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ABSTRACT 
 

CONTROLLED MEMBRANE REMODELING BY NANOSPHERES AND 

NANORODS: EXPERIMENTS TARGETING THE DESIGN PRINCIPLES 

FOR MEMBRANE-BASED MATERIALS 

 

SEPTEMBER 2020 

 

SARAH E. ZURAW-WESTON, B.A., UNIVERSITY OF 

MASSACHUSETTS. AMHERST 

PH. D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Professor Anthony D. Dinsmore 

 

 

In this thesis we explore two experimental systems probing the interactions of nanoparticles with 

lipid bilayer membranes. Inspired by the ability of cell membranes to alter their shape in response to bound 

particles, we report two experimental studies: one of nanospheres the other of long, slender nano-rods 

binding to lipid bilayer vesicles and altering the membrane shape. Our work illuminates the role of particle 

geometry, particle concentration, adhesion strength and membrane tension in how membrane morphology 

is determined. We combine giant unilamellar vesicles with oppositely charged nanoparticles, carefully 

tuning adhesion strength, membrane tension and particle concentration.  

In the case of nanospheres we show that spherical nanoparticles binding to lipid-bilayer membrane 

vesicles results in a remarkably rich set of collective morphologies that are controllable via the particle 

binding energy. We separately study cationic and anionic particles, where the adhesion is tuned by addition 

of oppositely charged lipids to the vesicles. When the binding energy is weak relative to a characteristic 

membrane-bending energy, vesicles adhere to one another and form a soft solid gel, a novel and useful 

platform for controlled release. With larger binding energy, a transition from partial to complete wrapping 

of the nanoparticles causes a remarkable vesicle destruction process culminating in rupture, nanoparticle-

membrane tubules, and an apparent inversion of the vesicles.  
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In the case of nanorods when we increased adhesion strength, the primary behaviors observed are 

membrane deformation, vesicle-vesicle adhesion, and vesicle rupture. These behaviors are observed in 

well-defined regions in the parameter space with sharp transitions between them. We observed deformation 

of the membrane resulting in tubulation, texted surfaces, small dark aggregates, and large aggregates. These 

responses are robust and repeatable providing a physical understanding of the dependence on shape, binding 

affinity, and particle concentration in membrane remodeling. These findings help unify the diverse 

phenomena observed previously as well as present new particle induced morphologies. They open the door 

to a new class of vesicle-based, closed-cell gels that are more than 99% water and can encapsulate and 

release on demand, and show how to drive intentional membrane remodeling for shape-responsive systems.  
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CHAPTER 1 

INTRODUCTION TO LIPID MEMBRANES 
 

The lipid bilayer membrane works in tandem with proteins and other biomolecules to 

provide the cell with its shape, facilitate the transport of cargo, and protect the interior of the cell, 

see figure 1.1.1,2,3 Despite how fundamental a system the cell is, a clear physical description 

remains elusive. Moreover, it is difficult to extract basic physical mechanisms with the full 

complications of the cell. Experiments with simplified systems are thus needed to elucidate these 

complex interactions. The goal of this dissertation is to pursue a detailed physical description of 

the lipid bilayer via a systematic experimental design. In doing so one can derive insight into how 

nanoparticles interact with biological membranes.   

This work also has relevance in biomedical and material science application and can be 

applied toward the development of soft reconfigurable membrane-based materials. The lipid-

bilayer membrane offers an enormous range of applications because it is thin, flexible, 

impermeable to most solutes, and fluid-like in its plane.4,5 Its flexibility allows the membrane to 

curve around binding particles or proteins or viruses, leading to the potential for major shape 

reorganization. Live cells harness these interactions to tune morphology and function, such as in 

the bicontinuous structure of the endoplasmic reticulum, protrusions leading to cell mobility, 1,6,7,8 

or enwrapped objects in phagocytosis or endocytosis.2,3 There has been great progress in the 

application of synthetic lipid bilayers for encapsulation and delivery.9 Lipid membranes can 

support the embedding and encapsulation of cargo via membrane deformation making them useful 

for fabricating cell-membrane mimicking materials and drug delivery.  Lipid membranes have also 

been used to create biosensor technologies for monitoring food toxicants and environmental 

pollutants.10 Despite the enormous progress in the application of synthetic lipid bilayers for 



2 
 

encapsulation and delivery, there is considerably greater (and still undeveloped) potential if we 

can learn how to trigger changes in membrane geometry and topology in synthetic systems. This 

knowledge would lead to new responsive, bioinspired materials that could modulate morphology 

and function in complex ways, on demand. 

The results in this thesis show how it is possible to tune morphology and shape-changing 

dynamics of vesicles via the controlled binding of nanoparticles. This provides a potentially useful 

experimental model of cell lysis or formation of filipodia in cells1 and it opens the door to new 

applications. These findings could be used to create cargo-carrying vesicles with the ability to 

rupture when bound particles are stimulated or, potentially, when particle binding is tuned by an 

external trigger. 11 These results also show how to engineer soft solid gels that can encapsulate 

cargo. They may also provide a unified picture for the wide variety of phenomena reported in cells 

and vesicles, which likely correspond to different regions of a phase space defined chiefly by 

particle binding strength, the membrane bending modulus, membrane tension, particle geometry 

and particle concentration.  

This dissertation is divided into five chapters. The first chapter introduces the field of lipid 

membrane physics and presents the key parameters that govern the deformation of lipid 

membranes by the binding of nanoparticles. Chapter two describes the methods and materials used 

to obtain the results reported in this document and provides details on protocols and specific 

techniques. The third and fourth chapters present the detailed results of experiments looking at the 

interactions of lipid bilayer membranes with spherical and rod-shaped nanoparticles, respectively. 

The last chapter presents a summary of the results presented in this dissertation, provides context 

for their significance, and presents suggestions for future research. 
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This chapter is divided into three sections. The first section introduces the physical 

properties of lipid bilayer membranes and outlines how to characterize the deformation of the 

membrane induced by the binding of spherical nanoparticles to the membrane. The second section 

extends this reasoning to non-spherical particles, in particular rod-shaped particles. The final 

section comments on the complex membrane-mediated interactions of the many-particle system. 

The purpose of this first chapter is to prepare our consideration of the results presented in chapters 

three and four in view of the present literature on the topic. 

 

 

Figure 1.1: Artist Depiction of Cell membrane featuring lipids and proteins. 

Three-dimensional schematic drawing of a cell membrane. The small molecules with round head groups and tails pointing toward 

the inside of the membrane are lipid molecules and compose the bulk of the membrane structure. The larger molecular structures 

are various proteins that bind to or imbed themselves within biological membranes. Lipids and proteins work in tandem forming 

the cell membrane which provides shape, structure and performs vital functions crucial for the survival of the cell. This image 

was reproduced from Alberts, et al, [B. Albert et al, Molecular Biology of the Cell, New York, Garland Science (2002), 4th 

Edition]. 12 

 

 

Section 1: Binding and envelopment of spherical nanoparticles 
 

Deformations of a membrane due to the binding of particles (proteins, viruses, 

nanoparticles, etc.) are characterized by a competition between the favorable reduction in free-

energy due to adhesion and the cost of deforming the membrane. The equilibrium state of the 
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system is determined by minimizing the total energy while accounting for adhesion and bending. 

For large particles or many-particle systems tension also contributes an energetic cost opposing 

binding that must be considered. Typically, the membrane is described as a continuous elastic 

sheet.13,14,15 For small particles molecular interactions are important and simulations are used to 

investigate translocation through and incorporation within the membrane.16,17,18,19 For the purposes 

of this investigation the continuum model will be utilized, since in the literature it appears to work 

well to nanometer scale curvatures. The exact shape of the membrane due to the binding of 

particles is nontrivial. The shape depends on many different parameters including membrane 

stretching energy, 13,20 membrane tension,21 particle geometry,22,23,24  contact energy,13,20 and 

spontaneous curvature of the membrane.13,25,26 Using particles of a specific geometry is a powerful 

method to explore the role of geometry, as it defines the shape of the membrane enveloping the 

particle. If one knows the shape of the membrane, then the Helfrich model can be used to find the 

deformation energy per unit area of the membrane which, for the case of zero tension, is described 

by 

 

𝑒𝑏𝑒𝑛𝑑 =
1

2
𝜅(𝑐1 + 𝑐2 − 𝑐0)2 + �̅�𝑐1𝑐2                                    (1). 

 

where 𝑐1 and 𝑐2 are the principle curvatures and 𝑐0 is the spontaneous curvature of the membrane. 

The sum of 𝑐1 and 𝑐2 is the total curvature and is denoted as 𝐾 (which is twice the mean curvature). 

The product of 𝑐1 and 𝑐2 is the Gaussian curvature denoted by 𝐾𝐺. The membrane bending modulus 

is denoted as κ, and the saddle splay modulus or curvature modulus is, �̅�. Making these 

substitutions we get the following expression. 

 

𝑒𝑏𝑒𝑛𝑑 =
1

2
𝜅(𝐾 − 𝑐0)2 + �̅�𝐾𝐺                                     (2). 
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In our experimental system, we can simplify this further by estimating the spontaneous 

curvature of our membrane as zero. This is reasonable since the membrane composition should be 

very nearly symmetric and the spontaneous curvature of the membrane should be much smaller 

than the curvature of the particle. The Gaussian curvature term can also be neglected if we assume 

no topological changes.13 We can again rewrite the bending energy as. 

 

𝑒𝑏𝑒𝑛𝑑 =
1

2
𝜅𝐾2                                          (3). 

 

By inserting the total curvature of a sphere into the expression above we can find the 

bending energy required to deform the membrane around the spherical particle. Next, we balance 

the energy required to deform the membrane against the binding energy of the particle to the 

membrane and in doing so can determine critical conditions for when envelopment occurs and 

what physical parameters dominate the system. Here we define the adhesion energy per unit area 

to be, ω, the particle radius, a, and the membrane tension, 𝜎.15 For a single spherical particle this 

is predicted from the Helfrich model of membranes.13,27,28 Comparing the different energetic 

contributions from adhesion, bending and tension, the following critical particle radii characterize 

the membrane-particle interactions, 

 

𝑎∗ = √
2κ

 𝜎
  and  𝑎∗∗ = √

2κ

 ω
                                                                                                      (4). 

 

The first of these two critical radii, a*, compares the bending energy with the membrane 

tension and thus characterizes the crossover between the bending-dominated (a≪a*) and tension-

dominated regimes (a≫a*). Cell membranes have a typical tension of 0.01-0.3 mN/m29,30 resulting 

in a value for a* in the 10-100 nm which is similar to the sizes observed for proteins. It is this 

condition that motivates us to look at the interactions of nanoparticles and lipid vesicles as a good 

model for this system. For lipid bilayer membranes, nanoparticle binding typically results in small 
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a* values and a** values that range from a*/a <<1 to >>1. The nanoparticles thus fall within the 

bending-dominated regime. Micrometer-sized particles result in a value of a*/a that is not small, 

and tension plays a dominate role.  Within the bending-dominated regime, particles with a<a** 

will remain unwrapped while larger particles are completely wrapped.13,31,32,33 This expression can 

be rewritten to provide the threshold adhesion strength required to fully wrap a particle of radius, 

a, where equality refers to the case of zero tension (see figure 1.2),34 

 

ω0 ≤  
2κ

𝑎2
                                                                                                                                      (5). 

 

Theoretical calculations and simulations,13,27,35,36,37 as well as experiments support this 

picture.14,38,39,40, as do the results reported in Ch 3 of this thesis. The inclusion of nonzero tension 

shifts this transition to higher values of ω.13 Additionally, for nonzero tension or tension that is not 

small compared to the dimensionless combination in equation (1) there exist stable partial-wrapped 

states that are separated by a continuous transition from unwrapped states and by a discontinuous 

transition of the energy to the completely wrapped state. The complete wrapping threshold can 

also be shifted when considering the interactions of many nanoparticles. Simulation studies with 

three or more particles41 as well as with non-spherical particles31 show this transition can be shifted 

to lower values of ω.  

This line of reasoning can be utilized to define a dimensionless parameter that describes 

the particle adhesion, 

 

 𝛾 : =
1

𝑎
√

2𝜅

ω
                                                                                                                                   (6). 

 

Adhesion can be driven by a number of interactions including van der Waals interactions,39 

hydrophobic interactions,42 electrostatic interactions,43 and adhesion via receptor-ligand 



7 
 

bonds.44,45,46,47,48,49,50 Typically, in these systems, adhesion is modeled to be continuous and 

homogeneous. Values for the bending rigidity are typically  20𝑘𝐵𝑇 < 𝜅 < 100𝑘𝐵𝑇, and 

membrane tension is  0.05 𝑘𝐵𝑇𝑛𝑚−2 < 𝜎 < 20 𝑘𝐵𝑇𝑛𝑚−2 ,13,51 and adhesion strength is typically 

2 ∗ 10−6 𝑘𝐵𝑇𝑛𝑚−2 < ω < 0.2 𝑘𝐵𝑇𝑛𝑚−2.52 In our experiments we utilize electrostatic 

interactions to induce particle binding. To achieve this binding, we varied the amount of DOPC, 

DOPS, and DOTAP lipid in the membrane. DOPC is zwitterionic (containing a charge dipole in 

the phosphocholine headgroup) and has been found to support adhesion of both anionic and 

cationic particles, of which more discussion included below. DOPS is anionic with a phospho-L-

serine head group and DOTAP is cationic with a trimethylammonium-propane headgroup. Both 

lipids are used to dope the base DOPC membranes according to the desired charge density. All 

three types of lipids share the same 1,2-dioleoyl-sn-glycero-3 “DO” unsaturated tails to keep the 

lipids in the liquid disordered phase at room temp.  

 

 

Figure 1.2: Wrapping configurations for spherical and rod-shaped particles 

(A) Illustration of the partial and complete wrapping states of nanospheres and nanorods.31 (B) Wrapping phase diagram in the 

plane of reduced adhesion constant (horizontal axis) and reduced lateral tension (vertical axis). There are three distinct states; 

free, partially wrapped and fully enveloped. For the case of zero tension we observe a triple point where the particle goes directly 
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from free to fully enveloped for sufficiently high reduced adhesion constant. The dashed line W marks the continuous transition 

at which partial wrapping sets in. The bold solid line E indicates the discontinuous transition between partially wrapped and fully 

enveloped. The S1 and S2 are the spinodal belonging to E. The fine dotted line close to E indicates where the fully wrapped state 

has zero energy.13 The plot of (b) is copied from [Deserno et al, Phys Rev E, 69, 031903]. 

 
 

Section 2: Non-spherical nanoparticles on lipid membranes 
 

Next, we consider non-spherical particles. Most of the physical arguments made for 

spherical particles still apply and interactions are still dominated by bending and adhesion for non-

spherical nanoparticles. Now, however, particle shape and orientation determine the membrane 

deformations. Rather than just the particle radius for spheres, for more general shapes the 

inhomogeneous surface curvature of particles will correspond to energy barriers for 

wrapping.31,53,54,55 Unlike spherical particles non-spherical particles can have stable partial 

wrapped states even at zero membrane tension. Size, aspect ratio, particle orientation and local 

particle surface curvature govern the wrapping of non-spherical particles.31,53,54,55  

Elongated particles like ellipses and rods can be oriented parallel or perpendicular to the 

membrane so as to minimize the free energy of the system. The preferred orientation of an 

elongated particle bound to the membrane depends on the particle’s shape, the membrane elastic 

properties and membrane-particle interactions. Elongated particle-membrane interactions are more 

complex than those of spheres, and this point is made readily apparent in the case of particle’s 

envelopment. For rod shaped particles, the region of the membrane where it returns to the far-field 

shape costs energy that is not paid for by adhesion.31,37,56 This is not the case for spheres since the 

far-field shape of the membrane is a catenoid, a minimal surface (with zero total curvature). One 

can however approximate the far-field shape of non-spherical particles as a catenoid in the case of 

full envelopment if the rod is oriented normal to the plane of the interface. This depiction is 

accurate and not an estimate for rods with hemi-spherical ends.13,31  
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For rod-like particles, energy minimization predicts three binding states; shallowly 

wrapped, deep wrapped and completely wrapped.13,31,57 For very small adhesion strengths, energy 

minimization predicts they readily bind with their length perpendicular to the membrane. For rods 

with small aspect ratios (length/width less than 2)31 they will remain in this orientation until they 

reach the completely wrapped state. Increasing the adhesion energy causes the rods to transition 

from shallow-wrapped to deep-wrapped and from deep-wrapped to completely-wrapped, both 

transitions are discontinuous.31,58  

Rods can bind perpendicular or parallel to the membrane depending on energy 

minimization and during a dynamic engulfment process can transition between these two 

orientations. For example, simulation results demonstrate that for high aspect ratios or round edges 

rod-like particles will bind first perpendicular then rotate to be parallel to the membrane for the 

shallowly wrapped state.31  If the adhesion strength is increased, the rods will again rotate to be 

perpendicular to the membrane in the deep wrapped state. No matter the dynamics, however, all 

deep-wrapped states are perpendicular to the membrane, as shown in figure 1.2 a.31,58 Experimental 

observations of budding filamentous viruses agree with this theoretical prediction.59,60 Dynamic 

simulation can also be used to calculate the reorientation dynamics for elongated particles on lipid 

bilayer membranes.58,61 One way of doing this is by analyzing the local free energy of the 

membrane-particle system and then incrementally changing the nanoparticle orientation toward 

the lowest energy configuration.58 Doing so allows one to determine the most likely wrapping 

pathway. A convenient way to characterize the wrapping states of the various particle geometries 

is to create a wrapping diagram based on energy minimization this is analogous to phase diagrams 

in thermodynamics.13,31,62 With such an analysis one can easily predict what the anticipated 
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binding configuration of a particle will be and determine the tunable parameters capable of 

transitioning the particle between states. 

 

 

Section 3: Membrane mediated interactions of many particle systems 
 

This description is vastly more complicated when considering multiple particles since 

deformations in the membrane caused by individual particles are not additive. The computational 

labor to compute the membrane shape due to the deformation of just two particles is cumbersome 

but progress has been made in this area. Modeling membrane shape can be simplified by describing 

the membrane-particle interactions using an effective contact angle. The contact angle is defined 

as the angle between the membrane and the plane that contains the particle rim.  Local curvature 

dictates the contact angle, and at equilibrium the local curvature is constant. Work done by 

Deserno, et al., has numerically derived interaction potentials between two spherical particles 

absorbed on a membrane as a function of distance and contact angle.20 For small contact angles it 

is predicted that particles with azimuthal symmetry will repel each other. For large contact angles 

these same particles experience a long-range repulsion and a short-range attraction (on the order 

of the diameter of the particle). Rod shaped particles were predicted to always repel.13 

Simulations done by Šarić et al. find that strongly adsorbed particles experience an 

effective attractive interaction over short distances resulting in hexagonal and linear aggregates.63 

This is confirmed by the simulation work of Bahrami, et al., that found not only an attractive 

interaction but also linear aggregates which protrude into the membrane.64 Still other simulation 

efforts confirm the aggregation of nano- and microparticles on membranes in both linear and 

hexagonal aggregations.36,65,66 Experimental work by Li et al. shows the migration of micron sized 

Janus particles on elongated vesicles. This particle migration is dependent on high membrane 
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tension.67 In the low-tension regime work by van der Wel et al.  shows that strong wrapping leads 

to attractive forces.39 There is a lot of evidence for membrane mediated attractive interactions for 

strongly bound particles. However, there are few experiments to test these findings in physical 

systems.  

The problem becomes increasingly difficult when one tries to extend these calculations to 

the realistic hundreds of particles seen in biological phenomena. This is where simulation and 

experimental work are needed to help drive progress in the understanding of such interactions. 

Indeed, many-particle (or virus) experiments and simulations have been conducted and show 

intriguing and potentially useful cooperative particle interaction mediated by the membrane. 

Experiments have shown that membrane mediated interactions between particles have led to: 

cooperative particle dynamics, attractive interactions between particles,39 clustering,64,65 tubulation 

of the membrane,68,69,70,71 and internalization of particles.14,38 Similarly, simulation and calculation 

have found hexagonal and chain-like aggregations,61,66 budding or tubulation of the membrane,15,20 

and internalization.35,45 

More work is needed to explore the wide range of phenomena observed in collective 

particle behaviors. Additionally, further research is required to be able to tune membrane shape 

for application or to understand how cell membranes function. The work described in this thesis 

adds systematic new studies and new insights to this body of knowledge. In doing so the hope is 

to be able to control morphologies of the membrane, providing a useful model of cell membranes, 

as well as opening the door to applications.  

The following chapters will expand upon and address the topics presented in this 

introduction. Chapter two presents the methods and materials utilized to obtain the results reported 

in this document and provides details on protocols and specific techniques. The third chapter 
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presents results related to the binding of many spherical nanoparticle to lipid bilayer membranes 

and how the observed phenomena is related to the theory describing individual membrane-particle 

interactions. The fourth chapter present a similar study done with nanorods and expands upon the 

techniques utilized to observed dependence on particle binding, membrane tension and particle 

concentration. The last chapter presents a summary of the results presented in this dissertation, 

provides context for their significance, and presents suggestions for future research. 
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CHAPTER 2 

MATERIALS AND TECHNIQUES 
 

 

Chapter two outlines the methods, techniques and materials used in the experiments 

presented in this thesis. The first section presents the lipids used, the reason for their selection and 

the process of GUV fabrication. The second section describes the particles used, the motivation 

for their selection and where the particles were sourced. Next, we describe in detail the chambers 

used for first, the spheres experiments in section three and then upgraded microfluidic chambers 

constructed for the rod experiments in section four. Section five elaborates on the various 

microscopy techniques utilized in both the spheres and the rod experiments. Lastly, in section six 

we present details on the vesicle tracking software that was developed and utilized for vesicle 

destruction analysis. 

 

 

Section 1: GUV Preparation – Electroformation 
 

Lipid composition was selected carefully to ensure first that the membrane remained in the 

fluid phase for the duration of experiments and secondly to control the charge density of the 

membrane. Lipids with unsaturated (1,2-dioleoyl-sn-glycero-3 or “DO”) tails were selected to 

keep the membrane in the liquid-disordered phase. Lipids with a variety of charged or polar groups 

were selected and combined to control the charge density of the membrane. For most of the 

experiments presented here the base lipid used to form GUVs was 1,2-dioleoyl-sn-glycero-3-

phosphocholine (DOPC), which has a zwitterionic headgroup. We found that both positively and 

negatively charged particles bound to the DOPC membranes. 72 This seems surprising in view of 

findings that DOPC vesicles have a slightly negative electrostatic (zeta) potential of -9 mV 
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(electrophoretic mobility with 0.1 mM NaCl)73 and might therefore be expected to repel negatively 

charged nanoparticles. We attribute the binding in this case to the static dipole of the zwitterionic 

PC headgroup, which can reorient to attract charged objects of either sign.74 Previous experimental 

studies have also found that anionic particles were able to bind to DOPC vesicles.75,76 When 

working with cationic particles we increased the interactions by doping the DOPC membrane with 

the anionic lipid 1,2-dioleoyl-sn-glycero3-phospho-L-serine (DOPS) to tune the adhesion of such 

particles to the membrane. Conversely, we used cationic 1,2-dioleoyl-3-trimethylammonium-

propane (DOTAP) to control the adhesion of anionic particles to the membrane. To visualize the 

membranes when doing confocal microscopy, we added a small amount of headgroup-labeled lipid 

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N- (lissamine rhodamine B sulfonyl) 

(ammonium salt) (Rh-DOPE). For a few experiments we also used the anionic 1,2-dioleoyl-sn-

glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DOPG) as well. All the above-mentioned 

lipids, DOPC, DOPS, DOTAP, Rh-DOPE and DOPG where purchased from Avanti Polar Lipids 

pre-dissolved in chloroform in ampules. Lastly a few experiments were conducted using lipids 

derived from soy lecithin powder (Phospholipon 85G) acquired from the American Lecithin 

Company. These lipids all have a phosphatidylcholine (PC) head group, but the length of the fatty 

acid tails varies. All lipids were stored under nitrogen in a -20°C freezer. 

Once the appropriate combination of Lipids was selected, GUVs (10-100 μm diameter) 

were formed using electroformation. Electroformation also known as electroswelling is one of the 

most common methods for producing GUVs due to the techniques success in quickly producing 

reasonably monodisperse, defect-free vesicles. The method was pioneered by Angelova and 

Dimitriov in 1989,77 and later studied in detail by Herold et al.78  GUVs are formed by modulating 

the spontaneous swelling of lipids in an aqueous solution via the application of an external electric 
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field. In our application we used indium tin oxide (ITO, from Delta Technologies, Part # CB-50IN-

S111) glass cover slips as our substrate to apply the thin layer of lipids. The coverslips had a 

conductive copper tape (from 3M, sold by SPI, part # 5012-AB) applied to one end on the 

conductive side of the glass to help with the attachment of electrodes during the electroformation 

process (Fig. 2.1a). 

