
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Computer Science Department Faculty 
Publication Series Computer Science 

2020 

Online Row Sampling Online Row Sampling 

Michael B. Cohen 

Cameron Musco 

Jakub Pachocki 

Follow this and additional works at: https://scholarworks.umass.edu/cs_faculty_pubs 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/cs_faculty_pubs
https://scholarworks.umass.edu/cs_faculty_pubs
https://scholarworks.umass.edu/cs
https://scholarworks.umass.edu/cs_faculty_pubs?utm_source=scholarworks.umass.edu%2Fcs_faculty_pubs%2F1343&utm_medium=PDF&utm_campaign=PDFCoverPages


THEORY OF COMPUTING, Volume 16 (15), 2020, pp. 1–25
www.theoryofcomputing.org

SPECIAL ISSUE: APPROX-RANDOM 2016

Online Row Sampling

Michael B. Cohen∗ Cameron Musco† Jakub Pachocki‡

Received April 14, 2017; Revised April 10, 2020; Published December 11, 2020

Abstract. Finding a small spectral approximation for a tall n×d matrix A is a fundamental
numerical primitive. For a number of reasons, one often seeks an approximation whose rows
are sampled from those of A. Row sampling improves interpretability, saves space when A
is sparse, and preserves structure, which is important, e. g., when A represents a graph.

However, correctly sampling rows from A can be costly when the matrix is large and
cannot be stored and processed in memory. Hence, a number of recent publications focus
on row sampling in the streaming setting, using little more space than what is required to
store the returned approximation (Kelner–Levin, Theory Comput. Sys. 2013, Kapralov et al.,
SIAM J. Comp. 2017).

Inspired by a growing body of work on online algorithms for machine learning and
data analysis, we extend this work to a more restrictive online setting: we read rows of
A one by one and immediately decide whether each row should be kept in the spectral
approximation or discarded, without ever retracting these decisions. We present an extremely

A preliminary version of this paper appeared in the Proceedings of the 19th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX 2016).
∗Work supported in part by NSF grant CCF-1111109.
†Work supported by NSF Graduate Research Fellowship No. 1122374, AFOSR grant FA9550-13-1-0042 and the NSF

Center for Science of Information.
‡Work supported by NSF grant CCF-1065106.

ACM Classification: F.2.1, F.1.2, G.2.2

AMS Classification: 68W25, 68W20, 68R10

Key words and phrases: spectral sparsification, leverage scores, online algorithms, matrix approxima-
tion

© 2020 Michael B. Cohen, Cameron Musco, and Jakub Pachocki
cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/toc.2020.v016a015

http://dx.doi.org/10.4086/toc
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.7
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.7
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2020.v016a015


MICHAEL B. COHEN, CAMERON MUSCO, AND JAKUB PACHOCKI

simple algorithm that approximates A up to multiplicative error 1+ ε and additive error δ

using O(d logd log(ε‖A‖2
2/δ )/ε2) online samples, with memory overhead proportional to

the cost of storing the spectral approximation. We also present an algorithm that uses O(d2)
memory but only requires O(d log(ε‖A‖2

2/δ )/ε2) samples, which we show is optimal.
Our methods are clean and intuitive, allow for lower memory usage than prior work, and

expose new theoretical properties of leverage score based matrix approximation.

1 Introduction

1.1 Background

A spectral approximation to a tall n× d matrix A is a smaller, typically Õ(d)× d matrix Ã such that
‖Ãx‖2 ≈ ‖Ax‖2 for all x. Typically one asks for a multiplicative approximation, which guarantees that
(1− ε)‖Ax‖2

2 ≤ ‖Ãx‖2
2 ≤ (1+ ε)‖Ax‖2

2. In other notation,

(1− ε)A� Ã� (1+ ε)A.

Such approximations have many applications, most notably for solving least squares regression over
A [9, 11]. If A is the vertex-edge incidence matrix of a graph, Ã is a spectral sparsifier [26]. It can be
used to approximate effective resistances, spectral clustering, mixing time and random walk properties,
and many other computations.

A number of recent papers focus on fast algorithms for spectral approximation. Using sparse random
subspace embeddings [9, 23, 22], it is possible to find Ã in input sparsity time—i. e., running time scaling
linearly in the number of nonzero entries in A. These methods produce Ã by randomly recombining
the rows of A into a smaller number of rows. In some cases these embeddings are not enough, as it is
desirable for the rows of Ã to be a subset of the rows of A. If A is sparse, this ensures that Ã is also sparse.
If A represents a graph, it ensures that Ã is also a graph, specifically a weighted subgraph of the original.

