probability and the edges
are fully independent. Instead we will need new algorithms and proofs that only require
independence of acyclic collections of edges.

5.4.2.1 Triangles and Larger Cliques are Uncommon.

Because of the dependencies across the edges present in a meshing graph, we can argue
that triangles (and hence also larger cliques) are relatively infrequent in the graph and
certainly less frequent than one would expect were all edges independent. For example,
consider three strings s1, s2, s3 ∈ {0, 1}b with occupancies r1, r2, and r3, respectively. The
probability they mesh is(

b− r1

r2

)/( b
r2

)
×
(
b− r1 − r2

r3

)/( b
r3

)
.

This value is significantly less than would have been the case if the events corresponding
to pairs of strings being meshable were independent. For instance, if b = 32, r1 = r2 =
r3 = 10, this probability is so low that even if there were 1000 strings, the expected number
of triangles would be less than 2. In contrast, had all meshes been independent, with the
same parameters, there would have been 167 triangles.

The above analysis suggests that we can focus on finding only cliques of size 2, thereby
solving MATCHING instead of MINCLIQUECOVER. The evaluation in Section 5.4.3 vin-
dicates this approach, and we show a strong accuracy guarantee for MATCHING in Sec-
tion 5.4.4.

5.4.3 Experimental Confirmation of Maximum Matching/Min Clique Cover Conver-
gence

In Section 5.4.2, we argue that we can approximate the solution to MINCLIQUECOVER

on meshing graphs with high probability by instead solving MAXIMUMMATCHING.
We experimentally verify this result by generating many random constant occupancy

graphs and, for each graph, comparing the size of the maximum matching to the size of
a greedy (non-optimal) solution for MINCLIQUECOVER. The results are summarized in
Figure 5.4.

When we instead assume bits are 1 independently with probability p, we expect the
graph to have many more triangles. For p = r/b = 10/32, n = 1000, the expected number
of triangles is roughly 36,000. However, we can see experimentally that these graphs behave
quite similarly in Figure 5.5.

While constant occupancy graphs are fairly regular, independent bit graphs may not be.
Since strings have different occupancies, nodes which correspond to strings with relatively
low occupancy will tend to have significantly higher degree than other nodes in the graph.
Meanwhile, other nodes may have strings with high occupancy, and therefore only have a
few edges (probably with low-occupancy nodes). So while there are many triangles, when
the graph is sparse enough, even meshing cliques of size 3 and 4 will likely ”abandon”
adjacent high-occupancy nodes, one of which could have been matched with the high degree
node to yield the same number of releases.

So in this case we still expect finding the maximum matching to be good enough.

57



0 5 10 15 20 25 30 35

Number of objects per span

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e
 o

f 
sp

a
n
s 

fr
e
e
d

MAX MATCHING VS MIN CLIQUE COVER MESHING RESULTS 
64-object spans, 200 spans

matching

clique

Figure 5.4: Min Clique Cover and Max Matching solutions converge. The average size of Min Clique
Cover and Max Matching for randomly generated constant occupancy meshing graphs, plotted against span
occupancy. Note that for sufficiently high-occupancy spans, Min Clique Cover and Max Matching are nearly
equal.

5.4.4 Theoretical Guarantees

Since we need to perform meshing at runtime, it is essential that our algorithm for
finding strings to mesh be as efficient as possible. It would be far too costly in both time
and memory overhead to actually construct the meshing graph and run an existing matching
algorithm on it. Instead, the SPLITMESHER algorithm (shown in Figure 5.2) performs
meshing without the need for explicitly constructing the meshing graph.

For further efficiency, we need to constrain the value of the parameter t, which controls
MESH’s space-time tradeoff. If t were set as large as n, then SPLITMESHER could, in the
worst case, exhaustively search all pairs of spans between the left and right sets: a total of
n2/4 probes. In practice, we want to choose a significantly smaller value for t so that MESH

can always complete the meshing process quickly without the need to search all possible
pairs of strings.

Lemma 55. Let t = k/q where k > 1 is some user defined parameter and q is the
global probability of two spans meshing. SPLITMESHER finds a matching of size at least
n(1 − e−2k)/4 between the left and right span sets with probability approaching 1 as
n ≥ 2k/q grows.

Proof. Let Sl = {v1, v2, . . . vn/2} and Sr = {u1, u2, . . . un/2}. Let t = k/q where k > 1 is
some arbitrary constant. For ui ∈ Sl and i ≤ j ≤ j + t, we say (ui, vj) is a good match if
all the following properties hold: (1) there is an edge between ui and vj , (2) there are no
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Figure 5.5: Converge still holds for independent bits assumption. The average size of Min Clique Cover
and Max Matching for randomly generated constant occupancy meshing graphs, plotted against span occupancy.
Note that for sufficiently high-occupancy spans, Min Clique Cover and Max Matching are nearly equal.

edges between ui and vj′ for i ≤ j′ < j, and (3) there are no edges between ui′ and vj for
i < i′ ≤ j.

We observe that SPLITMESHER finds any good match, although it may also find ad-
ditional matches. It therefore suffices to consider only the number of good matches. The
probability (ui, vj) is a good match is q(1−q)2(j−i) by appealing to the fact that the collection
of edges under consideration is acyclic. Hence, Pr(ui has a good match) is

r := q

k/q−1∑
i=0

(1− q)2i = q
1− (1− q)2k/q

1− (1− q)2
>

1− e−2k

2
.

To analyze the number of good matches, define Xi = 1 iff ui has a good match. Then,∑
iXi is the number of good matches. By linearity of expectation, the expected number of

good matches is rn/2. We decompose
∑

iXi into

Z0 + Z1 + . . .+ Zt−1 where Zj =
∑

i≡j mod t

Xi .

Since each Zj is a sum of n/(2t) independent variables, by the Chernoff bound,
P [Zj < (1− ε)E[Zj]] ≤ exp (−ε2rn/(4t)). By the union bound,

P [X < (1− ε) rn/2] ≤ t · exp
(
−ε2rn/(4t)

)
and this becomes arbitrarily small as n grows.
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In the worst case, the algorithm checks nk/2q pairs. For our implementation of MESH,
we use a static value of t = 64; this value enables the guarantees of Lemma 5.1 in cases
where significant meshing is possible. As Section 5.5 shows, this value for t results in
effective memory compaction with modest performance overhead.

5.4.5 New Lower Bound for Maximum Matching Size

In this section, we develop a bound for the size of the maximum matching in a graph
that can easily be estimated in the context of meshing graphs. As meshing may be costly to
perform, this lower bound is useful as it can be used to predict the magnitude of compaction
achievable before committing to the process. In the case where little compaction is possible,
it is often better not to try to mesh and instead conserve resources for other tasks. The
quantity we introduce will always lower bound the size of the maximum matching and will
typically be relatively close to the size of the maximum matching. For example, if we want
to release 30% of our active spans through meshing, but the bound suggests a release of less
than 5% is possible, we can infer that the maximum matching on the graph is small and
meshing is currently not worth attempting.