The first step in the process of electroformation is to clean the glass slides using acetone 

and a Kimwipe. Next the lipid solution was prepared by carefully combining the desired ratio of 

base lipid (typically DOPC) with doping lipid (DOPS, DOTAP, etc.). The total volume of fluid 

was around 50 μl. The lipids were mixed thoroughly by first agitated the fluid by extracting and 

expelling with a syringe 20 times and then vortexed for 1 minute to ensure homogeneity among 

the resulting vesicles. Lipids were then deposited on two coverslips being careful to spread the 

lipids evenly over the surface of the slide with the tip of a syringe. The coverslips were dried in a 

vacuum chamber for at least two hours to remove all chloroform solvent leaving only a few thin 

layers of lipid on the ITO slides. 

During the drying process, the hydrating solution was prepared. For the experiments 

outlined in this document all vesicles were prepared with the same 175 mOsm/L sucrose for 

hydration. Later, after vesicle formation,180 mOsm/L glucose solution was used to dilute the 

vesicle suspension, as described below. Experience showed this combination to reliably produce 

high quality vesicles. The two different solutions were selected to help provide contrast in the 

visualization of the vesicles via bright-field microscopy and promote the sedimentation of the 

vesicles. The difference in osmolarity made for slightly floppier vesicles which were less prone to 

bursting and easier to handle using micropipette aspiration.  
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After the ITO slides have finished drying, they are removed from the vacuum chamber and 

the slides are combined with a Teflon spacer and the sucrose solution to form a chamber for the 

hydration and electroformation process. The Teflon spacer is custom designed to be the same 

length and width as the glass slide and when sandwiched between the two glass slides forms a 

close chamber that can hold the sucrose solution (Fig. 2.1a). The Teflon spacer is coated with 

vacuum grease and set between the two glass slides lipid side inward. The spacer is secured using 

four small binder clips. Once secured a 22-gauge syringed is threaded through one of two small 

holes on the side of the Teflon spacer and the sucrose solution is deposited within the open cavity 

making sure to exclude all air (Fig. 2.1c). The holes are sealed with vacuum grease and the chamber 

is now ready for electroformation. Note during this process care is made to move quickly and 

minimize exposure of the dried lipids to the air to avoid oxidation. 

 

 

Figure 2.1: Electroformation chambers 

Shows photographs of the different components used in the assembly of the electroformation chamber. (A) The top images show 

the ITO slides used; the bottom shows the Teflon spacer. (B) shows three fully assemble chambers, the syringes for extraction, 

prepared glucose and sucrose solutions and storage containers. (C) shows a close up on the fully assembled chamber and how the 

syringe threads into the chamber via wholes on the side. 

 

 

The chamber is then placed in an oven which has been preheated to 50°C. As the chamber 

is placed in the oven two alligator clips are attached to the glass slides one on each slide opposite 
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each other where the copper tape has been applied. The alligator clips are connected to a function 

generator which applies the external electric field essential to the electro formation process. The 

function generator should be set at a 2.4 peak-to-peak voltage, with a sine-wave oscillation at 100 

Hz. The vesicles form in the solution over the course of two hours. Once finished the chambers 

are removed from the oven and the vesicles removed from the chamber by withdrawing the 

solution within the chamber out through the same holes the original solution was introduced. 

Movements should be slow without any sudden accelerations when extracting the solution (30 s) 

to not rupture the vesicles. The vesicles are then deposited in an Eppendorf tube and combined 

with equal parts glucose solution. The vesicles should be allowed to sediment to the bottom of the 

tube overnight and are stable for about a week. 

Lastly, the ITO glass slides should be thoroughly cleaned by rinsing with acetone and de-

ionized water repeatedly until spotless upon inspection against a bright light. Avoid washing with 

detergents as any residue will prevent the formation of vesicles. This is not only a courtesy to 

others using the glass but also essential for successful vesicle formation as a dirty slide will ruin a 

batch. 

 

 

Section 2: Particles 
 

For the experiments outline in this document two classes of nanoparticles were utilized: 

spherical and rod-shaped. Among the spherical particles the one most utilized were the cationic 

gold nanospheres made by YiWei Lee and Li-Sheng Wang in Vincent Rotello’s group (Dept of 

Chemistry, University of Massachusetts Amherst). The cationic nanoparticles have a gold core 

functionalized with surface ligands consisting of a thioalkyl tetra(ethylene glycol)ated 

trimethylammonium (TTMA) ligand.79,80 The tetra(ethylene glycol) spacer was added to keep the 
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particles stable in suspension. Particles were synthesized using the Brust–Schiffrin two-phase 

synthesis method81 and then functionalized with TTMA ligands via place exchange reactions.82 

The core diameter was 2 nm (transmission electron microscopy), the hydrodynamic diameter was 

6.7 ± 0.4 nm (dynamic light scattering, DLS), and the zeta potential in suspension was 18.2 ± 0.8 

mV (electrophoretic mobility).79 The ligand coating on these spheres was dense and uniform 

allowing for even charge density and the distribution on sizes was narrow. The even charge density 

comes from the permanent positive charge on the quaternary ammonium group at the ligand 

terminus. The particles were strongly dissociated and not sensitive to pH. These properties made 

them ideal candidates for the core of our exploration of GUVs with nanospheres. 

To expand upon and confirm that our results where not dependent on the material, 

functionalization, or lipid composition our analysis was extended to other types of spheres. 

Anionic silica particles, Ludox AS-30 and Ludox SM (Sigma-Aldrich) were selected. The mean 

particle radii were a = 11.3 nm and 12.6 nm, respectively (DLS, measured in the same solution 

conditions as our vesicle experiments). Additionally, 30 nm diameter gold spherical nanoparticles 

(Aldrich) stabilized in a suspension of citrate buffer were explored briefly in a few experiments. 

Lastly the use of large patchy micro sized particles was explored. The particles were synthesized 

by Zhe Gong from the group of Prof Stefano Sacanna (Dept Chem, New York University). The 

particles were 2.5 μm in diameter with a cationic matrix and anionic patches. The bulk of these 

patchy particles are composed of amidinated polystyrene (PS). The patches of the particles are 

anionic 3-(Trimethoxysilyl)propyl methacrylate (TPM). The entire surface is coated in triblock 

copolymer Pluronic F108 to the particles to further stabilize. The particles are then suspended in a 

0.5%wt. F108 aqueous solution. The particles were chosen due to their heterogenous binding to 

the membrane preventing them from being fully enveloped. They could then be used to track 
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diffusion on the membrane with and without nanoparticles present.83 All nanospheres were stored 

at 2-8°C. 

A variety of nanorods were utilized in the experiments outline in this document. The 

primary rod used was an anionic DNA origami nano rod designed by Masha Siavashpouri (Dept. 

Physics, Brandeis University) and then modified and synthesized by Thomas Gerling (Dept. 

Physics, Technical University of Munich). The rods are formed from six-helix DNA-bundles that 

are 420 nm by 6 nm with single basepair insertions every 42 bases per helix resulting in a global 

right-handed twist (360 degrees).  The reaction mixture contained homemade p7560 scaffold DNA 

at a concentration of 50 nM and oligonucleotide staple strands at 200 nM each (purchased from 

IDT). The folding buffer included 5 mM TRIS, 1 mM EDTA, 5 mM NaCl (pH 8), and 20 mM 

MgCl2. The reaction mixture was subjected to a thermal annealing ramp using a Tetrad (MJ 

Research, now Bio-Rad) thermal cycling device. After a 15-minute thermal denaturation step at 

65°C, the mixture was annealed from [60 - 20°C] for 60min/1°C. The reaction mixture was 

purified from excess staple strands by performing one round of PEG precipitation.84 The resulting 

pellet was dissolved in folding buffer (5 mM tris, 1 mM EDTA, and 5 mM NaCl) including 5 mM 

MgCl2. The final volume was chosen to get a monomer concentration of 150 nM. The sample was 

equilibrated at 40°C and 450 rpm overnight in a shaker incubator (Thermomix comfort from 

Eppendorf).  

The rods were specifically designed with strategically placed additional thymidine groups 

and then exposed to ultraviolet light which induces cross-links between adjacent thymidines to 

increase the structural integrity at low ionic strength conditions.85 To this end, every staple 

terminus and every staple crossover features two additional, unpaired thymidines. For UV 

irradiation, we used a 300-W xenon light source (MAX-303 from Asahi Spectra) with a high 
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transmission bandpass filter centered around 310 nm (XAQA310 from Asahi Spectra). We used a 

light guide (Asahi Spectra) to couple the light into the sample by placing it directly on top of an 

open 0.65-ml reaction tube and irradiated the sample for 70 minutes in an ice bath (~16 mW/cm2). 

To reduce aggregates in the PEG purified sample, we spun the sample for 20 minutes at 21,000 rcf 

(relative centrifugal force) and 4°C and kept the supernatant. Finally, to decrease the amount of 

PEG molecules in solution, we performed four rounds of ultrafiltration (Amicon Ultra 500 μl with 

100k cutoff). Ultrafiltration was carried out at 20°C and 14k rcf (Eppendorf 5424R) with folding 

buffer (5 mM tris, 1 mM EDTA, and 5 mM NaCl; including 5 mM MgCl2). The final concentration 

of the sample was adjusted to 150 nM. All procedures were performed as previously described.86 

From this stock solution rods were diluted using the same sucrose and glucose solution used to 

create and dilute the vesicles. The specific concentration is denoted per experiment. 

Prior to the updated design of the DNA origami nanorods to include strategically placed 

additional thymidine groups unmodified versions of the DNA origami nanorods were utilized. 

They were found to disintegrate under the low ionic conditions required for experiments looking 

at the charge interactions between lipids and nanoparticles and thus the modifications were 

required. These other DNA origami nanorods include four varieties of six-helix DNA-bundles 

rods: 415 nm length with 360 degree left handed twist, 295 nm with 360 degree left handed twist, 

243 nM with no twist, and 326 nm wit 720 degree right handed twist. All the rods were in the same 

buffer: 250mM NaCl and 20mM tris base ph8.87 

Lastly a few experiments where done using the rod-shaped mutant type of the filamentous 

bacteriophage fd wild-type virus, fd-Y21M. This “rod” like virus was produced by Marc Ridilla 

and Zhenkun Zhang (Brandeis University, MRSEC) and could be produced in both anionic and 
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cationic varieties. The viruses are 800 nm long by 5 nm and consist of a single-stranded circular 

DNA molecule coated with a protein layer.88,89 

 

 

Figure 2.2: Prefusion chambers 

Illustration of perfusion chamber used for imaging the dynamics of nanoparticle/vesicle interactions. 

 

 

Section 3: Perfusion chambers 

 

In preparation for an experiment the first step was to dilute the nanoparticles in the same 

solution as the GUVs. For example, in the case of experiments with the TTMA gold nanospheres 

2 μL of stock nanoparticle solution (10 mM nanoparticles in H2O) was diluted with 10 μL of 175 

mOsm/L sucrose and 10 μL of 180 mOsm/L glucose. By doing this we dilute the nanoparticles to 

the desired concentration as well as balance the osmolarity of the particle solution to the GUVs to 

prevent osmotic shock. The nanoparticle/sugar solution was vortexed for two minutes at a high 

speed to ensure even mixing, then sonicated for 90 seconds to break apart any aggregates. The 

GUVs were also prepared prior to observation by taking 5 μL of concentrated GUV solution and 

dispersing it in 10 μL of 175 mOsm/L sucrose and 10 μL of 180 mOsm/L glucose. The solution 

was then mixed gentle using the end of a pipette tip.  
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The process of mixing vesicles and nanoparticles was monitored in situ using optical 

microscopy so that the early stages of adsorption could be visualized. To this end, we first added 

vesicles into a long, narrow perfusion chamber (CoverWellTM; Grace Bio Labs, with #1½ cover 

glass). The perfusion chambers allowed for clear visibility, were easy to load and were reusable. 

See Fig. 2.2. We then placed the chamber on the microscope and waited a few minutes to allow 

the vesicles to settle onto the coverslip. Next, we added 5 μL of nanoparticle suspension (approx. 

1 mM of nanoparticles plus approx. 178 mOsm/L of glucose + sucrose with osmolarity checked) 

into one end of the perfusion chamber. (In some experiments, the nanoparticles were suspended in 

180 mOsm/L of glucose + sucrose; these samples were not distinguishable from the others.) 

Particles then diffused further into the sample. This method allowed observation of the vesicles as 

the nanoparticles bound. Vesicles that were farther from the point of nanoparticle addition had a 

lower nanoparticle concentration. 

This same procedure of preparation and then observation was used for the other spherical 

particle experiments and some nanorod experiments as well. Each experiment diluted the 

nanoparticles to the desired concentration using the same solution the GUVs were suspended in 

(equal parts sucrose and glucose). For experiments with added NaCl, GUVs and nanoparticles 

were diluted in a solution of sucrose, glucose and NaCl where the ratios were selected to maintain 

matching osmolarity with the interior of the vesicles while varying the amount of NaCl and thus 

free ions in solution. The primary purpose for diluting the GUVs beyond experiments including 

NaCl was to prevent overcrowding. No matter the preparation, nanoparticle and GUV solutions 

were combined in situ and interactions observed. Specific experimental conditions are outline as 

they are relevant in later chapters. 
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Figure 2.3: Microfluidic chambers 

(A) Top view of the microfluidic chambers used for imaging the dynamics of the nanoparticle/vesicle interactions. (B) Side view 

of a single well. 

 

 

Section 4: Microfluidic chambers 
 

The primary drawback to the perfusion chambers used in experiments with spherical 

particles is the lack of control of the concentration gradient of particles and their mixing with 

GUVs in the sample chamber. To address this issue and expand our experimental capabilities 

custom microfluidic devices were designed and fabricated with the help of Maria Eleni Moustaka 

of Seth Fraden’s group (Dept Physics, Brandeis). These devices enable the confinement of the 

GUVs to microwells at the bottom of the chamber. This confinement allowed for a rapid full 

exchange of the volume of the chamber without drastically disrupting the vesicle. Additionally, 

the confinement of the vesicles allowed for easy long-term tracking of multiple vesicles over the 

course of the experiment. This was not possible with the perfusion experiments which suffered 

from a large amount of fluid flow. GUV and nanoparticles solutions were prepared in the same 
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way as is outlined in section 3. Specific concentrations of nanoparticles and osmotic conditions 

are denoted where relevant in Chapter 4. 

The first step in making the microfluidic chambers was designing the micro wells using 

Autodesk AutoCAD® and then sending the photomasks out to be printed commercially (Front 

Range Photomask Co. LLC). The dry photoresist photolithography technique described by 

Khalkhal et al.90 was used for the fabrication of the photoresist masters. Specifically, we used 

stainless steel wafers with 3’’ in diameter and 0.0293’’ thickness supplied by Stainless supply. The 

dry photoresist films are the DuPont Riston dry-film photoresist GM120 with thickness 50 μm. 

Lamination was performed with the Fellowes Saturn 2 95 Laminator at 150 °C. After aligning the 

photomask on the wafer with the dry photoresist layer, we UV-exposed it with a UV lamp (UVP 

8W UVL -28) for 30 minutes. The master was developed in a bath of potassium carbonate 10g/l, 

under a fume hood. For casting the microfluidic device, we used 10-15 g of PDMS (Dow Corning 

SYLGARD® 184 Silicone Elastomer Kit) with 10:1 base and cross linker ratio mixed with a 

centrifugal mixer (Heraeus Labofuge 400) at 1000 rpm for 6 minutes. After depositing the PDMS 

layer on the master, we degas the PDMS for 10 minutes in a vacuum chamber until all bubbles are 

removed. We then placed a 25 mm x 75 mm thin plasma-cleaned glass slide on top of the master 

with the PDMS substrate and both bottom and top surfaces were covered with a sheet of Mylar® 

and a thermal Kapton sheet. For plasma cleaning the glass slide, we used the Jelight UVO-Cleaner 

model #42. For curing the PDMS we used a thermal press (Dulytek DM1005) and we pressed for 

2 hours at 70°C, hand tight.  When curing was completed, we carefully separated the final 

microfluidic device from the master.  To create the flow chamber micro-wells were placed 

carefully on top of a large glass coverslip. Then parafilm spacers were placed around the 

microwells and lastly a small cover slip was placed on top of the spacer leaving a gap at each end 
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of the channel to allow for fluid to be flowed in and out of the chamber. This setup was thermally 

sealed, and no leakage was observed. The final fluid volume of the chamber was about 20 μL while 

the volume of an individual well varied from 3-30 nL. Figure 3.3 shows the structure of the final 

microfluidic device.  

The process of combing vesicles with nanoparticles was monitored in situ using optical 

microscopy so that the full dynamics of the process could be observed. The bottom of the wells 

was only a few microns thick, thin enough to easily view through the bottom of the optically clear 

PDMS wells. The walls of the wells were fifty microns tall allowing for the confinement of one or 

two layers of vesicles. Any vesicles stacked too high in the well were washed away when the bulk 

fluid was exchanged. The micro wells were roughly circular in shape with a diameter ranging from 

300-900 μm (Fig. 2.3). Vesicles were injected into the chambers and then allowed to sediment into 

the PDMS wells at the bottom of the chamber. Once the vesicles had sedimented the bulk fluid of 

the chamber, 20 μL, was replaced with a solution at the relevant concentrations required for 

specific experiments. The whole chamber was mounted to an optical microscope and interactions 

were observed from beneath. 

 

 

Section 5: Microscopy of GUVs 
 

Samples were viewed using a variety of microscopy techniques each providing a unique 

probe into our experimental system. The techniques used include: brightfield, darkfield, confocal 

and transmission electron microscopy. Numerous objectives, condensers and cameras were also 

utilized as was required for each of the microscopy techniques or experimental setups. Specific 

cameras used in each experiment are denoted within the chapters those results are reported.  
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Brightfield microscopy is a standard and simple technique where in the sample is 

illuminated producing an image where the sample appears dark against a bright background. 

Darkfield microscopy is a technique where light is shown at a wide angle such that the path of the 

light from the condenser does not pass through the objective unless it has scattered off of an object 

in the sample plane. The resulting images shows the sample as bright with a black background. 

Brightfield is easy to implement and provides good resolution. Darkfield, though more difficult to 

implement, provides higher contrast as well as being a direct measurement of the relative amount 

of material in the sample plane. Brightfield was utilized to observe the bulk behaviors of both 

spherical and rod-shaped nanoparticles as they interacted with GUVs. Darkfield was employed to 

observe the increase in intensity on the GUVs as particles accumulated on the membrane. Both 

techniques have the advantage of not requiring any additional tags, dyes, or labels to image the 

system which could interfere with the resulting interactions. 

Confocal microscopy is an optical imaging technique that uses the excitation of fluorescent 

dyes to image a sample. The technique works by focusing laser light of a specific wavelength to a 

small point on the sample plane and then scanning that point across the full area of the region of 

interest. The laser then excites the florescent label in the sample (which is selected to fluoresce 

when excited by a specific wavelength of light). The excited light is then observed via an objective 

by a camera and the image is rendered. The advantage of this technique is the high-resolution 

imaging that is possible. The resolution far surpasses that of traditional brightfield microscopy and 

varies depending on the type of confocal utilized. The disadvantage of confocal microscopy 

however is the requirement of a florescent label. In the case of our experiments we utilized the 

labeled lipid Rh-DOPE. The addition of even a small amount of label can have dramatic effects 

especially when the interactions are on a nanometer scale.91 To confirm that the effects observed 
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are not affected by the florescent label control experiments utilizing brightfield or darkfield are 

required. The use of confocal microscopy allowed us to get higher resolution images of the 

deformations caused by the binding of nanoparticles to GUVs. 

Lastly, we consider Transmission Electron Microscopy or TEM. This is a highly advanced 

imaging technique that allows for ultra-high magnification images with resolution on the sub-

nanometer scale. This is compared to the previously described techniques with resolution limits 

around a few microns to several hundred nanometers for confocal microscopes. Standard TEMs 

work by showering the sample with a beam of electrons of which those that are then transmitted 

through the sample form an image. It is the small wavelength of electrons compared to visible light 

that enable them to produce higher resolution images. The resulting image has a bright background 

where electrons freely transmitted and a dark sample where electrons interacted with or were 

blocked by the sample. The intensity values of the image are directly correlated to the thickness of 

the sample at that location. The disadvantage of electron microscopy is that it is difficult to do, 

requires highly advanced equipment and requires the sample to be put under high vacuum. The 

last issue is particularly egregious considering all our experiments are done in the aqueous phase 

and drying the sample would fundamentally alter the structure. To resolve this Cryogenic TEM 

was utilized. Cryo TEM is a technique where in the sample is plunge frozen preventing ice crystals 

from forming and resulting in amorphous ice. Amorphous ice is just 𝐻2𝑂 in a solid disordered 

phase where the individual water molecules are frozen faster than they can organize into a 

crystalline structure. This is essential for preserving the structure of the sample prior to freezing 

and allows for a snapshot of the aqueous phase structure of the sample. The sample is kept in liquid 

nitrogen until it is viewed in the Cryo-TEM which continues to hold the sample at -180°C. This 
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highly advanced technique was used to view the nanoscale structures and interactions observed 

between spherical and rod-shaped nanoparticles and lipid bilayer membranes. 

 

 

 
Figure 2.4: Vesicle tracking software 

(A) Shows the analysis steps undergone during the edge finding and circular Hough transform. (B) The top figure shows the 

observed radius of the vesicles in pixels verses frames. The bottom plot shows the observed area of the vesicle verses seconds 

both fitted with a linear fit for comparison. 

 

 

Section 6: Vesicle tracking software 
 

The use of microfluidic chambers rather than perfusion chambers enabled the careful 

observation of numerous vesicles (20-100) over long periods of time (30-90 minutes). The typical 

frame rate for experiments presented was 2 frames per second. Dozens of vesicles observed over 

thousands of frames over dozens of individual experiments provided significant statistical 

observations. Something that has never been attempted in a dynamic GUV system on this scale. 

However, the immediate issue was how to manage the shear quantity of data. To tackle that issue, 

we implemented an image analysis technique known as the Circular Hough Transform92 to track 
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individual vesicles during their life span in an experiment. This vesicle tracking software was 

developed specifically to measure the rate of size reduction observed during the destruction of 

vesicles induced by the binding of nanorods. This analysis can be extended and modified to apply 

to any system of circles where the size of the circle is desired. 

The Circular Hough Transform (CHT) is a digital image processing technique used to 

detect circles in imperfect images. The method was more effective for viewing our low contrast 

images of vesicles that are often crowding each other or have debris floating past them. Our 

analysis works by first taking the original image, in our case a single frame, and transforming it 

into an edge image, see Fig. 2.4 a. An edge image is one that is completely black and white with 

black as the background and small amounts of white lines at the edges of the objects in question. 

In our analysis the Canny Edge detection method was used to transform our images. The edge 

image is then given to the transform as an input along with the range of radius required to search 

over. The method will scan the image for circles in the range of radius specified and identify the 

top ranked circle in the image. The analysis then outputs an image file with the top 8 circles traced 

in red and the top ranked one in green, (Fig. 2.4 a). It also returns the radius of the circle as well 

as the position of the center. This process is then iterated for each frame of the vesicle destruction 

track and a plot of the radius reduction is produced along with a linear fit of the rate, (Fig. 2.4 b). 

The results of this analysis are reported in chapter 4. 

The full script along with related functions are included in the appendix. This analysis 

method was adapted from an open source project create by David Young in 2016.93 
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CHAPTER 3 

THE EFFECT OF CHARGED SPHERICAL NANOPARTICLES 

ON LIPID BILAYER MEMBRANES 
 

 

 

This chapter presents the results of work looking at the interaction of nanospheres with 

lipid bilayer membranes. The first section introduces the major scientific questions we seek to 

illuminate while also emphasizing potential applications. The second section outlines the methods 

and materials used to conduct experiments. Section three provides a full overview of the results. 