It is well known that sampling O(d logd/ε2) rows of A with probabilities proportional to their
leverage scores yields a (1± ε)-factor spectral approximation to A. Further, this sampling can be done in
input sparsity time, either using subspace embeddings to approximate leverage scores, or using iterative
sampling techniques [20], some that only work with subsampled versions of the original matrix [11].

1.2 Streaming and online row sampling

When A is very large, input sparsity running times are not enough—memory restrictions also become
important. Hence, recent work has tackled row sampling in a streaming model of computation. [16]
presents a simple algorithm for sampling rows from an insertion-only stream, using space approximately
proportional to the size of the final approximation. [15] gives a sparse-recovery based algorithm that works
in dynamic streams with row insertions and deletions, also using nearly optimal space. Unfortunately, to
handle dynamic streams, the algorithm in [15] is complex, requires additional restrictions on the input
matrix, and uses significantly suboptimal running time to recover a spectral approximation from its low
memory representation of the input stream.

While the algorithm in [16] is simple and efficient, we believe that its proof is incomplete, and do
not see an obvious way to fix it. The main idea behind the algorithm is to sample rows by their leverage

THEORY OF COMPUTING, Volume 16 (15), 2020, pp. 1–25 2

http://dx.doi.org/10.4086/toc


ONLINE ROW SAMPLING

scores with respect to the stream seen so far. These leverage scores may be coarse overestimates of the
true scores. However as more rows are streamed in, better estimates can be obtained and the sampled
rows pruned to a smaller set. Unfortunately, the probability of sampling a row becomes dependent on
which other rows are sampled. This seems to break the argument in that paper, which essentially claims
that their process has the same distribution as would a single round of leverage score sampling.1

In this paper we initiate the study of row sampling in an online setting. As in an insertion stream,
we read rows of A one by one. However, upon seeing a row, we immediately decide whether it should
be kept in the spectral approximation or discarded, without ever retracting these decisions. We present
a similar algorithm to [16], however, since we never prune previously sampled rows, the probability
of sampling a row only depends on whether previous rows in the stream were sampled. This limited
dependency structure allows us to rigorously argue that a spectral approximation is obtained.

In addition to addressing gaps in the literature on streaming spectral approximation, our restricted
model extends work on online algorithms for a variety of other machine learning and data analysis
problems, including principal component analysis [4], clustering [21], classification [3, 14], and regression
[14]. In practice, online algorithms are beneficial since they can be highly computationally and memory
efficient. Further, they can be applied in scenarios in which data is produced in a continuous stream
and intermediate results must be output as the stream is processed. Spectral approximation is a widely
applicable primitive for approximate learning and computation, so studying its implementation in an
online setting is a natural direction. Since the initial publication of this work, online row sampling
methods have found applications in kernel matrix approximation [7, 8] and sliding window algorithms
for streaming matrix approximation [6].

1.3 Our results

Our primary contribution is a very simple algorithm for leverage score sampling in an online manner. The
main difficultly with row sampling using leverage scores is that leverage scores themselves are not easy
to compute. They are given by li = aT

i (AT A)−1ai, and so require solving systems in AT A if computed
naively. This is not only expensive, but also impossible in an online setting, where we do not have access
to all of A.

A critical observation is that it always suffices to sample rows by overestimates of their true leverage
scores. The number of rows that must be sampled is proportional to the sum of these overestimates. Since
the leverage score of a row can only go up when we remove rows from the matrix, a simple way to obtain
an overestimate is to compute leverage score using just a subset of the other rows of A. That is, letting A j

contain just j of the n rows of A, we can overestimate li by l̃i = aT
i (AT

j A j)
−1ai

[11] shows that if A j is a subset of rows sampled uniformly at random, then the expected leverage
score of ai is d/ j. This simple fact immediately gives a result for online sampling from a randomly
ordered stream. If we compute the leverage score of the current row ai against all previously seen
rows (or some approximation to these rows), then the expected sum of our overestimates is bounded by
d +d/2+ · · ·+ · · ·+d/n = O(d logn). So, sampling O(d logd logn/ε2) rows is enough obtain a (1+ ε)
multiplicative-error spectral approximation.