Our approach is based on extending a result by McGregor and Vorotnikova [116]. Let
d(u) be the degree of node u in a graph. They considered the quantity

∑
e∈E 1/max(d(u), d(v))

and showed that it is at most a factor 3/2 larger than the maximum matching in the graph
and at most a factor 4 smaller in the case of planar graphs. These bounds were tight. For
example, on a complete graph on three nodes, the quantity is 3/2 while M is 1. Meshing
graphs are very unlikely to be planar but are likely be almost regular, i.e., most degrees are
roughly similar. We need to extend the above bound such that we can guarantee that it never
exceeds the size of the maximum matching while also being a good estimate for the graphs
that are likely to arise as meshing graphs.

One simple approach is to scale the above quantity by a factor of 2/3, but this can result
in a poor approximation for the size of the maximum matching for some graphs of interest.
Instead, we take a more nuanced approach. Specifically, we prove the following theorem
(proof omitted due to space constraints):

Theorem 56.

W =
∑
e∈E

1

max(d(u), d(v)) + I[min(d(u), d(v)) > 1]
≤M .

Proof. We begin by showing that the simpler quantity W is a lower bound of the maximum
matching M .

W =
∑
e∈E

1

max(d (u) , d (v)) + 1
.

Let U be an arbitrary set of t nodes in G where t is odd. Define

W (U) =
∑
u,v∈U

1

max(d (u) , d (v)) + 1
.

As a corollary of Edmonds Matching Polytope Theorem, it can be shown that W ≤M if
W (U) ≤ (|U | − 1)/2. We can argue this as follows:
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W (U) =
∑

(u,v)∈U

min

(
1

d(u) + 1
,

1

d(v) + 1

)

≤
∑

(u,v)∈U

1

2

(
1

d (u) + 1
+

1

d (v) + 1

)

≤
∑

(u,v)∈U

1

2

(
1

dU (u) + 1
+

1

dU (v) + 1

)

=
1

2

∑
u∈U

dU (u)

dU (u) + 1
≤ 1

2

(
t− 1

t

)
t =

t− 1

2

where dU(u) in the number of neighbors of u in the set U . The second line follows from
the fact that the minimum of two quantities is bounded above by their average. The third
line follows from the fact that the degree of any node in a subgraph is bounded above by its
degree in the original graph. The fourth line follows from summing over nodes instead of
edges, and then reasoning that in the worst case U is a clique and so (u) = t− 1 for all u u.

In some casesW is too conservative; it assigns little weight to edges which it could safely
have assigned much more. For example, if e is isolated (meaning its endpoints have degree 1),
W (e) = 1/2. However, it is always safe to assign weight 1 to e, sinceM(G−e) = M(G)−
1. If we modified our rule forW so that for any edge e = (u, v) s.t. deg(u) = deg(v) = 1 we
assigned weight min(1/ deg(u), 1/ deg(v)) instead of min(1/ deg(u) + 1, 1/ deg(v) + 1),
we would always assign weight 1 to isolated edges.

In fact, a more general rule is true. For any edge e = (u, v), if either deg(u)or deg(v) = 1
then we may assign it weight min(1/ deg(u), 1/ deg(v)).

DefineW as follows:
W =

∑
(u,v)∈E

W(u, v)

where
W(u, v) =

1

max(d (u) , d (v)) + I[min(d(u), d(v)) > 1]

We now show thatW ≤M . We have proven that W (U) ≤ (t− 1)/2 on any odd-size
subgraph U , |U | = t. Define subsets U1 and U2 of U such that U1 ∪ U2 = U . U1 is the set
of all nodes in U of degree 1 and all nodes in U adjacent to a node of degree 1, and U2 is
the set of all other nodes in U . Let G(U2) denote the subgraph of U induced by U2, and let
|U1| = x where x is even. Then W (G(U2)) =W(G(U2)) ≤ (t− x− 1)/2. So to complete
our proof we must show that all remaining edges (call them E ′) have total weight ≤ x/2.

Assume WLOG that there are no isolated edges in G (if there are, we can group them
with G(U2) and retain the (t− x− 1)/2 bound).
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W(E ′) ≤ 1

2

∑
u,v∈E′

(
1

deg(u)
+

1

deg(v)

)
=
∑
k

( ∑
v∈U1,deg(v)=k

δ

k
+

k − δ
2(k + 1)

)
where δ denotes the number of degree 1 nodes adjacent to v.
Let f(δ) = δ/k + (k − δ)/(2(k + 1)). We are interested in finding the maximum value
f(δ)/(δ + 1) can take on; if it can never take a value greater than 1/2 thenW(E ′) cannot
be greater than x/2.

∂ f(δ)
δ+1

∂δ
=

2− k
2k(δ + 1)2

which is always negative for k ≥ 2. So, f(δ)/(δ + 1) is maximized at δ = 0, so f(δ)/(δ +
1) ≤ k/(2(k + 1)) < 1/2.

There is one final detail we have not considered: x might be odd. In this case, |U2| is
even and we can’t appeal to Theorem 3 to say thatW(G(U2)) ≤ (t− x− 1)/2. However,
we can simply remove one node v ′ from U2; the resulting odd-size subgraph has weight at
most (t− x− 2)/2. SinceW is a valid fractional matching, the weight assigned to all edges
adjacent to v ′ cannot exceed 1, so we can say thatW(G(U2)) ≤ (t− x)/2. Now we must
show thatW(E ′) ≤ (x− 1)/2.

We have shown that the edge weight per node in U1 cannot exceed 1/2. W(E ′) is
minimized when there is exactly 1 node of degree 1, with a degree k neighbor. In this case,
the only edge inE ′ will be assigned weight k/(2(k+1)) < 1/2.W(E ′) ≤ 1/2+(x−2)/2 =
(x− 1)/2 and the theorem is proven.

A remark on estimating W . If we wish to use this lower bound to decide whether to
begin meshing by predicting the size of the maximum matching, we cannot compute it
exactly because we do not know the degrees of the nodes in the graph. However, we do
know the degree distribution of the graph and so it is possible to calculate the expected value
ofW .

5.4.6 Summary of Analytical Results

We show the problem of meshing is reducible to a graph problem, MINCLIQUECOVER.
While solving this problem is infeasible, we show that probabilistically, we can do nearly as
well by finding the maximum MATCHING, a much easier graph problem. We analyze our
meshing algorithm as an approximation to the maximum matching on a random meshing
graph, and argue that it succeeds with high probability. Finally, we prove a new lower bound
on the maximum matching for graphs based on degree distribution. As a corollary of these
results, MESH breaks the Robson bounds with high probability.
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5.5 Summary of Evaluation

For a number of memory-intensive applications, including aggressively space-optimized
applications like Firefox, MESH can substantially reduce memory consumption (by 16%
to 39%) while imposing a modest impact on runtime performance (e.g., around 1% for
Firefox and SPECint 2006). We find that MESH’s randomization can enable substantial
space reduction in the face of a regular allocation pattern.