The final section provides discussion and concluding remarks on the work presented. This work 

represents a continuation and expansion of work conducted by Dr. Derek Wood during his 

dissertation studies. These results have been previously published and can be found in the journal 

Nanoscale, where both Derek and I are co-first authors.72 

 

 

 
Figure 3.1: Schematic overview of spherical particle results 

(A) Schematic overview of giant unilamellar vesicles (GUVs) with controllable anionic charge density exposed to cationic gold 

nanoparticles (Au-TTMA). The microscope image shows GUVs composed of 96 mol% DOPC and 4 mol% anionic DOPS 

without nanoparticles. (B) Microscope image of GUVs + nanoparticles that have adhered to one another forming a solid gel. (C) 
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Microscope images of a single GUV undergoing rapid tubule formation and destruction upon Au-TTMA nanoparticle binding. 

We also report similar behaviors for anionic nanoparticles with cationic vesicles. 

 

 

Section 1: Introduction 
 

Here we report the results of three different well-defined systems of lipid membrane and 

nanoparticles that allowed us to tune the interaction strength, ω, between the two components. We 

used giant lipid-bilayer vesicles (10–100 μm) with varied amounts of charged lipid to induce 

adhesion to oppositely charged nanoparticles. The majority of our studies focused on 6.7 nm-

diameter cationic Au-TTMA nanoparticles (Fig. 3.1A).79 We chose these particles because they 

have a dense ligand coating, are stable against aggregation, and have a permanent positive charge 

on the quaternary ammonium group at the ligand terminus. We made the vesicles with a mixture 

of zwitterionic DOPC and anionic DOPS, so that the molar ratio of DOPS could be tuned to set 

the binding energy per unit area, ω. When the DOPS fraction and ω were small, the nanoparticles 

caused the vesicles to adhere to one another and form a soft but solid gel (Fig. 3.1B). By contrast, 

when ω exceeded a threshold value, the vesicles were destroyed in a remarkably complex but 

highly repeatable process that included vesicle shrinkage, invagination, pore formation, runaway 

tubule formation, and possibly vesicle inversion (Fig. 3.1C). We also carried out experiments with 

negatively charged silica nanoparticles mixed with vesicles doped with positively charged DOTAP 

lipid and found similar results. With this silica system, we investigated two slightly different 

particle sizes and found that the threshold lipid composition was noticeably lower for the larger 

particles. Our computer simulations also showed a transition from partial to complete wrapping of 

nanoparticles and subsequent membrane rupture when the dimensionless ratio 𝜔𝑎2/𝜅 exceeded a 

threshold value of approximately 0.5. The sequence of morphologies leading to destruction was 

consistent in each case.  
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When a single nanoparticle, virus, or protein binds to a membrane, the adhesion can force 

the membrane to deform. Treating the membrane as a continuum elastic body, (see chapter one 

section 2 for more details) deformation is driven by free-energy reduction from binding and 

opposed by the free-energy increase from bending or stretching the membrane.13,14,15 Defining the 

binding free energy per unit area of contact as ω, the radius of a spherical particle or virus as a and 

the membrane bending modulus14 as κ, earlier theory work predicted a crossover from mild 

deformation to full wrapping of the bound object by the membrane when 𝜔𝑎2/𝜅 = 2. 27,79 On the 

other hand, if the membrane were subjected to high mechanical tension, τ, this could play the 

dominant role instead of κ if the dimensionless ratio 𝜏𝑎2/𝜅 ≫ 1.94,95 For lipid bilayer membranes 

having non-covalent interactions (e.g., electrostatic double-layer), particles that are a few nm in 

size lead to 𝜏𝑎2/𝜅 values that are typically small, while 𝜔𝑎2/𝜅 can vary from ≪1 to≫1. Therefore, 

for objects of this interesting size scale (which are relevant for biology and nanoparticle 

applications), deformations should be tunable via w and should range from weak adhesion to 

partial or full wrapping under common conditions. For individual particles, calculations and 

simulations15,35,36,37,79 and experiments support the idea that 𝜔𝑎2/𝜅 is the key control 

parameter.13,38,39,40 

When many particles or viruses are present, cooperativity leads to richer phenomenology. 

Experiments showed that cooperative interactions lead to in-plane attraction between particles65 

and particle clustering,65,96 tubulation or pearling of the membrane35,41,64,70,97,98,99,100 and 

internalization of particles within the vesicles.13,37 Similarly, simulations and calculations found 

hexagonal or chain-like particle aggregates,98,101 budding or tubulation of the 

membrane,35,64,70,97,98,99,41,100 or internalization.45,95 Despite the wide range of reported 
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phenomenology and theory, it is still not known how to predict and control these particle-

membrane behaviors – especially when many particles are present.  

The ability to tune the morphology and shape-changing dynamics of vesicles provides a 

useful experimental model of cell lysis and opens the door to new applications. These findings 

could be used to create cargo-carrying vesicles with the ability to rupture when bound particles are 

stimulated11 or, potentially, when  is tuned by an external trigger. These results also show how 

to engineer soft solid gels that can encapsulate cargo. They may also provide a unified picture for 

the wide variety of phenomena reported in cells and vesicles, which likely correspond to different 

regions of a phase space defined chiefly by ω, κ, a, and particle concentration. 

 

 
Figure 3.2: Perfusion Chamber 

Top view of perfusion chamber used for imaging the dynamics of nanoparticle/vesicle interactions. 

 

 

Section 2: Methods and materials 
 

Giant unilamellar vesicles (GUVs) were prepared by electroformation using methods 

described in detail in Chapter 2 and in earlier publications.78 The majority lipid was the zwitterionic 

mono-unsaturated 1,2-dioleoyl-sn-glycero-3-phosphocholine (18:1 DOPC; Avanti Polar Lipids). 

Charged lipids with the same fatty-acid tail (to suppress demixing) were added to induce particle 
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adhesion. Anionic 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (18:1 DOPS; Avanti Polar Lipids) 

was added when using cationic Au-TTMA particles. Cationic 1,2-dioleoyl-3-trimethylammonium-

propane (18:1 DOTAP; Avanti Polar Lipids) was added for experiments with anionic silica 

particles. In some cases, we added a small amount of headgroup-labeled lipid 1,2-dioleoyl-sn-

glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (ammonium salt) (Rh-

DOPE; Avanti Polar Lipids). All vesicles reported here were formed in 175 𝑚𝑂𝑠𝑚 𝐿−1 sucrose 

solution and then diluted with an equal volume of 180 mOsm L−1glucose solution, then left for a 

day to make the vesicles slightly floppy (so that 𝜏𝑎2/𝜅 << 1). Where explicitly stated, a controlled 

amount of NaCl was also added to the exterior solution to test for electrostatic effects.  

The cationic nanoparticles have a gold core functionalized with surface ligands consisting 

of a thioalkyl tetra(ethylene glycol)ated trimethylammonium (TTMA) ligand (Fig. 3.1A).72,80 The 

tetra(ethylene glycol) spacer was added to keep the particles stable in suspension. Particles were 

synthesized using the Brust–Schiffrin two-phase synthesis method81 and then functionalized with 

TTMA ligands via place exchange reactions.82 The core diameter was 2 nm (transmission electron 

microscopy), the hydrodynamic diameter was 6.7 ± 0.4 nm (dynamic light scattering, DLS), and 

the zeta potential in suspension was 18.2 ± 0.8 mV (electrophoretic mobility).72 Anionic particles 

were silica, Ludox AS-30 and Ludox SM (Sigma-Aldrich). The mean particle radii were a = 11.3 

nm and 12.6 nm, respectively (DLS, measured in the same solution conditions as our vesicle 

experiments).  

To observe binding dynamics, we injected vesicles into a long, narrow perfusion chamber 

mounted on an optical microscope (Fig. 3.2), then added 5 μL of nanoparticle and sugar suspension 

(178 mOsm L−1 glucose + sucrose) into one end of a perfusion chamber. See Chapter 2 for more 

information. 
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 Molecular dynamic simulations were conducted by collaborators at Brandeis University 

and included in the final publication for our nanospheres results.72 This material is adapted from 

that paper and helps to provide context for interpreting our experimental results. Molecular 

dynamics simulations were preformed to determine how the particle-membrane adhesion strength 

changed dynamics and the steady-state configuration. The membrane was represented by the 

coarse-grained solvent-free membrane model,102 which is computationally tractable while 

capturing the relevant features of biological membranes. The lipids were represented three beads, 

one bead for the head and two beads for the tails. There are short-ranged attractive interactions 

between pairs of tail beads that represent hydrophobic effects, and short-range repulsions between 

pairs of head beads and head-tail pairs. Nanoparticles and membrane-head beads interacted 

through a Lennard-Jones potential, with well-depth εatt determining the strength of the 

nanoparticle-membrane attraction (which was tuned by salt concentration or lipid composition in 

the experiments). To represent excluded volume, there were also repulsive interactions between 

nanoparticles and lipid tail beads and nanoparticle– nanoparticle pairs. Membranes were initially 

planar, approximating the fact that in the experiments the radii of curvature of the initial vesicles 

was much greater than a. A 170 × 170 nm membrane was initialized in the center of a box of height 

150 nm. Tension was held near zero. Next, n nanoparticles were initialized in the upper half of the 

box, so that the nanoparticle area fraction (if all nanoparticles adsorbed) was given by 𝑝𝑛𝑝 =

𝑛πa2/𝐿2, where L is the lateral membrane dimension. Periodic boundary conditions applied in the 

plane of the membrane, ensuring that nanoparticles remained on one side of the membrane (unless 

it ruptured). 
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Figure 3.3: State diagram of spherical particle interactions 

Bright-field optical micrographs show state diagrams of GUVs with varying lipid composition in the presence of three different 

types of nanoparticles. The fraction of charged dopant lipid increases from 0 to 9 mol% from left to right. The heavy black lines 

indicate the boundary between samples that showed adhesion and gel formation vs. those that underwent tubulation and 

destruction. (A) Cationic Au-TTMA particles with anionic DOPS lipid. (B) Same as (A), but with 20 mM NaCl added (still 

osmotically balanced), which shifts the threshold. (C) Anionic silica (Ludox AS-30, a = 11.3 nm radius by DLS) with cationic 

DOTAP lipid. (D) Anionic silica (Ludox SM, a = 12.6 nm by DLS) with DOTAP lipid. Scale bars are 20 μm and each applies to 

images in the same row. 

 

Section 3: Results 
 

In this section, we describe the phenomenology of the gel and destruction regimes. 

Throughout, we focus primarily on the cationic Au-TTMA-nanoparticle results, and then later 

show a comparison to the anionic silica nanoparticle results. We then describe molecular dynamics 

simulations that show a similar crossover from weak binding to destruction. Finally, in the 

Discussion section, we describe the underlying mechanisms and compare to prior work.  
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Figure 3.4: Darkfield image of vesicle, spherical nanoparticles 

(A) Dark-field image of a vesicle, showing faint contrast owing to light scattering from the membrane. (B) Dark-field image of a 

vesicle in the presence of nanoparticles, showing additional scattering by bound nanoparticles. (C) Plot of camera-pixel intensity 

vs. position along line segments shown by the white dashed lines in A, B. We estimated the extent of light scattering by the 

difference between the peak and background intensities. The values were approximately 140 and 40 with and without the 

particles, respectively. This approximately 3-fold enhancement of the scattering is attributed to the bound nanoparticles. 

 

 

Subsection 3.1: Overview of the phenomenology 

 

We studied the response of vesicles in situ after nanoparticles were added to the 

surrounding suspension. By adjusting the charged-lipid content of the vesicles, we tuned their 

average surface charge and thereby the adhesion energy per area, w, between the lipid bilayer and 

the oppositely charged nanoparticles. We took care to match the osmotic strength of the added 

nanoparticle suspension to that of the vesicle suspension, so that osmotic shock did not play a role 

in these processes. Fig. 3.1 summarizes the two distinct behaviors that we observed with cationic 

Au-TTMA particles: adhesion and vesicle-gel formation at low DOPS fraction, and vesicle 

tubulation and destruction at high DOPS fraction. Remarkably, these two regimes of behavior were 

separated by a well-defined threshold charged-lipid fraction. Fig. 3.3 shows ‘state diagrams’ for 

these systems, in the form of images of the steady-state structure as a function of dopant lipid 

mol%. For Au-TTMA (a = 3.4 nm) and DOPS without added salt, the threshold value was 4 mol% 
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(Fig. 3.3A). With 4 mol% DOPS, a minority of vesicles survived in the steady state, whereas (for 

example) with 8 mol% DOPS, a negligible number of GUVs survived in the steady state. We 

attribute the surviving vesicles to statistical variations in lipid composition of individual GUVs, so 

that a few individual vesicles may have been below the threshold 4 mol%. The behavior of the 

GUVs was found to be unchanged if the exterior sugar solution was 180 mOsm L−1 (as described 

in the Experimental section) or lowered to 170 mOsm L−1 before exposure to the nanoparticles. 

Fig. 3.3B shows the AuTTMA particles with 20 mM NaCl in solution (while still balancing 

osmolarity inside and outside). Here we found a higher threshold, 5 mol% DOPS. Other observed 

phenomena such as increased contrast and dark mobile particle aggregates also appeared at 

threshold, similar to the case without added NaCl. We attribute the threshold shift to screening of 

the electrostatic attraction, which meant that more DOPS was needed to achieve the same adhesion 

energy. All observed interactions were consistent with an effective decrease in the electrostatic 

interaction realized as a shifting of all charge-dependent behaviors uniformly. Below we describe 

the electrostatic interaction in terms of charged double-layer theory. This treatment of the role of 

added salt, though simplistic, captures the main effect. A similar threshold behavior was found for 

anionic silica particles of two different sizes, with added cationic DOTAP lipid (Fig. 3.2C and D). 

In these cases, the thresholds were 8 mol% and 7 mol% for particles with a = 11.3 and 12.6 nm. 
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Figure 3.5: Time lapse of vesicle gel, spherical nanoparticles 

Time lapse images in bright-field mode show the adhesion process of DOPC vesicles (without DOPS) as Au-TTMA 

nanoparticles diffused into the imaged region from the right. 

 

 
Figure 3.6: Darkfield image of vesicle gel: spherical nanoparticles 

Dark-field image of a vesicle gel, showing scattering from Au-TTMA nanoparticles in the adhesion regions. The membrane is 

composed of DOPC only. 

 

 

Subsection 3.2: Weak binding: vesicle adhesion and gel formation 

 

When the DOPS content in the membrane was <4 mol%, the Au-TTMA nanoparticles 

bound to the vesicles’ surfaces without any discernible deformation. The particles were able to 
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spread laterally on the membrane with no observable aggregation. Evidence of particle binding is 

provided by dark-field optical microscopy. This microscopy technique indicates where the 

nanoparticles are concentrated. The image intensity comes from light that is scattered in the sample 

plane and the gold particles scatter much more strongly than lipids. Fig. 3.4 shows example dark-

field images, providing evidence that the nanoparticles have bound on a vesicle’s surface. When 

the concentration of vesicles was high enough so that vesicles touched one another, the membranes 

adhered to one another owing to the nanoparticles’ forming an adhesive bridge between them. The 

adhesive contact area grew over a typical time on the order a few minutes before reaching a steady 

state (Fig. 3.5).  

Even in the absence of DOPS, we still observed nanoparticle binding, consistent with 

earlier findings that DOPC vesicles have a slightly negative electrostatic (zeta) potential of −9 mV 

(electrophoretic mobility with 0.1 mM NaCl73) and that they adhere to cationic particles.70,103 

 

 

Figure 3.7: Vesicle Gel 

Images of a gel composed of soy-lecithin PC vesicles with polycation (PDADMAC) added. (A) Optical micrograph showing that 

the vesicles remain intact. (B) Photograph showing that 270-μm-diameter copper beads were suspended within the gel, showing 

that the gel could resist shear stress and was a solid. 

 

Adhesion led to a network of fluid vesicles, which we call a “vesicle-gel.” In appearance, 

the approximately polyhedral vesicles (Fig. 3.1B) resembled bubbles in a dry soap foam, except 
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that here the interior and continuous phases were both aqueous. Fig. 3.6 shows a dark-field image 

of a steady-state gel, composed of DOPC vesicles, in which strong light scattering is clearly visible 

at the adhesion sites between vesicles. Nanoparticles accumulated at the vesicle–vesicle junctions 

because of their ability to bind to both membranes. No systematic variation of morphology was 

found in images of samples where the DOPS fraction varied between 0 and 3 mol%.  

Large quantities of adhered vesicles act as a solid: To probe the mechanical properties of 

the vesicle-based gels, we developed an alternative system that can be made in large quantity using 

inexpensive, food-grade soy lecithin phosphocholine lipid (SLPC). Success in making large (50-

mL) quantities shows the potential of this method for widespread application. To further expand 

the range of materials that can be used to form the gel, we added cationic polymer (either poly-L-

lysine (150 kDa) or the more highly charged polydiallyldimethylammonium chloride 

(PDADMAC, 200 kDa)). With concentration 0.1% wt/vol, each polycation successfully caused 

aggregation of the vesicles into a gel. In all cases with polycations, we observed vesicle-vesicle 

adhesion and gel formation. As in the vesicle gels made with added nanoparticles (main text. Fig 

1B), these vesicles remained intact as shown in Fig 7A. Even with up to 15 mol% DOPS, we never 

observed the destruction process, which indicates that the rigid particle shape is necessary to 

trigger the destruction. 
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Figure 3.8: Vesicle Destruction, spherical nanoparticles 

Microscope images showing the disruption process above threshold binding strength. (A) Bright-field images of 6 mol% DOPS; 

(B) Confocal fluorescence images of 5 mol% DOPS with <1 mol% Rh-DOPE. (C) Bright-field image of surface spots in GUV 

with 6 mol% DOPS. (D–F) Images of vesicles with a long-lasting pore. (D) Bright-field image, 6 mol% DOPS. Interior sugar 

solution can be seen escaping the pore, as indicated by white arrow. (E) Confocal image, 5 mol% DOPS + 1 mol% Rh-DOPE. (F) 

Dark-field image highlighting nanoparticles, 4 mol% DOPS. 

 

 

We found that a 50 mL-volume sample of the SLPC vesicle gel, see figure 3.7B, with 

PDADMAC was able to support 270 μm-diameter copper beads against gravity for several hours, 

which indicates a low-frequency shear modulus and a yield stress of at least a few. (In a sample of 

vesicles without adsorbing polymer, the copper beads settled to the bottom of the vial.) The net 

force on the copper beads due to gravity is on the order of μN, so that each bead applied an average 

pressure of roughly 10 Pa, putting a very rough lower limit on the gel’s yield stress. Hence, these 

materials are solid, albeit quite soft. Their closed-cell structure allows the gel to encapsulate a large 

volume of liquid within a series of robust interior partitions. The potential as a useful delivery 

vehicle for drugs, dyes, or reagents will be discussed below.  
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Figure 3.9: Vesicle destruction comparison 

Bright-field images of three different GUVs in the same field of view as they undergo destruction. The sample contains Au-

TTMA particles and GUVs with 94 mol% DOPC and 6 mol% DOPS. The red, blue, and brown arrows each point to a given 

vesicle over time. The initial vesicle diameters were 11, 21, and 25 µm, respectively. Times of each image are shown in the 

format, minutes: seconds. 

 

 
Figure 3.10: Vesicle destruction montage 

A montage of brightfield micrographs showing the disruption process above threshold binding strength. This vesicle contained 29 

mol% DOTAP and was exposed to silica (Ludox AS30) nanoparticles. Scale bars are all 5 µm. 

 

 

Subsection 3.3: Strong binding: the stages of destruction 

 

By contrast, when the DOPS content reached a threshold value (approx. 4 mol%), Au-

TTMA nanoparticle binding caused complete vesicle disruption in a multi-stage process (Fig. 3.8). 

Although each vesicle differed in detail, the stages were common across hundreds of vesicles in 
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dozens of different samples. We begin with a brief synopsis here, then provide details in the 

following paragraphs, and propose mechanisms in the Discussion section. First, the vesicle 

diameter steadily decreased over a typical duration of several seconds to minutes as the membrane 

became loaded with nanoparticles. Vesicles developed nanoparticle-rich spots that diffused on the 

surface. Vesicles that shrank faster than a rate of 300 μm2s−1also developed a single, long-lived 

pore, through which the interior solution was expelled. Remarkably, these pores maintained stable 

diameters in the range of 1–10 μm. Finally, these vesicles underwent a complete destruction, 

wherein the spherical vesicle rapidly shrank until the folding and compression of the surface 

caused the vesicle to unfurl into a network of lipid tubules coated in nanoparticles. Vesicles that 

did not form a visible pore earlier in the process continually shrank and then suddenly ruptured 

and tubulated. There was no discernible dependence of threshold composition or other behavior 

on the GUV size. Figure 3.9 shows an example of three GUVs whose diameters varied by more 

than a factor of 2. In multilamellar vesicles, the outer layers of the vesicle peeled off one by one 

as they were attacked by the nanoparticles, until only one inner layer remained. A similar sequence 

of apparent shrinkage, pore formation, tubulation and destruction is show for anionic silica (Ludox 

AS30) exposed to cationic-lipid-doped vesicles above threshold in figure 3.10. 
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Figure 3.11: Rate of vesicle destruction, spherical nanoparticles 

Measured surface areas over time for vesicles attacked by Au-TTMA nanoparticles. (A) 5 mol% DOPS; nanoparticles were 

added at t = −5 min. The average rate of area reduction was 500 μm2𝑠−1. Both vesicles developed a surface pore (visible at t = 

21 s), then gradually inverted through the pore as they shrank. (B) 5 mol% DOPS; nanoparticles were added farther away, at t = 

−50 min and the local concentration of nanoparticles was lower than in (A). The average rate of area reduction was approx. 35 

μm2s−1. The vesicles suddenly ruptured at t ≈ 400 s without having first formed a visible pore. (C) A plot of area shrinkage rates 

of 13 vesicles and various DOPS composition above threshold. All vesicles that shrank faster than 300 μm2s−1 developed a pore 

(upper row of symbols) and none of the slower ones did (lower row of symbols). (data acquired by Derek A. Wood and adapted 

from ref. 1) 

 

 

At the start of the disruption process, the diameter of the vesicles steadily decreased. As 

shown in Fig. 3.11, vesicles close to one another tended to shrink at similar rates (data acquired 

by Derek A. Wood and published in ref. 1). Fig. 3.11A shows vesicles that were close to the site 

of Au-TTMA nanoparticle addition; for most of the shrinkage process, these two vesicles lost 

apparent surface area at an average rate of approx. 500 μm2s−1. Surprisingly, the appearance of a 

large pore on the surface of each vesicle had no discernible impact on the shrinkage rate. Fig. 

3.11B shows vesicles that were farther from the point of nanoparticle addition, so that the local 

nanoparticle concentration was reduced by their diffusive spread throughout the sample. The sharp 

initial decrease in radius was observed in many vesicles and is attributed to excess area in the 

initial configuration. Following this rapid decrease, the steady area-shrinkage rates were approx. 

35 μm2s−1, about 14× lower than in Fig. 3.11A. In separate experiments, we added nanoparticles 
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with a 14× reduced concentration and found that the average shrinkage rate decreased to 0.004 

μm2s−1, and the rupture process required an hour or more to complete. These data show that the 

rate of vesicle shrinkage was strongly correlated with nanoparticle concentration. This point will 

be discussed below.  

 

 
Figure 3.12: Darkfield image of dark mobile aggregates, spherical nanoparticles 

Vesicles showing surface spots when the DOPS fraction exceeds the threshold value. Dark-field imaged, 4 mol% DOPS with Au-

TTMA particles. 

 

 

 
Figure 3.13: Confocal image of inward tubules, spherical nanoparticles 

A confocal microscope image of a vesicle containing 5 mol% DOPS + approximately 1 mol% Rh-DOPE, exposed to Au-TTMA 

nanoparticles. Inward-facing tubules (invaginations) are clearly visible in the image. 
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As the diameters of the vesicles shrank, spots appeared on the surfaces (Fig. 3.8C). These 

spots were always similar in size to the microscope’s resolution limit, so that their true size could 

not be measured accurately. The spots were bright under dark-field imaging (Fig. 3.12), indicating 

that they were enriched in Au-TTMA nanoparticles. Figure 3.8C of the main text shows a similar 

phenomenon on bright-field, where the scattering of light by the particles made the clusters appear 

dark. We never observed nanoparticle aggregates in solution; they were only found on the vesicle 

surfaces above threshold. These observations indicate an attractive interaction between particles 

that was mediated by the deformed membrane. Throughout, the spots remained mobile on the 

vesicles’ surfaces. As the vesicle shrank, these spots visibly increased in concentration but did not 

increase in apparent size. Every vesicle that we imaged above threshold DOPS had these dark 

spots in conjunction with surface shrinking. Nanoparticle clusters were not found in solution; they 

were only found on the vesicle surfaces. Confocal microscope images show lipid-nanoparticle 

tubules extending toward the vesicle’s interior (Fig. 3.13). In the Discussion section, we propose 

that the vesicles turned inside out during the final stage, so that these tubules extended outward.  