1Since the initial publication this work, the independence issue in [16] has been resolved by [18], which presents a similar
algorithm for insertion-only streams that admits a correct proof.

THEORY OF COMPUTING, Volume 16 (15), 2020, pp. 1–25 3

http://dx.doi.org/10.4086/toc


MICHAEL B. COHEN, CAMERON MUSCO, AND JAKUB PACHOCKI

What if we cannot guarantee a randomly ordered input stream? Is there any hope of being able to
compute good leverage score estimates in an online manner? Surprisingly the answer to this is yes—we
can in fact run nearly the exact same algorithm and be guaranteed that the sum of estimated leverage
scores is low, regardless of stream order. Roughly, each time we receive a row which has high leverage
score with respect to the previous rows, it must compose a significant part of the spectrum of A. If A
does not continue to grow unboundedly, there simply cannot be too many of these significant rows.

Specifically, we show that if we sample by the ridge leverage scores [1] over all previously seen
rows, which are the leverage scores computed over AT

i Ai +λ I for some small regularizing factor λ , then
with just O(d logd log(ε‖A‖2

2/δ )/ε2) samples we obtain a (1+ ε) multiplicative-error, δ additive-error
spectral approximation. That is, with high probability we sample a matrix Ã with (1− ε)AT A−δ I�
ÃT Ã� (1+ ε)AT A+δ I.

To gain intuition behind this bound, note that we can convert it into a multiplicative one by setting
δ = εσmin(A)2 where σmin(A) is the minimum singular value of A (as long as we have some estimate
of σmin(A)). This setting of δ will require taking O(d logd log(κ(A))/ε2) samples, where κ(A) =
σmax(A)/σmin(A) is the condition number of A. If we have a polynomial bound on this condition
number, as we do, for instance, for graphs with polynomially bounded edge weights, this becomes
O(d log2 d/ε2)—nearly matching the O(d logd/ε2) achievable if sampling by true leverage scores.

Our online sampling algorithm is extremely simple. When each row comes in, we compute the online
ridge leverage score, or an estimate of it, and then irrevocably either add the row to our approximation
or remove it. As mentioned, it is similar in form to the streaming algorithm of [16], except that
it does not require pruning previously sampled rows. This allows us to avoid difficult dependency
issues. Additionally, without pruning, we do not even need to store all previously sampled rows. As
long as we store a constant-factor spectral approximation our previous samples, we can compute good
approximations to the online ridge leverage scores. In this way, we can store just O(d logd log(ε‖A‖2

2/δ ))
rows in working memory (O(d log2 d) if we want a spectral graph sparsifier), filtering our input stream
into an O(d logd log(κ(A))/ε2)-size output stream. Note that this memory bound in fact improves as ε

decreases, and regardless, can be significantly smaller than the output size of the algorithm.
In addition to our main sampling result, we use our bounds on online ridge leverage score approxi-

mations to show that an algorithm in the style of [2] allows us to remove a logd factor and sample just
O(d log(ε‖A‖2

2/δ )/ε2) rows (Theorem 4.1). This algorithm is more complex and can require O(d2)
working memory. However, in Theorem 5.1 we show that it is asymptotically optimal. The log(ε‖A‖2

2/δ )
factor is not an artifact of our analysis, but is truly the cost of the restricting ourselves to online sampling.
No algorithm can obtain a multiplicative (1+ ε) additive δ spectral approximation taking fewer than
Ω(d log(ε‖A‖2

2/δ )/ε2) rows in an online manner.

2 Overview

Let A be an n×d matrix with rows a1, . . . ,an. A natural approach to row sampling from A is picking an a
priori probability with which each row is kept, and then deciding whether to keep each row independently.
A common choice is for the sampling probabilities to be proportional to the leverage scores of the rows.
The leverage score of the i-th row of A is defined to be

aT
i (A

T A)†ai ,

THEORY OF COMPUTING, Volume 16 (15), 2020, pp. 1–25 4

http://dx.doi.org/10.4086/toc


ONLINE ROW SAMPLING

where the dagger symbol denotes the pseudoinverse. In this work, we will be interested in approximating
AT A with some (very) small multiple of the identity added. Hence, we will be interested in the λ -ridge
leverage scores [1]:

aT
i (A

T A+λ I)−1ai ,

for a parameter λ > 0.
In many applications, obtaining the (nearly) exact values of aT

i (AT A+ λ I)−1ai for sampling is
difficult or outright impossible. A key idea is that as long as we have a sequence l1, . . . , ln of overestimates
of the λ -ridge leverage scores, that is, for i = 1, . . . ,n,

li ≥ aT
i (A

T A+λ I)−1ai ,

we can sample by these overestimates and obtain rigorous guarantees on the quality of the obtained
spectral approximation. This notion is formalized in Theorem 2.1.