5.6 Related Work

Hound: Hound is a memory leak detector for C/C++ applications that introduced meshing
(a.k.a. “virtual compaction”), a mechanism that MESH leverages [131]. Hound combines an
age-segregated heap with data sampling to precisely identify leaks. Because Hound cannot
reclaim memory until every object on a page is freed, it relies on a heuristic version of
meshing to prevent catastrophic memory consumption. Hound is unsuitable as a replacement
general-purpose allocator; it lacks both MESH’s theoretical guarantees and space and runtime
efficiency (Hound’s repository is missing files and it does not build, precluding a direct
empirical comparison here). The Hound paper reports a geometric mean slowdown of≈ 30%
for SPECint2006 (compared to MESH’s 0.7%), slowing one benchmark (xalancbmk) by
almost 10×. Hound also generally increases memory consumption, while MESH often
substantially decreases it.

Compaction for C/C++: Previous work has described a variety of manual and compiler-
based approaches to support compaction for C++. Detlefs shows that if developers use
annotations in the form of smart pointers, C++ code can also be managed with a relocating
garbage collector [50]. Edelson introduced GC support through a combination of automati-
cally generated smart pointer classes and compiler transformations that support relocating
GC [53]. Google’s Chrome uses an application-specific compacting GC for C++ objects
called Oilpan that depends on the presence of a single event loop [2]. Developers must use a
variety of smart pointer classes instead of raw pointers to enable GC and relocation. This
effort took years. Unlike these approaches, MESH is fully general, works for unmodified C
and C++ binaries, and does not require programmer or compiler support; its compaction
approach is orthogonal to GC.

CouchDB and Redis implement ad hoc best-effort compaction, which they call “de-
fragmentation”. These work by iterating through program data structures like hash tables,
copying each object’s contents into freshly-allocated blocks (in the hope they will be contigu-
ous), updating pointers, and then freeing the old objects [135,139]. This application-specific
approach is not only inefficient (because it may copy objects that are already densely packed)
and brittle (because it relies on internal allocator behavior that may change in new releases),
but it may also be ineffective, since the allocator cannot ensure that these objects are actually
contiguous in memory. Unlike these approaches, MESH performs compaction efficiently
and its effectiveness is guaranteed.
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Compacting garbage collection in managed languages: Compacting garbage collection
has long been a feature of languages like LISP and Java [65, 77]. Contemporary runtimes
like the Hotspot JVM [125], the .NET VM [112], and the SpiderMonkey JavaScript VM [44]
all implement compaction as part of their garbage collection algorithms. MESH brings the
benefits of compaction to C/C++; in principle, it could also be used to automatically enable
compaction for language implementations that rely on non-compacting collectors.

Bounds on Partial Compaction: Cohen and Petrank prove upper and lower bounds on
defragmentation via partial compaction [41, 42]. In their setting, corresponding to managed
environments, every object may be relocated to any free memory location; they ask what
space savings can be achieved if the memory manager is only allowed to relocate a bounded
number of objects. By contrast, MESH is designed for unmanaged languages where objects
cannot be arbitrarily relocated.

PCM fault mitigation: Ipek et al. use a technique similar to meshing to address the
degradation of phase-change memory (PCM) over the lifetime of a device [84]. The authors
introduce dynamically replicated memory (DRM), which uses pairs of PCM pages with
non-overlapping bit failures to act as a single page of (non-faulty) storage. When the
memory controller reports a page with new bit failures, the OS attempts to pair it with a
complementary page. A random graph analysis is used to justify this greedy algorithm.

DRM operates in a qualitatively different domain than MESH. In DRM, the OS occa-
sionally attempts to pair newly faulty pages against a list of pages with static bit failures.
This process is incremental and local. In MESH, the occupancy of spans in the heap is
more dynamic and much less local. MESH solves a full, non-incremental version of the
meshing problem each cycle. Additionally, in DRM, the random graph describes an error
model rather than a design decision; additionally, the paper’s analysis is flawed. The paper
erroneously claims that the resulting graph is a simple random graph; in fact, its edges
are not independent (as we show in S5.4.2). This invalidates the claimed performance
guarantees, which depend on properties of simple random graphs. In contrast, we prove the
efficacy of our original SPLITMESHER algorithm for MESH using a careful random graph
analysis.

5.7 Conclusion

This chapter introduces MESH, a memory allocator that efficiently performs compaction
without relocation to save memory for unmanaged languages. We show analytically that
MESH provably avoids catastrophic memory fragmentation with high probability, and
empirically show that MESH can substantially reduce memory fragmentation for memory-
intensive applications written in C/C++ with low runtime overhead.

We have released MESH as an open source project; it can be used with arbitrary C and
C++ Linux and Mac OS X binaries and can be downloaded at http://libmesh.org.
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CHAPTER 6

PATHCACHE

Accurate prediction of network paths between arbitrary hosts on the Internet is of vital
importance for network operators, cloud providers, and academic researchers. We present
PathCache, a system that predicts network paths between arbitrary hosts on the Internet using
historical knowledge of the data and control plane. In addition to feeding on freely available
traceroutes and BGP routing tables PathCache uses graph algorithms to optimally explore
network paths towards chosen BGP prefixes. PathCache’s strategy for exploring network
paths discovers 4X more autonomous systems (AS) hops than other well-known strategies
used in practice today. Using a corpus of traceroutes, PathCache trains probabilistic models
of routing towards all routed prefixes on the Internet and infers network paths and their
likelihood. PathCache’s AS-path predictions differ from the measured path by at most 1 hop,
75% of the time. A prototype of PathCache is live today to facilitate its inclusion in other
applications and studies. We additionally demonstrate the utility of PathCache in improving
real-world applications for circumventing Internet censorship and preserving anonymity
online.

6.1 Contributions

This chapter describes the PathCache system, focusing on the algorithmic and data
structural elements of its design and their analysis. We additionally include brief descriptions
of PathCache’s experimental evaluation and deployment for completeness.
PathCache Overview. Section 6.2 provides a summary of PathCache’s architecture and
explanation of several key design decisions.
Efficient global and per-destination topology discovery. A related system, Sibyl [98],
allows efficient use of measurement budget for answering path queries between sources and
destination IP addresses. Instead, PathCache focusses on a special case of this problem:
efficiently answering all queries towards a destination prefix for a fixed measurement budget.
PathCache’s approach for doing measurement selection is within constant factor of optimal
in the general case. However, when the routing towards a prefix is destination based,
with no violations, we show that PathCache’s measurement selection is optimal. Section
6.3 describes the topology discovery component of PathCache and establishes theoretical
guarantees of its efficiency and optimality.
Per-destination probabilistic Markov models. Systems like iPlane and iPlane Nano
consume traceroutes to build an atlas of network paths. By combining splices of paths
from this atlas, the systems predict a previously un-measured path. Recently, the prediction
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Figure 6.1: PathCache achieves two goals: efficient topology discovery and accurate path prediction.

accuracy of iPlane was found to be low (68% at the AS path level) by Sibyl [98]. Sibyl
proposes to improve the low accuracy of splicing based path-prediction of network paths by
using supervised learning for choosing between multiple possible paths.