 

 

 
Figure 3.14: Montage of lipid mass expelled through pore, spherical nanoparticles 
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A montage of images acquired with confocal fluorescence microscope. This vesicle contained 5 mol% DOPS + approximately 1 

mol% Rh-DOPE and was exposed to Au-TTMA nanoparticles. Scale bar is provided in the first image. Initially, there was a large 

solid lipid-based object inside the vesicle. Over time, this object was forced out through the pore by the internal pressure. While 

this particle was inside the vesicle, it diffused slowly. It was then trapped in the pore for 3 frames, and then finally ejected a 

distance of more than 3 µm in the following frame (t = 7 s). 

 

 

Formation of an open, micron-sized pore that persisted for at least several seconds is a 

striking and unique feature of our results. Fig. 3.8D–F show that these pores are truly open. In Fig. 

3.8D, escape of the encapsulated fluid (175 mOsm L−1  sucrose) can be seen because it has a 

different index of refraction than the exterior fluid (87.5 mOsm L−1 sucrose + 90 mOsm L−1 

glucose), leading to a visible fingering effect. Furthermore, the confocal image Fig. 3.8E shows an 

open hole without lipid. A time-series of images of this vesicle shows that the bright lipid particle 

inside the vesicle was pushed out through that pore (Fig. 3.14). Observing vesicles that contained 

smaller vesicles inside them, we found expulsion of the interior contents through the pore (Fig. 

3.15). We found a characteristic ‘pearl necklace’ morphology at the outer rim of each pore, 

consisting of clearly discernible clusters that surrounded the rim of the pore. The dark-field image 

of Fig. 8F shows that these clusters were enriched in Au-TTMA nanoparticles, visible by their 

strong scattering.  

Fig. 3.11C shows the rate of area shrinkage for 13 vesicles with various DOPS fractions 

above 4%, (data acquired by Derek A. Wood and published in ref. 1). In the plot, the shrinkage 

rate varied from 20 to 2000 μm2s−1. The plot also shows whether or not each vesicle formed a 

visible pore. There is a striking pattern: only vesicles whose surface area decreased faster than 

approximately 300 μm2s−1formed a visible pore, regardless of the DOPS content of the vesicle 

(as long as it was above the threshold). Based on our results from the previous paragraph, we 

conclude that the particle concentration determined the rate of vesicle shrinkage and this rate, in 

turn, controlled pore formation.  
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The final stage of the disruption process was the complete destruction of the vesicle 

structure, resulting in a network of tube-like structures (e.g., Fig. 3.8A and B). From the optical 

images, we estimate that tubules had a typical diameter of approximately 1–2 μm. We found no 

evidence that the initial vesicle size or DOPS content (as long as it was above the threshold) 

affected the rate of shrinking of the vesicles or the sizes of the remaining tubule structures. In 

multilamellar vesicles, the outer layers of the vesicle peeled off one by one as they were attacked 

by the nanoparticles, until only one inner layer remained (Fig. 3.16).  

 

 

Figure 3.15: Vesicle with pore, spherical nanoparticles 

Bright-field microscope images show the interior contents of a vesicle with many interior compartments spilling out through a 

pore on the vesicle’s outer surface as Au-TTMA nanoparticles bound. (5 mol% DOPS) The relative times of the images are 

shown in the lower right corners. The magnification was the same in all of these images. 
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Figure 3.16: Multi-lamellar vesicle 

Bright-field image of a multi-lamellar vesicle (5 mol% DOPS), in which the outermost lamella has been ‘attacked’ by Au-TTMA 

nanoparticles and peeled away. 

 

 

Subsection 3.4: Computer simulations of nanoparticle binding 

 

Our collaborators at Brandeis, Guillermo R. Lázaro and Michael F. Hagan, carried out 

Brownian dynamics computer simulations of spherical nanoparticles binding to adhesive 

membranes to explore this system in microscopic detail and establish the mechanisms underlying 

its behavior. Here a = 5 nm and the membrane bending modulus14, κ, equal to 8.2 ×  10−20 J, 

appropriate for DOPC.104 Like the experiments, simulations were in the regime of 𝜏 ≪ 𝜅/𝑎2 and 

𝜔𝑎2/𝜅 tunable from 0 to more than 1.  

Fig. 3.17 shows the steady-state configurations obtained with increasing particle-

membrane adhesion for various surface concentrations (area fractions). When 𝜔𝑎2/𝜅 < 0.5, 

simulations showed that particles adhered to the membrane without membrane tubulation or 

destruction. In the regime where 𝜔𝑎2/𝜅 > 0.7, the simulations show a trend from partial buds to 

tubules to membrane-rupture as the particle area fraction was increased. Tubules began as a linear 

cluster of two or more particles lying on the plane of the membrane; the cluster was then enveloped 
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by the membrane and reoriented as a tubule (see Fig. 3.18 for snapshots of typical trajectories). In 

the intermediate regime, 0.5 < 𝜔𝑎2/𝜅 < 0.7, the ruptured configuration was pre-empted by linear 

arrays of particles. It may be that these linear-array states might eventually nucleate tubules, as has 

been suggested previously.71  

In our experiments, the particle area fraction was not fixed, but increased over time as more 

particles bound to vesicles. The simulations’ trend of partial buds, tubules and rupture with 

increasing particle density therefore correspond closely with the observed process of invagination 

(tubule formation) and pore formation over time in the experiments.  

A key result of the simulations is a well-defined value of 𝜔𝑎2/𝜅 = 0.5 that defines a crossover 

from binding to tubule formation. In most cases (especially above 0.6), the simulations showed 

membrane rupture. This finding is consistent with the threshold behavior seen in the experiments 

and explains many of the observed stages of destruction 

 

Figure 3.17: Nanosphere simulation steady-state diagram 

(A) Diagram showing the steady-state configurations found in simulations as functions of dimensionless adhesion 

free energy and particle concentration. The symbols correspond to the states illustrated in (B). Particles are rendered 

in dark blue and membrane headgroups are in violet. 
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Figure 3.18: Simulation trajectories 

Representative simulation trajectories illustrating the pathways of tubule formation. (a) Snapshots showing the formation of a ‘U-

tubule’, meaning that the tubule is connected to the membrane at both ends. Particles initially formed a linear aggregate on the 

relatively flat membrane; subsequently the membrane wrapped the aggregate leading to tubulation. (b) Snapshots showing, I-

tubule formation, meaning that the tubule is connected to the membrane only at one end. Formation began with envelopment of 

two NPs, forming a duplet oriented normal to the membrane. The tubule then extended through diffusion and association of 

additional NPs. 

 

 

Section 4: Discussion 
 

Our results show that vesicle adhesion and destruction were triggered by the binding of the 

nanoparticles, not by osmotic stress. In all of our experiments, there was a large excess of 

nanoparticles relative to membrane area. The key parameter was the fraction of DOPS or DOTAP 

in the membrane, which served to tune the adhesion strength ω between particles and the 

membrane by means of an electrostatic double-layer attraction. According to our simulations, the 

threshold from adhesion to destruction corresponds to a sharp crossover at the particle-scale from 

weakly-bound to fully enwrapped particles. The particle-scale wrapping transition is also 

consistent with our experimental findings and can explain many aspects of the destruction process. 

Below threshold, the nanoparticles bound to the membrane, were able to diffuse laterally, and 
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spread throughout the outer leaflet of the membrane until the steady-state surface coverage was 

attained. Above threshold, the membrane continually enveloped particles and left unbound 

membrane exposed. Such a process of continuous envelopment should continually generate in-

plane strain and force an overall remodeling of the membrane shape. A schematic overview is 

given in Fig. 3.19.  

 

 
Figure 3.19: Illustration of adhesion, spherical nanoparticles 

Illustrations of the adhesion (left) and the multi-stage destruction process (right). 

 

In continuum theory, this wrapping transition for a single spherical particle was predicted 

from the Helfrich model of the membrane, accounting for large-amplitude deformations where 

linear superposition fails.79,105 When the membrane tension τ = 0 and the interaction is of short 

range, the transition is discontinuous and occurs when 𝜔𝑎2/𝜅 = 0.2. Membrane tension is 

predicted to shift the discontinuous transition to higher79, ω, while a finite range of interaction 

softens the transition.14 The threshold can be reduced below 2 if there are many nanoparticles, as 

suggested in a theoretical study with three or more particles.99 Our computer simulations with 
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many particles showed a crossover to tubulation and destruction at a considerably lower threshold, 

𝜔𝑎2/𝜅 near 0.5. The linear particle arrays in our simulations (Fig. 3.17B) and in ref. 71. suggest a 

crude but simple approximation, in which a linear particle aggregate is treated as a long cylinder 

lying in the plane of the membrane. The energy of bending around a cylinder of radius a is 4× 

smaller than for bending around a sphere of radius a because the membrane curves only in one 

direction. In the continuum limit and with a finite concentration of bound nanoparticles, this 

implies a wrapping threshold when 𝜔𝑎2/𝜅 = 1/2 . Although this approximation does not account 

accurately for the details of the membrane shape, it is consistent with the simulations. Whatever is 

the exact numerical value of the threshold, the continuum theory and our simulations all suggest 

that the dimensionless combination 𝜔𝑎2/𝜅 is the key parameter setting the threshold. 

Guided by the simulations, we used the threshold criterion that 𝜔𝑎2/𝜅 = 1/2, where 𝜔 is 

the adhesion free energy per area, a is the particle radius (3.4 nm in the Au-TTMA experiments), 

and κ is the membrane bending energy (8.2 ×  10−20 J, appropriate for DOPC79). We used 

Poisson-Boltzmann theory to account for the electrostatic double-layer interaction between the 

membrane (treated as a plane) and the spherical particle. The dopant lipids were treated as a mean-

field charge density, which is justified by the fact that the patch of membrane wrapping each 

particle had, on average, several charged lipids (i.e., more than one). Assuming the lipids were 

uniformly distributed, the number of charged-lipid molecules per nanoparticle area, per membrane 

leaflet at threshold was approximately eight for the Au-TTMA system, 183 for the silica Ludox 

AS30, and 200 for Ludox SM.  

The membrane potential can be taken as the sum of the pure-DOPC potential (-9 mV from 

electrophoretic mobility13) plus the potential coming from a charge of - 𝑒 per DOPS, where 𝑒 is 

the fundamental charge, 1.6 ×  10−19C. We consider only the charge on the outer leaflet of the 
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membrane. The Au-TTMA surface charge density can be obtained from the ligand density (77 ± 

4 per particle14). The quaternary ammonium groups at the ligand termini have a permanent positive 

charge, which gives a charge density of approximately 0.5 𝑒/nm2 . (Extracting charge density 

from the measured zeta potential of 18 mV gives a much lower density of roughly 0.2 𝑒/nm2 but 

this is not a reliable method to obtain surface charge15. The same caution applies to the pure DOPC 

membrane, but we have no other means to estimate surface charge density.) Using these estimates 

and applying the condition 𝜔𝑎2/𝜅 = 1/2, we estimate a threshold composition as low as 3 mol% 

DOPS, or as high as 70 mol% DOPS for the (likely inaccurate) lower estimate of the nanoparticle 

charge from zeta potential.  

This estimate neglects two phenomena that may be quantitatively important. First, the 

DOPS lipids should tend to accumulate near the nanoparticles, which increases the double-layer 

interaction at the cost of lowering their entropy. A prior theoretical treatment of this effect 

estimated that in a zwitterionic PC-lipid membrane with 10 mol% anionic lipid, in-plane 

rearrangements enhance the binding free energy of a cationic rod-shaped particle by a factor of 

approximately 1.7.27 In the present case, the effect seems to us likely to be of the same order of 

magnitude. Second, treating the nanoparticle-membrane interaction in terms of adhesion per area 

is a crude approximation because the range of interaction (set by the Debye length of 2 nm or 

more) is comparable to particle size.  

Nonetheless, the rough estimate serves to show that a threshold composition of a few mol% 

DOPS is consistent with the prediction of 𝜔𝑎2/𝜅 = 1/2. These estimates also guide predictions 

of how parameters such as charge density, salinity and membrane modulus should affect the 

threshold composition. 
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For the silica/DOTAP systems, the overall behaviors were similar, but the measured 

thresholds were different from AuTTMA/DOPS. Even though the silica particles were larger than 

the Au-TTMA, the thresholds were higher. In part, this is because of the negative potential of the 

DOPC, which has to be overcome by added DOTAP. It is also likely that the magnitude of the 

surface charge density of the silica particles differs from that of the Au-TTMA. We did find, 

however, that the slightly larger particles (by DLS) had the slightly lower threshold. This finding 

is consistent with our proposal that the threshold corresponds to a constant value of 𝜔𝑎2/𝜅, so that 

the threshold 𝜔 should vary as 1/𝑎2.  

As particles bind and are wrapped by the membrane, the projected surface area of the 

membrane shrinks because of the envelopment of each bound nanoparticle. If each nanoparticle-

wrapping event reduces the projected membrane surface area by an amount equal to the surface 

area of the nanoparticle, 4π𝑎2, a steady area-reduction rate of 500 μm2s−1.  on a 15000 μm2 

membrane (as in Fig. 3.11A) corresponds to a flux of roughly 200 particles per μm2 per s binding 

to the membrane. If the particle flux were limited by their diffusion through water, the flux would 

be 3ϕD/(4πa3R), where D is the nanoparticle diffusion constant, R is the vesicle radius, and ϕ is 

the volume fraction of nanoparticles. From the known concentration of added nanoparticles, we 

verified that the diffusion-limited flux is high enough to account for the measured rate of vesicle 

shrinkage. This model explains why the area reduction rate depends on the local nanoparticle 

concentration.  

We propose that as the effective surface area shrinks, the interior vesicle volume can only 

decrease at a rate limited by water permeation through the membrane. If the binding is too fast, 

then τ should increase and eventually reach the lysis tension, at which point the membrane should 

form a pore. If the area shrinkage is slow, however, the water permeation can keep pace with the 
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area reduction and the tension stays below lysis; in such cases no pore is expected. In our 

experiments, long-lasting pores were only observed in vesicles whose projected area shrank at a 

rate faster than 300 μm2s−1 (Fig. 3.11C). Using the reported permeability and lysis tension of 

DOPC membranes,106 we estimated a crossover shrinkage rate of order 0.1 μm2s−1, which is far 

below the measured value. Moreover, our estimate neglects the osmotic stress that would arise if 

only water and not sugar can permeate the membrane; this would further slow the efflux of water 

and further increase membrane tension. This difference suggests that the membranes may be far 

more permeable to water and possibly sugar than expected, perhaps because of particle binding, 

as proposed previously.70 The possible change of permeability with particle binding remains an 

important topic for further research.  

Without nanoparticles, tension-induced pores generally close very rapidly107 but with 

nanoparticles in our experiments, the pores were stabilized by the “pearl necklace” arrangement 

of particle-lipid clusters at the pore’s rim (Fig. 3.8F). Since we never observed more than one pore 

on any vesicle, we conclude that pores allowed rapid expulsion of fluid so that τ remained below 

the lysis threshold.  

The nanoparticle-rich spots (Fig. 3.8C) indicate clustering of nanoparticles, most likely 

because of attractive forces induced by the membrane deformation. Previous simulations showed 

that membrane-mediated attraction between particles occurs when the particles are strongly bound 

and highly wrapped.63,20 Recent experiments with micron-scale particles confirmed this effect: 

weakly bound, partially wrapped particles had negligible lateral interactions, while fully-wrapped 

particles attracted one another over a distance of 3 particle diameters.38 With many particles 

present, theory and simulations predict that membrane-mediated attraction can lead to linear 

aggregates71,63 or compact clusters and tubulation.14,66,107 Our experiments clearly show the latter, 
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while adding new information about the threshold behavior and the multiple steps in the tubulation 

and destruction process.  

To form inward-facing, invaginated tubules (seen in our simulations and experiments, Fig. 

3.13), the particles must reside on the interior, concave surface of the tubule. This configuration 

likely reduces the bending energy needed to enwrap the particles. Previous experimental65,68,69 and 

numerical14,63,97 studies of spherical particles or viruses also showed a tendency toward tubules 

with the particles on the inner, concave surface. Alternatively, it is possible that particle binding 

leads to a contraction of the outer leaflet of the bilayer, which would also favor concave curvature. 

Previous studies of cationic and anionic particle binding to phosphatidylcholine (PC) lipid 

membranes, however, indicated that cationic particles should tend to dilate the lipid layer, 74,108 

which would more plausibly lead particles to favor positive (convex) curvature. Whatever the 

mechanism, the tubules invaginated such that particles remained on the concave surface while still 

remaining exterior to the vesicle.  

In the final stage of destruction, each vesicle appeared to “erupt” into a network of particle-

membrane tubules. This process was too rapid to see clearly with a confocal microscope but from 

our images we can identify two possible pathways. In the first possible mechanism, the vesicles 

turn inside out so that the tubules that had extended inward end up facing outward. Why would the 

vesicles turn inside out? To answer this question, we note that as tubules grew into the vesicle 

interior, they raised the interior pressure. This pressure is apparent in the time-series showing 

forcible ejection of an encapsulated lipid-based particle (Fig. 3.14). This pressure could therefore 

force the tubules to emerge through the open pore. In the final configuration, the particles still 

reside on the concave surface of the membrane tubules. In this state, however, the leaflet of the 
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membrane that was initially on the interior (luminal) side ends up on the exterior side: the 

membrane has inverted its topology.  

As a second possibility, it may be instead that outward extended tubules very rapidly grow 

from the rim of the pore, rapidly consuming the vesicles’ surface area. This latter mechanism 

strikes us as the less likely one, at least with the Au-TTMA systems, because in many cases the 

pores had already existed for extended periods with no discernible tubules growing from them. It 

seems to us unlikely that several tubules should emerge rapidly and (essentially) simultaneously 

after a delay. For the silica/DOTAP system, the images in figure 3.10 are more suggestive of 

tubules growing from the rim of the pore as you can clearly see tubules growing from a single 

location on the surface of the vesicles as it shrinks. However, this remains a topic for future 

investigation.  

We anticipate a similar destruction process whenever small spherical particles are added 

to the exterior of vesicles, provided that the binding energy exceeds the threshold value. On the 

other hand, if such particles were added to the interior of vesicles or found their way inside through 

a pore, the same logic would predict outward-growing tubules (consistent with earlier 

experiments65,68) during the shrinkage stage and possibly a pore. The final state should also consist 

of a network of nanoparticle-lipid tubules, as was found here.  

For a broader view of the full parameter space, it is useful to compare the present results 

to earlier findings that nanoparticles69 or proteins109 that bind on the exterior leaflet without 

wrapping can drive tubules extending outward from the vesicle. This finding was explained by a 

lateral pressure arising from steric interactions among the particles or proteins, leading to a dilation 

of the outer leaflet that then forms the convex (outer) surface of the tubule. The previous 

experimental system70 consisted of cationic particles with DOPC lipids (i.e., in the weak-binding 
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regime) and with high enough particle concentration to induce the lateral pressure. In combination 

with our results, this suggests that systems could be specifically designed to form either outward- 

or inward growing tubules, pores, and inverted structures, depending on particle shape, 

concentration, and 𝜔𝑎2/𝜅. 

 

 

Section 5: Conclusions 
 

In our experiments and simulations, we exposed charged lipid bilayer membranes to 

oppositely-charged nanoparticles to understand how nanoparticle adhesion can be used to reshape 

the bilayer surface, a mechanism that could potentially be used to design novel responsive 

materials. We have successfully developed a membrane-particle system with tunable double-layer 

interactions, leading to the ability to form an adhesive network of vesicles (a bulk gel) or to drive 

a remarkable, catastrophic destruction of each vesicle leading to a network of tubules. The 

crossover between the adhesion/gel regime and the destruction regime was driven by the particle 

scale crossover from weak binding/deformation to complete wrapping. With cationic Au-TTMA 

spherical nanoparticles, this crossover threshold was approximately 4% mole fraction DOPS in 

sugar solution, or 5 mol% in sugar + 20 mM NaCl. For anionic Ludox silica nanoparticles with no 

added salt, the crossover threshold was 8% and 7% DOTAP for the two different sizes for particles 

with a = 11.3 and 12.6 nm. These behaviors were consistent despite the differences in particle size, 

surface functionalization, and lipid composition. According to our simulations, this threshold 

corresponds to 𝜔𝑎2/𝜅 equal to approximately 0.5. It is worth noting that at least in the initial state, 

interactions are dominated by 𝜔 and 𝜅. While tension has a negligible effect since this system is 

in the limit 𝜏𝑎2/𝜅<<1. 
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The gel that we found at low 𝜔 is a macroscopically large aggregate of vesicles that form 

a cohesive, closed-cell network. The networks can support weight (copper beads) for many hours, 

indicating that they have a finite shear modulus and yield stress. These gels are more than 99% 

water. Their closed cell morphology is reminiscent of cellular tissue but is unusual among synthetic 

systems. Since the individual vesicles remain intact within the gel, they should be able to 

encapsulate multiple species in solution inside the gel. We envisage forming two or more different 

sets of vesicles, each one encapsulating a different reagent; the vesicles could then be dialyzed, 

mixed, and then made to form a vesicle gel. The two different species of reagent would not react 

with one another until the gel is ruptured in some way, causing their release.  

Above the threshold lipid composition, nanoparticles were fully enveloped by the 

membrane, causing the vesicle membrane to be loaded with adhered nanoparticles and ultimately 

causing destruction of the vesicle. The envelope/destruction regime results in complete and 

irreversible release of the contents of the vesicle. These results may lead to vesicles that are tailor-

made to rupture and release only in response to selected particles (that bind strongly) and not to 

others. Such a system could be very useful for delivery in myriad contexts.  

The results obtained with this tunable system show a unified picture that could explain the 

wide variety of behaviors reported previously with vesicles exposed to nanoparticles, viruses, 

proteins, or polymers. Under conditions of matched osmotic strength (as here) and initially low 

tension ( 𝜏𝑎2/𝜅 ≪ 1), the deformations are caused by particle adhesion energy per area, which 

competes with membrane bending stiffness. We found that nanoparticle concentration and 

membrane permeability do not affect the threshold but do play an important role in the dynamics: 

if the particle flux is high enough, then the vesicles shrink fast enough to form a long-lasting pore. 
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CHAPTER 4 

THE EFFECT OF CHARGED NANORODS ON LIPID BILAYER 

MEMBRANES 
 

 

Chapter 4 presents the results of work measuring the interactions between nano-rods and 

lipid bilayer membranes. The first section introduces the experiments done, an overview of the 

results and the major scientific questions being addressed. The second section provides an 

outline of the methods and materials used to conduct these experiments. Section three presents 

our detailed experimental findings. Discussion of the results is presented in section four. Lastly 

section five presents concluding remarks on the results and their significance. 

 

 

Section 1: Introduction 
 

Here we report the results of a well-defined system of lipid membrane and nanoparticle 

interactions wherein we can tune the interaction strength, ω, membrane tension, τ, and particle 

concentration, 𝑐𝑟𝑜𝑑. For particles, we used anionic DNA origami nanorods that are 420 nm long 

by 5 nm in diameter. These particles were selected due to their monodisperse nature, uniform 

charge density and stability at experimental conditions. We used giant lipid bilayer vesicles 

(GUVs) ranging from 10 -100 μm in diameter composed of a combination of a zwitterionic lipid 

(DOPC) and a cationic lipid (DOTAP). The binding energy, ω, was tuned by varying the amount 

of the DOTAP in the membrane, 𝑥. We studied the dynamics and steady state of the system using 

bright-field, dark-field and fluorescence optical microscopy and we used cryo-electron microscopy 

to image the rods at the nanometer scale. We found that for low 𝑥, and thus low ω,  and low 𝑐𝑟𝑜𝑑, 

particles deformed the membrane into tubules and other shapes For high 𝑐𝑟𝑜𝑑 and low 𝑥, we saw 
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vesicle-vesicle adhesion and the formation of a vesicle-based gel. With higher 𝑥 we saw a 

transition into rupture of vesicles simultaneous with vesicle-vesicle adhesion. At still higher 𝑥, we 

found a second crossover to rupture of individual vesicles without vesicle-vesicle adhesion. The 

process of single vesicle destruction was complex, involving the formation of aggregates, tubules, 

sudden drops in the vesicle’s radius, and a shrinking of the size of the vesicle until final rupture. 