Theorem 2.1. Let A be an n× d matrix with rows a1, . . . ,an. Let ε ∈ (0,1),δ > 0,λ := δ/ε,c :=
8logd/ε2. Assume we are given l1, . . . , ln such that for all i = 1, . . . ,n,

li ≥ aT
i (A

T A+λ I)−1ai .

For i = 1, . . . ,n, let pi := min(cli ,1). Construct Ã by independently sampling each row ai of A with
probability pi, and rescaling it by 1/

√
pi if it is included in the sample. Then, with high probability,

(1− ε)AT A−δ I� ÃT Ã� (1+ ε)AT A+δ I,

and the number of rows in Ã is O
(
(∑n

i=1 li) logd/ε2
)
.

Proof. This sort of guarantee for leverage score sampling is well known. See for example Lemma 4 of
[11]. If we sampled both the rows of A and the rows of

√
λ I with the leverage scores over (AT A+λ I),

we would have (1− ε)(AT A+λ I)� ÃT Ã� (1+ ε)(AT A+λ I). However, we do not sample the rows
of the identity. Since we could have sampled them each with probability 1, we can simply subtract
λ I = (δ/ε)I from the multiplicative bound and have (1− ε)AT A−δ I� ÃT Ã� (1+ ε)AT A+δ I.

The idea of using overestimates of leverage scores to perform row sampling has been applied
successfully to various problems (see, e. g., [17, 11]). However, in these applications, access to the entire
matrix is required beforehand. In the streaming and online settings, we have to rely on partial data to
approximate the true leverage scores. The most natural idea is to just use the portion of the matrix seen
thus far as an approximation to A. This leads us to introduce the online λ -ridge leverage scores:

li := min(aT
i (A

T
i−1Ai−1 +λ I)−1ai ,1),

where Ai (i = 0, . . . ,n) is defined as the matrix consisting of the first i rows of A.2

Since clearly AT
i Ai � AT A for all i, it is not hard to see that li does overestimate the true λ -ridge

leverage score for row ai. A more complex question, however, is establishing an upper bound on ∑
n
i=1 li

so that we can bound the number of samples needed by Theorem 2.1.
A core result of this work, stated in Theorem 2.2, is establishing such an upper bound; in fact, this

bound is shown to be tight up to constants (Theorem 5.1) and is nearly linear in most cases.
2We use the proposed scores li for simplicity, however note that the following, perhaps more natural, definition of online

leverage scores would also be effective: l′i := aT
i (A

T
i Ai +λ I)−1ai .

THEORY OF COMPUTING, Volume 16 (15), 2020, pp. 1–25 5

http://dx.doi.org/10.4086/toc


MICHAEL B. COHEN, CAMERON MUSCO, AND JAKUB PACHOCKI

Theorem 2.2. Let A be an n× d matrix with rows a1, . . . ,an. Let Ai for i ∈ {0, . . . ,n} be the matrix
consisting of the first i rows of A. For λ > 0, let

li := min(aT
i (A

T
i−1Ai−1 +λ I)−1ai ,1)

be the online λ -ridge leverage score of the ith row of A. Then
n

∑
i=1

li = O(d log(‖A‖2
2/λ )).

Theorems 2.1 and 2.2 suggest a simple algorithm for online row sampling: simply use the online λ -
ridge leverage scores, for λ := δ/ε . This gives a spectral approximation with O(d logd log(ε‖A‖2

2/δ )/ε2)
rows. Unfortunately, computing each li exactly requires us to store all the rows we have seen in memory
(or alternatively to store the sum of their outer products, AT

i Ai). In many cases, such a requirement would
defeat the purpose of streaming row sampling.

