
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Doctoral Dissertations Dissertations and Theses 

9-1-2020 

Shared Neural Substrates of Perception and Memory: Testing the Shared Neural Substrates of Perception and Memory: Testing the 

Assumptions and Predictions of the Representational-Hierarchical Assumptions and Predictions of the Representational-Hierarchical 

Account Account 

D. Merika W. Sanders 
University of Massachusetts Amherst 

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 

 Part of the Cognition and Perception Commons, Cognitive Neuroscience Commons, and the Cognitive 

Psychology Commons 

Recommended Citation Recommended Citation 
Sanders, D. Merika W., "Shared Neural Substrates of Perception and Memory: Testing the Assumptions 
and Predictions of the Representational-Hierarchical Account" (2020). Doctoral Dissertations. 2076. 
https://doi.org/10.7275/18995617 https://scholarworks.umass.edu/dissertations_2/2076 

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at 
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of ScholarWorks@UMass Amherst. For more information, please contact 
scholarworks@library.umass.edu. 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2076&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/407?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2076&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/57?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2076&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/408?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2076&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/408?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2076&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/18995617
https://scholarworks.umass.edu/dissertations_2/2076?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F2076&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


 

 

 

 

 

 

 

SHARED NEURAL SUBSTRATES OF PERCEPTION AND MEMORY: 

TESTING THE ASSUMPTIONS AND PREDICTIONS OF THE 

REPRESENTATIONAL-HIERARCHICAL ACCOUNT 

 

 

 

 

 

 

 

A Dissertation Presented 

 

by 

 

D. MERIKA W. SANDERS 

 

 

 

 

 

 

 

Submitted to the Graduate School of the 

University of Massachusetts Amherst in partial fulfillment 

of the requirements for the degree of 

 

 

DOCTOR OF PHILOSOPHY 

 

 

September 2020 

 

 

Psychology 

   

   

 

  

 

   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by D. Merika W. Sanders 2020 

All Rights Reserved 



 

SHARED NEURAL SUBSTRATES OF PERCEPTION AND MEMORY: 

TESTING THE ASSUMPTIONS AND PREDICTIONS OF THE 

REPRESENTATIONAL-HIERARCHICAL ACCOUNT 

 

 

 

 

 

A Dissertation Presented 

 

by 

 

D. MERIKA W. SANDERS 

 

 

 

 

 

Approved as to style and content by: 

 

 

 

_____________________________ 

Rosemary Cowell, Chair 

 

 

 

_____________________________ 

Jeffrey Starns, Member 

 

 

 

_____________________________ 

Rebecca Spencer, Member 

 

 

 

_____________________________ 

Ethan Meyers, Member 

 

 

_____________________________ 

Caren Rotello, Department Head 

Psychological and Brain Sciences 

  



 

 

DEDICATION 

 From application 

to dissertation, always 

my cheerleader, Aus



v 

 

ACKNOWLEDGMENTS 

First, thank you to my advisor, Rosie Cowell, whose mentorship was instrumental 

to my academic success. Undoubtedly the generous commitment on her behalf, not 

limited to one-on-one tutorials on fMRI analysis during my first year, was critical in 

establishing the research skill set I utilized here. Moreover, her unwavering support and 

genuine interest in my ideas has nurtured my confidence as an independent scientist. 

Second, I would like to thank the members of my dissertation committee: Jeff 

Starns, Bekki Spencer, and Ethan Meyers. The expertise they provided via thoughtful 

questions and feedback improved the research presented here. I would also like to thank 

the faculty members of the Cognition and Cognitive Neuroscience division that assisted 

me throughout my graduate career. This includes the members of my comprehensive 

exam committee (Dave Huber & Jeff Starns), my masters committee (Bekki Spencer & 

Jeff Starns), and my graduate statistics professor (Andrew Cohen). The guidance I 

received during each of these milestones was significant in bringing this work to fruition. 

Third, I am grateful for my fellow students, both undergraduate and graduate. The 

efforts of research assistants in the Computational Memory and Perception Lab made 

stimulus creation and piloting possible. Further, the advice, expertise, and friendship 

provided by my graduate colleagues provided refuge on many hard, stressful days. 

Finally, I would like to express my deepest gratitude to my family. So much of 

who and where I am today is due to their encouragement and unbelievable understanding 

when I had to prioritize my research. Especially to my little family: my husband, Austin, 

and our “dogaughter”, Annie. I could not have achieved this without your boundless love.  



vi 

ABSTRACT 

SHARED NEURAL SUBSTRATES OF PERCEPTION AND MEMORY: 

TESTING THE ASSUMPTIONS AND PREDICTIONS OF THE 

REPRESENTATIONAL-HIERARCHICAL ACCOUNT 

 

SEPTEMBER 2020 

D. MERIKA W. SANDERS, B.S., ST. LAWRENCE UNIVERSITY 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Rosemary A. Cowell 

 

Proponents of the representational-hierarchical (R-H) account claim that memory 

and perception rely on shared neural representations. In the ventral visual stream, 

posterior brain areas are assumed to represent simple information (e.g. low-level image 

properties), but the complexity of representations increases toward more anterior areas, 

such as inferior temporal cortex (e.g., object-parts, objects), extending into the medial 

temporal lobe (MTL; e.g. scenes). This view predicts that brain structures along this 

continuum serve both memory and perception; a structure’s engagement is determined by 

the representational demands of a task, rather than the cognitive process putatively 

involved. 

In a neuroimaging study, I searched for the transition from feature-based 

representations to conjunction-based representations along this pathway. In the first scan 

session, participants viewed two stimulus sets with different levels of complexity: 

fribbles (novel 3D objects) and scenes (novel, computer-generated rooms). According to 

the R-H account, a neural feature-code for both fribbles and scenes should reside in 
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posterior ventral visual stream. I predicted a transition to conjunction-coding toward 

MTL, with the transition for the simpler stimulus set (fribbles) occurring earlier. 

Next, I measured memory signals while varying (1) stimulus complexity and (2) 

type of retrieved information (features or conjunctions). In a second scan session, 

participants completed a recognition memory task for fribbles and scenes, with three 

mnemonic classes of item. Novel items comprised novel features combined in a novel 

conjunction; Recombination items possessed features that had been seen in the first 

session, but never within the same item (i.e., familiar features, but novel conjunctions); 

and Familiar items comprised familiar features and familiar conjunctions. Under the R-H 

account, a memory task that requires only the retrieval of feature-based information 

should recruit visual cortex rather than MTL. Further, these “feature memory” signals 

should map onto feature-coding regions found in the first session. 

Analyses revealed that visual regions, outside of MTL, contained (1) more 

information about individual features than conjunctions of features (first session data), 

and (2) the greatest signal for feature memory (second session data). Thus, cortical 

regions that best represented feature information during perception also best signaled 

feature information in memory and were located outside MTL.  
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CHAPTER 1 

 

INTRODUCTION 

1.1 Overview 

Scientists have frequently adopted analogies to help describe complex problems 

in cognitive psychology and cognitive neuroscience. In order to convey the multitude of 

specific functional components of the mind, Cosmides & Tooby (1994) likened it to a 

Swiss army knife. Similar to how the bottle opener of a Swiss army knife serves a 

specific purpose distinct from that of the corkscrew, they proposed that each aspect of 

cognition involved distinct mechanisms and operated independently from any other 

aspect of cognition. This meant that visual perception, the instantaneous processing of the 

visual environment, is mechanistically and functionally separate from memory, the 

process of retaining that same information over a delay and later retrieving it.  

Case studies demonstrating double-dissociations and the development of 

functional neuroimaging extended the Swiss army knife analogy beyond the mind to the 

brain (Kanwisher, 2006). Building on earlier animal findings (Blake, Jarvis, & Mishkin, 

1977; Cowey & Gross, 1970; Gross, Cowey, & Manning, 1971; Iwai & Mishkin, 1968; 

Wilson, Kaufman, Zieler, & Lieb, 1972), imaging researchers continued to designate 

brain regions as “memory” or “perception” areas and assumed that those regions were 

selectively involved in their namesake tasks (e.g. the fusiform face area and the 

perception of faces; Kanwisher, McDermott, & Chun, 1997). Despite the simplistic 

nature of the Swiss army knife analogy, its modular framework claiming that brain 

regions are specialized for singular cognitive processes has had considerable influence in 

behavioral and neuroimaging research. 
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The influence of modular research is notably illustrated by the effect of the 

seminal work with patient H.M. on theories of long-term declarative memory 

(Rosenbaum, Gilboa, & Moscovitch, 2014; Squire, 2009). Contrary to the then held 

belief that memory is distributed across the cortex and integrated with perception 

(Lashley, 1950), studies on H.M. asserted that medial temporal lobe (MTL) structures, 

including hippocampus (HC), parahippocampal (PHC), entorhinal (ERC) and perirhinal 

(PRC) cortices, are uniquely critical for encoding, storing, and retrieving memory for 

events and facts (Scoville & Milner, 1957). Further, the combination of impaired memory 

and preserved perception following MTL lesions supported the notion that memory and 

perception were separable cognitive processes carried out by distinct brain regions. These 

findings served as the foundation for the MTL memory system account, in which MTL is 

important in establishing long-term memories, but is uninvolved in visual perception 

(Squire & Zola-Morgan, 1991). 

The modular approach of the MTL memory system account continues to exert an 

influence on the field of memory research (e.g. Inhoff et al., 2019; S. Kim, Dede, 

Hopkins, & Squire, 2015; S.-H. Lee, Kravitz, & Baker, 2019; Suzuki, 2010). Under some 

theories extending this modular framework, long-term declarative memory has been 

further subdivided into separate sub-processes (i.e., recollection and familiarity) that are 

attributed to distinct MTL structures (e.g. Brown & Aggleton, 2001; Yonelinas, Aly, 

Wang, & Koen, 2010). Many experimental paradigms used in long-term memory 

retrieval research today (e.g. remember/know tests; item, source, and associative 

recognition tests) are explicitly designed to test either familiarity or recollection, or to 

tease apart these two mnemonic retrieval sub-processes. Additionally, many 
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neuroimaging or case study investigations of long-term declarative memory do not look 

beyond MTL (Davachi, 2006; Diana, Yonelinas, & Ranganath, 2007; Eichenbaum, 

Yonelinas, & Ranganath, 2007). 

More recent theories of long-term declarative memory have evolved to include 

extra-MTL brain structures, such as prefrontal cortex or parietal cortex, in memory 

‘networks’ (e.g. H. Kim, 2010; Ranganath & Ritchey, 2012; Rugg & Vilberg, 2013; 

Shimamura, 2011; Thakral, Wang, & Rugg, 2017). However, these memory networks 

reflect an evolution, rather than a rejection, of the modular approach to memory research. 

That is, researchers apply ‘memory’ functional labels to a collection of nonadjacent brain 

areas instead of contiguous brain areas, but the underlying approach of mapping 

component processes onto anatomical areas is the same. Therefore, although current 

memory research may not actively attempt to segregate memory and perception as 

modular research once did, much of it still operates within, and thus perpetuates, a Swiss 

army knife framework where memory and perception are separate component processes 

assumed to have distinct neural substrates. 

Importantly, this modern modular framework critically fails to account for three 

categories of findings, some now well-documented and some newly emerging. These 

findings are that (1) engagement of MTL structures also occurs during perceptual tasks; 

(2) engagement of MTL structures during mnemonic tasks is content-dependent (i.e., 

varies by what information is to be remembered); and (3) engagement of brain areas 

along the ventral visual stream (regions traditionally thought of as visuo-perceptual areas) 

occurs during mnemonic tasks for simple, visual information. I review these three classes 

of findings next. 
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1.2 MTL Engagement during Perception 

Despite the fact that patient H.M. had no apparent perceptual deficits, and PRC is 

included in the MTL memory system dedicated solely to memory, PRC is needed for 

some perceptual tasks, under specific circumstances. In a concurrent object 

discrimination task, two objects are presented simultaneously and, over several training 

trials in which responses to only one of the two objects is rewarded, participants learn to 

distinguish between rewarded objects and unrewarded objects. Early animal research 

indicated that PRC is involved in this task when "feature ambiguity" is present (Bartko, 

Winters, Cowell, Saksida, & Bussey, 2007b, 2007a; Bussey & Saksida, 2002; Bussey, 

Saksida, & Murray, 2002, 2003; Saksida, Bussey, Buckmaster, & Murray, 2006). Feature 

ambiguity occurs when individual features are shared between stimuli with different 

associated reward outcomes. For instance, a participant’s response is rewarded when the 

features are a part of one object, but is not rewarded when the features appear as part of a 

different object. That is, the unique conjunction of features, rather than the individual 

features themselves, are key for discrimination. Animals with PRC lesions were 

unimpaired when feature ambiguity was at a minimum (i.e., features appeared only as 

part of rewarded or unrewarded objects), but were severely impaired compared to 

controls when feature ambiguity was at a maximum (i.e., all features appeared as part of 

both rewarded and unrewarded objects).  

The finding that PRC is required to resolve feature ambiguity during concurrent 

object discrimination tasks was extended to humans by Barense et al. (2005). PRC-

lesioned patients were increasingly impaired at discriminating between rewarded and 

unrewarded object stimuli when the number of features that appeared as part of both 
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rewarded and unrewarded objects (i.e., feature ambiguity) increased. However, patients 

with lesions to HC, but intact PRC, performed similarly to healthy controls, regardless of 

the level of feature ambiguity.  

Subtle perceptual impairments following damage to the PRC extend beyond 

concurrent discrimination tasks to perceptual oddity tasks. In a perceptual oddity task, 

sets of objects are again presented simultaneously, so there is no need to remember the 

objects over any type of delay. The objective of this task is to determine which object of 

the set is different from all the others (i.e., the “odd object out”) and the task is made 

more or less difficult by changing how similar the distracters within the set are from each 

other. For example, the task is easier when all distracters are the same object pictured 

from the same angle than when all distracters are the same object, but pictured from 

different angles. Both PRC-lesioned animals and humans performed similarly to non-

lesioned controls during a perceptual oddity task when the “odd stimulus” could be 

discriminated from the distracters in the array by a simple feature, like color, shape or 

size (Bartko et al., 2007b, 2007a; Buckley, Booth, Rolls, & Gaffan, 2001; A. C. H. Lee, 

Buckley, et al., 2005). However, when the oddity task required discrimination based on 

complex representations of whole objects (e.g. when the distracters were the same face 

from different viewpoints, requiring a holistic representation to identify them as the 

same), those with PRC-lesions demonstrated significant deficits. Similar impairments 

were not found in participants with damage to HC, but intact PRC. 

Although the above findings imply that HC is not required during perception of 

objects, there is additional evidence that HC is involved in perception for other classes of 

stimulus, for example scene stimuli (Barense, Henson, Lee, & Graham, 2010; A. C. H. 



 

6 

Lee, Barense, & Graham, 2005; A. C. H. Lee, Buckley, et al., 2005; A. C. H. Lee, Yeung, 

& Barense, 2012). For instance, individuals diagnosed with Alzheimer’s disease, which 

predominantly causes atrophy in HC while affecting PRC to a lesser extent, or later in the 

disease progression, made more errors during a perceptual oddity task with scene stimuli 

than during the analogous task performed with faces (A. C. H. Lee, 2006). Additionally, 

HC-lesion patients made an increasing number of errors in a concurrent discrimination 

task as the level of feature ambiguity of scene stimuli increased (A. C. H. Lee, Bussey, et 

al., 2005). 

There is also a large body of evidence, stretching back decades, that the role of 

HC includes general spatial cognition (e.g. O’Keefe & Dostrovsky, 1971; O’Keefe & 

Nadel, 1978), as well as (discovered more recently) scene construction (e.g. Hassabis, 

Kumaran, Vann, & Maguire, 2007), and episodic future thinking involving scenes (e.g. 

Palombo, Hayes, Peterson, Keane, & Verfaellie, 2016). Owing to the functional diversity 

ascribed to HC on the basis of these results, the region may be better characterized as a 

critical region for general spatial context processing, which is called upon for a wide 

range of cognitive functions, including memory and perception (Maguire, Intraub, & 

Mullally, 2015; Mullally & Maguire, 2013; Zeidman, Mullally, & Maguire, 2015). 

However, an extension of the role of HC, or any other MTL structure, beyond a singular 

mnemonic function is incompatible with a traditional modular framework in which brain 

regions, or specific brain networks, are uniquely engaged in one cognitive function that 

operates independently from any other aspect of cognition. 

1.3 Content-dependent Engagement of MTL during Memory Retrieval 
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Many dominant theories of long-term declarative memory retrieval characterize it 

as two distinct mnemonic retrieval processes that are modulated by different MTL areas. 