The sequence of events found in single vesicle destruction were highly repeatable and consistent 

over a large portion of the state space. To probe for the effects of tension, we also prepared vesicles 

with excess area by exposing them to a hypertonic solution and observed that the excess area 

shifted the second crossover. Cryo-TEM images provide the first evidence of membrane-mediated 

interactions among rods, leading to parallel alignment of membrane-bound rods in some regions 

of the membrane, and aster-like rod formations and a new mode of deformation in other regions. 

We present these results in the form of a state diagram and conclude that the two crossovers arise 

from the two separate wrapping transitions that occur at the single-particle scale. Compared to our 

earlier study of spherical particles, the rods exhibit many of the same behaviors such as inducing 

the formation of a bulk vesicle gel at low adhesion and causing vesicle destruction at high 

adhesion. However, rods have an additional intermediate state where in vesicle adhesion followed 

by rupture is observed, (Fig. 4.1). Cryo-TEM images also demonstrate in-plane ordering of the 

rods on the membrane cause by membrane mediated attraction. 
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Figure 4.1: Schematic overview of nanorod system 

(A) Schematic overview of giant unilamellar vesicles (GUVs) with tunable charge density controlled by the amount of cationic 

lipid present in the membrane interaction with anionic DNA origami nanorods. The micrograph image shows a GUV composed 

of 70% DOPC and 30% DOTAP prior to the addition of nanorods. (B) Microscope images of GUVs combined with nanorods 

with increasing amounts of DOTAP associated with weak, intermediate, and strong binding of particles to the membrane 

resulting in deformation, adhesion and/or rupture of the vesicles. 

  

It is worth reflecting on and compare to our results with spherical particles described in 

chapter 3. Theory, simulations, and experiments have shown that when one spherical particle 

(radius 𝑎) binds weakly, it deforms the membrane. The deformation comes from a competition 

between adhesion energy per area, ω, which competes with the membrane’s bending stiffness, 𝜅 

or tension, τ .13,14,15,110 With stronger adhesion (when ω𝑎2/𝜅 exceeds a threshold of order 1), the 

particle is fully wrapped by the membrane.13,31,72 When many particles are present, the deformed 

membrane shape leads to in-plane particle interactions and assembly that can amplify the 

membrane response and cause large-scale shape reorganization.1,3,20,97,111,112 Chapter 3 describes 

the results of our combined experimental and simulation study that demonstrated that spherical 

nanoparticles binding to vesicles with controlled adhesion strength show a sharp and tunable 

crossover from binding with weak deformation (leading to adhesion among neighboring vesicles) 
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to binding and wrapping of particles (leading by a well-defined sequence of stages to destruction 

of the vesicle).72 

The results with spherical particles lead us to ask whether less symmetric particle shapes 

would induce different behavior because the energy cost of bending the membrane changes. Earlier 

work has shown that rod-shaped particles have more than two wrapping configurations, and that 

between each is a distinct cross over determined by the same dimensionless ratio scaled by the 

aspect ratio of the rod. As is the case for spheres theory and simulation predict that the binding and 

envelopment of the rods by the membrane is dependent on the length, 𝑙, particle radius, 𝑎, adhesion 

energy per area, ω, membrane bending stiffness, 𝜅, and tension, τ.31,53,54 Tension it is not relevant 

for initial wrap however its effects are seen for higher degrees of wrapping and in the many particle 

case which will be discussed later. The question we seek to answer is how does the increase in 

unique regions of curvature for rod shaped particles expand the possible binding configurations of 

the rod to the membrane and what effect does this have on the bulk interactions in the many particle 

system. 

The ability to tune morphology opens the door to smart responsive membrane-based 

materials as well as a variety of applications in targeted encapsulation and release. They could be 

used to motivate the creation of cargo-carrying vesicle gels that rupture when exposed to external 

stimuli,113 or for the design of controlled release over extended periods of time. They also provide 

a remarkably detailed presentation of the phase space defined by ω, 𝜅, τ, and 𝑐𝑟𝑜𝑑. The wide 

variety of phenomena observed, and their well characterized dependences make this system an 

ideal comparison for theory and simulation. 
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Figure 4.2: Schematic of microfluidic chamber 

(A) Top view of the microfluidic chambers used for imaging the dynamics of the nanoparticle/vesicle interactions. (B) side view 

of a single well. 

 

 

Section 2: Methods and materials 

 

Giant unilamellar vesicles (GUVs) were formed using electroformation. Details are given 

in Chapter 2. The membranes were formed from mixtures of a weakly anionic and a strongly 

cationic lipid. of the former part was composed of zwitterionic mono-unsaturated 1,2-dioleoyl-sn-

glycero-3-phosphocholine (18:1 DOPC; Avanti Polar Lipids). To tune the charge density of the 

membrane a cationic lipid was added to the membrane. Cationic 1,2-dioleoyl-3-

trimethylammonium-propane (18:1 DOTAP; Avanti Polar Lipids) was selected as it has the same 

fatty-acid tale as DOPC (to suppress demixing). In order to visualize the membrane using confocal 

microscopy we added a small amount of headgroup-labeled lipid 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (ammonium salt) (Rh-DOPE; Avanti 

Polar Lipids). Care was also taken to control the osmolarity of the vesicles. Vesicles which above 

are referred to as balanced were formed in a sucrose solution at 175 mOsm L−1 and then diluted in 

an equal volume of glucose solution at 180 mOsm L−1. The vesicles were then left overnight to 

sediment as well as equilibrate. Vesicles which above are referred to as floppy were prepared in 
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the same way initially but where then diluted a second time in a glucose solution at 200 mOsm L−1 

immediately before experimental observation. The 10% difference in the interior and exterior 

osmolarity resulted in floppier vesicles with excess area.  

Anionic DNA Origami nanorods were utilized in our experiments. The rods where formed 

from six-helix DNA-bundles into rods that were 420 nm by 6 nm with right-handed twist (360 

degrees).87 The rods were specifically designed with strategically placed Thiamine groups and then 

exposed to ultraviolet light which induces cross-links between adjacent pyrimidines in a method 

known as Thiamine Welding.114 The rods were synthesized and finally stored in a 1xFOBMg5 

buffer composed of 5mM TRISm 5mM NaCL, 1 mM EDTA and 5 mM MgCl1 at pH 8. The final 

concentration of rods was 150 nM. From this stock solution rods were diluted using the same 

sucrose and glucose solution used to create and dilute the vesicles. The specific concentration is 

denoted per experiment. More details can be found in chapter 2. 

Experiments were conducted in custom flow chambers with microfluidic wells which 

enabled the real time visualization of particle membrane interactions. The experiment chambers 

also allowed for careful control of the bulk solution, see Fig. 4.2. Vesicles were injected into the 

chambers and then allowed to sediment in to PDMS wells at the bottom of the chamber. Once the 

vesicles had sedimented the bulk fluid of the chamber was replaced with a solution at the relevant 

concentrations required for specific experiments. The whole chamber was mounted to an optical 

microscope and interactions were observed from beneath. See chapter 2 for more information.  

Brightfield and Darkfield images were acquired using a CoolSnap HQ2 camera (Roper 

Scientific) and Zeiss 100x oil immersion objective with an adjustable 1.4 -.7 NA. Confocal images 

were taken with a custom modified VT-Infinity3 (VisiTech) scanning pinhole confocal system. 
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The camera used was a Hamamatsu ORCA-flash2.8 with a Zeiss 100x oil immersion objective 

(1.4 NA) and VOXCell software. 

 

 
Figure 4. 3: State diagram, nanorods 

State diagram of the observed interactions of GUVs with DNA Origami nano rods. Increasing the DOTAP % is directly 

correlated to an increase in the adhesion strength between the particles and the membrane. Green denotes vesicles in the DXX 

domain (Deformation, no adhesion, no rupture). Yellow denotes vesicles in the DAX domain (Deformation, Adhesion, no 

rupture). Red denotes vesicles in the DAR domain (Deformation, Adhesion, Rupture). Blue denotes vesicles in the DXR domain 

(Deformation, no adhesion, Rupture). Right-handed semicircles denote results for vesicles that are osmotically balanced. Left-

handed semicircles denote results for vesicles that are floppy due to exposure to a hypertonic solution. Full circles represent 

results for both balanced and floppy vesicles. 

 

 

Section 3: Results 

 

In this section, we describe the phenomenology observed due to the deformation of lipid 

bilayer membranes by DNA Origami nanorods. This description is divided into six sections. The 

first section provides an overview of the phenomenology and presents a state diagram of our results 

(Fig. 4.3). The next four described the four primary behaviors depicted in our state diagram. In the 

final subsection we present results from cryogenic transmission electron microscopy (cryo-TEM) 
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micrographs for rods in the strong binding regime. Finally, in the Discussion section, we present 

a hypothesis for the underlying mechanisms and compare to previous literature. 

 

Subsection 3.1: Overview of the phenomenology: regimes of deformation, adhesion, and 

rupture 

We studied the response of vesicles in situ after the introduction of anionic DNA origami 

nanorods. The vesicles were captured and confined using microfluidic wells and the bulk 

suspension was replaced with a fixed concentration nanorod solution. This allowed us to 

characterize the effect of rod concentration on interactions and vary the concentration in a 

controlled fashion. Increasing the concentration of nanorods effectively increases the binding rate 

of nanorods onto the membrane. We also tuned the adhesion energy per area, ω, between the lipid 

bilayer and the oppositely charged nanorods by increasing the amount of cationic lipid content in 

the vesicles and thus tuning their average surface charge. To probe the dependence on membrane 

tension, τ, we examined two populations of vesicles, those that were osmotically balanced (referred 

to as balanced) and those that where saturated in a hypertonic solution (referred to as floppy). Care 

was taken to ensure that osmotic shock did not play a role in the processes described here. In 

control experiments without rods we observed only intact vesicles without adhesion. In the 

presence of rods, dark-field microscopy provided direct evidence that rods bound to the membrane 

(Fig. 4.4). 
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Figure 4.4: Darkfield micrographs, nanorods and vesicles 

Darkfield micrographs of nanoparticles binding to 20 mol % DOTAP vesicles and plots of associated gray scale 

values. (A) Image of a single vesicle and the intensity profile along the line intersecting the membrane for a vesicle 

before nanorods have been added. (B) Image of two vesicles adhered to one another and the plot of the intensity 

across the free edge of one of the vesicles and along the line bisecting the intersection of the two vesicles. (D) Image 

of a vesicle with dark mobile aggregates and the plot of the intensity across one of these aggregates. 
 

Fig. 4.3 depicts a state diagram for the system, showing the behavior in steady state 

depending on crod, x, and excess area. Figure 4.5 depicts the same state space of domains as well 

as outlining the subdomains where specific morphologies are observed. In all cases, we observed 

some combination of three distinct behaviors and the presence or lack of these behaviors defined 

four primary regimes in the state diagram. The primary responses to the binding of nanorods to 

the vesicles are membrane deformation (D), vesicle-vesicle adhesion (A), and vesicle rupture (R). 

Remarkably, the onsets of these behaviors were sharply defined in Fig. 4.3, so that we could define 

transitions between regimes corresponding to the various behaviors. At low DOTAP 

concentrations we observed the DXX and DAX regimes where vesicles deformed in shape and 

adhered to one another but remained intact after the introduction of rods. At higher DOTAP 

concentration, 𝑥, we found a crossover to the DAR regime, wherein vesicle rupture and destruction 

were observed. With still higher, 𝑥, we found a second crossover to destruction of individual 

vesicles with no adhesion (DXR).  For intermediate DOTAP (10 -30 mol%), increasing the rod 
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concentration, crod, led to a crossover from DXR to DAR, corresponding to the onset of inter-

vesicle adhesion. We also found that increasing the excess area in the vesicles (making them floppy 

at the start) shifted the system toward DXR rather than DAR, and hence tended to favor singe-

vesicle destruction. 

 
Figure 4.5: State diagram subdomains 

Grid representation of the state space with text and colors depicting the domains and subdomains of morphologies we observed. 

Text outlined in black are universal features of the domain. Different shades represent different subdomains and the smaller text 

boxes described morphologies that are unique to those subdomains. Green denotes vesicles in the DXX domain (Deformation, no 

adhesion, no rupture). Yellow denotes vesicles in the DAX domain (Deformation, Adhesion, no rupture). Red denotes vesicles in 

the DAR domain (Deformation, Adhesion, Rupture). Blue denotes vesicles in the DXR domain (Deformation, no adhesion, 

Rupture). 

 

Subsection 3.2: DXX regime: deformation of individual vesicles 

 

For membranes without DOTAP and low rod concentration we saw nanorods binding to 

vesicles, leading to deformation of the vesicles without vesicle-vesicle adhesion. Particles adhered 

to the vesicles reconfiguring the membrane into three morphologies: elongated shapes, tubules, or 

dense textured surfaces on the vesicles (Fig. 4.6, green region). The elongated configuration was 

observed for the majority of vesicle in this domain. Previously spherical vesicles were elongated 

into tubular configurations that were sometimes as narrow as only a few μm in diameter. Some 

vesicles were dramatically elongated while others developed only mild elongation with aspect 
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ratios closer to 2:1, while still others kept their spherical shape. Tubules defined here as narrow 

tubular protrusions from roughly spherical vesicles, were also very common for both spherical and 

elongated vesicles. We observed both internal and external tubules with external tubules being the 

most common. These tubules were stable for the duration of the experiment. The third morphology 

seen in the DXX regime (1 or 2 vesicles out of 100 in a typical field of view) was spherical vesicles 

with highly textured surfaces. Two examples are given in the DXX portion of Fig. 4.6. The 

patterned surface was only seen on spherical vesicles and was never accompanied by tubules. The 

pattern was stiff, barely fluctuating or deforming. The elongated shapes, tubules and textured 

surface were observed for both balanced and floppy vesicles without any discernible dependence 

on tension. 

 

 
Figure 4.6: State diagram of morphologies, nanorods 

Pictorial representation of the state space with micrograph images depicting the most common observed phenomena in each 

domain. Green denotes vesicles in the DXX domain (Deformation, no adhesion, no rupture). Yellow denotes vesicles in the DAX 

domain (Deformation, Adhesion, no rupture). Red denotes vesicles in the DAR domain (Deformation, Adhesion, Rupture). Blue 

denotes vesicles in the DXR domain (Deformation, no adhesion, Rupture). Right-handed semicircles denote results for vesicles 

that are osmotically balanced. Left-handed semicircles denote results for vesicles that are floppy due to exposure to a hypertonic 

solution. Full circles represent results for both balanced and floppy vesicles. Scale bars length is denoted in each micrograph. 
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Subsection 3.3: DAX regime: deformation and vesicle-vesicle adhesion 

 

In other samples at low DOTAP, and particularly at higher crod, we found adhesion between 

vesicles as well as deformation (DAX). The membranes of neighboring vesicles adhered to one 

another due to the bound nanorods forming an adhesive bridge between vesicles. Darkfield 

micrographs indicate where nanoparticles have bound and aggregated on the membrane. The 

image intensity comes from light that is scattered in the sample plane. The more material that is 

present in the sample plane the more light is scattered as is the case when comparing bare 

membrane verses membrane coated with nanoparticles. Fig. 4.4 shows examples of darkfield 

images and their corresponding intensity profiles measured in a line across the membrane. Fig. 4.4 

also shows strong light scattering at the adhesion sites between vesicles caused by the nanorods 

accumulating at these junctions due to their ability to bind to both membranes. The adhesive 

contact area grew over the course of a few minutes until a steady state was reached (Fig. 4.6, 

yellow region). In samples where the vesicle concentration was high enough, adhesion led to a 

solid network of fluid vesicles which we call a “vesicle-gel”.72 The structure of this gel was like 

that of a dry soap foam with vesicles forming polyhedral configurations when confined by their 

neighbors. In the case of the vesicle-gel, however, the interior and the continuous phases are both 

aqueous. 

For some trials with 100 mol % DOPC we observed both DAX and DXX behavior at the 

same rod concentration. No clear boundary between the DXX and DAX was determined for 100 

mol% DOTAP. We attribute this variation to the fact that different samples may have different 

rates of mixing in the rods or have different concentrations of vesicles so that the rates of binding 

and vesicle-vesicle adhesion could vary. By contrast the other behaviors reported here (DXR, 

DAR) were highly repeatable. 
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Figure 4.7: Montage of destruction, nanorods 

(A) A montage of brightfield micrographs showing the disruption process for vesicles in the DAR domain. The vesicles 

contained 10 mol% DOTAP and were exposed to DNA origami rods at 1.5 nM. (B) A montage of brightfield micrographs 

showing the disruption process in the DXR regime. The vesicle contained 30 mol% DOTAP and were exposed to DNA origami 

rods at 1.5 nM. Scale bars are all 10 microns. 

 

Subsection 3.4: DAR regime: deformation, vesicle-vesicle adhesion, and rupture  

 

At intermediate DOTAP content (10-30 mol%), we observed vesicle-vesicle adhesion 

followed by vesicle rupture (Fig. 4.7). Rupture involved the total collapse of the vesicle’s spherical 

structure, typically in a bursting or shrinking event. In the DAR regime, the rupture process always 

occurred simultaneous with or after vesicle-vesicle adhesion, resulting in the accumulation of 

membrane-nanorod aggregates attached to vesicle aggregates.  

The progression of events in this regime consisted of first the formation of the vesicle gel 

within the first few minutes of the experiment. Over time, individual vesicles in the gel cluster 

burst suddenly. The destruction process was most often very fast (<500 ms; see Fig. 4.7(A)) but a 

few events (< 1 out of 1000) happened more slowly over a few seconds. The fraction of vesicles 
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destroyed and the rate of vesicle destruction events both varied with crod and x. Fig. 4.8 shows 

qualitatively how the rate of destruction varies with crod. 

 

 
Figure 4.8: Montage of vesicle gel destruction 

(A) A montage of brightfield micrographs showing the disruption process for vesicles in the DAR domain. The vesicles 

contained 10 mol% DOTAP and were exposed to DNA origami rods at 10 nM. (B) A montage of brightfield micrographs 

showing the disruption process in the DXR regime. The vesicle contained 10 mol% DOTAP and were exposed to DNA origami 

rods at 1.5 nM. Scale bars included in micrographs 

 

In some vesicles within DXR, we could see dark aggregates that diffused on the surface of 

the vesicles. These dark mobile aggregates were enriched in rods (as is clear from the scattering) 

and were too small for us to resolve their size (Fig. 4.4 D). These aggregates were visible in 

samples with x = 10 mol% and crod ≤ 10 nM but not when crod > 10 nM.  

The DAR regime is also dependent on membrane tension as well as rod concentration. The 

dependence on rod concentration is plainly seen for the case of vesicles with 30 mol % DOTAP. 

Here there was a transition from DXR to DAR by increase the concentration of rods from 1.5 nM 

to 10 nM. There is also a transition from DAR to DXR at 10 mol % DOTAP and 1.5 nM of rods 

as well as 30 mol % DOTAP and 10 nM of rods when you use floppy vesicles with excess area 

rather than balanced vesicles. The dependence on rod concentration and available membrane area 

may be hinting at similar requirements on the membranes tension verses the binding strength of 
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the rods to the membrane. No other membrane deformation or systematic variation of 

morphologies were found in samples in the DAR domain. 

 

 
Figure 4.9: Morphologies 

(A) The first two images depict brightfield micrographs of vesicles containing 30 mol% DOTAP. The third image was taken 

using confocal microscopy and is of vesicles containing 60 mol% DOTAP. All three images show examples of external-facing 

tubules and are within the DXR domain. (B) Brightfield micrographs of vesicles containing 25 mol% DOTAP. Particle 

aggregations are clearly visible as dark mobile spots. These aggregates are typical for vesicles in the strong binding regime. (C) 

Brightfield micrographs of vesicles containing 100 mol% and 10 mol% DOTAP. Large mobile spots are observed on the surface 

of the vesicles. This behavior is seen for vesicles with low rod concentrations. 

 

Subsection 3.5: DXR regime: deformation and rupture  

 

At still higher DOTAP content, we observed a crossover to a new behavior, consisting of 

destruction of individual vesicles without vesicle-vesicle adhesion. In this DXR regime, vesicles 

were destroyed individually in a multi-stage process (Fig. 4.7B). We emphasize that the 

concentration of vesicles was the same throughout the state diagram and that vesicles had ample 

opportunity to adhere. We regularly observed vesicles colliding with each other, being pushed into 

one another via convective flows or layered on top of one another without any evidence for vesicle 

adhesion. The absence of vesicle-vesicle adhesion indicated a true lack of adhesive forces.  
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The process of destruction in the DXR domain was common for hundreds of different 

vesicles over dozens of different samples varying in lipid composition, rod concentration and 

membrane tension. During the process of destruction, we observed no change in vesicle 

morphology for a period of time ranging from seconds for high particle concentrations and tens of 

minutes for low particle concentration (more particles resulted in a faster response), followed by a 

sudden drop in size, and then immediately followed by a slow and steady decrease in size until 

final rupture. Starting radii were typically 5-25 μm and the magnitude of the sudden drop ranged 

from 1-10 μm in roughly 500-1000 ms. In a minority of cases, the vesicle did not survive this 

sudden drop in radius and instead ruptured at this step. Most vesicles, however, survived the initial 

drop then showed a steady decrease in the radius over a typical duration of several seconds to 

minutes. The rate of shrinkage depended on x and crod, this dependence will be discussed further 

below. Within a given field of view, vesicles close to each other tended to shrink at similar rates. 

As the vesicles shrank, they developed nanorod-rich dark mobile aggregates which diffused along 

the surface of the vesicle. (Some vesicles had dark mobile aggregate formation before the jump, 

but the feature was universal after the jump.) In cases of low rod concentration (< 30 nM) roughly 

one in 100 vesicles developed tubules in addition to the dark mobile aggregates (Fig. 4.9A) Finally, 

the vesicles underwent complete destruction, wherein at some small radius the vesicles unfurled 

into a contorted mass of lipid membrane and nanorods with tubule-like tendrils at its periphery. 

This process is outlined in Fig. 4.7. Examples of the final form of the lipid-nanorod mass are 

included in Fig. 4.6 for various combinations of DOTAP content and rod concentration.  

Within the DXR regime, the sequence of steps did not depend on vesicle size, lipid 

composition, or membrane tension.  In rare cases, the vesicle burst immediately after the sudden 

drop in radius (no discernible shrinkage process). In other rare cases, we observed the slow 
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shrinkage and spots but no sudden drop in radius preceding it; in such cases the radius drop might 

have happened out of frame. 

 
Figure 4.10: Average rate of destruction, nanorods 

(A) Plots in the first column depict the average rate of area contraction (μm2/s) versus the mol% DOTAP, x, in the membrane 

for vesicles being destroyed via the binding of nanorods. The colors correspond to the concentration of nanorods in solution: blue 

for 50 nM, green for 30 nM, orange for 10 nM and red for 1.5 nM. (B) Plots in the second column depict the average rate of area 

contraction (μm2/s) versus the concentration of rods, 𝑐𝑟𝑜𝑑. The colors correspond to the mol % of DOTAP in the membrane: blue 

for 100 mol %, green for 60 mol % and red for 30 mol %. 

 

The average rate of area contraction (Fig. 4.10) was measured for vesicle populations of 

30, 60 and 100 mol% DOTAP and rod concentrations of 1.5, 10, 30 and 50 nM. The average rate 

of contraction was found by tracking the radius of the vesicle frame-by-frame during the shrinking 

process after the jump and before final rupture (Fig. 4.11). It was observed that the rate of shrinkage 

depended both on x and crod (Fig. 4.12). For higher crod, the rate of shrinking increased universally 

for all DOTAP fractions measured. The dependence on x, was found to be nonmonotonic with the 

fastest shrinkage rates being found at 60 mol % DOTAP across all rod concentrations. The fastest 
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rate observed was 2.4 ± 0.7 μm2/sec for 60 mol% DOTAP and 50 nM of rods. The Lowest rate 

observed was 0.03 ± 0.008 μm2/sec for 30 mol% DOTAP and 1.5 nM of rods. These rates are 

much slower than those reported in chapter 3 for spherical particles which averaged around 35 

μm2/sec. Additionally pores only formed in the case of spherical particles when the rate of 

shrinking exceeded 300 μm2/sec. This differences in rates may account for absence of pores in the 

vesicle destruction process for rod shaped particles. 