PathCache differs from the existing approaches by using the key fact that routing on
the Internet is largely destination based [12]. This means, for a given destination prefix,
routes from a network are likely to traverse the same path, irrespective where they originated.
Therefore, unlike previous path prediction systems, PathCache constructs a destination-
specific probabilistic model for each destination prefix in place of a common atlas for all
destination networks. Using observations of network paths over time, PathCache not only
infers the connectivity between networks but also learns the likelihood of picking different
next-hops from a given network. Section 6.4 describes this component of PathCache and
outlines algorithmically efficient aspects of its design.
Evaluation and Deployment of PathCache. In Section 6.5, we briefly summarize the
results of our experimental evaluation of PathCache. In Section 6.6, we describe our
deployment of PathCache and describe its use in real-world applications. Finally, in Section
6.7, we explore a few possibilities for future work involving PathCache.

6.2 The PathCache System

Figure 6.1 shows the two major components of PathCache along with the input for each.
These components are:

(1) Efficient Topology Discovery. PathCache makes efficient use of limited measurement
resources to discover the network topology towards an IP prefix. PathCache’s topology
discovery algorithm takes as input a destination BGP prefix P , a set of vantage points
V ′ capable of sending traceroutes to P , a measurement budget k, and information of
P ’s network topology derived from BGP routing tables or older traceroutes (S6.3.1).
This topology discovery algorithm outputs a budget-compliant set of vantage points
S ⊂ V ′, |S| ≤ k from which to measure to reveal as much information about paths
towards P as possible (S6.3.2). In S6.3, we describe this algorithm and its strong
performance guarantees in detail.

(2) Path Prediction. PathCache combines public traceroutes from measurement platforms
like RIPE Atlas [136] and those run by its own topology discovery module to learn
Markov models of routing towards each BGP routed prefix (S6.4). PathCache infers
network paths between source s and destination prefix P from the Markov model
(S6.4). While PathCache aims to explore as much of the network topology as it can
via active measurements, it will still lack a global view due to absence of vantage
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points in different parts of the Internet. As a result, when a queried path (source s
and destination P ) cannot be inferred from P ’s empirically-based Markov model,
PathCache will fall back to an algorithmic simulation of policy-compliant BGP
paths [72].

6.2.1 Design Choices

We now give a brief overview of the design choices made while developing PathCache.
Granularity of predicted network paths. So far, we have not discussed what constitutes
a network path predicted by PathCache. In previous research, systems for path prediction
have attempted to predict paths at various granularity of intermediate hops. BGPSim [72]
returns BGP policy compliant, AS-level paths, whereas iPlane [109], iNano [110], and
Sibyl [98] predict PoP-level paths. The granularity of the predicted path can impact its
utility for different applications. For instance, AS-level paths can be sufficiently informative
for quantifying the threat of eavesdropping ISPs on anonymous communication [128, 143].
However, some ASes can be very large, spanning entire countries (Tier-1 networks like
AT&T and Level3), making AS-level path prediction too coarse for diagnostic purposes.
Inferring PoPs from router IP addresses is a research problem in its own right PathCache
avoids introducing the complexity of PoP inference by predicting prefix-level paths. Prefix-
level paths have sufficient information to predict AS-level paths by mapping prefixes back
to ASes that announce them in BGP to obtain an AS-level path, if desired.
Markov model for path prediction. Since paths on the Internet are an outcome of
several un-observable and uncertain phenomenon, it is natural to model their behavior using
empirically derived probabilistic models. PathCache builds a Markov chain, one for each
routed prefix P , using traceroutes that share a destination P . With the routed prefix as the
end state, other routed prefixes on the Internet act as potential start states of the Markov
chain, the problem of network path prediction is to find the most likely sequence of states
from a given start state to the end state. PathCache additionally offers users the ability to
predict paths based only on traceroutes performed during a specified window of time.
Granularity of destinations. While existing simulation approaches focus on paths towards
destination ASes [72], we observed many violations of destination-based routing when
considering destinations at the AS-level, since large ASes announce several prefixes, each
getting routed to differently. This led us to our decision to construct Markov chains on
a per-prefix basis. While BGP atoms [3] may have reduced the storage requirements of
the per-prefix Markov chains, previous research [127] shows that over 70% of BGP atoms
consist of only one IP prefix, limiting the potential reduction.

6.3 Efficient Topology Discovery

In this section, we discuss the problem of discovering the set of paths towards a desti-
nation prefix P . PathCache’s measurement algorithm aims to maximize the amount of the
Internet topology discovered when measuring paths towards P . It begins by using existing
but imperfect data sources to construct a graph representation of the network topology. Exist-
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ing data sources can be BGP paths, which are known to differ from data plane measurements
or stale traceroutes which may not match the current network state (S6.3.1).

We frame the challenge of maximizing per-prefix topology discovery for a given mea-
surement budget as an optimization problem, which we show is equivalent to a special case
of the MAX-COVERk (S6.3.2) problem when routing is destination-based and present a
greedy algorithm (S6.3.3) that optimally solves this topology discovery problem. In the case
where networks violate destination-based routing, we can still guarantee a constant-factor
approximation of the problem using a relaxation of the MAX-COVERk problem.

6.3.1 Existing Data Sources

We build an initial network topology of paths towards prefix P using the BGPSim [72]
path simulator. BGPSim computes BGP policy compliant paths between any pair of ASes.
So, for any prefix P , we find the policy compliant paths from all ASes on the Internet to the
AS announcing prefix P . We note that this implies that the BGPSim derived topologies of
all prefixes in the same AS are the same. The result of this computation is a tree of ASes
rooted at the origin AS for P . If pre-existing traceroute data is used to augment the graph
produced by BGPSim, the graph might have cycles when traceroutes include paths that
existed at distinct time periods or when data- and control-plane paths do not agree. These
cycles may also exist as a result of violations of destination-based routing [12]. We discuss
cycles we observe and their implications on our results in Section 6.7.

6.3.2 Maximizing Topology Discovery

We define the destination-based DAG of a prefix P as G = (V,E), where V consists
of P and all ASes. Edge e ∈ E represents an observed connection between two ASes.
We consider the prefix as the root of this graph as opposed to the AS that announced it to
account for per-prefix routing policies [12]. V ′ ⊂ V is the set of ASes that have vantage
points.

In practice, for a given prefix P , we do not know G. By executing traceroutes from
a subset S of V ′, we obtain a partial observation of G denoted by Ĝ = (V̂ , Ê). V̂ is
composed of AS hops observed in traceroutes from ASes in V ′ towards P . Edges in Ê
consist of AS edges inferred from traceroutes.Let the coverage of a set of measurements
from S ⊂ V ′ be:

Cov(S) = |Ê| (6.1)

Figure 6.2 illustrates one such prefix-based graph. The blue/hashed nodes indicate
networks containing vantage points (e.g., RIPE Atlas probes) and the purple/striped nodes
indicate nodes that are discovered via traceroutes and single-homed customers of networks
containing vantage points. Here V̂ is the set of shaded nodes and Ê are the edges that
connect them. White nodes represent nodes that we cannot discover via measurements
towards P .

This leads us to the following problem definition for exploring the largest portion of the
AS topology (G) with a fixed measurement budget of k traceroutes:
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Figure 6.2: Example of a prefix-based DAG.