A natural idea is to use the sample we have kept thus far as an approximation to Ai when computing
li. It turns out that the approximate online ridge leverage scores l̃i computed in this way will not always
be good approximations to li; however, we can still prove that they satisfy the requisite bounds and yield
the same row sample size! We formalize these results in the algorithm ONLINE-SAMPLE (Figure 1) and
Theorem 2.3.

Ã = ONLINE-SAMPLE(A,ε,δ ), where A is an n×d matrix with rows a1, . . . ,an,
ε ∈ (0,1), δ > 0.

1. Set λ := δ/ε , c := 8logd/ε2.

2. Let Ã0 be a 0×d matrix.

3. For i = 1, . . . ,n:

(a) Let l̃i := min((1+ ε)aT
i (ÃT

i−1Ãi−1 +λ I)−1ai ,1).

(b) Let pi := min(cl̃i ,1).

(c) Set Ãi :=


[

Ãi−1

ai/
√

pi

]
with probability pi,

Ãi−1 otherwise.

4. Return Ã := Ãn.

Figure 1: The basic online sampling algorithm

Theorem 2.3. Let Ã be the matrix returned by ONLINE-SAMPLE(A,ε,δ ). With high probability,

(1− ε)AT A−δ I� ÃT Ã� (1+ ε)AT A+δ I,

and the number of rows in Ã is O(d logd log(ε‖A‖2
2/δ )/ε2).

THEORY OF COMPUTING, Volume 16 (15), 2020, pp. 1–25 6

http://dx.doi.org/10.4086/toc


ONLINE ROW SAMPLING

To save computation, we note that, with a small modification, we can run ONLINE-SAMPLE with
batch processing of rows. Specifically, say we start from the ith position in the stream. we can store
the next b = O(d) rows. We can then compute sampling probabilities for these rows all at once using a
system solver for (ÃT

i+bÃi+b+λ I). Using a trick introduced in [25], by applying a Johnson–Lindenstrauss
random projection to the rows whose scores we are computing, we need just O(log(1/γ)) system solves to
compute constant-factor approximations to the ridge scores with probability 1−γ . If we set γ = 1/poly(n)
then we can union bound over our whole stream, using this trick with each batch of O(d) input rows. The
batch probabilities will only be closer to the true ridge leverage scores than the non-batch probabilities
and we will enjoy the same guarantees as ONLINE-SAMPLE.

Additionally, it turns out that with a simple trick, it is possible to reduce the memory usage of the
algorithm by a factor of ε−2, bringing it down to O(d logd log(ε‖A‖2

2/δ )) (assuming the row sample
is output to an output stream). Note that this expression gets smaller with ε; hence we obtain a row
sampling algorithm with memory complexity independent of desired multiplicative precision. The basic
idea is that, instead of keeping all previously sampled rows in memory, we store a smaller set of rows
that give a constant-factor spectral approximation, still enough to give good estimates of the online ridge
leverage scores.

This result is presented in the algorithm SLIM-SAMPLE (Figure 2) and Lemma 3.5. A particularly
interesting consequence for graphs with polynomially bounded edge weights is

Corollary 2.4. Let G be a simple graph on d vertices, and ε ∈ (0,1). We can construct a (1+ε)-sparsifier
of G of size O(d log2 d/ε2), using only O(d log2 d) working memory in the online model.

Proof. Let σmin(A) and σmax(A) = ‖A‖2 be the smallest and largest singular values of A respectively.
Let κ(A) = σmax(A)/σmin(A) be the condition number of A. If we apply Theorem 2.3 with δ =
ε/σ2

min(A). we require sample complexity O(d logd log(ε‖A‖2
2/δ )/ε2) = O(d logd log(κ(A)2)/ε2).

For an unweighted graph on d vertices, σmax(A)2 ≤ d, since d is the largest squared singular value of the
complete graph. Combining with Lemma 6.1 of [27], we have that the condition number of a graph on
d vertices whose edge weights are within a multiplicative poly(d) of each other is polynomial in d. So
log(κ2(A)) = O(logd), which gives the corollary.

We remark that the algorithm of Corollary 2.4 can be made to run in nearly linear time in the stream
size. We combine SLIM-SAMPLE with the batch processing idea described above. Because A is a graph,
our matrix approximation is always a symmetric diagonally dominant matrix, with O(d) nonzero entries.
We can solve systems in it in time Õ(d). Using the Johnson–Lindenstrauss random projection trick of
[25], we can compute approximate ridge leverage scores for a batch of O(d) rows with failure probability
polynomially small in n in Õ(d logn) time. Union bounding over the whole stream, we obtain nearly
linear running time.