 
Figure 4.11: Vesicle Radius vs Frames 

Representative plots of the vesicle radius in pixels verses frames recorded, (blue). The radius was measured using the Hough 

circular transform. A linear fit is shown as a reference (red). 
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Figure 4.12: Vesicle Area vs Time 

Representative plots of the vesicle area in μm2 verses seconds, (blue). The area was calculated from the radius measured via the 

Hough circular transform. A linear fit is shown as a reference (red). 

 

We now describe the main structural features in more detail, i.e., the dark mobile 

aggregates, large (~2 μm) mobile spots, tubules, and the final unfurled rod/membrane structure. 

The dark mobile aggregates described above were similar in size to the microscope 

resolution limit and so their true size cannot be measured accurately. The dots appeared bright 

under dark-field imaging indicating that they were enriched with nanorods (Fig. 4.4). We never 

observed particle aggregates in solution and only found these features on vesicles that experienced 

destruction, the DAR and DXR regimes. These observations indicate an attractive interaction 

between the like charged nanorods that was mediated by the deformed membrane. (Further 

evidence for membrane-mediated attraction came from cryo-EM, described below.) Throughout 

the destruction process these aggregates remained mobile on the vesicles’ surfaces. As the vesicles 

shrank the concentration of aggregates increased with no observable change in their size. Every 
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vesicle in the DXR regime that underwent destruction during the duration of the experiment had 

dark mobile aggregates in conjunction with surface shrinking. 

Large mobile spots were observed in some DXR vesicles with low to moderate crod. These 

spots were approximately 2 μm in diam. with dark edges. We observed them forming, fading, and 

diffusing on the surface of some vesicles prior to the drop in radius (Fig. 4.9C). We observed them 

diffusing freely on the surface of the vesicle for a period of several minutes. They could be seen 

fading in and out on the surface of the vesicle, but no merging events were observed. They differed 

from the small dark aggregates in several respects: by their larger size, weaker optical contrast, 

non-circular shape, their presence prior to the drop in radius and their disappearance after the radius 

drop. Their appearance and then disappearance also distinguished them from internalized vesicles 

(which we sometimes observed and were quite distinct). These spots occurred on a minority of 

vesicles at low crod; by contrast, the dark aggregates were common among all vesicles in DXR. 

These spots were never observed under darkfield indicating that the density of nanorods in these 

spots must be similar to the average density of rods on the surrounding membrane surface and 

much lower than the density of rods in the dark aggregates described previously. These features 

indicate some larger scale structure formed due to membrane mediated interactions of the 

nanorods, which we will discuss below. These spots were not a universal behavior of vesicles in 

the DXR regime and seemed to require slower binding of nanorods onto the membrane to form. 

Tubules formed in the DXR regime only for crod < 30 nM. A similar trend was found in the 

DXX regime: tubules only formed at low crod, suggesting that tubule formation can be frustrated 

by the presence of too many nanorods. The lack of tubules in the DAR and DAX domains also 

suggests that tubule formation was frustrated by the formation of the vesicle gel. The reason for 

these restrictions on tubule formation will be explored in the Discussion section. In contrast to 
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tubules observed in the DXX domain, tubules formed in the DXR domain were small, 2-10 μm in 

length, 1-2 μm in diameter and almost exclusively external.  

The final stage of the membrane disruption process was complete vesicle destruction, 

resulting in a contorted mass of lipid and nanorods with small protrusions on the periphery (e.g., 

Fig. 4.6). The typical diameter was approximately 2-5 μm. There was no evidence of correlation 

between vesicle size or DOTAP content and the final structure. There was some variation in the 

structure of the final mass as a function of crod: when crod = 75 nM, the masses were more compact 

with smaller external protrusions. Additionally, for low rod concentrations the final mass was less 

compact and more likely to be slightly elongated (Fig. 4.6).  

 

 
Figure 4.13: Cryo-TEM nanorods on membrane 

Cryo TEM images of (A) DNA origami nanorods bound to 100 mol% DOTAP destroyed vesicles incubated for five days. When 

bound to the membrane the nanorods form bundles and demonstrate in-plane ordering. (B) The pixel intensity is be plotted verses 

the distance perpendicular the length of the rods to find the typical rod center-to-center spacing of 11.7 ± 0.03 nm. (C & D) DNA 

origami nanorods bound to 100 mol% DOTAP destroyed vesicles incubated for five days. Defects in the form of nanorod asters 

were found among the aligned rods bound to the membrane. 
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Figure 4.14: Cryo-TEM nanorods control and additional morphologies 

Cryo TEM images of (A) DNA origami nanorods in aqueous phase, control. (B) DNA origami nanorods bound to 100 mol% 

DOTAP destroyed vesicles. (C) DNA origami nanorods bound to 100 mol% DOTAP destroyed vesicles exhibiting high degrees 

of membrane distortion. 

 

Subsection 3.6: Cryo-electron microscopy at high DOTAP fraction and rod concentration 

 

To image the rods with nm-scale precision, we used cryogenic transmission electron 

microscopy (cryo-TEM) to directly view the membrane-rod morphologies at the nanoscale. The 

cryogenic preparation preserves the arrangement of the rods and membrane, so that these images 

give a high-resolution snapshot of the structure. Fig. 4.13 depicts cryo-TEM micrographs of a 

sample with 100 mol % DOTAP and crod= 75 nM and left in suspension for 4 days. We obtained 

control images by observing regions of the grid that were devoid of sample material. These areas 

presented only amorphous ice suspended by the lacey carbon grid allowing us to compare the 

contrast against areas with sample. This confirmed that the background intensity value behind the 

rods in our sample images was in fact the lipid membrane and notice as they were significantly 

darker. It should also be noted that the dark curved edges surrounding regions with rods are the 

edge of the lacey carbon that composes the grid. The gaps in the mesh are truly holes with only 

the supported film of the sample (Fig. 4.14). 
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Figure 4.15: Histogram of nanorod alignments 

Histogram of the population of each type of rod-membrane binding configuration. Four configurations were observed: parallel 

(blue), aster (red), overlaid (green), or other (purple). Examples of overlay, parallel and aster are circled in the micrograph with 

their respective color codes. 

 

The images show nanorods bound to the membrane with high surface coverage and in-

plane ordered patterns of two distinct and common types: parallel rafts and radially oriented asters. 

We defined parallel rafts as consisting of nanorods where at least half the length lay parallel to 

another rod that was within 10 nm. Rafts were typically composed of roughly a dozen evenly 

spaced rods aligned approximately tip to tip. The gap between rods in the rafts was found by 

measuring the intensity value along the width of the raft and then fitting with a sinusoidal function. 

The center-to-center spacing of the rods observed was 11.7 ± 0.3 nm, (Fig. 4.15 B). In other areas 

of the sample, we saw a different form of in-plane ordering: asters-like arrays. Nanorods in asters 

were defined by having one end within a small circular region of the sample (roughly 10 nm across) 

with the rod extending radially outward from that point. The average length of rods within the 

asters was observed to be 203 ± 25 nm, half the full length of the rods.  

Fig. 4.16 shows a histogram of the population of each type of rod configurations in the 

sample with parallel being the most common and asters the second. To account for all the observed 

rods, we added two additional categories: overlaid rods were those that lay across parallel- aligned 
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rods. These were readily identified as a single rod lying askew across a bulk of rods. The last case 

includes all the others, primarily rods that were isolated from other rods. What is remarkable about 

all these configurations is that these rods were like-charged and should repel each other. Fig. 4.14 

shows a Cryo TEM micrograph of the same nanorods in solution without membrane. These rods 

had random orientation with respect to each other. The existence of organized structures and rod 

packings is strong evidence for membrane mediated attractive interactions between the rods. We 

return to this point in the Discussion. 

 

 
Figure 4.16: Illustration of wrapping of nanorods 

Illustration of the wrapping configuration of rods to the membrane and their possible association with bulk phenomena observed. 

 

 

Section 4: Discussion 
 

Our results show that nanorod binding induces a variety of membrane morphologies, 

determined by particle-membrane adhesion strength (DOTAP fraction), particle concentration, 

and membrane tension (controlled by osmolarity). The primary behaviors observed were 
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membrane deformation (D), vesicle-vesicle adhesion (A), and vesicle rupture (R). We observed 

well-defined regions in parameter space with these behaviors and sharp transitions between them 

Within these well-defined regions, we saw deformed membrane morphologies such as tubulation, 

textured surfaces, small dark aggregates, and large aggregates.  

The most prominent features of our observations arise from binding of the rods to the 

membrane driven by the electrostatic double-layer attraction between them.72,115,116,117,118 We 

tuned the adhesion energy per area, ω, between particles and the membrane by means of DOTAP 

fraction, x. Direct evidence of particle adhesion is provided by darkfield experiment (Fig. 4.4), 

which show increased brightness on the surface of vesicles after the introduction of rods. We note 

that rods also bound to 100 % DOPC vesicles (x=0) and caused deformation. This seems surprising 

in view of findings that DOPC vesicles have a slightly negative electrostatic (zeta) potential of -9 

mV (electrophoretic mobility with 0.1 mM NaCl)73 and might therefore be expected to repel the 

negatively charged nanorods. We attribute the binding in this case to the static dipole of the 

zwitterionic PC headgroup, which can reorient to attract charged objects of either sign.74 

Previously we found that anionic silica particles were also able to bind to DOPC vesicles.72,75,76 

We will return to quantitative estimates of ω and x. 

When a rod binds, the membrane bends around it to increase the adhesion area. This 

deformation leads to the observed interactions among the rods (Fig. 4.10) and leads to further 

deformations as reported in Fig. 4.3.  The membrane deformation can be explained from a 

continuum approach, in which the energy of rod-membrane adhesion competes with the energy 

cost of bending and stretching the membrane and the loss of entropy when a free rod binds to a 

membrane. The energy of bending the membrane can be determined via the Helfrich model119 and 

depends on the size and shape of the particle.13,28 In the case of perfectly rigid rod-shaped 
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nanoparticles, simulation predicts three wrapping configurations: binding, shallowly wrapped, 

deeply wrapped, and completely wrapped in the case of rounded rods with small aspect ratios 

(length over width ranging from 1-3).31 The existence of three wrapping configurations is ascribed 

to the inhomogeneous curvature distribution on the nanoparticle surface. The dimensions of the 

rod are characterized by its radius, a, and its length, l. Initial binding occurs even with vanishingly 

small adhesion strength.31,37 Starting with small ω, the first bound state is shallow wrapping, in 

which the rod lies parallel and the membrane slightly deforms around it. When the membrane 

tension τ = 0 the transition from shallowly wrapped to deeply wrapped requires the rod to tilt 

normal to the membrane so that one end of the rod is wrapped. This occurs when ω𝑎2/ 𝜅 ≥ 2.31,56 

This transition is tension dependent and will shift to higher ω with increased τ .13,31 To completely 

wrap the rod, the condition 
ω𝑎2

𝜅
 (

2𝑎+𝑙

8𝑎+𝑙
) ≥  

1

2
 must be satisfied. In this configuration the nanorod is 

oriented perpendicular with respect to the membrane with no exposed surface.31 The neck that is 

formed where the membrane has closed in around the rod is a minimal surface called a catenoid 

which does not contribute to the membrane deformation energy.13 Prior work assumed a perfectly 

straight, rigid rod, whereas in the experiment the rods can bend. Transitions between these 

configurations are predicted to be discontinuous in the binding energy.31 

Once a membrane is deformed by a bound particle, bending elasticity mediates interactions 

among two or more bound particles. If these interactions are attractive, then they can lead to 

particle aggregates, which could have an amplified effect on the membrane shape (as shown, for 

example in simulations.97 The structures that we observed in optical and cryo electron microscopy 

clearly point to strong rod-rod attractions, which we discuss below.  

These particle-scale wrapping transitions are consistent with our experimental findings and 

can explain the existence of and transition between the major membrane morphology regimes in 
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our state space. In brief, we propose that DXX and DAX correspond to the shallow-wrapped state, 

that DAR corresponds to the deeply wrapped state, and that DAX corresponds to the fully wrapped 

state. We organize our discussion into weak, intermediate, and strong binding.  

Subsection 4.1: Weak Binding, DXX and DAX 

 

First, we consider the case of weak binding at low x (Fig. 4.16a). When the adhesion of the 

particles to the membrane is too weak to wrap the high curvature ends of the rod, theory predicts 

rods to be shallowly wrapped in equilibrium.31 The two states associated with the lowest binding 

energy are DXX and DAX which are present for membranes with less than 10 mol% DOTAP. In 

the regime of DXX, shallow wrapping deforms the membrane and apparently causes tubules, 

elongated structures, and textured surfaces. Tubules and elongated shapes are plausibly due to 

cylindrical curvature induced on the membranes surface by the nanorods. The onset of adhesion 

in DAX is readily explained by a rod binding to one membrane, leaving one side exposed and able 

to bind to a second membrane, thus forming an adhesive bridge between the two membranes, and 

thereby leading to a macroscopic gel. A similar result was found using spherical particles with 

weak binding.72 DAX tends to form with higher crod, suggesting that the vesicle-vesicle adhesion 

energy depends on crod, which agrees with a published statistical mechanical model of particle-

based adhesion between surfaces.120 We see indistinguishable behavior for the equiosmolar and 

floppy vesicles in this regime. Tubules exist also in the DXR domain but only for small rod 

concentrations. The dependence on low particle concentration suggests that tubule formation is a 

process that can be interrupted or frustrated by the jamming of particles or by increased membrane 

tension due to particle binding and area consumption or due to vesicle-vesicle adhesion. Further 

discussion on the formation of tubules is continued below when comparing to tubules formed in 

the DXR domain. 
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Subsection 4.2: Intermediate Binding, DAR 

 

At intermediate adhesion energy ω, our observed transition to DAR (the onset of 

destruction) is attributed to the transition from shallow to deep wrapping at the individual particle 

scale (Fig. 4.16b). This configuration leaves a portion of the rod exposed, thus allowing it to form 

an adhesive bridge between vesicles resulting in a bulk vesicle gel. Unlike the shallow wrapping, 

however, deeply wrapped rods drastically deform the membrane and consume a substantial amount 

of projected surface area. This area consumption increases membrane tension resulting, in the 

runaway destruction of vesicles. Our key experimental observation that supports the deep-

wrapping hypothesis is the sharp transition in parameter space between samples with no rupture 

and samples with rupture, which is consistent with the predicted sharp transition from loose to 

deep wrap.13,31  

Subsection 4.3: Strong Binding, DXR  

 

Lastly, we consider the transition to rupturing without adhesion (DXR) at highest adhesion 

ω. We hypothesize that this regime corresponds to complete wrapping of the rods (Fig. 4.16c). 

When a rod is completely enveloped by the membrane there is no exposed rod available to form 

an adhesive bridge, thus turning off vesicle-vesicle adhesion. The hypothesis of complete 

wrapping is further supported by several experimental observations. First, the transition from DAR 

to DXR is sharp, as is predicted for the single rod deep-to-complete wrap transition.31 Second, 

DXR occurred at the maximum x for each crod, corresponding to the limit of strongest ω. Third, 

adding excess area to the vesicles (by exposing them to hyperosmotic conditions) favored DXR 

over DAR (at x, crod = 10%, 1.5 nM and at 30%, 10 nM). We hypothesize that adding excess area 

made it easier for the membrane to completely wrap the rods that bound, leading directly to rupture 
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without adhesion. Finally, a higher crod suppressed DXR and favors DAR, which indicates that a 

high concentration of bound rods suppressed complete wrapping, either because the rods take up 

a large amount of membrane and significantly raise the membrane tension or because steric 

hindrance among the bound rods prevents their being fully wrapped.  

Subsection 4.4: Membrane-mediated interactions among rods 

 

The dark mobile aggregates observed in the DAR and DXR regimes, can also be explained 

by the deep-to-complete wrapping transition. The dark mobile aggregates are nanorod-enriched 

spots (Fig. 4.4). Since the nanorods repel one another in suspension (by the electrostatic double-

layer interaction), the aggregation is induced by membrane deformation. Previous simulations has 

shown that the membrane induces attractive interactions between nanorods and rod like structures 

bound to membrane.55 Previous experiments with rod shaped proteins, DNA structures and viruses 

have demonstrated similar attractive interactions for bound particles,55,121,122,123 as well as the 

formation of linear aggregates124 and tubules.1,111,125,126,127,128,129 The large mobile spots are similar 

in some respects to the dark mobile aggregates in so much that they imply some form of attractive 

interaction between the rods mediated by the membrane.  

As in the DXX regime, tubules form at low rod concentrations. Tubules in the DXR domain 

are typically directed outward and are 1-2 μm in diameter and 2-10 μm in length. They may form 

due to cylindrical curvature induced on the membrane by the binding of the rods. The tubules 

formed in the DXR regime are typically smaller than those seen in DXX, and the DXX domain 

has both inward and outward-pointing tubules. Previous findings showed that nanoparticles130 or 

proteins109 that bind on the exterior leaflet without wrapping, as in DXX, can drive tubules 

extending outward from the vesicles. This growth is driven by a lateral pressure arising from steric 

interactions among the particles or proteins, leading to a dilation of the outer leaflet that then forms 
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the convex (outer) surface of the tubule.71,130 What is peculiar about tubules formed in the DXX 

domain is the presence of both interior and exterior of vesicles.  

The cryo-TEM images (Fig. 4.13) show striking organization of the bound nanorods in the 

case of strong ω and high crod (x=100 mol% and crod = 75 nM). We found clear in-plane parallel 

ordering of the nanorods as well as aster like configurations. We found a comparable number of 

rods in each of those two configurations. The parallel rods had a mean surface-to-surface spacing 

of 6.7 ± 0.2 nm, the position of a minimum in the membrane-mediated interaction between rods. 

While the evidence for rod-rod attraction is very striking, we note that this result appears to provide 

clarity to conflict in prior theoretical work. For the case of infinitely long and rigid rods, theory 

predicts pairwise repulsion between the rods both for weak and strong deformation if they adhere 

on the same side of the membrane.131,132 For finite length rods simulation work by Ghosh, et al., 

demonstrated both repulsive and attractive interactions between rods depending on the orientation 

of the rods with respect to one another.123 Muller, et al. predicted the interaction between rods 

bound to the membrane to be repulsive for rods on the same side and attractive for rods on opposite 

leaflets.133 The majority of these theories, however, do not account for the ends of the rods, nor for 

flexibility of the rods, nor do they consider the interactions among more than two rods. The earlier 

work, moreover, treated the rods as infinitely stiff and infinitely long, so they did not consider the 

membrane deformation at the rod ends. The earlier theory also only considered the case of two 

rods, whereas it is known that membrane-mediated interactions can be non-pairwise-additive, so 

that two might repel while several attract.134 This is wholly inconsistent with our results as we 

observed the parallel alignment of pairs of rods in regions of low rod density.  

The aster-like regions seen in the cryo-TEM were composed of rods that were shorter than 

the full length. From cryo-TEM, the average measured rod length in the bulk phase was around 
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341 ± 50 nm, which roughly matches the designed length of the rods. Similarly, the mean length 

in the parallel arrays was 391 ± 25 nm. However, rods in the asters were about half that length 

averaging 203 ± 25 nm (Fig. 4.16). Knowing the nature and structure of DNA origami nanorods 

it is highly improbable that short rods would form originally (and they were not found in the cryo-

TEM images without membranes) or that long rods would be able to break cleanly. Therefore, we 

suspect that the rest of the body of the rods in the aster formation are deflected out of plane. These 

out of plane deformation make ideal locations for potential nucleation sites of tubules or 

protrusions on the membrane. We attribute the short, outward-forming objects seen during the 

destruction process and in the final aggregate structures, (Fig. 4.6), to these aster-like protrusions. 

The finite bending elasticity of the rods may allow for aster formation. Though the inclusion of 

rod flexibility may increase the complexity of simulation studies, however, accounting for this is 

more accurate to biological systems as well as many synthetic particles and is essential for fully 

describing the final binding structure. 

Subsection 4.5: Dynamics of the destruction process 

 

Single vesicle destruction events were observed for vesicles in the DAR and DXR domains. 

During this process vesicles experienced a sudden drop in radius followed by the steady shrinking 

of the vesicle until its final rupture. The time before the drop was dependent on crod, this period of 

time ranged from seconds for high particle concentrations to tens of minutes for low particle 

concentration (more particles resulted in a faster response). The dependence on crod implies that 

the trigger for the drop is a many-particle behavior requiring some minimum surface coverage. 

Vesicles within a single field of view do not all jump down in radius simultaneously upon 

introduction of the nanorods. The sudden drop in size of individual vesicles happened 

stochastically indicative of a particle nucleation process occurring on the membrane. 
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Following the sudden drop of radius, the rate of area contraction was found to be dependent 

on, x and crod. The duration of the delay time prior to the jump and the duration of the vesicle 

shrinkage process were comparable for high particle concentrations. However, for low particle 

concentration the process of shrinking was much faster than the delay time prior to the jump. For 

higher crod, the rate of shrinking increased universally for all DOTAP fractions measured. This 

dependence on crod makes sense if the projected area contraction is driven by the consumption of 

area by the binding of rods. The concentration of rods in the bulk is proportional to the flux of rods 

on the membrane as more rods bind to and are enveloped by the membrane the area contracts until 

the membrane can no longer support the area contraction and solute exchange causing its final 

rupture. The dependence on, x, however, was found to be nonmonotonic with the fastest shrinkage 

rates being found at 60 mol % DOTAP across all rod concentrations. This is quite surprising as it 

would imply there is some other effect driving the shrinkage rate beyond particle flux and 

envelopment. What this additional effect is remains unknown, however, it may depend on how the 

nanorods organize on the membrane as certain membrane-mediated interactions would be 

dependent on the adhesion strength and thus x. For example, it might be that the shrinkage rate 

increases with x at low x, and the trend is reversed at high x because of rods jamming on the 

membrane. 

As particles bind and are wrapped by the membrane, the projected surface area of the 

membrane shrinks because of the envelopment of each bound nanoparticle. If each nanoparticle-

wrapping event reduces the projected membrane surface area by an amount equal to the surface 

area of the nanoparticle, (2al+4a2), a steady area-reduction rate of 0.3 μm2/sec on a 3000 μm2 

membrane corresponds to a flux of roughly 130 particles per μm2 per second binding to the 

membrane, for 𝑐𝑟𝑜𝑑= 50 nM. This estimate is found by solving for the particle flux as 𝜙𝐷𝑉𝑟𝑜𝑑/𝑅, 
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where D is the nanoparticle diffusion constant, R is the vesicle radius, Vrod is the volume of the 

rod and ϕ is the volume fraction of nanoparticles. This expression can be rewritten as, 

(2kBTR)/(3a2), if we substitute in the volume of the rod as well as the diffusion constant. For 

this approximation we used the diffusion constant for a spherical particle which will provide an 

upper limit on the flux in the absence of long-rage attraction. These estimates are in good 

agreement with the rates 0.36 ± 0.02 for 30 mol % DOTAP and 0.3 ± 0.1 for 100 mol % DOTAP 

(both at 𝑐𝑟𝑜𝑑= 50 nM). However, this does not explain the fastest shrinkage rate observed 2.4 ± 

0.7 μm2/sec for vesicles at 60 mol% DOTAP (𝑐𝑟𝑜𝑑= 50 nM). Some additional factor that is 

dependent on DOTAP concentration is clearly at work in the 60 mol % case. This model of 

diffusion limited binding does provide a good baseline explanation of why the area reduction rate 

depends on the local nanoparticle concentration. 

Another notable feature of the vesicle destruction process is the rapid exchange of solute 

across the membrane required to accommodate the interior volume contraction of the membrane. 

This is particularly striking during the sudden drop in radius where as much as 10% of the vesicles 

volume is exchanged in less than 500 ms. Additionally, the interior of the vesicles contains sugar 

which if unable to permeate through the membrane would further increase tension via osmotic 

stress. The fact that vesicles can shrink down to a fraction of their original size over the course of 

several minutes implies not only increased permeation of water through the membrane but also 

sugar as well. The nucleation and then subsequent closing of a pore in the membrane could explain 

the sudden exchange of solute required to reduce the volume. The continued binding of rods to the 

membrane may also stabilize nanopores on the membrane allowing for enhanced solute 

exchange,71 though the pores would have to be smaller than the resolution limit of our microscopy, 
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unlike the case of spheres (Ch. 3). Eventually the contraction of the membrane is to great or the 

exchange of solute is restricted and the vesicles ruptures unfurling into a mass of lipid and nanorod. 