Input: Graph G = (V,E) with vantage points V ′.
1 S ← ∅
2 for (i = 1 to k):
3 S ← S + argmaxs∈V ′{Cov(S + s)}
4 return S

Figure 6.3: Greedy Vantage Point Selection

Problem 2 (PREFIX-COVERk). Find S ⊂ V ′, where |S| ≤ k, that maximizes Cov(S).

The PREFIX-COVERk problem is reducible to the MAX-COVERk problem in which the
input is a number k and a collection A = {A1, A2, . . .} of sets and the goal is to select a
subset A′ ⊂ A of k sets that maximizes | ∪A∈A′ A|. The reduction is immediate since each
vantage point measurement can be thought of as a set Ai, and our goal is to maximize the
coverage of edges by choosing k of these sets. MAX-COVERk is unfortunately NP-Hard.
A well-known greedy algorithm provides the best possible approximation with a factor of
(1− 1/e) ≈ 0.63 of the optimal solution [62]. However, since PREFIX-COVERk is a special
case of MAX-COVERk, where the G is largely expected to be a tree, we find that it can be
solved exactly which we discuss in the next section.

6.3.3 Optimality for Destination-based Routing

We now discuss how a greedy algorithm to select vantage points (Algorithm 6.3) yields
the optimal solution to PREFIX-COVERk when the graph G is a tree.

Theorem 57. Algorithm 6.3 solves PREFIX-COVERk exactly when G is a tree, i.e., when
there are no violations of destination-based routing.

Proof. Let S = {s1, s2, . . . , sk} denote the subset of vantage points returned by the greedy
algorithm on G, where s1 denotes the first vantage point chosen, s2, denotes the second,
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Figure 6.4: Example of violation of destination-based routing. Depending on the prior hop AS 3356 (Level 3)
selects a different next-hop towards the destination. Splitting this node produces a tree-structured prefix DAG.

and so on. Recall that Cov(S) denotes the coverage on G of the measurements run from
S, and let C(S) denote the corresponding set of edges that are discovered. For the sake
of contradiction assume that for some i < k, there is an optimal solution T such that
s1, . . . , si−1 ∈ T but no optimal solution contains s1, . . . , si. Let

T = {s1, s2, . . . , si−1, ti, ti+1, . . . tk}

where si 6= tj for all j ≥ i. In other words, we assume that for some i, the first i− 1 vantage
points in S are also in T , but that si does not appear in T . For any set of vantage points A,
define

C ′(A) = C(A) \ C(s1, s2, . . . , si−1)

and Cov′(A) = | C ′(A)|.
For any j ≥ i, since si was chosen by the greedy algorithm before tj we can infer that

Cov′(si) ≥ Cov′(tj) .

Let j′ ≥ i be chosen to maximize | C ′(si) ∩ C ′(tj′)| and define T ′ = (T ∪ {si}) \ {tj′}.
Observe that

Cov′(T ′) ≥ Cov′(T ) + Cov′(si)− Cov′(tj′)

Since Cov′(si) ≥ Cov′(tj′), we deduce that Cov(T ′) ≥ Cov(T ) and so T ′ is also optimal.
But s1, . . . , si ∈ T ′ which is a contradiction to the assumption that no optimal solution
contains {s1, . . . , si}.

6.3.4 Prior-hop Violations of Destination-Based Routing.

When merging multiple traceroute-derived AS paths we observe cases that violate
destination-based routing. Figure 6.4 shows one such example. Here, we observe AS 3356
(Level 3) selecting different next-hop ASes towards the same prefix, depending on the prior
hop in the path1. In this case, it appears Level 3’s routing decision is impacted by the prior

1To exclude the effect of churn in network paths, these traceroutes were run only a few minutes apart.
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Figure 6.5: Traceroutes from vantage points are randomly routed from AS 4 independently among the two
outgoing links according to the marked probabilities.

AS hop, thus we can “split” the node into two nodes, each of which represents Level 3’s
routing behavior for each of the prior hops. The resulting graph is now a tree.

In general, we can split AS nodes that violate destination-based routing based on their
prior AS hop by creating a copy of the node for each prior hop, and adding to each copied
node all outgoing edges associated with that prior hop.

The result of this process is a tree with the same number of edges as the original graph.
We can run our greedy algorithm on this tree and optimize discovered coverage as before.

6.3.5 Other violations of destination-based routing.

Not all violations of destination-based routing are based on the prior AS hop. In these
cases, it is often difficult to determine exactly what rule underlies the routing behavior and
we simply treat this behavior as a random process. achieves an approximation factor of at
least (1− 1/e)2.

Not all violations of destination-based routing are based on the prior AS hop. In these
cases, it is often difficult to determine exactly what rule underlies the routing behavior and
we simply treat this behavior as a random process. Figure 6.5 shows an example where
traceroutes passing through node 4 are randomly routed on the left link with probability 0.4
and routed on the right link otherwise.

This gives rise to the problem of maximizing the expected coverage through our choice
of vantage points. The set of edges covered by each vantage point vi is now a random
variable Xvi whose value is the edges traversed by a random walk beginning at vi and
ending at P , where each step is chosen from the outgoing edges according to their routing
probability. The problem we want to solve is:

Problem 3 (STOC-PREFIX-COVERk). Find S ⊂ V ′ with |S| ≤ k, that maximizes E [| ∪v∈S Xv|].

For example, in Figure 6.5, X1 is determined by starting at 1, continuing to 3 and 4, and
randomly choosing either 5 with probability 0.4 or 6 with probability 0.6. Say 5 is chosen.
Then continuing to 7 and ending at P yields the set of edges X1 = {e1,3, e3,4, e4,5, e5,7, e7,P}.
Stochastic Maximum Coverage. The above problem is special case of the stochastic
maximum coverage problem. STOC-MAX-COVERk is a variant of MAX-COVERk where
the input is an integer k and A = {A1, A2, . . .} where Ai is a random set chosen according
to some known distribution pi. The goal is pick A′ ⊂ A to maximize E [| ∪A∈A′ A|].
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It can be shown that a natural extension of the greedy algorithm that, at each step, picks
the set with the largest expected increase in the coverage, achieves a 1− 1/e approximation
[13]. However, note that using this algorithm in our context requires us to be adaptive,
i.e., we select a vantage point, perform a measurement from that vantage point, and see the
result of this measurement before selecting the next vantage point. This is in contrast to
a non-adaptive algorithm that must choose the full set of k vantage points before running
any measurements. There is a tradeoff between these two approaches: on the one hand,
an adaptive approach may provide a solution of strictly better quality than a nonadaptive
algorithm since it has strictly more information.

On the other hand, the adaptive algorithm is slower since after the adaptive algorithm
chooses each measurement, it must wait for the traceroute to finish before computing
the next measurement. This serial computation and measurement requirement prevents
parallelization. Contrast this with the nonadaptive algorithm, which can immediately
generate a complete schedule of measurements without actually performing any traceroutes.
This schedule can be used to perform the actual traceroutes at any time/in parallel. This
flexibility makes the nonadaptive algorithm desirable in some cases despite its strictly worse
solution quality. For these reasons, we implement both versions and evaluate their solution
quality theoretically and experimentally. As mentioned above, the adaptive greedy algorithm
is guaranteed to achieve an approximation factor of at least 1−1/e. The non-adaptive greedy
algorithm is guaranteed an approximation factor of at least (1− 1/e)2; this follows from
work by Asadpour and Nazerzadeh [13] on the more general STOC-MAX-COVERk problem.