Familiarity-based memory is associated with the event of “knowing” that an item has 

been seen previously without the ability to remember the contextual details of the 

episode, whereas recollection is associated with the event of “remembering” the 

episode’s contextual details, including the spatial and temporal context (Mandler, 1980). 

Early process-based accounts explicitly linked familiarity and recollection to medial 

temporal neocortex and HC, respectively (Aggleton & Brown, 1999; Norman & 

O’Reilly, 2003), but more recently the Binding of Items and Context (BIC) model 

additionally assumes that medial temporal neocortical structures differ in terms of the 

type of stimulus representations they process (Diana, Yonelinas, & Ranganath, 2007; 

Eichenbaum, Yonelinas, & Ranganath, 2007).  

According to the BIC model, PRC processes information pertaining to item 

representations, while PHC processes information pertaining to contextual, especially 

(but not limited to) spatial, representations. Item representations within PRC best support 

familiarity because familiarity judgements are based on item recognition alone and do not 

require the retrieval of contextual details. In contrast, PHC contributes to recollection, 

which requires the retrieval of the specific contextual details of an event, because it 

contains representations of contexts. HC is essential for recollection because it is 

theorized to bind PRC item representations and PHC context representations into item-

context associative representations, and so it is needed for the key process of recollection 

in which one aspect of a memory (e.g., an item) cues retrieval of another associated 

aspect (e.g., the encoding context). 
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Evidence for the claims of the BIC model appears to be substantial. Many studies 

support the role of PRC in item recognition (e.g. Eacott et al., 1994; Meunier et al., 1993; 

Winters, Forwood, Cowell, Saksida, & Bussey, 2004), and cued recall fMRI studies 

support the role of HC in recollection (e.g. Davachi, Mitchell, & Wagner, 2003; Diana et 

al., 2007; Hannula, Libby, Yonelinas, & Ranganath, 2013; Staresina, Cooper, & Henson, 

2013). In these cued recall studies, participants often study paired associates, for 

example, pictures of objects paired with pictures of scenes. At test, participants are cued 

with either the scene and asked to recall the object (i.e., item retrieval) or the object and 

asked to recall the scene (i.e., context retrieval). Researchers found that PHC was 

activated for successful context retrieval, and PRC was activated for successful item 

retrieval (Staresina et al., 2013). In contrast, HC was activated for retrieval of both item 

and context, and to a similar extent. Staresina et al. (2013) also used dynamic causal 

modeling to explore the flow of information between MTL regions. When objects cued 

retrieval of scenes, information flowed from PRC to PHC, but when scenes cued retrieval 

of objects, information flowed from PHC to PRC. Additionally, regardless of what 

stimulus type served as the cue or the target, HC further facilitated the flow of 

information between cue and target brain areas. 

However, traditional tests of recollection and familiarity have conflated 

differences in content with differences in mnemonic retrieval processes. That is, 

familiarity has consistently been tested using singly presented items (i.e., a non-

associative task), whereas recollection has consistently been tested using associative 

pairs. The above findings could instead reflect differences in the information processed 

within a MTL structure, rather than differences in retrieval processes/operations that each 
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MTL structure can compute (Cowell, Bussey, & Saksida, 2010; Ross, Sadil, Wilson, & 

Cowell, 2018). According to an alternative account (the Representational-Hierarchical 

account detailed below), PRC is engaged whenever processing involves objects; PHC is 

engaged for processing of more complex spatial information; and HC is engaged 

whenever the task requires processing the complex conjunction (or association) between 

items and context (often involving spatial properties). Consequently, recollection and 

familiarity can occur in any MTL structure, depending on whether the representations 

housed in that MTL structure are required for the task of recollecting or for judging 

familiarity, which in turn depends on what information is being recollected or judged. 

In an attempt to tease apart process and representation based accounts, Ross et al. 

(2018) created a cued recall paradigm with non-associative stimuli. While in a scanner, 

participants viewed images of objects and scenes. At test, participants were cued with 

circular patches taken from studied and unstudied images and asked if they specifically 

remembered the original whole image. For object stimuli, using a part of the image as the 

cue avoided HC associative representations that are usually involved during cued recall 

tasks. Instead, only intra-item, pre-experimentally established associations between 

object parts were required for successful completion of the task.  

The results indicated that HC engagement was dependent on the content of the to-

be-retrieved memory during the recall task: HC was engaged during scene recall, but not 

during object recall; in contrast, PRC was engaged during both object and scene recall1. 

Further, unlike Staresina et al. (2013), in which recall involved retrieval of associative 

memories, Ross et al. (2018) did not find evidence for feedback from HC to other regions 

 
1 Ross et al. (2018) note that PRC may have been engaged during scene recall because scenes and 

scene parts frequently contain objects. 
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during part-cued object or scene recall. Instead, information flow during object recall was 

driven by lateral occipital cortex (LOC) and information flow during scene recall was 

driven by PHC. Ross et al. (2018) concluded that MTL engagement during memory 

retrieval is content-dependent rather than process-dependent. This claim finds additional 

support in a unique case study, described next. 

Lacot et al. (2017) reported a case study in which patient JMG had extensive 

MTL damage that spared only the right HC in its entirety, meaning PRC was damaged 

bilaterally. On a variety of memory tasks JMG demonstrated impaired performance when 

to-be-remembered items were objects, regardless of whether the task was intended to test 

familiarity or recollection. However, when the object stimuli were replaced with scene 

stimuli, JMG performed similarly to control subjects. Thus, there is both neuroimaging 

(Ross et al., 2018) and case study (Lacot et al., 2017) evidence that engagement of MTL 

structures during a memory task varies depending on what type of information is to be 

remembered. Further, this evidence is in direct opposition to a Swiss army knife modular 

approach, in which memory is said to be organized according to component processes. 

1.4 Ventral Visual Stream Engagement during Memory 

There is a growing body of neuroimaging evidence that brain regions along the 

ventral visual stream – that is, regions previously thought to be engaged exclusively in 

sensory and perceptual processing – are engaged during long-term memory retrieval tasks 

if the to-be-remembered information is purely visual and sufficiently low-dimensional. It 

has been known for some time that LOC preferentially processes shape and object 

information during visual perception (Grill-Spector, 2003; Grill-Spector, Kourtzi, & 
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Kanwisher, 2001; Grill-Spector et al., 1999; Malach et al., 1995; Ungerleider & Mishkin, 

1982). Karanian & Slotnick (2015) investigated the location of memory signals for this 

level of ‘simple’ visual information by presenting intact shapes and scrambled shapes in 

unique colors to participants while being scanned. Participants were later cued with the 

unique colors, asking them to retrieve whether the corresponding shape had appeared as 

“intact” or “scrambled” during the encoding phase. Neural activity associated with 

successful retrieval of shape memory was found in LOC, the same region involved in 

perceptual processing of shape information. Further, false memories for shape (i.e., 

incorrectly recalling a scrambled shape as intact) also elicited neural activity in LOC, but 

to a lesser extent than true memories for shape (Karanian & Slotnick, 2017). 

Another region in the ventral visual stream, V8, which lies posterior to LOC and 

is known to have a role in color processing, has also been shown to be involved in 

memory for color. During an encoding scan, participants viewed a series of colored and 

gray abstract shapes (Slotnick, 2009). After a delay and while participants were still in 

the scanner, researchers then presented another series of abstract shapes, some of which 

had been seen during the encoding scan and others that had not. Participants were asked 

to correctly classify each shape into one or three categories: seen during encoding in 

color (‘old-colored’), seen during encoding in gray (‘old-gray’), or not seen at all (‘new’). 

Area V8, which is color-selective during retinotopic mapping (Hadjikhani, Liu, Dale, 

Cavanagh, & Tootell, 1998), exhibited significantly greater activation on trials associated 

with accurate color item and context memory (i.e., correct ‘old-colored’ response) than 

for trials with accurate color item but inaccurate color context memory (i.e., incorrect 

‘old-gray’ response during an old-colored trial) or trials with accurate gray item and 
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context memory (i.e., correct ‘old-gray’ response). Thus, V8, an area that selectively 

processes color information during perceptual tasks, also demonstrated activity associated 

with successful memory retrieval of color-specific information. 

Feature-specific memory signals within ventral visual stream have even been 

found as early as primary visual cortex, V1. This was recently explored in a study with 

mice (Cooke, Komorowski, Kaplan, Gavornik, Jeffrey, & Bear, 2015). Researchers 

observed that head-fixed mice move their paws when presented with visual stimuli and 

this visually-induced fidget (or “vidget”) could be measured with a piezo-electric sensor. 

In a similar manner to visually evoked potentials in V1, the intensity of vidgets was 

found to vary systematically when manipulating the contrast and spatial frequencies of 

sinusoidal grating stimuli. Additionally, pharmacological blocking of neural activity in 

V1 resulted in diminished vidgets. Thus, vidgets appear to require the engagement of V1 

and can be used to measure processing of feature-specific information for sinusoidal 

grating stimuli. When grating stimuli with a particular orientation were repeatedly 

presented over several days, the intensity of vidgets diminished, reflecting orientation-

selective habituation as the stimulus orientation became familiar. Additionally, following 

habituation, presentation of stimuli with a novel orientation elicited significantly more 

intense vidgets than for stimuli with the familiar orientation. However, the difference in 

vidget magnitude between familiar and novel orientations was eliminated when synaptic 

plasticity was restricted in V1. These findings suggest that engagement of V1 is critical 

for recognition memory of orientation information. 

Memory signals in early visual cortex have also been found in studies with 

humans. Thakral, Slotnick, & Schacter (2013) presented abstract colored shapes to 
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participants while they were being scanned; critically, the abstract shapes were presented 

to the left or right of a central fixation point. During a mnemonic recognition test, items 

were presented centrally and participants classified each item as ‘old-left’, ‘old-right’, or 

‘new’. Accurate item and spatial context memory (i.e., correct ‘old-left’ or ‘old-right’ 

responses) engaged primary visual regions V1 (Brodmann area 17) and V2 (Brodmann 

area 18). V1 was also engaged when, instead of the old/new recognition task described 

above, participants were asked to first indicate if studied shapes originally appeared on 

the left or right of fixation and then were asked to indicate the level of confidence for 

their response on a three-point scale (i.e. “unsure”, “sure” or “very sure”; Karanian & 

Slotnick, 2018). Specifically, researchers found activity in contralateral areas of V1 

during both true (i.e., correct left/right mnemonic spatial judgements) and false memories 

(i.e., incorrect spatial judgements with “sure” or “very sure” confidence levels). The 

magnitude of activity for true memory was greater than false memory and their respective 

locations were in distinct sub-regions of V1. Further, the frequency of “very sure” false 

memories decreased when transcranial magnetic stimulation disrupted areas of V1 

previously localized for false memory in the same paradigm. 

Taken together, the evidence above suggests that ventral visual stream areas can 

be recruited during memory tasks that normally engage MTL, if the stimuli used in the 

task reside at an appropriate lower-level of complexity. Further, as described in the 

previous sections, MTL demonstrates functional versatility, being engaged during both 

perceptual and mnemonic tasks, and content-dependent mnemonic engagement of MTL 

sub-regions. Modern modular-based theories fail to account fully for the combination of 

these findings. However, a non-modular theory that redefines the role of regions in the 
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MTL and ventral visual stream in terms of the representations they contain, rather than 

the cognitive processes they support, can accurately capture the perception and memory 

findings above. A relatively recent theory called the representational-hierarchical (R-H) 

theory takes this approach. 

1.5 Representational-Hierarchical Theory 

The R-H account, as it applies to memory, was initially put forth as a 

connectionist model of object recognition memory in PRC (Cowell, Bussey, & Saksida, 

2006). The model first assumes that neural representations of visual stimuli are organized 

by the complexity of the represented information (Bussey & Saksida, 2002; Cowell et al., 

2006). Complexity is defined as the dimensionality of a representation (e.g. a color can 

be defined by three dimensions, but a face needs more than three dimensions to be 

uniquely specified). Further, the organization of neural representations by complexity 

unfolds across brain regions in a hierarchical manner (Figure 1). Posterior areas in ventral 

visual stream represent very simple features (e.g., the color pink, a line orientation), 

whereas more anterior regions in ventral visual stream first bring simple features together 

into simple conjunctions (e.g., a triangle, a pink circle), and later into complex 

conjunctions (e.g., pink circle on top of tan triangle with the semantic label of ‘ice cream 

cone’). The hierarchy extends into MTL and culminates at HC, where it processes 

conjunctions of items within their spatial and/or temporal contexts (e.g., eating ice cream 

last week at the beach; Bussey & Saksida, 2002; Cowell et al., 2006; Kent, Hvoslef-Eide, 

Saksida, & Bussey, 2016). Each stage of the hierarchy has the capability to form 



 

15 

conjunctions of the representations contained at the previous stage, and thus each region 

is configural relative to earlier stages (Bussey & Saksida, 2002). 

In the R-H model, the ‘tuning’ of neural activation patterns serves as a measure of 

familiarity (Cowell et al., 2006). That is, neural activation patterns for a representation 

become more selective each time a visual stimulus corresponding to that representation 

appears. Repeatedly presented, and thus familiar, stimuli elicit a peak of high activation 

(i.e., sharply tuned representations), while novel stimuli elicit a moderate level of 

activation, broadly distributed across the cortex (i.e., coarsely tuned representations). For 

example, the neural representations of a strawberry ice cream cone undergo neural 

tuning when a strawberry ice cream cone stimulus is presented during the study phase of 

an object recognition task. When the strawberry ice cream cone stimulus is re-presented 

at test, the neural activation patterns for the conjunction representation (i.e., a pink circle 

on top of a tan triangle), located in PRC, and the collection of individual feature 

representations (i.e., pink, tan, circle, triangle, etc. separately), located in posterior visual 

cortex, will both demonstrate neural tuning. This tuning will consequently signal the item 

as familiar for a correct mnemonic judgment. 

However, neural tuning, signaling familiarity, can develop for feature 

representations in response to not only the presentation of attended, deliberately encoded 

stimuli, but also in response to interference. The R-H model assumes that all items in the 

visual world are composed from a limited pool of visual features, meaning that most 

common objects share features with some other objects. Therefore, in a memory task, the 

features of the objects that are presented at test may in fact appear repeatedly as part of 

visual stimuli in the surrounding environment (or even as part of “imagined” visual 
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stimuli) that are encountered between the study and test phase of the task. Critically, even 

novel stimuli that appear in the test phase will be composed of features from the same 

limited pool. The repeated encountering of the commonly occurring object features 

results in all such neural feature representations undergoing tuning, and thus eventually 

appearing familiar. Even individual feature representations of a novel object, housed in 

posterior visual cortex, become sharply tuned, and thus appear familiar at test. 

Consequently, if an individual must make mnemonic judgments using posterior feature 

representations alone, as is the case when conjunction representations are impaired 

following PRC damage, a novel object will be incorrectly judged as familiar. 

Importantly, though, in the healthy brain mnemonic interference between 

intervening items during a delay and novel items can be resolved by a conjunction 

representation, which provides additional information about a stimulus beyond that 

contained in its feature representations (Cowell et al., 2006). Representations at the 

conjunction level are unique and selective for the exact conjunction they represent. It is 

very unlikely that the exact conjunction will be shared between intervening items and 

novel stimuli (because “whole” stimuli reside in a very high-dimensional space, where 

the same point, representing a unique object, is rarely drawn upon twice by chance). 

Thus, it is unlikely that the novel conjunction representation is tuned via the presentation 

of other visual stimuli. Consequently, the conjunction representation of a novel object, 

housed in anterior PRC, always appears novel. Here, the “whole” conjunction 

representation is “greater than the sum” of its component feature representations and is 

required for successful mnemonic discrimination. 
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The model can similarly explain the critical role of conjunction representations 

for object recognition memory tasks when familiar and novel stimuli are purposely 

designed to share many low-level features. Consider the presentation of a familiar 

strawberry ice cream, as described above, and a novel mint ice cream cone at test. This 

novel stimulus is represented, according to the R-H model of memory, at both the 

conjunction (i.e., a green circle on top of a tan triangle), PRC, level and feature, posterior 

visual cortex level (i.e., green, tan, circle, triangle, etc. separately). The familiar 

strawberry ice cream and the novel mint ice cream share many of the same neural feature 

representations (i.e., tan, circle, triangle, etc., separately), and these shared feature 

representations undergo tuning during presentation of the strawberry ice cream stimulus 

at study. Therefore, even though the particular conjunction of features comprising the 

novel mint ice cream is novel, the majority of its features — when considered in isolation 

— are not. Consequently, for individuals with PRC-lesions, whose mnemonic 

judgements must be made at the feature level alone (because conjunction representations 

in PRC are compromised), the sharply tuned features of a novel object signal familiarity, 

and a novel stimulus is incorrectly judged as familiar. 