 

 

Section 5: Conclusion 

 

In our experiments we carefully tuned the interactions between lipid bilayer membranes 

and DNA origami nanorods to understand how nanoparticle adhesion can be used to remodel 

membranes. Controlling particle shape, membrane tension, particle concentration and binding 

strength allowed us to deform the membrane in a variety of unique, repeatable and characterizable 

ways. The ability to control membrane remodeling in this way may lead to the design of novel 

membrane-based materials.  

These results span a large parameter space and show a consistent and coherent picture of 

particle membrane interactions. Our results show that for osmotically controlled, low tension 

membranes, deformation is driven by particle adhesion energy per area, which competes with 

membrane bending stiffness. Effective membrane tension or available membrane area also effects 

membrane remodeling. Additionally, we found that nanoparticle concentration effects the binding 

configuration of particles to the membrane as well as the resulting membrane morphology likely 

due to an increase in membrane tension caused by area consumption via enveloped nanorods. 

These results are highly repeatable and show a consistent dependency on tension, adhesion 

strength and particle concentration over a wide parameter space. This work provides concreate 

restrictions on what types of morphologies should be observed relative to each other in the phase 

space and is ideal for comparison in future simulation studies.  

This system has demonstrated four distinct membrane morphological behaviors DXX, 

DAX, DAR and DXR. Each regime has unique features which distinguish it from the others and 



96 
 

have distinct potential for application. The DAX regime results in a long-lived stable vesicle gel 

which has a high surface area, large volume of more than 99% water and intact closed-cell structure 

separated by membrane that is impermeable to solutes. The large surface area can be easily 

functionalized, and the closed-cell structure should allow for the encapsulation of multiple reagents 

which would only react upon rupture of the gel structure. The DAR domain exhibits gel formation 

as well as vesicle rupture, which could be utilized to create, hold, and then release cargo at a rate 

determined by particle concentration. The DXR domain also exhibits vesicle rupture without the 

gel formation. Such a mechanism could be used for the controlled triggerable release of cargo from 

within the vesicle. The cross over between these various responses is controlled by adhesion 

strength, particle concentration and membrane tension. This system has the potential for 

application in a myriad of contexts where in encapsulation, delivery, and triggered release are 

desired on the micron scale. 

We end with a comparison of the present results to prior studies of particles with different 

shapes. With spherical nanoparticles, a recent report by some of us showed a sharp cross-over from 

adhesion to destruction with increasing electrostatic adhesion strength ω. Weakly-bound 

nanospheres caused formation of a vesicle gel, while strongly bound nanospheres resulted in the 

destruction of the vesicles in a process that included a shrinking of the vesicles size, the formation 

of dark mobile aggregates, tubules, pores and lastly vesicle rupture. In the terms of this chapter, 

spheres showed a transition from DAX to DXR (rupture without adhesion). Similar to the rod case, 

this transition corresponded to a transition from weak deformation to complete wrapping at the 

scale of individual particles when ω𝑎2/κ is of order 1. The presence of discontinuous transitions 

in the binding energy between individual wrapping configuration of nanoparticles has been 

observed previously in both theoretical and simulation work looking at the binding of spherical 
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and non-spherical nanoparticles to low tension lipid bilayer membranes.13,31,72,105 Rods have two 

transitions whereas spheres only have one. This key distinction leads to a big difference in the 

ensemble measurements of the two systems and the appearance of a new state (DAR) in the 

parameter space for the rods. It is difficult to compare the numerical values for the threshold 

binding energies for the spheres13,72 and rods.31 However, given that the radius of our DNA origami 

nanorods is quite similar to the radius of the Au-TTMA nanoparticles used previously, we 

anticipate a similar membrane charge density at the onset of DXR, which is indeed the case (4 

mol% DOPS for the Au-TTMA spheres).  

Comparisons can also be drawn in the morphologies observed. The presence of tubules is 

shared with a diversity of experimental systems of a variety of types of particles, spherical72, 

proteins1,126, DNA origami rods111,127 and more.125,128,129 It is worth noting that rods give rise to 

inward and outward pointing tubules, with the outward ones being the most prevalent, in contrast 

to spheres. What is remarkably striking is the similarity in how vesicles are destroyed between 

spheres and rods. Both processes exhibit shrinking, tubule formation and dark mobile aggregates.72 

One important feature that is revealed via our Cryo-TEM results is how rods arrange and aggregate 

on the membrane in parallel aligned rafts and bundled aster-like features. This not only 

demonstrates attractive interactions mediated by the membrane but is also suggestive of how some 

of the macroscopic morphologies are formed. In a paper by Mellor et al they report the formation 

of micro-spikes which are short  cylindrical filopodia formed by the insertion of a core of 10-30 

rod like actin filaments packed tightly together.1 We can extend this mechanism to the small dark 

mobile aggregates which confocal microscopy confirms protruded slight from the membrane. We 

conclude that the aster arrangement of rods on the membrane likely form the small dark mobile 

aggregates via their out of plane deformation. These deformation and other membrane remodeling 
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events demonstrate a clear ability to control the morphology of the membrane. The ability to 

control the interactions between membranes and particles allows us to isolate which effects are 

governed by particle shape, membrane tension, adhesion strength and particle concentration. 
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CHAPTER 5 

SUMMARY AND FUTURE WORK 
 

 

This final chapter provides a summary of the results presented in this thesis and suggestions 

for future work. Section one describes the results presented in this thesis as well as suggestions on 

how this work can be expanded upon. Section two present projects that were initiated during the 

time of this thesis work, the questions that arose from these projects and potential experiments that 

could address those questions. The last section provides concluding remarks on the overall 

significance of the work presented and its potential for application. 

 

 

Section 1: Overview of results 
 

Subsection 1.1: Overview of spherical particle results 

 

In chapter 3 of this thesis we presented the results of three different well-defined systems 

of lipid membrane and nanoparticles that allowed us to tune the interaction strength, ω, between 

the two components.72 We observed a remarkably rich set of collective morphologies that are 

controllable via the particle binding energy. Using giant lipid-bilayer vesicles (10–100 μm) with 

varied amounts of charged lipid we controlled the adhesion of the membrane to oppositely charged 

nanoparticles. The majority of our studies focused on 6.7 nm-diameter cationic Au-TTMA 

nanoparticles.79 We made the vesicles with a mixture of zwitterionic DOPC and anionic DOPS, so 

that the molar ratio of DOPS could be tuned to set the binding energy per unit area, ω. When the 

DOPS fraction and ω were small, the nanoparticles caused the vesicles to adhere to one another 

and form a soft but solid gel. By contrast, when ω exceeded a threshold value, the vesicles were 

destroyed in a remarkably complex but highly repeatable process that included vesicle shrinkage, 
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invagination, pore formation, runaway tubule formation, and possibly vesicle inversion. We 

associated this threshold with a characteristic binding energy that defined the binding 

configuration of the particle. Weak binding strength resulted in partial wrapping of the particle to 

the membrane leaving particles exposed and able to form an adhesive bridge between neighboring 

vesicles. Strong binding resulted in complete envelopment of the particle and destruction of the 

vesicle. We also carried out experiments with negatively charged silica nanoparticles mixed with 

vesicles doped with positively charged DOTAP lipid and found similar results. With this silica 

system, we investigated two slightly different particle sizes and found that the threshold lipid 

composition was noticeably lower for the larger particles. Computer simulations also showed a 

transition from partial to complete wrapping of nanoparticles and subsequent membrane rupture 

when the dimensionless ratio ω𝑎2/κ exceeded a threshold value of approximately 0.5, 

significantly lower than the threshold value of 2 predicted for a single particle.13 The sequence of 

morphologies leading to destruction was consistent in each case.72  

These results provide a unified picture for the wide variety of phenomena reported in cells 

and vesicles, which likely correspond to different regions of a phase space defined chiefly by ω, 

κ, a, and particle concentration. Future work controlling particle concentration and membrane 

tension may illuminate more details on how these binding configurations can be induced and 

propose new processes for tuning and controlling rupture. 

 

Subsection 1.2: Overview of results for DNA origami nanorods 

 

In chapter 4 we reported the results of a well-defined system of lipid membrane and 

nanorod interactions wherein we tuned the interaction strength, ω, membrane tension, τ, and 

particle concentration, 𝑐𝑟𝑜𝑑. We used anionic DNA origami nanorods that are 420 nm long by 5 

nm in diameter. We used giant lipid bilayer vesicles (GUVs) ranging from 10 -100 μm in diameter 
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composed of a combination of a zwitterionic lipid (DOPC) and a cationic lipid (DOTAP). The 

binding energy, ω, was tuned by varying the amount of the DOTAP in the membrane, 𝑥. We found 

that for low 𝑥, and thus low ω, and low 𝑐𝑟𝑜𝑑, particles deformed the membrane into tubules and 

other shapes (DXX). For high 𝑐𝑟𝑜𝑑 and low 𝑥, we saw vesicle-vesicle adhesion and the formation 

of a vesicle-based gel (DAX). With higher 𝑥 we saw a transition into rupture of vesicles 

simultaneous with vesicle-vesicle adhesion (DAR). At still higher 𝑥, we found a second crossover 

to rupture of individual vesicles without vesicle-vesicle adhesion (DXR). The process of single 

vesicle destruction was complex, involving the formation of aggregates, tubules, sudden drops in 

the vesicle’s radius, and a shrinking of the size of the vesicle until final rupture. The sequence of 

events found in single vesicle destruction were highly repeatable and consistent over a large 

portion of the state space. To probe for the effects of tension, we also prepared vesicles with excess 

area by exposing them to a hypertonic solution and observed that the excess area shifted the second 

crossover. Cryo-TEM images provide the first evidence of membrane-mediated interactions 

among rods, leading to parallel alignment of membrane-bound rods in some regions of the 

membrane, and aster-like rod formations and a new mode of deformation in other regions. We 

presented these results in the form of a state diagram and concluded that the two crossovers arise 

from the two separate wrapping transitions that occur at the single-particle scale. In the case of 

perfectly rigid rod-shaped nanoparticles, simulation predicts three wrapping configurations: 

binding, shallowly wrapped, deeply wrapped, and completely wrapped.31 Based on our 

experimental results we concluded that DXX and DAR correspond to the shallowly wrapped 

configuration, DAR with deeply wrapped and DXR with completely wrapped. 

Compared to our earlier study of spherical particles, the rods exhibit many of the same 

behaviors such as inducing the formation of a bulk vesicle gel at low adhesion and causing vesicle 



102 
 

destruction at high adhesion. However, rods have an additional intermediate state wherein vesicle 

adhesion followed by rupture is observed. Another difference between the two systems is seen in 

the vesicle destruction dynamics. Though the process of destruction is very similar in the two 

systems, in the case of spheres we often observed a long-lived micron scale pore that forms and is 

stabilized by the nanospheres. This phenomenon was never observed with the rods, the key to 

understanding how, why, and when pores form remains unknown. One possibility may be area 

shrinkage rate. In our results with spherical particles it was shown that vesicles with faster 

shrinkage rates formed pores while those with slower shrinkage rates did not. If there is a 

dependence on shrinkage rate, then further target investigations with rods could potentially 

produce pores as well. Additionally, from our experiments it is clear that clusters form readily, 

however, tubules are found only at low particle concentration. The requirement on low particle 

concentration may hint at a requirement for specific particle aggregation configurations that can 

be frustrated if the membrane is too crowded.  How these features form and how this relates to the 

packing of particles on the membrane is unclear. Additional experiments exploring Cryo-TEM 

imaging of vesicles and nanorods at different concentrations and binding strengths may illuminate 

more.  

These results present a remarkably detailed overview of the phase space defined by ω, 𝜅, 

τ, and 𝑐𝑟𝑜𝑑. The wide variety of phenomena observed, and their well characterized dependences 

make this system an ideal comparison for theory and simulation. This work presents intriguing 

preliminary results on the dynamics of membrane disruption, including the surprising 

nonmonotonic dependence of the vesicle-shrinkage rate on adhesion strength. A variety of 

different membrane morphologies were observed including, dark aggregates, large spots, internal 

tubules, and external tubules. The dark mobile aggregates which confocal microscopy confirms 
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deform out of the plan of the membrane may be formed by the insertion of bundles of rods into 

the membrane as is seen in Cryo-TEM images in the asters configuration of rods on the membrane. 

Future work exploring the dynamics of particle binding could illuminate the dependence on many 

particle interactions in resulting membrane morphologies. 

 

 
Figure 5.1: Micropipette aspiration chamber 

An illustration of the experimental chambers used during micropipette aspiration. The blue chamber on the right side of the 

image stores the vesicles in an aqueous buffer. The green chamber on the left holds the nanoparticle solution. Vesicles are picked 

up via suction by the pipette tip. The shield is moved over the vesicle while it is in the vesicle chamber. The shield and tip are 

then moved across the air gap into the particle chamber and the shield is removed to allow for interactions. 

 

 

Section 2: Proposed Future Work 
 

During the process of conducting the experiments described in this thesis several other 

notable projects were initiated but never completed. These projects represent unique and intriguing 

questions all their own and are presented here as inspiration for future work. 

 

 

Subsection 2.1: Micropipette Aspiration 

 

Micropipette aspiration is a technique used to measure the mechanical properties of single 

cells or vesicles. It does so by observing the deformation of such objects under suction pressure. 



104 
 

For a more detailed description of the instrumentation refer to work done by Longo and Ly in a 

piece published in the Methods of Molecular Biology in 2007.135 This powerful technique allows 

us a direct measurement of the mechanical properties of membranes.136 The question we initially 

asked, and which remains unanswered is: How do the mechanical properties of vesicles vary as 

particles bind to the membranes and how does this depend on the binding strength of particles to 

the membrane.  

With the help and training of Arash Manafirad we approached this question by conducted 

some initial experiments introducing charged vesicles to oppositely charged nanoparticles while 

under suction by a micropipette tip and measured the response. The experimental system, designed 

and fabricated by Arash, consisted of two chambers, one with vesicles sedimented to the bottom 

and the other containing particle solution at the desired concentration, (Fig. 5.1). The vesicles were 

initially captured via suction by the micro pipette tip. Then a shield containing the same aqueous 

solution the vesicles were diluted in was drawn around the vesicle. The shield and vesicle were 

then moved across an air gap to the second chamber which contained the nanoparticle suspension 

at a defined concentration. The shield was then withdrawn exposing the vesicles to the 

nanoparticles. The interactions were observed visually with a camera. 
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Figure 5.2: Micropipette Aspiration 

Two examples of the experimental results found during micropipette aspiration experiments. The top row shows a 100 mol % 

DOPC vesicle exposed to Ludox AS30 silica nanospheres (50:1 buffer to stock). The response is shown on the right as a trace of 

the measured tongue length over time. The second row shows a 5 mol% DOTAP and 95 mol% DOPC vesicle interaction with 

Ludox AM silica nanospheres (100:1 buffer to stock). The response is depicted on the right as a measure of the tongue length 

over time. Both vesicles experienced an initial decrease in the projected tongue length, the first vesicle then showed a steady 

growth in the length of the tongue while the second vesicle burst suddenly after about a minute. 

 

We looked at two different species of anionic silica nanoparticles, Ludox AS30 and Ludox 

AM. The vesicles were composed of zwitterionic DOPC and doped with cationic DOTAP. 

Preliminary results showed an initial shrinking of the “tongue” length (the portion of the vesicle 

captured by the pipette tip) followed by a slow increase in the tongue length or rupture in some 

cases (Fig. 5.2). This response could correspond to an increase in membrane tension, enhanced 

permeation, and other unknown particle membrane interactions. Work of this nature has yet to be 

done and would provide a first of its kind measurement of mechanical change in membranes due 

to particle binding. This experimental system could also be useful for determining permeation 

effects due to binding which would have direct relevance to the encapsulation and release of cargo 

carrying vesicle-based materials. 
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Figure 5.3:fd-Y21M virus 

(A) the top image shows fd Y21M viruses imaged with fluorescence microscopy.137 The bottom image depicts a  model of a 154 

Angstrom slab of the protein coat of the fd virus.138 (B) shows optical micrographs (brightfield) of GUVs interacting with fd-

Y21M viruses. The rods appear to bind to the membrane and aggregate at the intersections of multiple vesicles in the bulk gel 

network. At these interfaces, the chiral rods induce a light/dark pattern creating a periodic rippled appearance. The orientation of 

the rods as they twist with respect to the image plane may be the source of the light/dark patterning. 

 

 

Subsection 2.2: fd viruses as nanorods 

 

Prior to work with DNA origami nanorods, our initial rod-shaped particle was the fd-Y21M 

virus, which is a mutant of the filamentous bacteriophage fd wild-type virus. This virus is “rod” 

like with dimensions of 800 nm by 5nm and a similar stiffness to that of the DNA origami particles 

outlined in detail in chapters 2 and 4. These viruses were produced in both cationic and anionic 

varieties by Zhenkun Zhang and Marc Ridilla (Brandeis University) and consist of a single strand 

of DNA coated with a layer of protein, (Fig. 5.3a).88,89 These viruses were initially selected because 

they are monodisperse and readily grown in sufficient quantity. Experiments with these particles 

were conducted using perfusion chambers in the same way as was done for spherical particles. See 

chapter 2 for details. 

Interactions were tested over a range of charge densities for both the cationic and anionic 

versions of the virus. For cationic viruses DOPC membranes were doped with the anionic DOPS 
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(ranging from 0 – 8 mol%). Cationic DOTAP (ranging from 0 – 50 mol%) was used for 

experiments with anionic particles. We observed vesicle-vesicle adhesion similar to the DAX case 

for the DNA origami rods (Fig 5.3b). In addition to the formation of a bulk vesicle gel we 

sometimes observed light-dark patterning at the interfaces between adhered vesicles in the gel for 

experiments with low adhesion strength (100 mol % DOPC). The fd-Y21M virus has intrinsic 

twist and we suspect that rods were binding to the surface of the membrane and packing tightly at 

the interface between adhered vesicles. When chiral rods are packed tightly, they tilt with respect 

to their neighbors resulting in a large-scale twist like the twist observed in a ribbon. We suspect 

that the light dark pattern observed at the interfaces between vesicles was caused by the chiral rods 

packing tightly and twisting along the length of the pattern in a ribbon like fashion. The orientation 

of the rods as they twist with respect to the image plane may be the source of the light/dark 

patterning. 

These results can be compared to the results with the DNA origami rod shaped particles in 

chapter 4 where we never saw these light/dark patterns. They also present the question, how does 

the chirality of bound nanorods effect the deformation of the lipid bilayer membrane. The work 

could be extended further to look at how the interaction of multiple species of particles allow for 

controlled membrane deformation. For example, would one observe a membrane mediated 

depletion effect when nanorods and nanospheres of appropriate size ratios bind to a membrane 

simultaneously? The optical component of this interaction is particularly intriguing. If one can 

induce liquid crystalline structures to form on the surface of vesicles, one may be able to tune the 

color observed in the aqueous suspension. This is particularly intriguing from a food science 

perspective as the ability control the color of foods is a highly sought-after parameter. Vesicles 
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formed from food grade lipids combined with nontoxic nanoparticles could be used to manipulate 

the color of various beverages and potentially other foods. 

 

 
Figure 5.4: Patchy Particles 

(Left) Brightfield micrograph of micron sized patchy particles. (Right) Brightfield micrographs of a single micron sized patchy 

particle lightly bound to the surface of a GUV(s) via one of the charge patches. 

 

 

Subsection 2.3: Patchy Particles 

 

During our research we were introduced to a new type of Janus micro-particle. These large 

patchy particles were synthesized by Zhe Gong from the group of Prof Stefano Sacanna 

(Department of Chemistry, New York University). The particles were 2.5 μm in diameter with a 

cationic matrix and anionic patches. The bulk of these patchy particles are composed of amidinated 

polystyrene (PS). The patches of the particles are anionic 3-(Trimethoxysilyl)propyl methacrylate 

(TPM). The entire surface is coated in triblock copolymer Pluronic F108 to the particles to further 

stabilize. The particles are then suspended in a 0.5%wt. F108 aqueous solution.  

We conducted a few preliminary experiments with these particles to see if the 

heterogeneous surface functionalization would allow the particles to bind without being fully 

enveloped. Our experiments followed the same procedure outlined for the spherical particles in 

chapter 2, using DOPC vesicles doped with the cationic DOTAP to enhance binding. We used a 
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perfusion chamber, flowed in the patchy particles, and observed the interactions. Indeed, we 

observed that the particles bound to the membrane but were not fully enveloped (Fig. 5.4). We 

propose that these large bound particles could be used to track diffusion on the membrane with 

and without nanoparticles present.83 They could be used, for example, to see whether the network 

structure predicted by simulations, in chapter 3, makes the membrane more rigid or more viscous 

for a much larger tracer particle. This would allow for an indirect measurement of the diffusion of 

the nanoparticles on the membrane and may provide new insight into the collective dynamics of 

the many particle system. 

 
Figure 5.5: Oppositely charged vesicles 

The top row shows brightfield micrographs, the bottom row depicts their confocal fluorescence counterparts. The vesicles visible 

via confocal microscopy are composed of 50% DOTAP / 50% DOPC / >1% rhDOPE. The unlabeled vesicles which are only 

visible via brightfield microscopy are composed of 50% DOPG / 50% DOPC. The left-hand column shows an example of vesicle 

destruction due to the interaction of the oppositely charged vesicles. The right-hand column shows oppositely charged vesicles in 

physical proximity to one another without adhesion or disruption. 

 

 

Subsection 2.4: Interactions of oppositely charged vesicles 

 

We briefly explored the interactions of vesicles composed of oppositely charged lipids. For 

these experiments we used vesicles composed of 50/50 DOPC/DOTAP (<1 % rhDOPE) and 50/50 
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DOPC/DOPG. DOPG is an anionic lipid which should be attracted to the cationic DOTAP. The 

question we wanted to explore was how will oppositely charged vesicles interact, will they adhere 

to one another to form a vesicle gel or can we arrange for one vesicle to engulf a smaller one in 

the manner of phagocytosis. What we found was perplexing. We observed both complete vesicle 

destruction simultaneous to non-interacting vesicles, (Fig. 5.5). Surprising still the non-interacting 

vesicles were observed to be in physical contact with their oppositely charged neighbors but not 

adhering or spreading over one another. Destruction occurred rapidly suggesting perhaps some 

external mechanical trigger (like the initial flow combining the vesicles) is required to cause 

interaction and destruction. 

This system may still provide a worthwhile investigation. Nanoparticle toxicity is an issue 

that is still being explored and represents a real hindrance to a technology’s adaptation into 

practical medicine. Being able to induce rupture without the use of nanoparticles is advantageous 

in this context. More work is needed to determine under what conditions rupture occurs in order 

to control the process. Subsequent control opens the door to application in encapsulation and 

release. 

 

 

Section 3: Conclusion 
 

The work described in this thesis provides new insight into the ways in which nanoparticles 

interact with lipid bilayer membranes and the parameters that governor that interaction. The first 

questions we posed was: How do nanospheres interact with and deform lipid bilayer membranes 

and what are the key parameters that govern that interaction. As is described in detail in chapter 3, 

we showed that the adhesion strength (of the particles to the membrane) governed the particles 

binding configuration resulting in either the formation of a bulk vesicle gel or the destruction of 
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the vesicle. The second question we asked was: How do the multiple regions of curvature for rod 

shaped particles expand the possible binding configurations of the rod to the membrane and what 

effect does this have on the bulk interactions in the many particle system. In chapter 4 we described 

in detail the results that answer this question. We show indeed an increase in the possible binding 

configurations as well as expanding our understanding of how specific particle binding 

configurations depend on adhesion strength, particle concentration and vesicle tension. These 

results present a first of its kind analysis on the key parameters that govern the interaction between 

lipid vesicles and nanoparticles resulting in a compelling state diagram. We also present the first 

ever reported direct observation of attractive interaction between nanorods on a lipid bilayer 

membrane. This is particularly significant as much of the current literature predicted repulsive 

interactions. The results presented in their totality paint a clear picture of the dependence on 

particle shape, adhesion strength, particle concentration and membrane tension on the binding of 

nanoscale particles to lipid bilayer membranes. Controlling these key parameters allowed us to 

deform the membrane in a variety of unique, repeatable and characterizable ways.  