6.3.6 A Note on Graph Coverage

The observant reader will note that the algorithmic focus here on graph coverage is
related to the streaming coverage problems investigated in Chapter 3. However, the contexts
in which graph problems are addressed in these two chapters are very different. PathCache
has costly query access to the graph it is attempting to cover, while in Chapter 3 the input
graph is only accessible as a stream. As a result, there is little technical overlap between the
two problems.

6.4 Path Prediction

In this section, we outline how PathCache uses empirical data to predict paths. Sec-
tion 6.4.1 explains how PathCache builds destination specific graphs and auxiliary tables to
capture the routing behavior towards a prefix. Section 6.4.2 details how PathCache uses this
information to define Markov chains for predicting paths between source and destination
hosts on the Internet. Section 6.4.3 explains how simulations are used to fill in gaps in the
Markov chains derived from traceroutes, enabling PathCache to predict paths for all queries
to a measured prefix.

6.4.1 Constructing per-prefix DAGs

We gather a set of traceroutes publicly available on measurement platforms and those
run in the topology discovery stage of PathCache. We aggregate traceroute hops into BGP
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routed prefixes to make up the nodes in the DAGs. The process of converting IP paths to
prefix-level (or AS-level) paths is involved and requires handling of complex corner cases.
See the technical report [70] for more.

Let P be the set of discovered paths prefix-level paths derived from traceoutes. The
process of constructing trusted per-destination graphs has two main components, generating
the graph itself and computing the auxiliary “transition tables” that will be used to predict
the sequence of edges that a path will take in the graph towards the destination prefix.

(1) DAG Construction: Take the union of all edges in the paths in P to form the directed
acyclic graph D = (V,E).

(2) Basic Transition Table: For each edge e ∈ E, let ce be the count of the number of
paths including e.

Temporal transition tables and compression. We will be interested in predicting paths
both based on the entirety of the observed data and based on data observed during a window
of time. To support the latter, we need to augment our basic transition tables with an
additional dimension. Let t ∈ {1, 2, . . . , T} index the relevant time period (e.g., the last
month or year) at the required resolution (e.g., hours or days). Let Pt be the set of discovered
paths at time t and let cte be the number of paths in ∪t′≥tPt′ that includes e. By defining cte
in this way, note that ct2e − ct1e is the number of paths in ∪t1≤t′<t2Pt′ that include e and this
can be computed in O(1) time rather than in O(t2 − t1) time.

Unfortunately, storing c1
e, c

2
e, . . . , e

T
e rather than just ce increases the space to store the

tables by a factor T and this may be significant. To ameliorate this situation, note that cte
is monotonically decreasing with t and hence it suffices to only store values for t where
cte 6= ct−1

e as the other values can be inferred from this information. By trading-off a small
amount of accuracy we can further reduce the space as follows. Suppose we are willing to
tolerate a 1 + ε factor error in the values of cte. Then, round each cte to the nearest power of
1 + ε and let c̃te be the resulting value. Then only storing c̃te for values of t where c̃te 6= c̃t−1

e

allows every cte to be estimated up to a factor 1 + ε whilst only storing at most 1 + log1+ε(c
1
e)

different values.

6.4.2 Path Prediction via Markov Chains

Learning transition probabilities. The graph for a given prefix P derived from traceroutes
towards P defines the structure of the Markov chain PathCache uses for modeling the routing
behavior towards the prefix. PathCache computes the transition probabilities of each Markov
chain using Maximum Likelihood Estimation (MLE), given the traceroute counts stored in
edge transition tables. With each edge e ∈ E we assign a probability pe = ce/

∑
f∈Nu cf

where Nu is the set of outgoing edges of u. If the user wishes to only train using traceroutes
in a time window {t1, t1 + 1, . . . , t2 − 1} we set pe = (ct1e − ct2e )/

∑
f∈Nu(ct1f − c

t2
f )

Once the Markov models are trained, PathCache obtains one Markov chain per desti-
nation prefix, where the states of the Markov chain represent BGP prefixes and the end
state is the destination prefix P . Edges between the states are evidence of traffic towards P
traversing them and the edge transition probabilities define the likelihood of traffic traversing

73



P

Legend

Discovered

Contain a VP

Undiscovered

Traceroute

A

B

C

D

E

F

Figure 6.6: A DAG constructed from trusted traceroutes. Vantage point A sends two traceroutes which follow
paths ABCD and ABED. B sends one traceroute with path BED and F sends one traceroute with path
FCD.

that edge. An example Markov chain is shown in Figure 6.6. In this chain A, B, C, and D
are prefixes. We want to calculate the probability that a packet sent from source prefix A to
destination prefix D follows the path A→ B → C → D.
Defining path probabilities. PathCache assumes probabilistic routing obeys a first-order
Markov property. In other words, the probability of a packet choosing a next hop towards
destination P only depends on the current hop. This dependence on current hops rather
than all prior hops is inspired by the prevalence of next-hop routing on the Internet [73].
For the example in Figure 6.6, this first-order Markov assumption allows us to express the
probability of the specified path as

Pr(A,B,C,D) = Pr(A) · Pr(B|A) · Pr(C|B) · Pr(D|C)

Since we have specified that the path begins at A, Pr(A) = 1. In this case, Pr(B|A) =
1 since all traceroutes originating from A go to B. Pr(C|B) = 1/3 since there are 3
traceroutes that go through B, and one of them has next hop C. Pr(D|C) = 1 since both of
the traceroutes that go through C have a next hop of D. So Pr(A,B,C,D) = 1/3.
Inferring most likely sequence of states. A naive way of predicting paths from prefix
Markov chains would enumerate all paths from the source node S to the destination prefix
D and return the one with the highest probability. However, a graph can have an exponential
number of paths between the source and the destination, making this approach prohibitively
expensive. A more efficient approach is as follows: for each edge e = (u, v) define the
length `e = − log(pe). This weight is always nonnegative and will be high if pe = Pr(v|u)
is low and vice versa. Furthermore, the probability of a path is inversely proportion to its
length. We then find r shortest paths using Yen’s algorithm [149] where the length of e
is set to `e; these correspond to the r paths with the highest probability. We set r = 5 in
PathCache’s current implementation. PathCache returns a ranked list of these paths and
their respective probabilities in response to a path query.
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6.4.3 Splicing Empirical and Simulated Paths

If PathCache is faced with a query between a source AS and a destination prefix such
that the source AS is not a state in the Markov chain of the destination prefix, it cannot
predict the path using the chain alone. In such situations we query BGPSim for a policy
compliant path from the source AS to the destination prefix. We keep each hop of this
path, starting from the source ASN, until we reach an ASN that is present in the Markov
chain for destination prefix. We predict the path between the ASN at the splice point and
the destination prefix using methods described in the previous subsection. In this manner,
PathCache can still return probability-ranked paths for such a query by considering the
BGPSim splice of the path as fixed (with transition probabilities of 1).