However, in a healthy brain, neural tuning at the conjunction level correctly 

signals novelty for novel stimuli. The conjunction representation of the strawberry ice 

cream undergoes tuning during the encoding phase, and thus signals familiarity at test. 

Conversely, because the exact conjunction of features is distinct between familiar stimuli 

and novel stimuli, the conjunction representation of the novel mint ice cream remains 

coarsely tuned, and thus provides an unambiguous signal of novelty at test. 
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Consequently, the novelty signal at the conjunction level overrides the familiarity signal 

at the feature level and the novel mint ice cream is correctly judged as novel. 

Further, the R-H model proposes that memory and perception rely on a shared 

hierarchy of neural representations. Although the example above featured an object 

recognition memory task and signatures of familiarity, the same example could be given 

within the context of a perceptual discrimination task. That is, if the strawberry and mint 

ice cream cones were presented simultaneously, they would appear almost identical at the 

feature level because they are represented as two highly overlapping collections of simple 

features. However, at the conjunction level, the two stimuli remain perceptually distinct 

because the presence of even one non-shared feature entails that they are represented as 

two unique items that correspond to activation across two distinct neural patterns in PRC 

(Bussey & Saksida, 2002; Cowell et al., 2006). 

Consequently, the cognitive function (e.g., memory or perception) thought to be 

involved during a task does not dictate engagement of brain areas; instead, the level of 

the representational hierarchy that best disambiguates the stimuli is key. If successful 

discrimination between two stimuli requires conjunction representations (i.e., if stimuli 

share many features), then the region containing conjunction representations (for most 

stimuli, anterior ventral visual stream, MTL) will be engaged. However, if successful 

discrimination can be made on the basis of individual feature representations alone (i.e., 

if stimuli do not share features), then the region containing feature representations (i.e., 

posterior ventral visual stream) will be engaged instead. Further, the specific conjunction 

and feature representations required will vary based on the complexity of the stimuli. 

That is, disambiguating similar scenes will require conjunction representations located 
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further anterior than the conjunction representations required to disambiguate similar 

objects (i.e., HC versus PRC; see Figure 1). Therefore, the R-H model predicts that all 

regions along the representational continuum can be involved in both memory and 

perception; a region’s engagement is dependent on the representational demands of the 

task. 

As outlined above, the R-H theory can explain (1) how MTL structures are 

involved in both perception and memory; (2) why engagement of MTL sub-structures 

varies by stimulus content; and (3) how ventral visual stream areas are involved in both 

perception and memory. But, the model does so by making three key assumptions 

regarding conjunction representations. First, structures along a pathway extending from 

the ventral visual stream into MTL (VVS-MTL pathway) are assumed to be organized in 

a hierarchical manner based on the conjunctive complexity of the representations they 

contain, such that conjunction representations of higher complexity are located in more 

anterior VVS-MTL pathway structures. Second, within this pathway, the “whole” 

conjunction representation is “greater than the sum” of its component feature 

representations and thus provides additional information to disambiguate similar stimuli. 

Third, the involvement of a brain region in a given task is determined by the 

representation required for that task, rather than which “cognitive process” is putatively 

required. In the next sections, I will review the evidence in support of these assumptions 

and will highlight the remaining gaps in the literature. 

1.5.1. Evidence for a Representational Hierarchy 



 

20 

In the ventral visual stream, a hierarchical organization of representations has 

been featured in many existing models of vision (Desimone & Ungerleider, 1989; Hubel 

& Wiesel, 1965; Riesenhuber & Poggio, 1999) and is well supported with evidence from 

animal research. Early visual cortex demonstrates a preference for neural coding of 

lower-level simple features. For example, V1 in primary visual cortex is tuned to simple 

stimulus attributes, such as orientation and spatial frequency (Hubel & Wiesel, 1962, 

1965; Mazer, Vinje, McDermott, Schiller, & Gallant, 2002) and V4 and posterior 

inferotemporal cortex demonstrate selectivity for moderately complex conjunctions, such 

as curvature, complex shapes, combinations of shape and texture/color, and stimulus 

invariance (T. Kim, Bair, & Pasupathy, 2019; Kobatake & Tanaka, 1994; Rust & 

DiCarlo, 2012; Yau, Pasupathy, Brincat, & Connor, 2013). The hierarchy transitions to 

preferential coding of complex conjunctions in structures located further anterior in the 

ventral visual stream, such that conjunction-coding for complex objects is seen in anterior 

inferotemporal cortex (Desimone, Albright, Gross, & Bruce, 1984; Desimone, Schein, 

Moran, & Ungerleider, 1985; Kobatake & Tanaka, 1994).  

This representational hierarchy is further evidenced by findings from humans 

using fMRI methods (Wilson & Wilkinson, 2015). Selective coding for simple features, 

like orientations, occurs early in V1 (Kamitani & Tong, 2005; Serences, Saproo, Scolari, 

Ho, & Muftuler, 2009). This preference for features becomes more conjunctive in V2 

where there is selectivity for the conjunction of form and color (Seymour, Clifford, 

Logothetis, & Bartels, 2010) and in V4 where there is selectivity for curved shapes (i.e., 

the conjunction of two simpler line orientations; Wilkinson et al., 2000). Coding 

preference for mid-level representations emerges in occipito-temporal cortex, as shown 
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with a novel stimulus set composed of object images that have been scrabbled to be 

unrecognizable while preserving some mid-level texture and form information (Long, 

Yu, & Konkle, 2018). Further, higher-level coding occurs for object category identity in 

lateral occipital cortex (LOC) and for faces in fusiform face area (Guggenmos et al., 

2015; Haxby et al., 2001; Kanwisher et al., 1997). 

Although this visual processing stream was initially thought to culminate in LOC 

and fusiform face area, recent evidence suggests that it continues into MTL. PRC 

demonstrates preferential coding for high-level conjunctive information used to 

distinguish highly similar objects (Erez, Cusack, Kendall, & Barense, 2015; Tyler et al., 

2013), and the conjunction of specific objects with semantic information (Clarke & Tyler, 

2014; Martin, Douglas, Newsome, Man, & Barense, 2018). Further, when stimuli were 

composed of person, object and scene ‘features’, only in PHC did neural data enable 

classification of conjunctive stimulus identities in the absence of significant feature 

information, despite searching in LOC and fusiform cortex (van den Honert, McCarthy, 

& Johnson, 2017). That is, as put forth by the R-H account (Bussey & Saksida, 2002), 

when the features of a stimulus were more complex, the conjunction of those features 

was found to be represented further along the VVS-MTL representational continuum, 

meaning conjunctions were not limited to a single region. 

In addition to evidence for the dominance of feature-coding in earlier ventral 

visual stream areas and of conjunction-coding in later ventral visual stream and MTL 

areas, the existence of an explicit shift between the two coding types has been recently 

confirmed. Using a novel multivariate pattern analysis (MVPA) of fMRI data, Cowell et 

al. (2017) found evidence along the ventral visual stream for a transition from areas that 
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represent more information about lower-level features individually than information 

about their conjunction (i.e., feature-coding) to areas that represent more information 

about the conjunction of those features as whole objects than about the features 

individually (i.e., conjunction-coding). Participants were scanned while viewing a series 

of simple object stimuli composed of a conjunction of four features: left and right outline 

features and left and right spatial frequency features; each of the four features was binary 

meaning it could take on one of two values (see Figure 2 for complete stimulus set). 

Researchers used the brain data from those scans to train a set of classifiers, with the goal 

of the classifiers being to identify correctly either a specific feature or a specific stimulus 

that was viewed on a given trial, from the neural activation pattern. Four of the classifiers 

sought to determine the identity of each of the four separate features (i.e., which of the 

possible two values for a given feature was present) and a single object classifier sought 

to determine the identity of the whole unique conjunction (i.e., which of the sixteen 

objects was presented). 

Two classification accuracies were then derived from regions along the ventral 

visual stream: (1) a predicted object-level classification accuracy that was the product of 

the four two-way feature-classifier accuracies; and (2) an empirically observed object-

level classification accuracy that was the single accuracy of the 16-way conjunction-

classifier. The predicted object accuracy was taken as a measure of the extent to which a 

brain region can identify the whole object based only on a linear combination of the 

knowledge it contains about individual features. The empirical object accuracy was taken 

as a measure of the extent to which a brain region contains information about the whole 
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object. These two classification accuracies were pitted against each other in a log-ratio, 

forming a feature conjunction index (FCI): 

FCI = ln (
𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 𝑜𝑏𝑗𝑒𝑐𝑡 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑜𝑏𝑗𝑒𝑐𝑡 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
) 

A positive FCI value indicated a conjunction-coding region and a negative FCI value 

indicated a feature-coding region. What emerged was a transition starting in ventral 

visual stream from V1, where FCI values were most negative (i.e., reflecting coding of 

feature information), to V2 and V3, where FCI values were less negative (i.e., reflecting 

coding of a mix of feature and conjunction information), to LOC and other occipito-

temporal brain regions found via a searchlight analysis, where FCI values were 

numerically positive or in some cases statistically greater than zero (i.e. reflecting coding 

of conjunction information).  

Taken together, the findings described above provide clear evidence for the 

emergence of conjunction representations in humans, as assumed by the R-H theory. 

Importantly, though, anterior ventral visual stream regions are not the only regions 

assumed to contain representations of conjunctions (Cowell et al., 2017). Within the R-H 

model, all levels contain conjunctions of the elements that were represented at earlier 

levels, such that early regions contain simpler conjunctions and later regions, including 

MTL, contain conjunctions that are more complex. Although some MTL voxels exhibited 

significant conjunction-coding, Cowell et al. were cautious to draw conclusions about 

preferential conjunction-coding in MTL structures because of the small numbers of 

significant voxels in these areas. It is possible that fewer MTL voxels were found to be 

significant because the stimuli in the study (2-D monochrome simple objects) did not 

contain the conjunctive complexity that is usually processed in those anterior areas. An 
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analogous study with more complex stimuli is warranted to establish whether 

conjunction-coding extends into MTL, as seen in Erez et al. (2015) and, importantly, if 

the transition point from feature-coding to conjunction-coding varies according to the 

conjunctive complexity of a stimulus set. 

1.5.2. Evidence for the Importance of Task Representational Demands 

Prior research has explored how task representational demands influence a brain 

structure’s engagement. This has been most extensively investigated within the context of 

complex objects, and thus at the level of PRC within the representational hierarchy. As 

described previously, individuals with PRC-lesions show impaired performance during 

perceptual discrimination tasks when object features appear as part of both rewarded and 

unrewarded object stimuli (Barense et al., 2005; A. C. H. Lee, Barense, et al., 2005; see 

Section 1.2). Owing to the feature ambiguity present in these tasks, representations of 

each object as a distinct conjunction, as contained in PRC, are required to discriminate 

successfully between items. If PRC representations are compromised, discrimination 

judgements must be made using the remaining representations, in undamaged posterior 

regions, which correspond to lower-dimensional representations of individual features. 

However, at this level, objects are represented as a collection of highly similar features 

and are more difficult to disambiguate, thus leading to more errors. 

Because, under the R-H account, perception and memory rely on a shared 

hierarchy of neural representations, if the representational demands of a mnemonic task 

are similar to those described in the perceptual task above (i.e., if feature representations 

alone provide only ambiguous information), the task will also require PRC conjunction 
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representations. Via neural tuning mechanisms, ambiguous feature-level familiarity 

signals (i.e., neural tuning of both familiar and novel feature representations) can result 

from interference or because novel and familiar objects are designed to inherently share 

many features. In both cases, feature representations belonging to familiar items will 

undergo neural tuning during the study phase. In the case of interference, feature 

representations belonging to novel items will undergo neural tuning when those features 

appear as part of visual objects during a delay between the study and test phases of a 

memory task. (At the feature-level, this is likely to occur because all objects, including 

objects selected as novel items in a memory test, are composed of features from a 

common and limited pool of possible features). In the case of shared features between 

familiar and novel stimuli, feature representations belonging to novel items will also 

undergo neural tuning, but when shared features appear as part of familiar objects during 

the study phase. Therefore, in both cases, both familiar and novel features demonstrate 

neural tuning, signaling familiarity, and feature representations alone provide only 

ambiguous mnemonic information. 

 A specific set of predictions follows for selective-PRC-lesion patient memory 

studies. When complex conjunction representations of objects are impaired, as in cases of 

selective PRC damage, an individual must rely upon familiarity signals from posterior 

feature representations alone. However, at the feature level, the novel object stimulus 

cannot be distinguished from the familiar object stimulus in terms of familiarity – the 

features of both stimuli (the familiar item and the novel item) undergo neural tuning and 

appear familiar. 
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Studies using implicit measures of memory with lesioned rats confirm the 

predictions of the model, and specifically the counter-intuitive prediction that when PRC 

lesions induce memory discrimination failure, they do so because novel objects appear 

familiar, rather than because familiar objects appear novel (Bartko et al., 2007b). In an 

initial sample phase, rats with bilateral PRC lesions were exposed to two identical objects 

made of Legos. In a second sample phase, the rats were exposed to another pair of 

identical Lego objects that were composed of different Lego pieces (i.e., features) than 

those used in the Sample 1 objects. In a final choice phase, the rats were exposed to the 

Sample 1 Lego object and one of two possible novel objects. Novel objects were either 

composed of (1) Lego pieces featured in Sample 1 and Sample 2 objects, but never seen 

together (i.e. familiar features, but novel conjunction of features), or (2) Lego pieces that 

did not appear in either of the sample phases (i.e., novel features and novel conjunction of 

features). In general, healthy rats spend more time exploring novel stimuli than 

previously encountered stimuli; accordingly, length of exploration period can serve as a 

measurement of familiarity. In this study, when novel Lego objects were composed of 

familiar features, lesioned rats demonstrated reduced exploration periods to novel stimuli, 

ostensibly treating novel objects as familiar. 

This finding was extended to humans in a similar paradigm using eye fixations as 

a proxy for familiarity judgments (Yeung, Ryan, Cowell, & Barense, 2013). Healthy 

humans show more fixations towards novel stimuli than to previously encountered 

stimuli; thus, number of eye-fixations can be taken as a measure of familiarity that avoids 

contamination by verbal report and participant expectations, similar to “exploration time” 

in rodents. When many features are shared between familiar and novel stimuli, humans at 
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risk for mild cognitive impairment (a disorder that indicates likely incipient MTL 

damage; Petersen et al., 2006) demonstrated reduced eye-fixations to novel stimuli, 

seemingly treating novel objects as familiar. Again, the R-H account predicts these 

results because the features of the novel object (considered in isolation) bear neural 

signatures of familiarity via neural tuning of those feature representations when they 

previously appeared as part of seen objects. In the case of MTL damage, the 

representations needed to complete the task — conjunction representations of objects in 

which unique objects are represented distinctly — are impaired and discrimination 

judgements are dependent on feature representations alone. Thus, novel items with 

familiar features are judged to be familiar. 

It would be incorrect to interpret the above evidence as support for PRC as a 

region that is uniquely critical for all recognition memory tasks. According to the R-H 

account, any recognition memory task is solved by the brain region that best 

disambiguates novel and familiar stimuli at test. In the case of an object recognition 

memory task where features appear as part of both familiar and novel objects, PRC is the 

region that best separates the unique conjunctions corresponding to an object. Further, it 

has also been suggested that HC may be so frequently implicated in episodic memory 

because it houses the conjunction representations that are most frequently required in 

episodic memory tasks (i.e., temporal and spatial contexts or associations between paired 

items; Cowell, Barense, & Sadil, 2019; Cowell et al., 2006). However, the R-H account 

predicts that if a mnemonic task instead tested recognition memory for 2-dimensional 

features, posterior areas that contain those feature representations would be critical for 

successful completion. Although the above findings demonstrate how a task’s 
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representational demands specifically recruit PRC or HC for recognition memory, and 

although there is previous evidence for recognition memory signals in ventral visual 

stream, there has yet to be a direct demonstration of how manipulating representational 

demands within the same memory task can cause the locus of memory signals to vary 

between MTL and ventral visual stream regions. 

1.6 Aims 

The current experiment investigated outstanding questions in the literature 

supporting the R-H account. First, there is evidence for a transition from feature 

representations to conjunction representations, but this has only been demonstrated with a 

lower-level simple object stimulus set (Cowell et al., 2017). It is not only important to 

test the generalizability of this finding to other stimulus sets, but also to test the 

prediction of the R-H account that the locus of this transition point varies based on the 

conjunctive-complexity of a stimulus set. 