To complement the row sampling results discussed above, we explore the limits of the proposed online
setting. In Section 4 we present the algorithm ONLINE-BSS, which obtains spectral approximations with
O(d log(ε‖A‖2

2/δ )/ε2) rows in the online setting (with larger memory requirements than the simpler
sampling algorithms). Its analysis is given in Theorem 4.1. In Section 5, we show that this number of
samples is in fact the best achievable, up to constant factors (Theorem 5.1). The log(ε‖A‖2

2/δ ) factor is
truly the cost of requiring rows to be selected in an online manner.

THEORY OF COMPUTING, Volume 16 (15), 2020, pp. 1–25 7

http://dx.doi.org/10.4086/toc


MICHAEL B. COHEN, CAMERON MUSCO, AND JAKUB PACHOCKI

3 Analysis of sampling schemes

We begin by bounding the sum of online λ -ridge leverage scores. The intuition behind the proof of
Theorem 2.2 is that whenever we add a row with a large online leverage score to a matrix, we increase
its determinant significantly, as follows from the matrix determinant lemma (Lemma 3.1). Thus we can
reduce upper bounding the online leverage scores to bounding the matrix determinant.

Lemma 3.1 (Matrix determinant lemma). Assume S is an invertible square matrix and u is a vector. Then

det(S+uuT ) = (detS)(1+uT S−1u).

Proof of Theorem 2.2. By Lemma 3.1, we have

det(AT
i+1Ai+1 +λ I) = det(AT

i Ai +λ I) ·
(
1+aT

i+1(A
T
i Ai +λ I)−1ai+1

)
≥ det(AT

i Ai +λ I) · (1+ li+1)

≥ det(AT
i Ai +λ I) · eli+1/2.

Hence,

det(AT A+λ I) = det(AT
n An +λ I)

≥ det(λ I) · e∑ li/2

= λ
de∑ li/2.

We have det(AT A+λ I)≤ (‖A‖2
2 +λ )d . Therefore

(‖A‖2
2 +λ )d ≥ λ

de∑ li/2.

Taking logarithms of both sides, we obtain

d log(‖A‖2
2 +λ )≥ d logλ +∑ li/2

∑ li ≤ 2d log(1+‖A‖2
2/λ ).

We now turn to analyzing the algorithm ONLINE-SAMPLE. Because the samples taken by the
algorithm are not independent, we are not able to use a standard matrix Chernoff bound like the one in
Theorem 2.1. However, we do know that whether we take row i does not depend on later rows; thus, we
are able to analyze the process as a martingale. We will use a matrix version of the Freedman inequality
given by Tropp.

Theorem 3.2 (Matrix Freedman inequality [28]). Let Y0,Y1, . . . ,Yn be a matrix martingale whose values
are self-adjoint matrices with dimension d, and let X1, . . . ,Xn be the difference sequence. Assume that
the difference sequence is uniformly bounded in the sense that

‖Xk‖2 ≤ R almost surely, for k = 1, . . . ,n.

THEORY OF COMPUTING, Volume 16 (15), 2020, pp. 1–25 8

http://dx.doi.org/10.4086/toc


ONLINE ROW SAMPLING

Define the predictable quadratic variation process of the martingale as

Wk :=
k

∑
j=1

E
[
X2

j | Y j−1, . . . ,Y0
]

, for k = 1, . . . ,n.

Then, for all ε > 0 and σ2 > 0,

P
[
‖Yn‖2 ≥ ε and ‖Wn‖2 ≤ σ

2]≤ d · exp
(
− ε2/2

σ2 +Rε/3

)
.

We begin by showing that the output of ONLINE-SAMPLE is in fact an approximation of A, and that
the approximate online leverage scores are lower bounded by the actual online leverage scores.

Lemma 3.3. After running ONLINE-SAMPLE, it holds with high probability that

(1− ε)AT A−δ I� ÃT Ã� (1+ ε)AT A+δ I,

and also
l̃i ≥ aT

i (A
T A+λ I)−1ai

for i = 1, . . . ,n.

Proof. Let
ui := (AT A+λ I)−1/2ai .