These results show a unified picture that could explain the wide variety of behaviors 

reported previously with vesicles exposed to nanoparticles, viruses, proteins, or polymers. The 

robust nature of these results is in part due to the wide parameter space that was explored. This 

work demonstrates how powerful controlling and tuning core parameters is in illuminating 

fundamental properties. Additionally, the ability to tune morphology opens the door to the design 

of smart responsive membrane-based materials. These results could be used to motivate the 

creation of cargo-carrying vesicle gels that rupture when exposed to external stimuli11, or for the 

design of controlled release over extended periods of time. Realizing these applications requires a 

fundamental understanding of the design principles that govern the deformation and remodeling 
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of lipid bilayer membranes. This work makes a major contribution to the understand of and 

implementation of these parameters and provides key insight into intuitive next steps. This could 

include exploring different particle geometries, exploiting inhomogeneous particle 

functionalization, mixing particles of different geometries and so much more. Biological systems 

have shown us how a diversity of proteins and biomolecules can work in tandem to do useful work 

for cells. So, too we hope to harness that same functionality to inspire the formation of new bio-

inspired membrane-based materials. 
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APPENDIX 

VESICLE SIZE TRACKING 

Primary Script 
 

File name: findVesicle_Single_Rate.m 

%% Vesicle finding with Circular Hough Transform  
% Sarah Zuraw-Weston 
% 
% Code uses the |circle_hough| and |circle_houghpeaks| to find 
% circular objects in an image. 
% 
% Uses the Image Processing Toolbox 

  
%% User Inputs 
% Figure Title 
PlotTitle = '60% DOTAP and 10 nM DNA Rods Vesicle 15'; 
Trial = 'V15'; 

  
% Filename and folder with format "path/filename" + 0000 
path = 

'C:\Users\sarah\Documents\MATLAB\findVesicle\Data\11_21_2019_DNAorigamiTW_10n

M_Balanced_60DOTAP\60DOTAP_test15\60DOTAP'; 
pathFigures = 

'C:\Users\sarah\Documents\MATLAB\findVesicle\Data\11_21_2019_DNAorigamiTW_10n

M_Balanced_60DOTAP\60DOTAP_test15\'; 

  
% Number of frames to be analyzed (counting the first frame as 0) 
firstFrame = 1; 
lastFrame = 251; 
frames = lastFrame - firstFrame; 

  
% frames per second 
frameRate = 0.5; 
v = zeros(1,frames); 

  
% Note the approximate center of the vesicle  
centerx = 91; 
centery = 95; 

  
% Note frame where the vesicle has a sudden decrease in radius 
% If no jump set to zero 
jump = 0; 

  
% Note the approx. min and max radius of the vesicle before sudden jump 
% Before jump 
% if no jump use  rminStart and rmaxStart 
rminStart = 10; 
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rmaxStart = 40; 

  
% After jump 
rminEnd = 20; 
rmaxEnd = 30; 

  
  

 

  
%% Setup 
% Loop over all the frames 
c = firstFrame; 
k =0; 

  
for i = 0:(frames-1) 

tic; 

  
d = num2str(c); 

  
if c<10 

     filename = [path,'000', d]; 
end 

  
if 9<c && c<100 

filename = [path,'00', d]; 
end 

  
if 99<c && c<1000 

     filename = [path,'0', d]; 
end 

  
if 999<c && c<10000 

      filename = [path,'', d]; 
end 

  
% Reads an image, gets its edges 
im = imread(filename,'tiff'); 

  
% Display original image 
%figure(1) 
%imshow(im); 

  

  
% Create a black and white image of only the edges of the vesicles 
% [e,threshOut] = edge(im, 'canny',[low high],std);  
e = edge(im, 'canny',[0.0000 0.0001],1.5); 

  
% Remove objects that are less then 50 pixels (stray lines) 
e = bwareaopen(e, 20); 

  
% Display edge image 
%figure(2) 
%imshow(e); 
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%% Carry out the HT 
% The circles round the vesicles have radii in a specified pixel range.  
% To make sure we cover the range, we search radii in steps of 1 pixel. 

  
if ((c < jump) || (jump == 0)) 

      radii = rminStart:1:rmaxStart; 
else 

      radii = rminEnd:1:rmaxEnd; 
end 

  
% We run the Hough transform on our edge image over our range of radii 
% We select the 'same' option to simplify later processing, and the 
% 'normalize' option to avoid a bias towards finding larger circles. 

  
h = circle_hough(e, radii, 'same', 'normalise'); 

  

  
%% Find some peaks in the accumulator 
% We use the neighborhood-suppression method of peak finding to ensure 
% that we find spatially separated circles. 

  
% peaks = circle_houghpeaks(h, radii ,[minimum threshold],'nhoodxy', 

odd int,  
% 'nhoodr', odd int); 
% minimum(hard min you set, if specified unrelated to h_max)  
% threshold(multiplied by h_max)] default [0.4*h_max 0.5*h_max] 

  
peaks = Copy_of_circle_houghpeaks(h, radii, [1.5 0.8],'nhoodxy', 45, 

'nhoodr', 35, 'npeaks', 8); 

  

  
%% Look at the results 
% We draw the circles found on the image, using both the positions and 

the 
% radii stored in the |peaks| array. The |circlepoints| function is 
% convenient for this - it is also used by |circle_hough| so comes with 

it. 
% tally and display result of fits 

  
x = 1:max(radii); 
f = false(1,max(radii)); 
f(peaks(3,:)) = 1; 
x = x(f); 
z = zeros(length(x),2); 
ind = 1; 
for y = x 

      z(ind,2) = sum(peaks(3,:)==y); 
      ind = ind+1; 

end 

  
% Select circle with center closest to the center of image 

  
dist =  zeros(length(peaks(1,:)),1); 



116 
 

for j = 1:length(peaks(1,:)) 
      dist(j)=sqrt((centerx-peaks(1,j))^2 + (centery-peaks(2,j))^2); 

end 

  
[val,idx] = min(dist); 

  
% Record the radius of the center most vesicle for this frame 
v(k+1) = peaks(3,idx); 

  

  
% If difference in radius is still greater than 10 pixels from the 

previous 
%vesicle assign the current vesicle the average radius of the previous 

ten 

  
if k>10 && ((v(k+1)>(v(k)+10)) || (v(k+1)<(v(k)-10))) && (c ~= jump) 

      %assign radius to be the average of the last 10 radius measured 
      ave = 0; 
      for m = 1:10 
          ave = ave + v(k-m); 
      end 
      ave = ave/10; 
      v(k+1) = ave; 

     
disp('Reassigned Vesicle Radius to the average of last 10 

vesicles'),  
      disp('   ----------'), 
      disp(v(k+1)); 

end 

  
% Overlay edge on original image 
figure(3) 
imshow(im); 
hold on; 

  
% Draw All circles 
for peak = peaks 

      [x, y] = circlepoints(peak(3)); 
      plot(x+peak(1), y+peak(2), 'r-'); 

end 
scatter(peaks(1,:),peaks(2,:),'.b') 

  
% Draw circle with center closest to the center of image 
[x, y] = circlepoints(peaks(3,idx)); 
plot(x+peaks(1,idx), y+peaks(2,idx), 'g-'); 
scatter(peaks(1,idx),peaks(2,idx),'.b') 

  
hold off 

  
% Save circle images 
folder = [ pathFigures 'CirclesDrawn\']; 
figureName = [d,'.jpg']; 
saveas(figure(3),[folder figureName]);  
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disp('Iteration'), 
disp('   ----------') 
disp(k+1); 

  
%advancing each frame 
c = c+1; 
%counter that advances vector, v, storing the #vesicles in each frame 
k = k+1; 

  
toc; 

end 

  

  
% Make Figures 
n = 0:(frames-1); 
m = (n*frameRate)/60; 

  

  

  
if (jump~=0) 
    %Plot frames vs radius 
    figure(4) 
    hold on 
    plot(n,v) 

     
    %divide data between before and after jump 
    j = jump - firstFrame; 
    nbefore = n(1:j); 
    nafter = n((j+1):end); 
    vbefore = v(1:j); 
    vafter = v((j+1):end); 

     
    %Apply linear fit before jump and save as .txt 
    fit1ml = fitlm(nbefore,vbefore); 
    disp('Before Jump ----------'); 
    disp(fit1ml); 
    f1 = evalc('disp(fit1ml)'); 
    fileID = fopen([pathFigures 'fitBefore.txt'],'w'); 
    fprintf(fileID,f1); 
    fclose(fileID); 
    fit1_est = nbefore.*(fit1ml.Coefficients.Estimate(2))+ 

(fit1ml.Coefficients.Estimate(1)); 
    plot(nbefore,fit1_est,'r--','LineWidth', 2); 

     
    %Apply linear fit after jump and save as .txt 
    fit2ml = fitlm(nafter,vafter); 
    disp('After Jump ----------'); 
    disp(fit2ml); 
    f2 = evalc('disp(fit2ml)'); 
    fileID = fopen([pathFigures 'fitAfter.txt'],'w'); 
    fprintf(fileID,f2); 
    fclose(fileID); 
    fit2_est = nafter.*(fit2ml.Coefficients.Estimate(2))+ 

(fit2ml.Coefficients.Estimate(1)); 
    plot(nafter,fit2_est,'g--','LineWidth', 2); 
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    %Plot fits on data and save as .fig 
    title(PlotTitle) 
    xlabel('Time (frames)') 
    ylabel('Vesicles Radius (pixels)'); 
    legend('Vesicle Radius',['Fit 1 y ='       

num2str(round(fit1ml.Coefficients.Estimate(2),3)) '*x +' 

num2str(round(fit1ml.Coefficients.Estimate(1),3))],['Fit 2 y =' 

num2str(round(fit2ml.Coefficients.Estimate(2),3)) '*x +' 

num2str(round(fit2ml.Coefficients.Estimate(1),3))]); 

     
    hold off 
    savefig([pathFigures Trial '.fig']); 

     
else 
    %Plot frames vs radius 
    figure(4) 
    hold on 
    plot(n,v) 

     
    %Apply linear fit save as .txt 
    fit1ml = fitlm(n,v); 
    disp('Fit ----------'); 
    disp(fit1ml); 
    f1 = evalc('disp(fit1ml)'); 
    fileID = fopen([pathFigures 'fit.txt'],'w'); 
    fprintf(fileID,f1); 
    fclose(fileID); 
    fit1_est = n.*(fit1ml.Coefficients.Estimate(2))+ 

(fit1ml.Coefficients.Estimate(1)); 
    plot(n,fit1_est,'r--','LineWidth', 2); 

     
    %Plot fits on data and save as .fig 
    title(PlotTitle) 
    xlabel('Time (frames)') 
    ylabel('Vesicles Radius (pixels)'); 
    legend('Vesicle Radius',['Fit 1 y =' 

num2str(round(fit1ml.Coefficients.Estimate(2),3)) '*x +' 

num2str(round(fit1ml.Coefficients.Estimate(1),3))]); 

     
    hold off 
    savefig([pathFigures Trial '.fig']); 

     
end 
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Circle Function 
 

File name: circle_hough.m 

function [h, margin] = circle_hough(b, rrange, varargin) 
%CIRCLE_HOUGH Hough transform for circles 
%   [H, MARGIN] = CIRCLE_HOUGH(B, RADII) takes a binary 2-D image B and a 
%   vector RADII giving the radii of circles to detect. It returns the 3-D 
%   accumulator array H, and an integer MARGIN such that H(I,J,K) contains 
%   the number of votes for the circle centred at B(I-MARGIN, J-MARGIN), 
%   with radius RADII(K). Circles which pass through B but whose centres 
%   are outside B receive votes. 
% 
%   [H, MARGIN] = CIRCLE_HOUGH(B, RADII, opt1, ...) allows options to be 
%   set. Each option is a string, which if included has the following 
%   effect: 
% 
%   'same' returns only the part of H corresponding to centre positions 
%   within the image. In this case H(:,:,k) has the same dimensions as B, 
%   and MARGIN is 0. This option should not be used if circles whose 
%   centres are outside the image are to be detected. 
% 
%   'normalise' multiplies each slice of H, H(:,:,K), by 1/RADII(K). This 
%   may be useful because larger circles get more votes, roughly in 
%   proportion to their radius. 
% 
%   The spatial resolution of the accumulator is the same as the spatial 
%   resolution of the original image. Smoothing the accumulator array 
%   allows the effective resolution to be controlled, and this is probably 
%   essential for sensitivity to circles of arbitrary radius if the spacing 
%   between radii is greater than 1. If time or memory requirements are a 
%   problem, a generalisation of this function to allow larger bins to be 
%   used from the start would be worthwhile. 
% 
%   Each feature in B is allowed 1 vote for each circle. This function 
%   could easily be generalised to allow weighted features. 
% 
%   See also CIRCLEPOINTS, CIRCLE_HOUGHPEAKS, CIRCLE_HOUGHDEMO 

 
% Copyright David Young 2008, 2010 

  
% % argument checking 
% opts = {'same' 'normalise'}; 
% narginchk(2, 2+length(opts)); 
% validateattributes(rrange, {'double'}, {'real' 'positive' 'vector'}); 
% if ~all(ismember(varargin, opts)) 
%     error('Unrecognised option'); 
% end 

  
% get indices of non-zero features of b 
[featR, featC] = find(b); 

  
% set up accumulator array - with a margin to avoid need for bounds checking 
[nr, nc] = size(b); 
nradii = length(rrange); 
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margin = ceil(max(rrange)); 
nrh = nr + 2*margin;        % increase size of accumulator 
nch = nc + 2*margin; 
h = zeros(nrh*nch*nradii, 1, 'uint32');  % 1-D for now, uint32 a touch faster 

  
% get templates for circles at all radii - these specify accumulator 
% elements to increment relative to a given feature 
tempR = []; tempC = []; tempRad = []; 
for i = 1:nradii 
    [tR, tC] = circlepoints(rrange(i)); 
    tempR = [tempR tR]; %#ok<*AGROW> 
    tempC = [tempC tC]; 
    tempRad = [tempRad repmat(i, 1, length(tR))]; 
end 

  

% Convert offsets into linear indices into h - this is similar to sub2ind. 
% Take care to avoid negative elements in either of these so can use 
% uint32, which speeds up processing by a factor of more than 3 (in version 
% 7.5.0.342)! 
tempInd = uint32( tempR+margin + nrh*(tempC+margin) + nrh*nch*(tempRad-1) ); 
featInd = uint32( featR' + nrh*(featC-1)' ); 

  
% Loop over features 
for f = featInd 
    % shift template to be centred on this feature 
    incI = tempInd + f; 
    % and update the accumulator 
    h(incI) = h(incI) + 1; 
end 

  
% Reshape h, convert to double, and apply options 
h = reshape(double(h), nrh, nch, nradii); 

  
if ismember('same', varargin) 
    h = h(1+margin:end-margin, 1+margin:end-margin, :); 
    margin = 0; 
end 

  
if ismember('normalise', varargin) 
    h = bsxfun(@rdivide, h, reshape(rrange, 1, 1, length(rrange))); 
end 

  
end 
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Peak Function 
 

File name: circle_houghpeaks.m 

function peaks = circle_houghpeaks(h, radii, varargin) 
%CIRCLE_HOUGHPEAKS finds peaks in the output of CIRCLE_HOUGH 
%   PEAKS = CIRCLE_HOUGHPEAKS(H, RADII, MARGIN, OPTIONS) locates the 
%   positions of peaks in the output of CIRCLE_HOUGH. The result PEAKS is a 
%   3 x N array, where each column gives the position and radius of a 
%   possible circle in the original array. The first row of PEAKS has the 
%   x-coordinates, the second row has the y-coordinates, and the third row 
%   has the radii. 
% 
%   H is the 3D accumulator array returned by CIRCLE_HOUGH. 
% 
%   RADII is the array of radii which was passed as an argument to 
%   CIRCLE_HOUGH. 
% 
%   MARGIN is optional, and may be omitted if the 'same' option was used 
%   with CIRCLE_HOUGH. Otherwise, it should be the second result returned 
%   by CIRCLE_HOUGH. 
% 
%   OPTIONS is a comma-separated list of parameter/value pairs, with the 
%   following effects: 
% 
%   'Smoothxy' causes each x-y layer of H to be smoothed before peak 
%   detection using a 2D Gaussian kernel whose "sigma" parameter is given 
%   by the value of this argument. 
% 
%   'Smoothr' causes each radius column of H to be smoothed before peak 
%   detection using a 1D Gaussian kernel whose "sigma" parameter is given 
%   by the value of this argument. 
% 
%       Note: Smoothing may be useful to locate peaks in noisy accumulator 
%       arrays. However, it may also cause the performance to deteriorate 
%       if H contains sharp peaks. It is most likely to be useful if 
%       neighbourhood suppression (see below) is not used. 
% 
%       Both smoothing operations use reflecting boundary conditions to 
%       compute values close to the boundaries. 
% 
%   'Threshold' sets the minimum number of votes (after any smoothing) 
%   needed for a peak to be counted. The default is 0.5 * the maximum value 
%   in H. 
% 
%   'Npeaks' sets the maximum number of peaks to be found. The highest 
%   NPEAKS peaks are returned, unless the threshold causes fewer than 
%   NPEAKS peaks to be available. 
% 
%   'Nhoodxy' must be followed by an odd integer, which sets a minimum 
%   spatial separation between peaks. See below for a more precise 
%   statement. The default is 1. 
% 
%   'Nhoodr' must be followed by an odd integer, which sets a minimum 
%   separation in radius between peaks. See below for a more precise 
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%   statement. The default is 1. 
% 
%       When a peak has been found, no other peak with a position within an 
%       NHOODXY x NHOODXY x NHOODR box centred on the first peak will be 
%       detected. Peaks are found sequentially; for example, after the 
%       highest peak has been found, the second will be found at the 
%       largest value in H excepting the exclusion box found the first 
%       peak. This is similar to the mechanism provided by the Toolbox 
%       function HOUGHPEAKS. 
% 
%       If both the 'Nhoodxy' and 'Nhoodr' options are omitted, the effect 
%       is not quite the same as setting each of them to 1. Instead of a 
%       sequential algorithm with repeated passes over H, the Toolbox 
%       function IMREGIONALMAX is used. This may produce slightly different 
%       results, since an above-threshold point adjacent to a peak will 
%       appear as an independent peak using the sequential suppression 
%       algorithm, but will not be a local maximum.  
% 
%   See also CIRCLE_HOUGH, CIRCLE_HOUGHDEMO 

  
% check arguments 
params = checkargs(h, radii, varargin{:}); 

  
% smooth the accumulator - xy 
if params.smoothxy > 0 
    [m, hsize] = gaussmask1d(params.smoothxy); 
    % smooth each dimension separately, with reflection 
    h = cat(1, h(hsize:-1:1,:,:), h, h(end:-1:end-hsize+1,:,:)); 
    h = convn(h, reshape(m, length(m), 1, 1), 'valid'); 

     
    h = cat(2, h(:,hsize:-1:1,:), h, h(:,end:-1:end-hsize+1,:)); 
    h = convn(h, reshape(m, 1, length(m), 1), 'valid'); 
end 

  
% smooth the accumulator - r 
if params.smoothr > 0 
    [m, hsize] = gaussmask1d(params.smoothr); 
    h = cat(3, h(:,:,hsize:-1:1), h, h(:,:,end:-1:end-hsize+1)); 
    h = convn(h, reshape(m, 1, 1, length(m)), 'valid'); 
end 

  
% set threshold 

  

 if isempty(params.threshold) 
        params.threshold = 0.5 * max(h(:));  
 end 

  
if isempty(params.nhoodxy) && isempty(params.nhoodr) 
    % First approach to peak finding: local maxima 

     
    % find the maxima 
    maxarr = imregionalmax(h); 

     
    maxarr = maxarr & h >= params.threshold; 
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    % get array indices 
    peakind = find(maxarr); 
    [y, x, rind] = ind2sub(size(h), peakind); 
    peaks = [x'; y'; radii(rind)]; 

     
    % get strongest peaks 
    if ~isempty(params.npeaks) && params.npeaks < size(peaks,2) 
        [~, ind] = sort(h(peakind), 'descend'); 
        ind = ind(1:params.npeaks); 
        peaks = peaks(:, ind); 
    end 

     
else 
    % Second approach: iterative global max with suppression 
    if isempty(params.nhoodxy) 
        params.nhoodxy = 1; 
    elseif isempty(params.nhoodr) 
        params.nhoodr = 1; 
    end 
    nhood2 = ([params.nhoodxy params.nhoodxy params.nhoodr]-1) / 2; 

     
    if isempty(params.npeaks) 
        maxpks = 0; 
        peaks = zeros(3, round(numel(h)/100));  % preallocate 
    else 
        maxpks = params.npeaks;   
        peaks = zeros(3, maxpks);  % preallocate 
    end 

     
    np = 0; 
    while true 
        [r, c, k, v] = max3(h); 
        % stop if peak height below threshold 
        if v < params.threshold || v == 0 
            break; 
        end 
        np = np + 1; 
        peaks(:, np) = [c; r; radii(k)]; 
        % stop if done enough peaks 
        if np == maxpks 
            break; 
        end 
        % suppress this peak 
        r0 = max([1 1 1], [r c k]-nhood2); 
        r1 = min(size(h), [r c k]+nhood2); 
        h(r0(1):r1(1), r0(2):r1(2), r0(3):r1(3)) = 0; 
    end  
    peaks(:, np+1:end) = [];   % trim 
end 

  
% adjust for margin 
if params.margin > 0 
    peaks([1 2], :) = peaks([1 2], :) - params.margin; 
end 
end 
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function params = checkargs(h, radii, varargin) 
% Argument checking 
ip = inputParser; 

  
% required 
htest = @(h) validateattributes(h, {'double'}, {'real' 'nonnegative' 

'nonsparse'}); 
ip.addRequired('h', htest); 
rtest = @(radii) validateattributes(radii, {'double'}, {'real' 'positive' 

'vector'}); 
ip.addRequired('radii', rtest); 

  
% optional 
mtest = @(n) validateattributes(n, {'double'}, {'real' 'nonnegative' 

'integer' 'scalar'}); 
ip.addOptional('margin', 0, mtest);  

  
% parameter/value pairs 
stest = @(s) validateattributes(s, {'double'}, {'real' 'nonnegative' 

'scalar'}); 
ip.addParamValue('smoothxy', 0, stest); 
ip.addParamValue('smoothr', 0, stest); 
ip.addParamValue('threshold', [], stest); 
nptest = @(n) validateattributes(n, {'double'}, {'real' 'positive' 'integer' 

'scalar'}); 
ip.addParamValue('npeaks', [], nptest); 
nhtest = @(n) validateattributes(n, {'double'}, {'odd' 'positive' 'scalar'}); 
ip.addParamValue('nhoodxy', [], nhtest); 
ip.addParamValue('nhoodr', [], nhtest); 
ip.parse(h, radii, varargin{:}); 
params = ip.Results; 
end 

  
function [m, hsize] = gaussmask1d(sigma) 
% truncated 1D Gaussian mask 
hsize = ceil(2.5*sigma);  % reasonable truncation 
x = (-hsize:hsize) / (sqrt(2) * sigma); 
m = exp(-x.^2); 
m = m / sum(m);  % normalise 
end 

  
function [r, c, k, v] = max3(h) 
% location and value of global maximum of a 3D array 
[vr, r] = max(h); 
[vc, c] = max(vr); 
[v, k] = max(vc); 
c = c(1, 1, k); 
r = r(1, c, k); 
end 
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Circle points Function 

 

File name: circlepoints.m 

function [x, y] = circlepoints(r) 
%CIRCLEPOINTS  Returns integer points close to a circle 
%   [X, Y] = CIRCLEPOINTS(R) where R is a scalar returns coordinates of 
%   integer points close to a circle of radius R, such that none is 
%   repeated and there are no gaps in the circle (under 8-connectivity). 
% 
%   If R is a row vector, a circle is generated for each element of R and 
%   the points concatenated. 

  
%   Copyright David Young 2010 

  
x = []; 
y = []; 
for rad = r 
    [xp, yp] = circlepoints1(rad); 
    x = [x xp]; 
    y = [y yp]; 
end 

  
end 

     
function [x, y] = circlepoints1(r)     
% Get number of rows needed to cover 1/8 of the circle 
l = round(r/sqrt(2)); 
if round(sqrt(r.^2 - l.^2)) < l   % if crosses diagonal 
    l = l-1; 
end 
% generate coords for 1/8 of the circle, a dot on each row 
x0 = 0:l; 
y0 = round(sqrt(r.^2 - x0.^2)); 
% Check for overlap 
if y0(end) == l 
    l2 = l; 
else 
    l2 = l+1; 
end 
% assemble first quadrant 
x = [x0 y0(l2:-1:2)];  
y = [y0 x0(l2:-1:2)]; 
% add next quadrant 
x0 = [x y]; 
y0 = [y -x]; 
% assemble full circle 
x = [x0 -x0]; 
y = [y0 -y0]; 
end 
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