The study phase (first scan session) of the current experiment examined this 

prediction by implementing the Cowell et al. (2017) paradigm with two stimulus sets of 

varying conjunctive-complexity: novel 3D objects, known as fribbles, and novel 

computer-generated scenes. That is, the present study aimed to find the cortical locus at 

which neural representations become less informative about individual features of a 

complex object (i.e. 3-D colored shapes) or complex scene (i.e., room shape, color and 

furniture) and more informative about the conjunction of those features. Additionally, the 

study sought to ascertain if this transition point varies between simpler stimulus sets (i.e., 
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fribbles) and more complex stimulus sets (i.e., scenes). I predicted that the locus of the 

transition point would be further anterior for scenes than for fribbles (Prediction #1). 

Second, the R-H theory claims that the involvement of a brain region during a 

task is determined by the representational demands of the task, and which region contains 

the representations that meet those demands. Under this assumption, the R-H theory has 

accounted for PRC’s critical and selective role in memory for complex objects (Bartko, 

Cowell, Winters, Bussey, & Saksida, 2010; Bartko et al., 2007b; Cowell et al., 2006; 

Delhaye, Bahri, Salmon, & Bastin, 2019; Eacott et al., 1994; McTighe, Cowell, Winters, 

Bussey, & Saksida, 2010; Meunier et al., 1993; Yeung et al., 2013). However, to what 

extent the cortical locus of memory signals can be made to vary by direct manipulation of 

representational demands during a recognition memory task, remains unanswered. 

The test phase (second scan session) of the current experiment examined the locus 

of recognition memory signals along the VVS-MTL pathway when manipulating task 

representational demands in two ways. First, as in the study phase, the conjunctive-

complexity of stimuli was varied by using two stimulus sets of different complexity 

(fribbles and scenes). I predicted that memory signals for scenes would reside in further 

anterior sites than memory signals for fribbles (Prediction #2). Second, the type of 

information retrieved was assayed in a manner to reflect two types of memory, either 

retrieval of conjunction representations (i.e. conjunction memory) or retrieval of feature 

representations (i.e., feature memory). That is, the test phase aimed to find the cortical 

locus for conjunction memory and feature memory for both fribbles and scenes. I 

predicted that conjunction memory signals would reside further anterior than feature 

memory signals, for both stimulus sets (Prediction #3). 
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 Finally, both phases of the experiment, for each stimulus set separately, were also 

used to investigate to what extent brain regions that evoked conjunction or feature 

memory-related activation during retrieval (second, “memory test” scan session) were 

the same brain regions that contained conjunction-coded or feature-coded neural 

representations for objects and scenes during perceptual processing/encoding (first, 

“study phase” scan session). I predicted that there would be some degree of anatomical 

correspondence between the type of neural coding and the type of memory signal, such 

that feature-coding sites exhibit feature-memory signals, and conjunction-coding sites 

contain conjunction-memory signals (Prediction #4). Testing these four predictions is a 

critical step in assessing the validity of the non-modular R-H account. 
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CHAPTER 2 

 

EXPERIMENT 

2.1 Overview and Predictions 

In the first pair of scanning sessions – one for each stimulus set, fribbles and 

scenes, conducted on separate days – participants were asked to complete an incidental 

task (to ensure that they were awake and attending) while viewing a stream of fribble or 

scene stimuli. Both fribble and scene stimulus sets were created analogously to the 

stimuli from Cowell et al. (2017), such that any given stimulus was composed of the 

conjunction of three simple, binary features (see Figure 3, Figure 4 and Section 2.2.2. for 

more detail). According to the R-H theory, the transition from feature-coding to 

conjunction-coding found in Cowell et al. (2017) should be located further anterior, 

toward MTL, for stimuli that are more complex. 

For fribbles, I expected posterior ventral visual stream areas and mid-ventral 

visual stream areas to contain feature-level codes. Feature-coding was expected to 

possibly extend to more anterior regions than the feature-coding regions found in Cowell 

et al. (2017). Compared to the features of Cowell et al.’s simple objects, the features in 

the fribble stimulus set could be represented at a similar posterior low-level (e.g., line 

orientation, color in early visual cortex), as well as at a more complex anterior mid-level 

(e.g., combinations of color and shape in V4). Additionally, the transition from feature-

coding to conjunction-coding was expected to occur in object-selective anterior ventral 

visual stream and PRC. 

Similarly, scenes are assumed to have more complex features than the features of 

fribbles. Thus, for scenes, I expected feature-coding to occur anywhere from posterior 
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ventral visual stream (for representations of low-level features, like line orientations and 

color) to mid-ventral visual stream areas and PRC (for mid-to-high-level features, like 

pieces of furniture). However, conjunction-coding of the entire scene stimulus was 

expected to occur in PHC and HC, alone. 

In the second pair of scanning sessions, participants were asked to complete a 

recognition memory task based on the fribble or scene stimuli they had viewed in the first 

session (for each stimulus set, the first and second scan session occurred on the same day, 

but the two stimulus sets were tested on different days). In this test phase, trials belonged 

to one of three possible mnemonic classes: Novel, Recombination, and Familiar. On 

Novel trials, the individual features, as well as the conjunction of those features, had not 

been seen during the first session (i.e., both the features and the conjunction were novel). 

On Familiar trials, both the individual features and the exact conjunction of those features 

had been seen in the first session (i.e., both the features and the conjunction were 

familiar). However, on Recombination trials, the individual features had been seen as 

parts of items in the first session, but those features were conjoined in a novel way so that 

the whole item remained novel (i.e., the features were familiar, but the conjunction was 

novel). 

By contrasting different pairs of trial types, we can assay different types of 

memory. That is because different pairs of trial types correspond to different levels of 

complexity in terms of the representation that provides a distinct familiarity signal 

between the two trial types being contrasted. A contrast of Novel and Recombination 

trials indexes feature memory because the familiarity of the individual features is the only 

factor that discriminates the two trial types (i.e., features are novel during Novel trials 
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and familiar during Recombination trials, whereas the conjunction is novel for both trial 

types). A contrast of Recombination and Familiar trials indexes conjunction memory 

because the familiarity of the conjunction of features is the only factor that discriminates 

the two trial types (i.e., features of both trial types are familiar, but the conjunction of 

Recombination trials is novel while the conjunction of Familiar trials is familiar). 

According to the R-H theory, brain areas demonstrating signals for feature and 

conjunction memory are expected to coincide with the brain areas posited to contain 

feature and conjunction representations. The involvement of a region is not determined 

by the area’s assumed cognitive function; it is determined by the representational content 

processed in a brain region and the necessity of that content to complete a task 

successfully. As such, the cortical locus of feature memory signals was expected to lie 

posterior to the locus for conjunction memory signals. Further, these two memory types 

(feature versus conjunction) may differ in location across stimulus sets, owing to 

differing conjunctive complexity between fribbles and scenes. Specifically, object-

selective structures (i.e., LOC and PRC) were expected to be engaged for conjunction 

memory of fribble stimuli, and scene-selective structures (PHC, HC) were expected to be 

engaged for conjunction memory of scene stimuli. Additionally, early and mid-ventral 

visual areas were expected to be engaged for feature memory of fribble stimuli, and mid-

ventral visual areas and posterior MTL structures were expected to be engaged for feature 

memory of scene stimuli. 

Further, the current study aimed to provide a more direct measurement of the 

relationship between the location of representational content and the location of brain 

structures that are recruited for a mnemonic task. Therefore, in a searchlight analysis of 
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the study data, I defined feature-coding and conjunction-coding brain areas for scene and 

fribble stimulus sets, separately. Then, I conducted feature memory and conjunction 

memory contrasts of the corresponding fribble/scene test phase (memory-related) data 

within those stimulus-specific, functionally defined regions. I expected that signals for 

conjunction memory would be greatest in conjunction-coding brain areas and that signals 

for feature memory would be greatest in feature-coding brain areas. 

2.2 Method 

2.2.1 Participants 

Twenty-three participants were recruited from the University of Massachusetts-

Amherst community. All participants spoke English fluently; had normal or corrected-to-

normal vision; had no history of neurological illness; and had no contraindications for 

MRI scanning. Participants were compensated $25/hour with an additional performance-

based bonus up to $10 per scan session. Table 1 highlights when extreme outliers were 

identified and subsequently excluded from statistical analyses; for repeated-measures 

analyses all data points from a participant identified as an outlier were excluded. 

2.2.2 Materials 

Two different stimulus sets with different levels of complexity were created. The 

first set was composed of novel 3-D objects (i.e., fribbles) that were created using Strata 

Design 3D CX 7.5 (Barry, Griffith, De Rossi, & Hermans, 2014; Williams, 1998). Each 

individual fribble was a unique conjunction of three simpler features (3-D colored shapes 

referred to as “tail”, “body”, and “head” features) and each fribble belonged to a ‘family’ 

(see Figure 3). Within a given family, there were only two possible variants for each of 
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the tail, body and head features and those variants were unique to that family. Therefore, 

each family was composed of eight unique fribbles that were created using all possible 

conjunctions of a family’s binary features. A total of four fribble families were created. 

The second set was composed of novel 3-D scenes created using Sweet Home 3D, 

an indoor planning software. Analogous to the fribbles, each individual scene was a 

unique conjunction of three binary features (room shape, color and furniture) and each 

scene belonged to a ‘family’ (see Figure 4). Within a given family, there were two 

possible variants for each of the three room features and those variants were unique to 

that family. Consequently, each family comprised eight unique scenes that were created 

using all possible conjunctions of a family’s binary room features. A total of four scene 

families were created. 

Each subject was scanned twice on two separate days, once using fribbles as 

stimuli and once using scenes; stimulus set presentation order was counterbalanced 

across participants. In addition, each day’s scanning involved two scan sessions – an 

initial, study phase scan session and a second, memory test phase scan session – which 

were separated by a short break. For a given stimulus set (fribbles/scenes), each 

participant was assigned two families to view in the first study phase, i.e., prior to the 

memory test, thus creating a number of stimuli designated as Familiar at test. A second 

class of test phase stimuli, Recombination stimuli, was created by combining two features 

of one Familiar family with a third feature of the other Familiar family (Figure 5). For 

these Recombination stimuli, although all of the individual features were seen as part of 

Familiar stimuli during the study phase, the conjunction of the features into these 

specific, unique wholes was never seen until the memory test. A final mnemonic stimulus 
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class, Novel stimuli, were created in the same manner as Recombination stimuli (i.e., 1 + 

2 feature combination), but used features from the two remaining families that had not 

been designated as Familiar stimuli. Thus, for Novel stimuli, neither the individual 

features nor the unique whole were seen until the second memory test scan session. The 

assignment of particular families to stimuli classes (i.e., which two families were 

presented in the first scan session and which two families were reserved to create Novel 

stimuli at test) was counterbalanced across participants. 

2.2.3 Task 

Tasks were identical for fribble and scene stimulus sets. During study scans, 

participants were asked to complete a 1-back detection task (i.e., indicate if the stimulus 

currently on the screen is the same or different from the stimulus in the previous trial by 

pressing a button box response key). Additionally, there were 15 null trials randomly 

inserted between experimental trials. During the null trials, participants saw a white 

central fixation cross (+) that appeared to dim briefly by changing color to gray and back 

to white again. This ‘dimming’ occurred once or twice per null trial and participants were 

asked to press either response key whenever the dimming occurred. Participants did not 

need to make a 1-back detection response during experimental trials that immediately 

followed a null trial or occurred at the start of a scan. Before entering the scanner, 

participants first practiced this task on a laptop computer. 

During the break between study and test scan sessions, participants received 

instructions on how to distinguish between the three mnemonic stimulus classes (i.e., 

Familiar, Recombination, and Novel). During test scans, participants were asked to 

indicate the stimulus class of the stimulus currently on the screen using three button box 
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response keys: (1) ‘Familiar’ (i.e., had been studied in the previous session); (2) 

‘Recombination’ (i.e., was made of features that had been studied in the previous session, 

but now combined in a new way); or (3) ‘Novel’ (i.e., had not been studied in the 

previous session in any form). Null trials, as described above, occurred between each 

experimental trial. The instructions during the null trials remained the same. 

For both study and test tasks, participants were instructed to respond while the 

stimulus was still on the screen and to be as accurate as possible. Participants were 

informed that a performance-based bonus was available based on both study and test scan 

session accuracy. 

2.2.4 Experimental Design 

The design was identical for fribble and scene stimulus sets. For a given stimulus 

set, each participant completed ten study and six test functional scans (Figure 6). During 

the scans, stimuli were displayed on a 32” LCD monitor positioned at the head end of the 

magnet bore. Participants were able to view the screen via a mirror on the head coil. 

In the first, study scan session, stimulus presentation order was blocked across 

scans according to family (e.g., stimuli from one Familiar family were presented in even-

numbered study scans and stimuli from the other Familiar family were presented in odd-

numbered study scans), but randomized within a family block/scan. Within a single study 

scan, there were 35 stimulus trials, across which the eight stimuli from a Familiar family 

were presented sequentially on a gray background (each item repeated approximately 

four times, with three items being repeated a fifth time to create ‘immediate repeats’ that 

were removed from the analysis). Each study stimulus was presented for 2000ms and was 

immediately followed by a randomly assigned inter-stimulus interval (ISI) between 
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2000ms and 8000ms, during which a white central fixation cross appeared on a gray 

background. The response window for stimulus trials extended 1000ms into the ISI to 

ensure that participants had ample time to respond before the start of the next trial. 

At least 500ms after the end of the response window, for 15 of the 35 ISIs within 

a single study scan, a null trial occurred. Null trials were restricted from occurring during 

ISIs less than 3000ms. For null trials during ISIs greater than 3000ms, but less than 

6000ms, the white cross appeared as gray once, for 250ms. For null trials during ISIs 

greater than 6000ms, the white cross appeared as gray twice, each time for 250ms. The 

exact onset of the color change within the ISI was randomized within the constraints that 

color changes occurred at least 1000ms before the end of the ISI and there was at least 

1500ms between two color changes in a single ISI. These null trials provided a 

behavioral measure of attention and wakefulness and also provided gaps in the stimulus 

sequence that allow for a better estimate of the hemodynamic response (HRF) for 

individual events. After completion of the 10 study scans, participants were given a self-

paced break and exited the scanner before re-entering for the six test scans. 

During the test scans, a total of 48 Novel, 48 Recombination and 48 Familiar 

stimulus trials were sequentially presented, such that 16 stimuli from each of the 

mnemonic stimulus classes were shown three times each. As stated earlier, Novel and 

Recombination stimuli were created by combining one feature of one family (either 

unstudied or studied for Novel and Recombination, respectively) with a third feature of 

the other unstudied/studied family. When implementing all possible 1 + 2 feature 

combinations, this design method allowed for the creation of 48 unique stimuli for both 

Novel and Recombination stimulus classes. However, because there were only 16 unique 
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Familiar stimuli, only a subset of 16 out of the 48 possible stimuli was selected for 

presentation at test for each of Novel and Recombination classes. Which 16 stimuli of the 

48 were included in this subset was counterbalanced across participants. 

Trial order and spacing of the three stimulus types was optimized using the easy-

optimize-x MATLAB tool, which finds the most efficient design for later contrasting of 

conditions. Optimization was constrained such that the three stimulus types were equally 

distributed across the six test scans (i.e., eight of each stimulus type occurred in a scan) 

and that repetition was blocked (i.e., all 48 stimuli were shown for the first time before 

any stimulus was presented for a second time, etc.). Each test stimulus appeared for 

2500ms, with a randomly assigned ISI between 4000ms and 12000ms. The response 

window for stimulus trials extended 1000ms into the ISI to ensure that participants had 

ample time to respond before the start of the next trial. All ISIs included a null trial, as 

described above, which did not commence until after the response window had elapsed 

(3500ms after stimulus trial onset). 

All subjects were willing to repeat the experiment with the other stimulus set and 

returned on a separate day to do so, in order to avoid excessive fatigue and movement 

while in the scanner. 

2.2.5 Image Acquisition 

Scanning was performed on a Siemens 3T Skyra scanner equipped with a 64-

channel head coil at the University of Massachusetts-Amherst’s Human Magnetic 

Resonance Center. Functional images were acquired using a T2-weighted EP2D-BOLD 

sequence (TR: 1250ms; TE: 33ms; flip angle: 70o; FOV: 210mm; 2.5mm3 voxels) and 

forty-two axial slices were acquired during each functional scan. Whole-brain anatomical 
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images were acquired in the middle of the study functional scan session using a T1-

weighted MP-RAGE sequence (208 sagittal slices; TR: 2000ms; TE: 2.13ms; flip angle: 

9o; 1mm3 voxels). 