We construct a matrix martingale Y0,Y1, . . . ,Yn ∈ Rd×d with the difference sequence X1, . . . ,Xn. Set
Y0 = 0. If ‖Yi−1‖2 ≥ ε , we set Xi := 0. Otherwise, let

Xi :=

{
(1/pi−1)uiuT

i if ai is sampled in Ã,
−uiuT

i otherwise.

In the case that ‖Yi−1‖2 < ε , by construction, ‖Y j‖2 < ε for all j < i−1. So we have

Yi−1 = (AT A+λ I)−1/2(ÃT
i−1Ãi−1−AT

i−1Ai−1)(AT A+λ I)−1/2.

Since ‖Yi−1‖2 ≤ ε , we can see that

(AT A+λ I)−1/2(ÃT
i−1Ãi−1)(AT A+λ I)−1/2 � (AT A+λ I)−1/2(AT

i−1Ai−1)(AT A+λ I)−1/2 + εI.

Multiplying on both right and left by (AT A+λ I)1/2 gives

ÃT
i−1Ãi−1 � AT

i−1Ai−1 + ε(AT A+λ I).

Hence, we have

l̃i = min((1+ ε)aT
i (Ã

T
i−1Ãi−1 +λ I)−1ai ,1)

≥min((1+ ε)aT
i (A

T
i−1Ai−1 +λ I+ ε(AT A+λ I))−1ai ,1)

≥min((1+ ε)aT
i ((1+ ε)(AT A+λ I))−1ai ,1)

= aT
i (A

T A+λ I)−1ai (3.1)

= uT
i ui .

THEORY OF COMPUTING, Volume 16 (15), 2020, pp. 1–25 9

http://dx.doi.org/10.4086/toc


MICHAEL B. COHEN, CAMERON MUSCO, AND JAKUB PACHOCKI

Thus, pi = min(cl̃i ,1)≥min(cuT
i ui ,1). If pi = 1, then Xi = 0. Otherwise, we have pi ≥ cuT

i ui and

‖Xi‖2 ≤max{1,1/pi−1} · ‖uiuT
i ‖2 ≤ uT

i ui/pi ≤ 1/c. (3.2)

Further

E
[
X2

i | Yi−1, . . . ,Y0
]
� pi · (1/pi−1)2(uiuT

i )
2 +(1− pi) · (uiuT

i )
2

= (uiuT
i )

2 · (1− pi)/pi

� uiuT
i ·
(
uT

i ui/pi
)

� uiuT
i /c. (by equation (3.2))

And so, for the predictable quadratic variation process of the martingale {Yi}

Wi :=
i

∑
k=1

E
[
X2

k | Yk−1, . . . ,Y0
]
,

we have

‖Wi‖2 ≤

∣∣∣∣∣
∣∣∣∣∣ i

∑
k=1

ukuT
k /c

∣∣∣∣∣
∣∣∣∣∣
2

≤ 1/c.

Therefore by, Theorem 3.2, we have

P [‖Yn‖2 ≥ ε]≤ d · exp
(

−ε2/2
1/c+ ε/(3c)

)
≤ d · exp(−cε

2/4)

= 1/d.

This implies that with high probability

‖(AT A+λ I)−1/2(ÃT Ã+λ I)(AT A+λ I)−1/2− I‖2 ≤ ε

and so
(1− ε)(AT A+λ I)� ÃT Ã+λ I� (1+ ε)(AT A+λ I).

Subtracting λ I = (δ/ε)I from all sides, we get

(1− ε)AT A−δ I� ÃT Ã� (1+ ε)AT A+δ I.

Finally, note that, since we set Xi = 0 if ‖Yi−1‖2 ≥ ε , ‖Yn‖2 < ε implies ‖Yi‖2 < ε for all i < n. We
thus have the desired bound on l̃i by equation (3.1).

If we set c in ONLINE-SAMPLE to be proportional to logn rather than logd, we would be able
to take a union bound over all the rows and guarantee that with high probability all the approximate
online leverage scores l̃i are close to true online leverage scores li. Thus Theorem 2.2 would imply that
ONLINE-SAMPLE only selects O(d logn log(‖A‖2

2/λ )/ε2) rows with high probability.
In order to remove the dependency on n, we have to sacrifice achieving close approximations to li at

every step. Instead, we show that the sum of the computed approximate online leverage scores is still
small with high probability, using a custom Chernoff bound.