6.5 Summary of Evaluation

Here we briefly summarize the findings of PathCache’s experimental evaluation. See the
technical report [70] for more.

• When compared to other strategies such as randomly choosing vantage points, or
selecting vantage points from as many countries as possible, our measurement se-
lection algorithm discovers 4 times the number of ASes using the same number of
measurements (k = 500). These results are robust across different types of destination
prefixes and across measurment platforms.

• To evaluate the accuracy of PathCache’s path prediction algorithm, we trained its
Markov model on all RIPE Atlas traceroutes from December 25, 2018 until March
4, 2019: approximately 4.5 billion traceroutes which allow us to learn the routing
behavior towards all ≈ 500, 000 routable prefixes on the Internet. We then had
PathCache predict paths from a source to a destination prefix, and compared these
predicted paths with actual measured paths.

• 75% of PathCache’s predicted paths differ from the corresponding measured path by
at most 1 hop.

• When PathCache returned the correct path as one of its predictions, 90% of the time it
was the path that PathCache assigned the highest probability to.

• By splicing empirical and simulated paths, PathCache is capable of responding to any
path query, in contrast to iPlane and Sybil which only are able to respond to 70% of
path queries.

• PathCache outperforms iPlane and Sybil in terms of path accuracy based on 2 metrics:
edit distance and Jaccard index. The gap in performance increases with the length of
the true path.

• We discovered that PathCache’s per-destination directed graphs occasionally contain
cycles. We discuss the implications of this in Section 6.7.
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6.6 Case Studies

We are releasing the entire codebase of PathCache2. More importantly, we have de-
ployed PathCache in beta version at https://www.davidtench.com/deeplinks/
pathcache. PathCache can be queried for paths, either on the website or via the REST
API3. The REST API can be incorporated programmatically into other systems.

In this section we demonstrate the impact of PathCache on real-world applications.
PathCache for Refraction Networking (RN). Refraction networking [147] is a recent
technique for Internet censorship circumvention that incorporates the circumvention infras-
tructure into routers on the Internet. This technique has been considered more resilient
to blocking by censors since it is hard to block individual routers on the Internet, while
blocking source and destination of packets is relatively easy.

A key problem faced by Refraction Routing deployments today [66] is to place refraction
routers in large ISPs such that client traffic gets intercepted by them. If client traffic follows
a path without the refraction router on it, it leads to the failure of the refraction routing
session.

We worked with the largest ISP-scale deployment of refraction routing [66] to use
PathCache for predicting if a client refraction routing session will be successful. To predict
a successful refraction routing connection, we use PathCache to predict the path between
the client and refraction router. If the PathCache predicted path crosses specific prefixes
within the deploying ISP, we conclude that the connection went via a refraction router
and was successful (except for other non-networking failures). We find that in the current
deployment of clients, PathCache can predict the prefix hop inside the deploying ISP which
client traffic took when a RN session was successful, 100% of the time. In future, we are
working towards incorporating the PathCache API into RN software for improved client
performance.
PathCache to defend against routing adversaries. Researchers have found that anony-
mous communication via Tor [51] is susceptible to network-level adversaries launching
routing attacks [145]. Several defenses against such attacks have been proposed that aim
to avoid Tier-1 providers [18], use simulated BGP paths to avoid network-level adver-
saries [143], etc. PathCache’s AS-level path prediction is highly accurate and readily
available as a REST API which can be incorporated into Tor client software for defending
against network-level adversaries.

6.7 Discussion and Future Work

In addition to their utility for path prediction, PathCache prefix graphs capture routing
behavior in a novel way. We believe they can be used to revisit several classical problems in
inter-domain routing. For instance:
BGP atoms. The networking research community has long studied the right granularity
for modeling routing behavior on the Internet. One proposal is to find a set of routers that

2Link/reference omitted to preserve anonymity while the associated conference paper is still in submission.
3see the documentation on the website for details.
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Figure 6.7: A cycle observed in the PathCache routing model of prefix 122.10.0.0/19. This cycle is across
4 ASes and lasted for 3 hours, as measured by traceroutes. Node ASNs, prefixes and edge probabilities are
annotated.

route towards the Internet similarly, called BGP atoms [3]. We note that since PathCache
has a view of the routing behavior of all prefixes on the Internet, using measures of graph
similarity across prefixes, PathCache’s Markov chains can potentially provide a way to infer
BGP atoms.
Analyzing routing convergence. In Section 6.5 we described the existence of cycles
in PathCache’s per-destination graphs. While these cycles are rare across ASes and have
very short duration, we think they offer a new perspective on the analysis of BGP route
convergence. Figure 6.7 shows one such cycle observed in the PathCache graph for prefix
122.10.0.0/19 which lasted for 3 hours. Combining PathCache’s data plane analysis with
BGP announcements can help us identify the cause of these cycles and how long it took for
them to be resolved in the control as well as the data plane.
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CHAPTER 7

CONCLUSION

We conclude by briefly summarizing the work presented in this thesis, and discuss
opportunities for future research in these areas.

Connectivity in Dynamic (Hyper-)Graph Streams. Prior to this work the main success
story in dynamic streaming graph connectivity had been in computing edge connectivity.
Vertex connectivity exhibits markedly different combinatorial structure than edge connec-
tivity and appeared to be more difficult in the dynamic grpah stream model. In Chapter 2,
we presented the first linear sketches for estimating vertex connectivity and constructing
hypergraph sparsifiers in dynamic graph streams, We also extended a graph reconstruction
result to a larger class of graphs.

Coverage in Data Streams. In Chapter 3, we presented a variety of efficient algorithms
for computing Max-k-Cover and Max-k-UniqueCover in the data stream model. These
problems are closely related to a range of important graph problems including matching,
partial vertex cover, and capacitated maximum cut. Our results improve upon the state
of the art for Max-k-Cover streaming algorithms, and are the first of their kind for the
Max-k-UniqueCover problem.

Temporal Graph Streaming. In Chapter 4, we initiated the study of temporal graph
algorithms in the streaming setting. We provide sketching algorithms for some notions
of temporal connectivity, and prove a set of strong lower bounds for others. This work is
the first step in a more complete investigation of these rich combinatorial structures in the
streaming setting.

MESH. Chapter 5 introduced MESH, a memory allocator that efficiently performs com-
paction without relocation to save memory for unmanaged languages. We show analytically
that MESH provably avoids catastrophic memory fragmentation with high probability, and
empirically show that MESH can substantially reduce memory fragmentation for memory-
intensive applications written in C/C++ with low runtime overhead.

PathCache. Chapter 6 introduced PathCache, a system that predicts network paths be-
tween arbitrary hosts on the Internet using historical knowledge of the control and data
plane. PathCache’s strategy for exploring network paths discovers 4 times more AS hops
than the current state of the art methods. The PathCache system is capable of accurately
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predicting destination-based Internet paths at scale. We investigated the utility of PathCache
in improving real-world applications for circumventing Internet censorship and preserving
anonymity online.