2.2.6 fMRI Data Analyses 

2.2.6.1 fMRI Data Preprocessing 

Preprocessing was performed using fMRIPrep 1.5.2 (Esteban et al., 2019, 2018; 

RRID:SCR_016216), which is based on Nipype 1.3.1 (Esteban et al., 2018; Gorgolewski 

et al., 2011; RRID:SCR_002502). A full description of anatomical and functional data 

preprocessing steps, as automatically generated by fMRIPrep, is provided in 

AppendixAPPENDIX A. Functional data was co-registered to each individual’s 

anatomical scan for a given session, high-pass filtered with a 128s cutoff, and 

transformed into standard space (MNI152NLin2009cAsym) for group-level searchlight 

analyses (functional data remained in native space for region of interest [ROI]-based 

analyses). Data used in univariate analyses (i.e., functional data from test scan sessions), 

also underwent smoothing with a 5mm FWHM Gaussian kernel. Following 

preprocessing, the data was analyzed with a combination of custom MATLAB scripts 

utilizing SPM 12 software and the CoSMoMVPA toolbox (Oosterhof, Connolly, & 

Haxby, 2016). Functional data from immediate-repeat trials during the study scan 

sessions and incorrect trials during the test scan sessions were omitted from all 

neuroimaging data analyses.

2.2.6.2 Definition of Regions of Interest 
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Each participant completed one localizer scan. During this scan, participants 

completed a 1-back detection task while viewing a series of black and white images of 

objects, scrambled objects, words, scrambled words, faces, and scenes. Trials were 

blocked by image category and each image was presented for 400ms with a 350ms ISI.  

Ultimately, however, the localizer was limited in its ability to define only select 

ROIs (i.e., LOC, PHC) and probabilistic atlases were used instead to define ventral visual 

stream areas (i.e., V1, V2, V3, V3AB, hV4, ventral occipital cortex [VOC], LOC, 

temporal cortex [TOC]; Wang, Mruczek, Arcaro, & Kastner, 2015) and MTL areas (i.e., 

PHC, PRC, HC; Ritchey, Montchal, Yonelinas, & Ranganath, 2015). In all analyses, data 

from left and right hemispheres were combined into a single ROI. A subset of 

representative ROIs were selected for individual ROI analyses; this included V1, V2, V3, 

LOC, PHC, PRC, and HC. Because classifiers applied to individual ROIs located in MTL 

did not perform significantly above chance, for either the feature- or conjunction-level 

classification problems (Figure 7), larger regional ROIs were also created and used 

analogously in all ROI-based analyses. The motivation behind this choice was that the 

additional voxels in larger ROIs might provide additional information, if any is present in 

the neural activation patterns of these regions, and thus improve classifier accuracies. 

These regional ROIs included Early Ventral Visual Stream (VVS), composed of V1, V2, 

V3, and V3AB individual ROIs; Mid VVS, composed of hV4, VOC, LOC, and TOC 

individual ROIs; and MTL, composed of PHC, PRC and HC individual ROIs. 

In addition to the probabilistically-defined individual and regional ROIs described 

above, a conjunction-coding and a feature-coding ROI for each stimulus set was defined 

to be used in the memory signal analysis. The definition of these ROIs avoids issues 
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related to circular analysis because the ROIs were functionally defined from study scan 

data, but were used in the analysis of entirely separate test scan data (Nikolaus 

Kriegeskorte, Simmons, Bellgowan, & Baker, 2009). The exact methodology used to 

define these ROIs is detailed below. 

2.2.6.3 ROI-Based Analyses of Feature-Conjunction Index 

The feature-conjunction index (FCI) analysis followed the methods described in 

Cowell et al. (2017). For each stimulus set, a separate general linear model (GLM) was 

estimated for each stimulus trial of the study phase, excluding immediate repeat trials 

(Mumford, Turner, Ashby, & Poldrack, 2012). Each of the 32 single-trial GLMs had one 

regressor for the trial, one regressor for all remaining trials, and six motion nuisance 

regressors. Each regressor combined a boxcar model of the study stimulus time-series 

with a canonical HRF. The model provided activation estimates for every voxel within an 

ROI for each trial separately. Estimates of the single-trial activation patterns (i.e., the 

activation estimates across all voxels within the ROI) for each ROI were then used in 

feature and conjunction classification analyses for each stimulus set. 

For each of the two Familiar families of a stimulus set (corresponding to five 

scans of study phase data), a total of four non-probabilistic linear discriminant analysis 

(LDA) classifiers were trained using leave-one-run-out cross-validation: three 2-way 

feature-level classifiers and one 8-way conjunction-level classifier. This cross-validation 

approach involved training the classifier with activation patterns from four scans of 32 

non-immediate-repeat trials and returning predicted conjunction or feature labels for the 

32 trials of the remaining (held out) fifth scan. Predicted labels corresponded to the label 
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that had the highest discriminant score for a given trial. Note that the training sample 

contained data from only four scans, not nine, because the two Familiar families were 

blocked across scans, with each family appearing in five scans. This process was repeated 

five times so each of the five scans served as the test sample once. 

For each trial across scans and for all classifiers, predicted labels were compared 

to target labels and scored 0 or 1 for incorrect versus correct classification. The three 

feature-level classification accuracies for a given trial were then multiplied together to 

provide a predicted conjunction classification accuracy (i.e., 0 or 1 for incorrect versus 

correct) for that trial based on classifying features alone. The predicted conjunction could 

only be correct if all three features were classified accurately. Both the empirically 

observed conjunction classification accuracy (i.e., 0 or 1 if the 8-way conjunction-level 

classifier predicted the correct label) and the predicted conjunction classification 

accuracy (i.e., the product of multiplying the 0’s or 1’s of the three 2-way feature-level 

classification accuracies) were averaged across trials.  

The averaged empirically observed conjunction classification accuracy was then 

compared to the averaged predicted conjunction classification accuracy by taking the 

natural log of that ratio, and thus producing an FCI value. Positive FCIs indicate that 

activation within a region is modulated by conjunctions more than features and negative 

FCIs indicate that activation within a region is modulated by features more than 

conjunctions (Cowell et al., 2017). FCIs were averaged across the two Familiar families 

for each subject and this averaged FCI value served as the dependent measure in the ROI-

based FCI analyses below. 

2.2.6.4 ROI-Based Analyses of Memory Scores 
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For each stimulus set, a GLM was constructed with one regressor for each of four 

conditions: correct responses to Familiar, Recombination and Novel stimulus types; and 

incorrect responses. Six motion nuisance regressors were also included in the model. 

Each regressor combined a boxcar model of the test stimulus time-series with a canonical 

HRF. For each subject, the model provided activation estimates, or beta weights (𝛽) for 

every voxel within an ROI, for each of the four conditions. The beta weights for correct 

Familiar, Recombination and Novel stimulus types were used in obtaining indices of 

feature and conjunction memory. 

Memory signal indices were derived by defining two contrasts, which are defined 

in equations at the end of this section. I will first describe, conceptually, how these scores 

are defined. To index feature memory, the beta weights from Novel and Recombination 

correct trials were contrasted (i.e., a memory signal that likely emerges on the basis of 

features, because the features are familiar in Recombination stimuli but novel in Novel 

stimuli, whereas the conjunctions are mostly novel in both the Recombination and Novel 

stimuli). To index conjunction memory, the beta weights from Recombination and 

Familiar correct trials were contrasted (i.e., a memory signal that must stem from 

conjunctions, because the conjunctions are novel in Recombination stimuli but familiar in 

Familiar stimuli, whereas individual features are familiar in both stimulus types). In the 

case of feature memory, the resulting beta weight estimates from the GLM for correct 

Recombination trials (𝛽𝑅𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛) were subtracted from beta weight estimates for 

correct Novel trials (𝛽𝑁𝑜𝑣𝑒𝑙). In the case of conjunction memory, the beta weight 

estimates for correct Familiar trials (𝛽𝐹𝑎𝑚𝑖𝑙𝑖𝑎𝑟) were subtracted from the beta weight 

estimates for correct Recombination trials (𝛽𝑅𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛). 
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For both contrasts, the mean difference averaged across voxels within an ROI was 

then divided by the standard deviation of that difference to obtain a directional Cohen’s d 

statistic. Calculating effect sizes allows for comparisons of the magnitude of effects 

across ROIs with different numbers of voxels and different signal-to-noise levels. These 

effect sizes are referred to as feature memory scores (from the Novel versus 

Recombination contrast) and conjunction memory scores (from the Recombination 

versus Familiar contrast):  

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑀𝑒𝑚𝑜𝑟𝑦 𝑆𝑐𝑜𝑟𝑒 = 𝐶𝑜ℎ𝑒𝑛′𝑠 𝑑 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 =  
�̅�𝛽𝑁𝑜𝑣𝑒𝑙 − 𝛽𝑅𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛

 

𝑠𝑑𝛽𝑁𝑜𝑣𝑒𝑙 − 𝛽𝑅𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛

 

 

𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑀𝑒𝑚𝑜𝑟𝑦 𝑆𝑐𝑜𝑟𝑒 = 𝐶𝑜ℎ𝑒𝑛′𝑠 𝑑 𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  
�̅�𝛽𝑅𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛−𝛽𝐹𝑎𝑚𝑖𝑙𝑖𝑎𝑟

𝑠𝑑𝛽𝑅𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 − 𝛽𝐹𝑎𝑚𝑖𝑙𝑖𝑎𝑟

 

Where 𝛽𝑁𝑜𝑣𝑒𝑙 − 𝛽𝑅𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 is a subscript that refers to the difference of two 

vectors: 𝛽𝑁𝑜𝑣𝑒𝑙 refers to a vector of beta weights derived from all voxels in a given ROI 

on “Novel” trials in which the participant responded correctly (incorrect trials were 

removed from the analysis); and  𝛽𝑅𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 refers to a vector of beta weights for all 

voxels in the same ROI on “Recombination” trials in which the participant responded 

correctly.  Thus, �̅�𝛽𝑁𝑜𝑣𝑒𝑙 − 𝛽𝑅𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛
 is the mean value for the 𝛽𝑁𝑜𝑣𝑒𝑙 − 𝛽𝑅𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 

difference vector, averaged across all voxels in the ROI, and 𝑠𝑑𝛽𝑁𝑜𝑣𝑒𝑙 − 𝛽𝑅𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛
 is 

the standard deviation of the 𝛽𝑁𝑜𝑣𝑒𝑙 − 𝛽𝑅𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 difference vector calculated across 

all voxels in the ROI. Analogously, the 𝛽𝑅𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 − 𝛽𝐹𝑎𝑚𝑖𝑙𝑖𝑎𝑟 subscript refers to the 

difference of two vectors: 𝛽𝑅𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 refers to a vector of beta weights derived from 

all voxels in a given ROI on “Recombination” trials in which the participant responded 

correctly; and  𝛽𝐹𝑎𝑚𝑖𝑙𝑖𝑎𝑟  refers to a vector of beta weights for all voxels in the same ROI 
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on “Familiar” trials in which the participant responded correctly. Thus, 

�̅�𝛽𝑅𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 − 𝛽𝐹𝑎𝑚𝑖𝑙𝑖𝑎𝑟
 is the mean value for the 𝛽𝑅𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 − 𝛽𝐹𝑎𝑚𝑖𝑙𝑖𝑎𝑟 difference 

vector, averaged across all voxels in the ROI, and 𝑠𝑑𝛽𝑅𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 − 𝛽𝐹𝑎𝑚𝑖𝑙𝑖𝑎𝑟
 is the 

standard deviation of the 𝛽𝑅𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛 − 𝛽𝐹𝑎𝑚𝑖𝑙𝑖𝑎𝑟 difference vector calculated across 

all voxels in the ROI. 

2.2.6.5 Searchlight Analysis of the Intersection of Representational Content and 

Memory Signals 

The above analyses produced two primary indices per stimulus set: FCI scores 

from the study phase scan session and memory scores (both feature and conjunction) 

from the test phase scan session. The R-H account predicts that because conjunction 

memory (i.e., the contrast of Recombination versus Familiar trials) requires conjunction 

representations to disambiguate seen and unseen stimuli, conjunction-coding regions 

should be engaged more than feature-coding regions for this contrast. Similarly, because 

feature memory (i.e., the contrast of Novel versus Recombination trials) can rely solely 

on feature representations for successful mnemonic discrimination, feature-coding 

regions should show a greater effect than conjunction-coding regions for this contrast. 

To explore this prediction, conjunction-coding and feature-coding ROIs were 

defined via a searchlight analysis of the study scan data (Kriegeskorte, Goebel, & 

Bandettini, 2006). For each stimulus set separately, FCI was recorded at the center voxel 

of a spherical ROI (radius 5 functional voxels), defined as sets of neighboring voxels, 

throughout the brain. The group average of the spherical ROIs was calculated by 

averaging over subjects’ FCI values at each voxel, in normalized space. A group-level t-
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test at each voxel was then used to compare the group mean FCI to zero. This comparison 

was used to define brain regions that demonstrated statistically reliable extremes of 

feature-coding (i.e., negative FCI values significantly less than zero) or conjunction-

coding (i.e., positive FCI values significantly greater than zero). I then calculated 

conjunction and feature memory scores obtained from the corresponding fribble/scene 

test scan data within the stimulus-specific negative and positive FCI-ROIs defined by the 

study scan data. 

2.3 Results 

2.3.1 Behavioral Analysis 

Performance during the study scan session indicated that participants stayed 

awake and successfully completed the incidental one-back detection task, in which 

participants indicated ‘same’ if the stimulus on the previous trial was the same as on the 

current trial, or ‘different’ otherwise. Discriminability between ‘same’ and ‘different’ 

trials, as measured by d’, was calculated by finding the difference between the 

normalized proportions of hits (i.e., trials when participants responded ‘same’ and the 

trial was ‘same’) and false alarms (i.e., trials when participants responded ‘same’ and the 

trial was ‘different’). A large positive d’ value indicates a greater percentage of hits and a 

lower percentage of false alarms, and thus better overall performance. The mean d’ score 

was 3.21 and 3.26 for the fribble and scene stimulus sets, respectively. Performance did 

not significantly differ between stimulus sets, t (22) = -0.26, p = 0.8. 
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Behavioral performance on the recognition memory task during the test scan 

session was also measured with d’, which indexed the discriminability of the three classes 

of mnemonic status that were present among the test stimuli: Familiar, Recombination, 

Novel. Because there were more than two possible responses on a given trial, d’ scores 

were calculated for each possible pairwise comparison of trial types. In each case, trials 

containing stimuli belonging to the third outstanding trial type were removed from the 

analysis. Any (erroneous) responses to the two trial types under comparison that invoked 

the outstanding trial type were binned as either a hit or a false alarm depending on the 

comparison. For example, in one comparison between Familiar and Novel trials, trials 

whose true status was Recombination were removed, and on the remaining trials (true 

status Familiar and Novel) any “Recombination” response was considered a hit on a 

Familiar trial, but a false alarm on a Novel trial. In a second comparison of the same two 

trial types (Familiar and Novel), a “Recombination” response was considered a false 

alarm on Familiar trials, but a correct rejection on Novel trials. 

Table 2 shows the average d’ scores for all such comparisons; overall, memory 

discrimination performance was good. Performance did not differ significantly between 

stimulus sets (p = 0.53), but did differ significantly between different pairwise 

comparisons (F [1.27, 26.57] = 89.07, p < 0.001). Unsurprisingly, d’ scores were lowest, 

but still above chance, in the comparison of Familiar and Recombination trials (Novel 

responses treated similar to Recombination responses); these two trial types both 

contained stimuli in which all features of the stimuli were familiar from the study scan 

session, which would increase the difficulty of mnemonic discrimination. 

2.3.2 ROI-Based Analyses of Feature-Conjunction Index 
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Although classifier accuracy was not of primary interest, for descriptive purposes 

mean classifier accuracies for both individual and regional ROIs, and fribble and scene 

stimulus sets are presented in Figure 7. Accuracy was lowest in MTL areas (PHC, PRC, 

HC) where the BOLD signal has a lower signal-to-noise ratio (SNR; Olman, Davachi, & 

Inati, 2009). A general guide for classifier chance performance was determined with a 

binomial test for two-way feature and eight-way conjunction classifiers, uncorrected for 

multiple comparisons. Classifier performance did not improve above this binomial 

chance threshold in MTL regions when using regional ROIs in place of individual ROIs. 

Because FCIs derived from classifiers performing at or below chance tend toward zero 

(Cowell et al., 2017), we should be cautious when interpreting the FCI results in these 

MTL areas. It is possible that zero FCIs are a reflection of ‘hybrid’ coding (i.e., areas that 

demonstrate a mixture of feature- and conjunction-coding), but, in the absence of reliably 

above-chance classifier accuracy, zero FCIs could also reflect regions that contain neither 

feature nor conjunction knowledge.  