7.1 Future Work

Temporal graph streams have never before been studied and many fundamental algo-
rithmic questions have yet to be answered. Does Conjecture 47 hold, implying that even
relatively basic temporal reachability problems are difficult to compute in streams? If so, are
there other notions of reachability which are still useful but require less space to compute? If
instead these reachability problems are feasible, how might we compute more complicated
connectivity problems, such as edge or vertex connectivity? What other important temporal
graph properties are computable in the streaming setting? Can we use sketching to create
fingerprints of temporal graph streams, such that any two streams which define the same
temporal graph have the same fingerprint, and a different temporal graph has a different
fingerprint with high probability? Is it possible to determine in the streaming setting whether
T contains a journey that visits every node at least once? Can we sparsify a temporal graph
while maintaining pairwise reachability? Can we perform this sparsification if distance (or
journey duration) must be approximately maintained?

In Chapter 6, we described the existence of cycles in PathCache’s per-destination graphs,
a phenomenon which violates the common assumption of that Internet routing is destination-
based. Are these apparent violations merely artifacts of vantage point measurement capa-
bilities or are they evidence of poorly understood BGP routing dynamics? Answering this
question requires characterizing frequency, duration, length, and other properties of these
cycles which is an algorithmic challenge at Internet scale.

Memory systems are described by a hierarchy of transfer block size and latency. The
classical assumption is that the blocks and latencies grow exponentially as one moves down
the memory hierarchy. Cache is larger and slower than register, RAM is larger and slower
than cache, and disk is larger and slower than RAM. This size and accessibility gradient
motivates both external memory data structures and streaming algorithms. Recently, the
hierarchy has been flattening. For instance, random I/O bandwidth in RAM is roughly
comparable to sequential I/O bandwidth to new NVMe devices [43]. This new storage
landscape has not yet been investigated thoroughly, but early work [132] suggests that
techniques from the data stream model will prove useful in designing data structures that are
optimized for the tradeoffs of modern external memory. The existence of this new external
memory hardware motivates new models for the streaming domain as well. Which streaming
problems become easier if, for example, the algorithm is allowed a small amount of random
access to the input in addition to the stream? What if it has access to its own sequentially
accessible writeable memory, which is asymptotically larger than its random access memory
but still asymptotically smaller than the size of the stream?
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influence through a social network. Theory of Computing 11 (2015), 105–147.

[101] Kogan, Dmitry, and Krauthgamer, Robert. Sketching cuts in graphs and hypergraphs.
In 6th Innovations in Theoretical Computer Science (2015).

[102] Konrad, Christian. Maximum matching in turnstile streams. In Algorithms - ESA
2015 - 23rd Annual European Symposium, Patras, Greece, September 14-16, 2015,
Proceedings (2015), pp. 840–852.

[103] Konrad, Christian, Magniez, Frédéric, and Mathieu, Claire. Maximum matching in
semi-streaming with few passes. In APPROX-RANDOM (2012), vol. 7408 of Lecture
Notes in Computer Science, Springer, pp. 231–242.

[104] Konrad, Christian, and Rosén, Adi. Approximating semi-matchings in streaming
and in two-party communication. In Automata, Languages, and Programming - 40th
International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings,
Part I (2013), pp. 637–649.

[105] Krause, Andreas, and Guestrin, Carlos. Near-optimal observation selection using
submodular functions. In AAAI (2007), AAAI Press, pp. 1650–1654.

[106] Kuhn, Fabian, von Rickenbach, Pascal, Wattenhofer, Roger, Welzl, Emo, and
Zollinger, Aaron. Interference in cellular networks: The minimum membership
set cover problem. In COCOON (2005), vol. 3595 of Lecture Notes in Computer
Science, Springer, pp. 188–198.

[107] Kutzkov, Konstantin, and Pagh, Rasmus. Triangle counting in dynamic graph streams.
In Algorithm Theory - SWAT 2014 - 14th Scandinavian Symposium and Workshops,
Copenhagen, Denmark, July 2-4, 2014. Proceedings (2014), pp. 306–318.

[108] Li, Yi, Nguy˜ên, Huy L., and Woodruff, David P. Turnstile streaming algorithms
might as well be linear sketches.

[109] Madhyastha, Harsha V., Isdal, Tomas, Piatek, Michael, Dixon, Colin, Anderson,
Thomas, Krishnamurthy, Arvind, and Venkataramani, Arun. iPlane: An Informa-
tion Plane for Distributed Services. In Proc. of Operatings System Design and
Implementation (2006).

[110] Madhyastha, Harsha V, Katz-Bassett, Ethan, Anderson, Thomas E, Krishnamurthy,
Arvind, and Venkataramani, Arun. iplane nano: Path prediction for peer-to-peer
applications. In NSDI (2009), vol. 9, pp. 137–152.

88



[111] Manurangsi, Pasin. A note on max k-vertex cover: Faster fpt-as, smaller approximate
kernel and improved approximation. In 2nd Symposium on Simplicity in Algorithms,
SOSA@SODA 2019, January 8-9, 2019 - San Diego, CA, USA (2019), pp. 15:1–15:21.

[112] Mariani, Rico. Garbage Collector Basics and Performance Hints, 2003. https:
//msdn.microsoft.com/en-us/library/ms973837.aspx.

[113] McGregor, Andrew. Finding graph matchings in data streams. APPROX-RANDOM
(2005), 170–181.

[114] McGregor, Andrew. Graph stream algorithms: a survey. SIGMOD Record 43, 1
(2014), 9–20.

[115] McGregor, Andrew, Rudra, Atri, and Uurtamo, Steve. Polynomial fitting of data
streams with applications to codeword testing, 2011.

[116] McGregor, Andrew, and Vorotnikova, Sofya. Planar matching in streams revisited. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2016, September 7-9, 2016, Paris, France (2016),
pp. 17:1–17:12.

[117] McGregor, Andrew, and Vorotnikova, Sofya. Triangle and four cycle counting in
the data stream model. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS 2020, Portland, OR, USA,
June 14-19, 2020 (2020), pp. 445–456.

[118] McGregor, Andrew, Vorotnikova, Sofya, and Vu, Hoa T. Better algorithms for
counting triangles in data streams. In PODS (2016), ACM, pp. 401–411.

[119] McGregor, Andrew, and Vu, Hoa T. Better streaming algorithms for the maximum
coverage problem. In ICDT (2017), vol. 68 of LIPIcs, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, pp. 22:1–22:18.

[120] McGregor, Andrew, and Vu, Hoa T. Better streaming algorithms for the maximum
coverage problem. Theory of Computing Systems (2018), 1–25.

[121] Menger, Karl. Zur allgemeinen kurventheorie. Fundamenta Mathematicae 10, 1
(1927), 96–115.

[122] Mertzios, George B., Michail, Othon, Chatzigiannakis, Ioannis, and Spirakis, Paul G.
Temporal network optimization subject to connectivity constraints. In Automata,
Languages, and Programming (Berlin, Heidelberg, 2013), Fedor V. Fomin, Rūsiņš
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