However, for regions outside of MTL with reliably above chance classifier 

performance, regional variation in SNR is much less likely to account for the FCI results 

described below. That is, we cannot infer that earlier regions have greater feature-coding 

than MTL regions simply because of greater SNR in those regions. Because the FCI 

measure places evidence for feature- and conjunction-coding into a ratio, both aspects of 

the measure should be similarly affected by noise within an ROI; at a minimum, 

simulations have shown that significantly negative FCI values can be produced only by a 

feature-based code and significantly positive values can be produced only by a 

conjunction-based code (see Cowell et al., 2017). 
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First, a two-way (2x7) ANOVA of FCI with factors of stimulus set (fribbles and 

scenes) and individual ROI (V1, V2, V3, LOC, PRC, PHC, HC) revealed a main effect of 

ROI, F (6, 126) = 4.41, p < 0.001, η2
G = 0.08. Because there was no significant 

interaction of stimulus set and individual ROI (p = 0.06, η2
G = 0.04), nor a main effect of 

stimulus set (p = 0.51, η2
G = 0.002), this analysis was followed with a one-way ANOVA 

of individual ROI on FCI values that were averaged across stimulus set (Figure 8, top 

panel; though see Appendix B, top panels for FCI values separated by stimulus set). In 

this follow-up analysis, the main effect of ROI was still significant, F (6, 132) = 3.94, p < 

0.001, η2
G = 0.13, indicating that FCI values differed between individual ROIs. V1 and 

V2 located in early ventral visual stream areas had significantly negative FCI values 

(two-tailed t-tests Bonferroni corrected for seven comparisons, FCI = -0.08, p = 0.004; 

and FCI = -0.1, p = 0.0002, respectively) and FCI values became numerically positive, 

though not significantly so, in MTL areas PHC (FCI = 0.02) and PRC (FCI = 0.01). 

An analogous analysis was completed with larger “regional” ROIs (Early VVS, 

Mid VVS, and MTL). A two-way (2x3) ANOVA of FCI again revealed a main effect of 

ROI, F (1.43, 30) = 6.64, p = 0.008, η2
G = 0.12, but the interaction between stimulus set 

and ROI (p = 0.73, η2
G = 0.005) and the main effect of stimulus set (p = 0.91, η2

G < 

0.001) were non-significant (see Appendix B, bottom panels for FCI values separated by 

stimulus set). Collapsing over stimulus set, a one-way ANOVA of ROI on averaged FCI 

values was significant, F (1.44, 31.71) = 8.09, p = 0.004, η2
G = 0.22 (Figure 8, bottom 

panel). Both Early and Mid VVS ROIs had significantly negative FCI values (two-tailed 

t-tests Bonferroni corrected for three comparisons, FCI = -0.06, p = 0.001; and FCI = -
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0.08, p = 0.003, respectively) and FCI values became numerically positive, though not 

significantly so, in MTL (FCI = 0.04). 

2.3.3 ROI-Based Analyses of Memory Scores 

Analyses were first performed within individual ROIs. Memory score, as 

measured by Cohen’s D, served as the dependent variable in a three-way (2x7x2) 

ANOVA with factors of stimulus set (fribbles and scenes), ROI (V1, V2, V3, LOC, PRC, 

PHC, HC) and memory score type (feature memory and conjunction memory; see 

Appendix C, top panels for memory scores separated by stimulus set). There was a main 

effect of ROI, F (2.32, 46.32) = 17.87, p < 0.001, η2
G = 0.14, and memory score type, F 

(1, 20) = 84.75, p < 0.001, η2
G = 0.36, as well as an interaction between these two factors, 

F (2.37, 47.32) = 28.4, p < 0.001, η2
G = 0.19. However, contrary to our prediction, there 

was no main effect of stimulus set or any interactions with stimulus set and other factors 

(p > 0.05, η2
G < 0.006). Consequently, memory scores were once again averaged across 

stimulus sets in a follow-up two-way (7x2) ANOVA. 

The follow-up analysis revealed main effects of memory type, F (1, 18) = 73.6, p 

< 0.001, η2
G = 0.47, and ROI, F (2.26, 40.72) = 17.56, p < 0.001, η2

G = 0.22, as well as 

an interaction between memory type and ROI, F (2.27, 40.9) = 35.6, p < 0.001, η2
G = 

0.30 (Figure 9, top panel). I explored this interaction further by separating the data for 

feature and conjunction memory and performing two one-way ANOVAs. This revealed a 

significant main effect of ROI in both cases (feature memory: F [2.4, 43.2] = 32.59, p < 

0.001, η2
G = 0.48; conjunction memory: F [2.44, 43.84] = 3.41, p = 0.03, η2

G = 0.08). The 

greatest signal for feature memory occurred in individual ROIs located in early ventral 

visual stream (i.e., V1, V2, V3) and this signal decreased moving anteriorly to individual 
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ROIs located in MTL. Additionally, the greatest signal for conjunction memory occurred 

in individual ROIs located in MTL (i.e. PHC, PRC, HC) and late-stage ventral visual 

stream (i.e., LOC), and decreased moving posteriorly to individual ROIs located in early 

ventral visual stream. Conjunction memory was significantly positive in PRC (one-tailed 

t-tests Bonferroni corrected for four comparisons2, Cohen’s D = 0.16, p = 0.01), but was 

not different from zero in any other ROIs that demonstrated numerically positive scores. 

The memory score effects found within individual ROIs were mirrored in the 

analyses within regional ROIs. A three-way (2x3x2) ANOVA of memory score revealed 

a main effect of regional ROI, F (1.46, 30.76) = 21.56, p < 0.001, η2
G = 0.11, and 

memory score type, F (1, 21) = 81.2, p < 0.001, η2
G = 0.40, as well as an interaction 

between these two factors, F (1.34, 28.16) = 35.21, p < 0.001, η2
G = 0.15. All other 

effects were non-significant (p > 0.05, η2
G < 0.005) and thus memory score was again 

averaged over stimulus set before any further analyses of these regional ROIs (see 

Appendix C, bottom panels for memory scores separated by stimulus set). 

Collapsing over stimulus set, a two-way (3x2) ANOVA revealed a main effect of 

memory score type, F (1, 20) = 81.07, p < 0.001, η2
G = 0.54, ROI, F (1.49, 29.72) = 

18.75, p < 0.001, η2
G = 0.16, as well as the interaction between these two factors, F (1.35, 

27.06) = 31.22, p < 0.001, η2
G = 0.22 (Figure 9, bottom panel). To explore this interaction 

further, two one-way ANOVAs for feature and conjunction memory scores were carried 

out separately. For feature memory, there was a significant main effect of ROI, F (1.46, 

 
2 In contrast to feature memory scores, conjunction memory scores clustered near zero. The goal 

of this series of statistical tests was to determine whether there was any reliable indication of 

conjunction memory, as measured by conjunction memory scores that significantly exceeded 

zero. Out of the seven individual ROIs, only four ROIs (LO, PHC, PRC, HC) had numerically 

positive conjunction memory scores. Therefore, comparisons, and the subsequent corrections for 

multiple comparisons, were implemented for these four individual ROIs only.  
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29.22) = 30.11, p < 0.001, η2
G = 0.38. Compared to MTL, feature memory scores were 

greater in Early VVS, t (20) = 5.55, p < 0.001, and in Mid VVS, t (20) = 6.16, p < 0.001, 

but the two VVS regional ROIs did not significantly differ from each other, t (20) = 1.27, 

p = 0.22. For conjunction memory, there was a borderline main effect of ROI, F (1.32, 

26.38) = 3.23, p = 0.07, η2
G = 0.05. Compared to Early VVS, conjunction memory scores 

were significantly greater in Mid VVS, t (20) = -3.51, p = 0.002, and numerically, but not 

significantly, greater in MTL, t (20) = -1.97, p = 0.062. Conjunction memory did not 

significantly differ between Mid VVS and MTL regional ROIs, t (20) = -0.44, p = 0.66. 

Although signals for conjunction memory were numerically positive in both Mid VVS 

(Cohen’s D = 0.13) and MTL (Cohen’s D = 0.17), scores were significantly positive in 

only MTL (one-tailed t-tests, Bonferroni corrected for two comparisons3, p = 0.02). 

2.3.4 Searchlight Analysis of the Intersection of Representational Content and 

Memory Signals 

In contrast to the individual and regional ROI-based analyses above, where FCI 

values and memory scores were averaged across fribble and scene stimulus sets, FCI-

ROIs were defined separately for each stimulus set; the motivation for this decision is as 

follows. First, in terms of our theory, I did not expect to find stimulus-invariant negative 

and positive FCI regions (i.e., regions that were ‘universal conjunction-coders’ that 

 
3 Similar to the individual ROI analysis, conjunction memory scores within regional ROIs 

clustered near zero. Therefore, it was again important to determine whether there was any reliable 

indication of conjunction memory, as measured by conjunction memory scores that significantly 

exceeded zero. Out of the three regional ROIs, only two ROIs (Mid VVS, MTL) had numerically 

positive conjunction memory scores. Therefore, comparisons, and the subsequent corrections for 

multiple comparisons, were implemented for these two regional ROIs only. 
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yielded the strongest evidence for conjunctions for both fribbles and scenes), so 

constraining the searchlight analysis to such “shared” ROIs is not warranted a priori. 

Second, the fact that I found no stimulus set related differences in the FCIs and memory 

scores, and no stimulus set by ROI interactions in the a priori individual and regional 

ROIs above, does not necessarily entail that we should expect the same regions of the 

brain to contain the highest positive and lowest negative FCIs for the two stimulus sets. 

Lastly, evidence for stimulus set-related differences may have been masked in the 

individual and regional ROI-based analyses above. That is, there may in fact be 

differences between fribbles and scenes, but only in terms of the cortical locus for 

conjunction representations. In fact, where I predicted stimulus sets to differ the most in 

terms of FCI was within individual MTL regions. This possibility is explored below. 

To further probe the data for any differences between FCI values due to the two 

stimulus sets, I performed an analysis of FCI restricted to individual ROIs located within 

MTL (i.e., PHC, PRC, HC). There was a significant interaction between stimulus set and 

ROI, F (2, 42) = 3.35, p = 0.045, η2
G = 0.05 (Figure 10). The most positive FCI score was 

found within PRC for fribbles and within PHC and HC for scenes. This finding is in line 

with previous evidence of stimulus content coding specificity in MTL and my initial 

prediction. When defining positive FCI-ROIs via searchlight, similar stimulus set-related 

differences in the voxels identified may occur. Therefore, the decision to define FCI-

ROIs separately for fribble and scene stimulus sets was well motivated. 

The FCI-ROIs for fribble and scene stimulus sets are displayed in Figure 11. The 

coordinates for the ten most negative and ten most positive FCI-voxels included in the 

memory score analysis, and the general areas where these coordinates fell within the 
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Harvard-Oxford probability atlas (distributed with FSL, Smith et al., 2004), are listed for 

each stimulus set in Table 3 and Table 4. Fribble and scene stimulus sets contained a 

similar number of voxels in their respective negative and positive FCI-ROIs. For fribbles, 

the negative FCI-ROI consisted of 5194 voxels and the positive FCI-ROI consisted of 

1544 voxels. For scenes, the negative FCI-ROI consisted of 6088 voxels and the positive 

FCI-ROI consisted of 1173 voxels. Between the two stimulus sets, although 1948 voxels 

were shared between negative FCI-ROIs, only 55 voxels were shared between positive 

FCI-ROIs. 

For the fribble dataset, a two-way (2x2; [feature memory, conjunction memory] x 

[negative FCI-ROI, positive FCI-ROI]) ANOVA of memory score revealed an 

interaction between memory score type and ROI, F (1, 22) = 23.94, p < 0.001, η2
G = 0.16, 

as well as main effects of memory score type, F (1, 22) = 17.89, p < 0.001, η2
G = 0.18, 

and ROI, F (1, 22) = 17.55, p < 0.001, η2
G = 0.17 (Figure 12, left panel). The same 

effects were found in the analogous two-way (2x2) ANOVA of memory score with the 

scene dataset (Type x ROI interaction: F [1, 20] = 11.49, p = 0.003, η2
G = 0.16; Type: F 

[1, 20] = 26.17, p < 0.001, η2
G = 0.28; ROI: F [1, 20] = 9.01, p = 0.007, η2

G = 0.06; 

Figure 12, right panel). For both stimulus sets, feature-coding regions (i.e., negative FCI-

ROIs) had greater feature memory signals than conjunction-coding regions (i.e., positive 

FCI-ROIs; fribbles: t [22] = 5.59, p < 0.001; scenes: t [20] = 3.96, p < 0.001). For scenes 

but not for fribbles, conjunction memory scores were numerically (but not significantly) 

greater in the positive FCI-ROI (Cohen’s D = 0.15) than in the negative FCI-ROI 

(Cohen’s D = -0.07). However, for both stimulus datasets, conjunction memory scores 

did not significantly differ from zero (p > 0.05) in either positive or negative FCI-ROIs.  
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CHAPTER 3 

 

DISCUSSION 

In the present experiment, there were two distinct behavioral phases, study and 

test, each associated with a separate MRI scan session; together, these two phases 

allowed me to test four predictions stemming from the R-H account of cognition. In the 

study phase, I attempted to extend the recent finding of a transition point from feature-

coding to conjunction-coding regions, which was made using lower-level simple objects 

(Cowell et al., 2017), to two stimulus sets with greater conjunctive-complexity. That is, I 

sought to test for these more complex stimuli whether, when moving anteriorly along a 

theorized VVS-MTL pathway, a preference for coding information about an item’s 

individual features over the conjunction of features would shift to a preference for coding 

information about an item’s unique conjunction of features over the individual features 

themselves.  

Additionally, I investigated whether manipulating the assumed complexity of a 

stimulus set would change the locus of this transition point. Specifically, in Prediction #1, 

I hypothesized that this transition point would be located further anterior for scenes than 

for fribbles owing to greater conjunctive-complexity among scenes than for fribbles. For 

fribbles, feature-coding was expected in posterior to mid-ventral visual stream areas, with 

a transition to conjunction-coding in object-selective LOC and PRC. However, for 

scenes, because both the features and conjunctions of scenes were assumed to be more 

complex than their respective fribble counterparts, I expected feature-coding to be located 

in posterior ventral visual stream to early MTL areas, with the transition to conjunction-

coding also occurring later, in scene-selective PHC and HC. 
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Regarding Prediction #1, I did not find sufficient evidence that the relative 

preference for feature-coding or conjunction-coding, as measured by FCI, varied by the 

complexity of stimulus sets. Fribble and scene stimuli did not elicit significantly different 

FCI values in either the individual or regional ROI-based analyses. It is possible that the 

‘features’ measured in this analysis captured low-level features (e.g. line orientation or 

color) – for which representations are expected to reside in early ventral visual stream 

areas for both stimulus sets – rather than mid-to-high-level features (e.g. colored shapes 

or furniture) – for which the stimulus sets diverged in complexity and thus for which the 

representations could be expected to reside at different points in cortex. Although the 

design of the two stimulus sets here aimed to manipulate ‘features’ at this mid-level (e.g., 

fribbles differed from one another by swapping ‘head’, ‘body’ and ‘tail’ features whereas 

scenes differed by swapping features that were whole objects like a bed or a sofa), mid-

level and low-level features were conflated. For example, two mid-level ‘body’ features 

of a fribble always differed in terms of low-level features, like color, meaning the 

features could be discriminated on the basis of low-level visual properties or mid-level 

visual properties.  

In support of this explanation, while the stimulus sets did not appear to differ in 

the locus of feature-coding, they did significantly differ in where the emergence of late-

stage conjunction-coding began to occur. When the FCI analysis was limited to 

individual MTL sub-structures, PRC had the greatest tendency toward conjunction-

coding (most positive FCI values) for fribbles and PHC and HC had the greatest tendency 

toward conjunction-coding for scenes. This pattern aligns with much previous data 

suggesting that PRC is preferentially recruited for object processing and PHC and HC are 
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more often engaged in scene processing (for review, see Robin, Rai, Valli, & Olsen, 

2019). Therefore, I speculate that any evidence for a difference between stimulus sets 

may have been masked in the current study by common cortical loci for feature 

representations in their simplest form. Further investigation into whether the locus of 

mid-level conjunction codes varies when mid-level conjunction complexity is 

manipulated but low-level feature properties are held constant (i.e., thus, requiring mid-

level, rather than low-level feature representations for successful feature identification 

during classification) is warranted. This would elucidate whether the present null result 

reflects a true lack of difference in the location of conjunction-coding for the two 

stimulus sets, rather than simply a lack of power in this experiment. 

After I collapsed the data across stimulus sets, I found a transition from feature-

coding (i.e., negative FCIs) to either ‘hybrid’ feature- and conjunction-coding (i.e., zero 

FCIs) or conjunction-coding (i.e., positive FCIs) when moving anteriorly along the VVS-

MTL pathway. As predicted by the R-H account, posterior regions (i.e., V1, V2 among 

individual ROIs and Early and Mid VVS among regional ROIs) contained more 

information about individual features than the conjunctions of features.  

Although anterior regions (i.e., PHC and PRC among individual ROIs and MTL 

among regional ROIs) contained numerically positive FCIs, I am cautious to present this 

finding as strong evidence that these regions contain more information about the 

conjunction of features than about individual features. That is because the FCI values in 

these regions were not significantly greater than zero and classifier accuracies for these 

regions were, on average, below the binomial threshold that I used as a heuristic to judge 

whether a classifier picked up sufficient information to perform above chance. As 
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mentioned earlier, FCIs derived from classifiers performing at or below chance tend 

toward zero (Cowell et al., 2017). Consequently, the FCIs captured in MTL areas could 

reflect hybrid coding, but could also reflect the absence of both feature and conjunction 

knowledge. To attempt to exclude the latter option, future investigations could implement 

techniques to improve classifier performance (e.g., including more trials in the 

experimental design, which would provide more trials for the classifiers to train on), or 

increase the power to capture statistically significant effects in MTL (e.g. increase sample 

size). Despite the inconclusiveness of MTL region analyses, the results of the present 

study still extend one finding of Cowell et al. (2017) to two new stimulus sets: visual 

feature information is best represented in posterior areas of the ventral visual stream. 

The test phase of the experiment explored whether the locus of memory signals 

could be made to vary along the VVS-MTL pathway by manipulating the 

representational demands of a recognition memory task. According to the R-H account, 

engagement of a brain structure is not determined by whether a task requires a particular 

cognitive function (e.g., memory versus perception) and whether that function is 

localized to that structure. Rather, engagement of a brain structure is determined by what 

level of representation is needed to complete the task (e.g. fribble versus scene; feature 

versus conjunction) and whether that representation resides within that structure. Because 

I predicted that fribble and scene stimuli would vary in the cortical location of their 

respective feature and conjunction representations (Prediction #1), I additionally expected 

the locus of memory signals to vary by stimulus set (Prediction #2), such that the locus of 

memory signals would be further anterior for scenes than for fribbles. 
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Further, in Prediction #3, I hypothesized that signals reflecting conjunction 

memory (i.e., when the difference between two contrasted trial types [Recombination 

versus Familiar trials] was defined by a difference in familiarity for the conjunction of 

features) would be found in anterior ventral visual stream and MTL regions thought to 

house conjunction representations. Analogously, and more controversially, I predicted 

that signals reflecting feature memory (i.e., when Novel versus Recombination trials were 

contrasted, which differed in terms of feature familiarity alone) would be localized to 

posterior ventral visual stream regions thought to contain feature representations, and 

outside of traditional MTL ‘memory areas’. The combination of Predictions #2 (a shift in 

memory signals for fribbles versus scenes) and #3 (a shift in memory signals for features 

versus conjunctions) led to specific expectations of PRC engagement during conjunction 

memory for fribbles, in contrast to PHC and HC engagement during conjunction memory 

for scenes. For feature memory, I expected early to mid-ventral visual areas to be 

engaged for fribbles and mid-ventral visual to posterior MTL areas to be engaged for 

scenes. 

I did not find evidence for Prediction #2: memory scores did not differ 

significantly between fribble and scene stimulus sets, regardless of memory score type 

(feature versus conjunction) or ROI selection (small ROIs versus larger, regional ROIs). 

Similar to the FCI analysis, this could be due to a misspecification of what classifies as a 

‘feature’, such that the features needed in the current paradigm may have resided at the 

earliest levels of the representational hierarchy and thus 'feature memory' appeared in 

identical cortical locations for both fribbles and scenes. Further, when considering 

conjunction memory, according to the R-H account, the distance between fribbles and 
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scenes is not predicted to be great: both stimulus sets would be expected to elicit memory 

signals for the conjunctions that comprise them within the MTL, in adjacent structures. 

The measure that I used to assess conjunction memory – the contrast between 

Recombination and Familiar trials – was perhaps an inherently weak signal, in line with 

the fact that the discrimination is subtle and behaviorally difficult to make. It is therefore 

possible that the current experiment lacked the statistical power to detect this small 

anatomical distance – between PRC and PHC/HC – within the representational hierarchy, 

for conjunction memory signals. 

When collapsing across stimulus sets, I found that feature memory and 

conjunction memory demonstrated anatomically distinct patterns of activity, as put forth 

in Prediction #3. Feature memory-related activation was greatest in early ventral visual 

stream areas, defined either individually (V1, V2) or regionally (Early VVS), where low-

level feature representations were found in the study phase. Feature memory signals 

decreased moving anteriorly along the VVS-MTL pathway into MTL regions. In 

contrast, conjunction memory-related activation was negligible in early ventral visual 

stream areas, defined either individually or regionally, but increased moving anteriorly 

into MTL regions. This finding, in line with Prediction #3, contrasts with the lack of 

evidence supporting Prediction #2 regarding a difference in memory signal locations for 

fribbles versus scenes. However, the R-H account predicts that the distance along the 

VVS-MTL pathway should be much greater between feature and conjunction memory 

than between conjunction memory signals for fribbles and scenes. Perhaps, in the context 

of noisy fMRI data, it is unsurprising that, of the two predictions, Prediction 3 was the 

one to be confirmed. Interestingly, structures that demonstrated significantly positive 
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conjunction memory signals (individual: PRC; regional: MTL) also contained 

numerically positive FCI values.  

Taken together, the test phase results provide support for the notion that visual 

regions outside of MTL contribute to memory processes when the representational 

demands of a task require feature information. Additionally, foreshadowing the direct test 

of Prediction #4 (discussed next), the anatomical correspondence of regions involved in 

feature processing between the study and test phases is suggestive of support for the 

prediction of the R-H account that memory for feature information activates the same 

regions that contain representations of features. The same conclusion cannot be drawn 

from the current data for conjunction information (see above regarding the issue of non-

significant, positive FCI values in MTL). 

Finally, data from both phases of the experiment were used in a more direct test of 

the extent to which mnemonic signals (recorded during the second, memory test scan 

session) tracked perceptual representations (i.e., the properties of the neural code evoked 

by viewing stimuli during the first scan session) along the VVS-MTL pathway. Via a 

searchlight analysis of the study phase data, I first attempted to identify brain regions that 

demonstrated extremes of conjunction-coding (i.e., areas that reliably demonstrated an 

advantage for conjunction information over feature information) and feature-coding (i.e., 

areas that reliably demonstrated greater feature information than conjunction 

information) for fribbles and scenes, separately. I then analyzed the corresponding 

fribble/scene memory test data within the newly defined, stimulus-specific conjunction- 

and feature-coding regions in an analogous manner to ROI-based analyses. As put forth 

in Prediction #4, feature-coding regions were expected to be engaged during feature 
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memory and conjunction-coding regions were expected to be engaged during conjunction 

memory. 

For both fribble and scene stimulus sets, the searchlight analysis revealed feature-

coding regions that were primarily located in posterior areas of the brain, including 

bilaterally in LOC and fusiform and lingual gyri. In contrast, conjunction-coding regions 

were localized to more anterior regions of the brain. This included many cortical regions 

previously implicated in memory, such as anterior cingulate, lateral oribitofrontal cortex, 

precuneus,(Ranganath & Ritchey, 2012) and medial prefrontal cortex (Ranganath & 

Ritchey, 2012; Restivo, Vetere, Bontempi, & Ammassari-teule, 2009; Rugg & Vilberg, 

2013). 

In this analysis of the data, I was unable to find evidence of above-zero 

conjunction memory signals, regardless of FCI-ROI (i.e. positive FCI versus negative 

FCI) or stimulus set (i.e. whether ROI definition and memory score calculation used data 

from fribble or scene scan sessions). It may be possible that the conjunction-coding areas 

predicted (and found in the ROI-based memory analyses) to be the most engaged during 

conjunction memory (i.e., MTL) were excluded from the searchlight analysis because 

lower SNR levels within MTL resulted in zero or unreliable-positive FCI values, as seen 

in the ROI-based FCI analyses. However, feature-coding regions did demonstrate greater 

feature memory signals than conjunction-coding regions, for both fribbles and scenes. 

Therefore, as predicted by the R-H account, brain areas that contained feature 

representations during perception were also engaged during memory retrieval of that 

feature information. 
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The collection of findings described here provide some support for the R-H 

account, along with a number of null results that are difficult to interpret. The R-H 

account assumes that representations are organized along the VVS-MTL pathway such 

that representations are feature-based in posterior areas but transition to increasingly 

complex representations of conjunctions of features in more anterior areas. The present 

data did not allow us to fully evaluate whether the locus of the transition point from 

feature-coding to conjunction-coding varies for increasingly complex stimulus sets 

(Prediction #1) because reliable conjunction-coding areas could not be identified (i.e., 

none of the examined ROIs showed significantly positive FCI values). However, I 

acknowledge that there was reliable evidence of feature-coding areas in posterior regions 

for both feature sets, which did not appear to differ in location between stimulus sets 

(Appendix B; but, as discussed, this may have been due to the presence of similar low-

level features in both sets). 

The R-H theory also predicts that the locus of memory signals should be 

dependent on memory content, rather than confined to areas labeled as memory 

processing regions, i.e. MTL. There was insufficient evidence that the location of 

memory signals varied according to the conjunctive-complexity of stimuli in the 

mnemonic task (fribbles versus scenes; Prediction #2); however, there was evidence that 

it varied according to the complexity of to-be-retrieved information (features versus 

conjunctions; Prediction #3). Further, and importantly, feature memory engaged regions 

outside of traditional ‘memory’ MTL areas. Lastly, according to the R-H account, the 

locus of memory signals should map onto the locus of representations during perception 

(Prediction #4). There was insufficient evidence to support this in terms of conjunction 
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memory, but there was a correspondence between feature-coding areas and feature 

memory. 

Importantly, many of the above findings are in direct conflict with existing 

modular theories of memory. A modular framework in which the brain is organized into 

independent functional components, such as ‘memory’ areas and ‘perception’ areas, is 

incompatible with the present findings that early and mid-ventral visual stream areas, 

known to be involved in perception, are also preferentially engaged during feature 

memory (i.e. to a greater extent than MTL regions). Consequently, further consideration 

should be given to the R-H theory as a plausible non-modular account of memory. 
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Table 1: Extreme Outliers Omitted from Statistical Analyses 

Data Analysis ROI Session Subject Level 

Behavioral Memory performance   Scenes 3 New vs. (Old + R) 

         (Recomb + O) vs. New 

Neural FCI: 2x7x2 ANOVA Individual Fribbles 11 V1 

 FCI: 2x3x2 ANOVA Regional Fribbles 15 Early VVS 

 Memory score: 2x7x2 ANOVA Individual Scenes 8 PRC Conj. Memory 

    23 PRC Feat. Memory 

 Memory score: 7x2 ANOVA Individual Collapsed 8 PRC Conj. Memory 

    13 PRC Feat. Memory 

    18 LOC Feat. Memory 

    23 PRC Feat., Memory 

     PRC Conj. Memory 

 Memory score: 2x3x2 ANOVA Regional Fribbles 23 MTL Conj. Memory 

   Scenes 23 MTL Feat. Memory 

 Memory score: 3x2 ANOVA Regional Collapsed 8 MTL Conj. Memory 

    23 MTL Feat. Memory 

     MTL Conj. Memory 

 Memory score: 2x2 ANOVA FCI Scenes 8 Neg. Conj. Memory 

    23 Pos. Conj. Memory 

Note: Values either three times the interquartile range above the 75th quantile or below the 25th quantile were 

identified as extreme outliers. For repeated-measures analyses, all observations for a subject were omitted, 

rather than just the extreme outlier point. 
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Table 2: Discriminability of Mnemonic Stimulus Classes for Fribbles and Scenes 

Comparison Condition Fribble Scene Trial Types Hit/Correct Rejection False Alarm/Miss 

(Familiar + R) vs. Novel  4.47 4.44 Familiar “Familiar” & “Recombination” “Novel” 

   Novel “Novel” “Familiar” & “Recombination” 

      

Familiar vs. (Novel + R) 3.28 3.59 Familiar “Familiar” “Novel” & “Recombination” 

   Novel “Novel” & “Recombination” “Familiar” 

      

Familiar vs. (Recombination + N) 2.32 2.47 Familiar “Familiar” “Recombination” & “Novel” 

   Recombination “Recombination” & “Novel” “Familiar” 

      

(Recombination + F) vs. Novel 4.37 4.22 Recombination “Recombination” & “Familiar” “Novel” 

   Novel “Novel” “Recombination” & “Familiar” 

Note: The d’ statistics shown here are for each possible pairwise comparison. In each comparison, only two of the three trial types 

were under comparison, while any trials corresponding to the third trial type were removed from the analysis. (Trial type is indicated 

by non-abbreviated trial type names in the “Comparison Condition” column and listed in the “Trial Types” column). However, 

because there were three possible responses on a given trial, responses that referred to the third outstanding trial type (indicated by the 

initial letter of the response name – R, N or F – in the “Comparison Condition” column) were binned as a hit in some comparisons and 

as a false alarm in other comparisons. The exact manner in which responses referring to the outstanding trial type were treated is 

indicated by grouping of non-abbreviated and abbreviated trial type names via parentheses in the “Comparison Condition” column, as 

well as by the inclusion of two response types under the “Hit/Correct Rejection” or “False Alarm/Miss” column. For example, for the 

(Familiar + R) vs. Novel comparison, only Familiar and Novel trials were included in the analysis, but a participant could still respond 

“R” for recombination. If a participant made an “R” response during a Familiar trial, it was counted as if they had said “F” (familiar), 

and thus contributed to the hit rate; if a participant made an “R” response during a Novel trial, it was again counted as if they had said 

“F” and thus contributed to the false alarm rate. As another example, in the (Recombination + F) vs. Novel comparison, only 

Recombination and Novel trials were included. Here, if a participant made an “F” response during a Recombination trial, it was 

counted as if they had said “R” (recombination), and contributed to the hit rate, whereas an “F” response during a Novel trial counted 

as a false alarm. 
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Table 3: Ten Most Positive and Negative Voxels within Fribble FCI-ROIs 

FCI-ROI t-Statistic Coordinates Harvard-Oxford brain area 

Positive 4.46 43, 36, 49 rh-precuneus 

 4.45 39, 76, 29 rh-medialorbitofrontal 

 4.12 36, 72, 50 lh-superiorfrontal 

 3.93 36, 72, 51 lh-superiorfrontal 

 3.88 35, 34, 47 lh-precuneus 

 3.88 55, 62, 29 rh-parstriangularis 

 3.87 40, 76, 29 rh-medialorbitofrontal 

 3.78 39, 75, 29 rh-medialorbitofrontal 

 3.77 39, 72, 33 rh-superiorfrontal 

 3.71 54, 61, 29 rh-insula 

Negative -6.98 44, 14, 27 rh-lateraloccipital 

 -6.16 19, 18, 29 lh-lateraloccipital 

 -5.96 22, 20, 28 lh-lateraloccipital 

 -5.82 51, 23, 23 rh-fusiform 

 -5.73 22, 20, 29 lh-lateraloccipital 

 -5.63 19, 19, 29 lh-lateraloccipital 

 -5.63 51, 23, 24 rh-lateraloccipital 

 -5.60 21, 21, 28 lh-lateraloccipital 

 -5.59 52, 23, 24 rh-fusiform 

 -5.55 52, 22, 24 lh-lateraloccipital 

Note: Coordinates are within MNI152NLin2009cAsym standard space. 

Abbreviations include rh for right hemisphere and lh for left hemisphere. 
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Table 4: Ten Most Positive and Negative Voxels within Scene FCI-ROIs 

FCI-ROI t-Statistic Coordinates Harvard-Oxford brain area 

Positive 4.19 22, 55, 31 lh-insula 

 4.10 21, 56, 31 lh-pars opercularis 

 4.01 22, 54, 31 lh-insula 

 3.95 38, 70, 36 lh-rostralanteriorcingulate 

 3.92 22, 56, 31 lh-insula 

 3.91 39, 70, 39 rh-superiorfrontal 

 3.90 21, 55, 31 lh-insula 

 3.87 47, 28, 59 rh-superiorparietal 

 3.85 51, 72, 27 rh-lateralorbitofrontal 

 3.83 39, 70, 38 rh-superiorfrontal 

Negative -8.15 25, 16, 37 lh-inferiorparietal 

 -7.41 25, 17, 37 lh-inferiorparietal 

 -7.17 25, 17, 36 lh-inferiorparietal 

 -6.80 25, 16, 36 lh-inferiorparietal 

 -6.78 30, 22, 29 lh-lingual 

 -6.66 26, 16, 36 lh-lateraloccipital 

 -6.56 24, 16, 37 lh-lateraloccipital 

 -6.51 25, 15, 37 lh-inferiorparietal 

 -6.36 28, 22, 30 lh-fusiform 

 -6.34 26, 16, 37 lh-lateraloccipital 

Note: Coordinates are within MNI152NLin2009cAsym standard space. 

Abbreviations include rh for right hemisphere and lh for left hemisphere. 
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Figure 1: Illustration of Representational Organization. The R-H account assumes 

that the complexity of a representation is determined by the dimensionality of the 

representation. Individual features are represented in posterior areas of a ventral-visual-

stream-to-MTL pathway (e.g. early visual cortex: V1, V2). Conjunctions of those 

features are represented in more anterior regions of the pathway (e.g. V3, LOC) and 

continue to increase in dimensionality moving anteriorly (e.g., PHC, PRC). The hierarchy 

is assumed to culminate in HC, which represents the conjunction of an item within its 

spatial and/or temporal context. 

  

V1/V2 V3/LOC PHC/PRC HC 
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Figure 2: Simple Object Stimuli from Cowell et al. (2017), adapted with permission. 

A: Stimuli were constructed by conjoing four binary (Values A and B) features (Right 

Outline, Left Outline, Right Spatial Frequncy and Left Spatial Frequncy); B: All possible 

combinations of the four binary features created sixteen unique conjunctive simple object 

stimuli. 

  

A 

B 



 

72 

 

       

Figure 3: Fribble Stimulus Set Examples. A: a conjunctive fribble (top) and “tail”, 

“body” and “head” features (bottom, left to right); B: A family containing eight unique 

conjunctive fribbles, constructed from three binary features. 

  

A B 
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Figure 4: Scene Stimulus Set Examples. A: a conjunctive scene (top) and room 

furniture, color and shape features (bottom, left to right); B: A family containing eight 

unique conjunctive scenes composed using three binary room features. 

  

A 

B 



 

74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Scene Stimulus Set Recombination Examples. A: counterbalanced across 

participants, two families from the scene stimulus set were designated to be studied (i.e., 

presented in the first scan session). In this example, a Recombination stimulus is created 

by combining the color feature from the first family with the room shape and furniture 

features from the second family. All potential ‘1 + 2’ feature combinations within a given 

family pairing yielded 48 Recombination stimuli; B: the three mnemonic stimulus classes 

differed on the basis of whether features and the conjunction of features were studied 

prior to the memory test. 

A 
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Figure 6: Experimental Design. During a study scan, participants indicated if the 

current image was identical to the image immediately before (i.e., 1-back repetition task). 

During a test scan, participants distinguished between Familiar, Novel, and 

Recombination stimuli. Both study and test scans featured null trials where participants 

indicated if a fixation cross dimmed. Participants completed ten study scans and then 

exited the scanner for a self-paced break. When participant re-entered the scanner, they 

completed six test scans. Scene stimuli are shown here, but the experimental protocol was 

identical for the fribble scan sessions, which were completed on a separate day. 
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Figure 7: Study Phase Classifier Accuracies by Stimulus Set and ROI Selection. 

Classifier accuracies were averaged over the two studied family sets from a stimulus set, 

for each subject. The average of the three two-way feature-classifiers is displayed above. 

Accuracy levels indicating classifier performance above chance were determined with a 

binomial test, uncorrected for multiple comparisons. This accuracy level was 0.5625 for 

feature-classifiers (solid line) and 0.1628 for the conjunction-classifier (dashed lined). 

Error bars are within-subject SEM. Both feature- and conjunction-classifier accuracies 

were not significantly greater than chance performance for MTL structures, regardless of 

stimulus set (fribbles [left] versus scenes [right]) or how ROIs were defined (individually 

[top] versus regionally [bottom]). 
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Figure 8: Study Phase Feature-Conjunction Indexes (FCIs) by ROI Selection. FCIs 

were derived by taking the natural log of the ratio of conjunction classifier accuracy (i.e., 

empirically observed conjunction accuracy) to the product of three feature classifier 

accuracies (i.e., predicted conjunction accuracy; see Methods for further detail). A 

negative FCI reflects feature-coding, while a positive FCI reflects conjunction-coding. 

FCIs were first averaged across the two studied family sets from a given stimulus set, and 

then across the two stimulus sets for each subject. White bars show group means; plotted 

points show individual subjects, where each unique color-marker combination 

corresponds to the same individual subject across ROIs. Error bars are within-subject 

SEM. Regardless of whether ROIs were defined individually (top) or regionally (bottom), 

feature-coding (i.e., negative FCIs) appeared to transition to a different form of coding — 

either a ‘hybrid’ combination of feature- and conjunction-coding (i.e., zero FCIs) or 

conjunction-coding (i.e., positive FCIs) — when moving anteriorly along the VVS-MTL 

pathway. MTL FCI values should be interpreted with caution; classifier accuracies were 

not above chance and thus zero FCIs could indicate ‘hybrid’ coding or an absence of 

feature- and conjunction-knowledge altogether. 
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Figure 9: Test Phase Memory Scores by ROI Selection. Memory scores were derived 

by calculating the effect size, as measured by Cohen’s D, for the contrast of Novel and 

Recombination trials (i.e., Feature Memory) and for the contrast of Recombination and 

Familiar trials (i.e., Conjunction Memory). Memory scores were averaged across the two 

stimulus sets, for each subject. Stripped and solid white bars show group means; plotted 

points show individual subjects, where each unique color-marker combination 

corresponds to the same individual subject across ROIs. Error bars are within-subject 

SEM. Regardless of whether ROIs were defined individually (top) or regionally (bottom), 

signals for feature memory were greatest in posterior areas along a VVS-MTL pathway. 

In contrast, signals for conjunction memory were greatest in MTL areas. 

-1

0

1

2

3

Early VVS Mid VVS MTL

M
e

an
 M

e
m

o
ry

 S
co

re

Regional ROIs

Feature Memory Conjunction Memory

-1.5

-0.5

0.5

1.5

2.5

3.5

V1 V2 V3 LOC PHC PRC HC

M
ea

n
 M

em
o

ry
 S

co
re

Individual ROIs

Feature Memory Conjunction Memory



 

79 

 

 

 

  

Figure 10: Study Phase Feature-Conjunction Indexes (FCIs) by Stimulus Set for 

Individual MTL ROIs Only. FCIs did not vary between fribble and scene stimulus sets 

when considering all seven individual ROIs (see Section 2.3.1). However, when 

analyzing only a subset of individual ROIs that fall within MTL, there was an interaction 

between stimulus set and ROI, such that PRC contained the most positive FCIs for 

fribbles and PHC and HC contained the most positive FCIs for scenes. This demonstrates 

that there may in fact be differences in the locus of conjunction-coding between different 

types of stimuli and supports the methodological decision to define FCI-ROIs separately 

for each stimulus set in the searchlight analysis.  
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Figure 11: FCI-ROIs Defined via Searchlight Analysis of Study Phase Data. For each 

stimulus set and subject separately, FCI was recorded at each center voxel of a spherical 

ROI swept throughout the brain. Voxels that demonstrated FCIs significantly less than or 

greater than zero via a group-level t-test were grouped into negative and positive FCI-

ROIs, respectively. Negative FCI-ROIs (blue) indicate regions that demonstrated 

statistically reliable extremes of feature-coding and positive FCI-ROIs (red) indicate 

regions that demonstrated statistically reliable extremes of conjunction-coding. For both 

fribbles (A) and scenes (B), top and bottom rows show the same FCI-ROIs, but from 

different views to highlight positive and negative areas. 
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Figure 12: Test Phase Memory Scores for FCI-defined ROIs. For both fribble (left) 

and scene (right) stimulus sets, negative FCI-ROIs included brain areas that contain more 

information about individual features than the conjunction of those features (i.e. feature-

coding), based on study phase data collected while participants viewed the stimuli. In 

contrast, positive FCI-ROIs included brain areas that contain more information about the 

conjunction of features than about those features separately (i.e. conjunction-coding). 

Memory scores for stimulus-specific, FCI-defined ROIs were derived from 

corresponding fribble/scene memory test phase data in an identical manner to the 

memory scores for a priori individual and regional ROIs. Feature memory was measured 

by the effect size (Cohen’s D) of the contrast between Novel and Recombination trials; 

conjunction memory was measured by the effect size of the contrast between 

Recombination and Familiar trials. Error bars are within-subject SEM. For both fribble 

and scene stimulus sets, signals for feature memory were greater in feature-coding ROIs 

than in conjunction-coding ROIs. 
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APPENDIX A 

IMAGING DATA PREPROCESSING 

The fMRI results included in this dissertation were derived from preprocessing 

performed using fMRIPrep 1.5.2 (Esteban et al., 2019, 2018; RRID:SCR_016216), which 

is based on Nipype 1.3.1 (Esteban et al., 2018; Gorgolewski et al., 2011; 

RRID:SCR_002502). The following description of the preprocessing procedure is based 

on the boilerplate automatically generated by fMRIPrep (CC0 license), though the text 

has been edited for the purpose of clarity. 

Anatomical data preprocessing 

First, each of the two T1-weighted (T1w) images (one image obtained for each of 

the two stimulus set scan sessions, collected on separate days) were corrected for 

intensity non-uniformity (INU; an imaging artifact when, as a result of acquisition 

techniques or patient movement, voxels belonging to the same tissue type demonstrate 

intensity variations across images). INU correction was completed using 

N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 2.2.0 (Avants, 

Epstein, Grossman, & Gee, 2008, RRID:SCR_004757). The T1w images were then skull-

stripped with a Nipype implementation of the antsBrainExtraction.sh workflow (from 

ANTs), using OASIS30ANTs as the target template. Brain tissue segmentation of 

cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on 

the brain-extracted T1w images using FAST (FSL 5.0.9, RRID:SCR_002823, Zhang, 

Brady, & Smith, 2001). 

Next, a single T1w-reference map was computed after registration of the two T1w 

images using mri_robust_template (FreeSurfer 6.0.1, Reuter, Rosas, & Fischl, 2010). The 



 

83 

registration was unbiased, such that the resulting template was equidistant from both T1w 

source images. This preprocessed T1w reference defined the T1w space and was used 

throughout the preprocessing workflow (i.e., all reconstructed surfaces and functional 

datasets were registered to this averaged T1w reference, and not to either of the T1w 

source images). 

Then brain surfaces were reconstructed using recon-all (FreeSurfer 6.0.1, 

RRID:SCR_001847, Dale, Fischl, & Sereno, 1999) and the brain mask, derived via 

ANTs during the earlier skull-stripping of the T1w images, was refined with a custom 

variation of the method to reconcile ANTs-derived and FreeSurfer-derived segmentations 

of the cortical gray-matter of Mindboggle (RRID:SCR_002438, Klein et al., 2017). This 

refinement of the brain mask addresses common inaccuracies in the ANTS-derived brain 

mask, such as small amounts of MR signal from outside of the brain. 

In a final step, spatial normalization to the ICBM 152 Nonlinear Asymmetrical 

template version 2009c [Fonov et al. (2009), RRID:SCR_008796; TemplateFlow ID: 

MNI152NLin2009cAsym] was performed through nonlinear registration with the 

antsRegistration tool (ANTs 2.2.0), using brain-extracted versions of both the T1w 

reference and the standard space template. 

Functional data preprocessing 

For each of the 34 BOLD scans gathered for a given subject (i.e., 10 study scans, 

6 test scans, and 1 functional localizer, collected for each of the two stimulus sets, on 

separate days), the following preprocessing was performed. First, a BOLD reference 

image and its skull-stripped version were generated using a custom methodology of 

fMRIPrep. Using this BOLD reference, head-motion parameters (transformation 
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matrices, and six corresponding rotation and translation parameters) were estimated using 

mcflirt (FSL 5.0.9, Jenkinson et al. 2002). The six rotation and translation parameters 

were later included as motion nuisance regressors in GLM estimates of both the study 

and test data.  

The BOLD reference was also used to correct for susceptibility distortions (an 

imaging artifact that results in points of extreme intensity, either very dark or very bright, 

in an image because of differences in the magnetic field). Specifically, using a custom 

workflow of fMRIPrep derived from D. Greve’s epidewarp.fsl script and further 

improvements of HCP Pipelines (Glasser et al., 2013), a deformation field was estimated 

based on a field map that was co-registered to the BOLD reference. Using this estimated 

susceptibility distortion, an unwarped BOLD reference was calculated for a more 

accurate co-registration with the anatomical (T1w) reference. The unwarped BOLD 

reference was then co-registered to the T1w reference using bbregister (FreeSurfer), 

which implements boundary-based registration (Greve & Fischl, 2009). Co-registration 

was configured with six degrees of freedom to account for remaining distortions in the 

new BOLD reference. 

 Next, the BOLD time-series were resampled to two volumetric spaces: subject 

native space and MNI152NLin2009cAsym standard space. Note that all resamplings 

were performed with a single interpolation step by concatenating all the pertinent 

transformations (i.e. head-motion transform matrices, susceptibility distortion correction, 

and co-registrations to anatomical and output spaces) in order to minimize information 

lost. Volumetric (gridded) resamplings were performed using antsApplyTransforms 

(ANTs), configured with Lanczos interpolation to minimize the smoothing effects of 
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other kernels (Lanczos, 1964). The BOLD time-series resampled in the 

MNI152NLin2009cAsym standard space was only used for the searchlight analysis, 

which required data from multiple subjects to be transformed into a common space for 

definition of group-level FCI-ROIs. The BOLD time-series resampled in native space 

was used for all other analyses (i.e., individual and regional ROI-based analyses of FCI 

values and memory scores).  

Following volumetric resampling, the BOLD time-series were resampled to two 

surface spaces: subject native space (fsnative) and the fsaverage template space. Surface 

(non-gridded) resamplings were performed using mri_vol2surf (FreeSurfer). The 

transformation matrices created during the surface resamplings were later used to apply 

the probabilistic ROI atlases to each subject. 

Additionally, several other parameters were automatically extracted based on the 

preprocessed BOLD time-series resampled in volumetric native space. This included 

framewise displacement (FD), DVARS and three region-wise global signals, as well as a 

set of physiological regressors to allow for component-based noise correction (CompCor, 

Behzadi et al. 2007). However, because these parameters were ultimately not used as 

nuisance regressors in the GLM estimation of the study and test data, the exact details of 

how these parameters were calculated will not be expanded on here. 

Many internal operations of fMRIPrep use Nilearn 0.5.2 (Abraham, Pedregosa, 

Eickenberg, & Gervais, 2014, RRID:SCR_001362), mostly within the functional 

processing workflow. For more details of the pipeline, see the section corresponding to 

workflows in fMRIPrep’s documentation: https://fmriprep.org/en/1.5.2/workflows.html. 
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APPENDIX B  

STIMULUS-SPECIFIC FEATURE-CONJUNCTION INDEXES 
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Figure B1: Study Phase Feature-Conjunction Indexes (FCIs) by ROI Selection and 

Stimulus Set Type. For both individual (top) and regional (bottom) ROI-based analyses, 

FCIs were derived by taking the natural log of the ratio of conjunction classifier accuracy 

(i.e., empirically observed conjunction accuracy) to the product of three feature classifier 

accuracies (i.e., predicted conjunction accuracy; see Methods for further detail). A 

negative FCI reflects feature-coding, while a positive FCI reflects conjunction-coding. 

FCIs were averaged across the two studied family sets from a given stimulus set for each 

subject. Error bars are within-subject SEM. There was not sufficient evidence that FCI 

values differed between fribble (left) and scene (right) stimulus sets when all ROIs were 

included in the analysis (though stimulus set-related differences existed in a subset of 

individual MTL regions). Consequently, FCI values were averaged across stimulus set for 

all further analyses. 
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APPENDIX C 

STIMULUS-SPECIFIC MEMORY SCORES 
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Figure C1: Test Phase Memory Scores by ROI Selection and Stimulus Set Type. For 

both individual (top) and regional (bottom) ROI-based analyses, memory scores were 

derived by calculating the effect size, as measured by Cohen’s D, for the contrast of 

Novel and Recombination trials (i.e., Feature Memory) and for the contrast of 

Recombination and Familiar trials (i.e., Conjunction Memory). Error bars are within-

subject SEM. There was insufficient evidence of stimulus set-related differences in 

memory scores to justify treating the stimulus sets separately in this ROI-based analysis 

of memory. Consequently, memory scores were averaged across fribble (left) and scene 

(right) stimulus sets for all further ROI-based analyses. 
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