THEORY OF COMPUTING, Volume 16 (15), 2020, pp. 1–25 10

http://dx.doi.org/10.4086/toc


ONLINE ROW SAMPLING

Lemma 3.4. After running ONLINE-SAMPLE, it holds with high probability that
n

∑
i=1

l̃i = O(d log(‖A‖2
2/λ )).

Proof. Define
δi := logdet(ÃT

i Ãi +λ I)− logdet(ÃT
i−1Ãi−1 +λ I).

The proof closely follows the idea from the proof of Theorem 2.2. We will aim to show that large values
of l̃i correlate with large values of δi. Then, the sum of δi can be bounded by the logarithm of the ratio
of the determinants of ÃT Ã+λ I and λ I, giving us a bound on the sum of l̃i. First, we will show that
E
[
exp(l̃i/8−δi) | Ãi−1, . . . , Ã0

]
is always at most 1. Note that if row i is sampled by ONLINE-SAMPLE,

ÃT
i Ãi +λ I = ÃT

i−1Ãi−1 +λ I+aiaT
i /pi By the matrix determinant lemma (Lemma 3.1), we thus have

eδi = 1+aT
i (ÃT

i−1Ãi−1 +λ I)−1ai/p in this case. Otherwise, if row i is not sampled, δi = 0. Thus,

E
[
exp(l̃i/8−δi) | Ãi−1, . . . , Ã0

]
= pi · el̃i/8(1+aT

i (Ã
T
i−1Ãi−1 +λ I)−1ai/pi)

−1 +(1− pi)el̃i/8

≤ pi · (1+ l̃i/4)(1+aT
i (Ã

T
i−1Ãi−1 +λ I)−1ai/pi)

−1 +(1− pi)(1+ l̃i/4). (3.3)

If cl̃i < 1, we have pi = cl̃i and l̃i = (1+ ε)aT
i (ÃT

i−1Ãi−1 +λ I)−1ai, and so,

E
[
exp(l̃i/8−δi) | Ãi−1, . . . , Ã0

]
≤ cl̃i · (1+ l̃i/4)(1+1/((1+ ε)c))−1 +(1− cl̃i)(1+ l̃i/4)

= (1+ l̃i/4)(cl̃i(1+1/((1+ ε)c))−1 +1− cl̃i)

= (1+ l̃i/4)(1− l̃i/4)

≤ 1.

Otherwise, we have pi = 1 and so, by (3.3),

E
[
exp(l̃i/8−δi) | Ãi−1, . . . , Ã0

]
≤ (1+ l̃i/4)(1+aT

i (Ã
T
i−1Ãi−1 +λ I)−1ai)

−1

≤ (1+ l̃i/4)(1+ l̃i)−1

≤ 1.

We will now analyze the expected product of exp(l̃i/8−δi) over the first k steps, E
[
exp
(
∑

k
i=1 l̃i/8−δi

)]
.

Since conditioned on the first k steps, exp(l̃k/8−δk) is independent of exp(l̃i/8−δi) for all i < k, for
k ≥ 1 we have

E

[
exp

(
k

∑
i=1

l̃i/8−δi

)]
= Efirst k−1 steps

[
exp

(
k−1

∑
i=1

l̃i/8−δi

)
E
[
exp(l̃k/8−δk) | Ãk−1, . . . , Ã0

]]

≤ E

[
exp

(
k−1

∑
i=1

l̃i/8−δi

)]
,

and so by induction on k

E

[
exp

(
n

∑
i=1

l̃i/8−δi

)]
≤ 1.

THEORY OF COMPUTING, Volume 16 (15), 2020, pp. 1–25 11

http://dx.doi.org/10.4086/toc


MICHAEL B. COHEN, CAMERON MUSCO, AND JAKUB PACHOCKI

Hence by Markov’s inequality

P

[
n

∑
i=1

l̃i > 8d +8
n

∑
i=1

δi

]
≤ e−d .

By Lemma 3.3, with high probability we have ÃT Ã+λ I� (1+ ε)(AT A+λ I). We also have with high
probability

det(ÃT Ã+λ I)≤ (1+ ε)d(‖A‖2
2 +λ )d ,

logdet(ÃT Ã+λ I)≤ d(1+ log(‖A‖2
2 +λ )).

Hence, with high probability it holds that

n

∑
i=1

δi = logdet(ÃT Ã+λ I)−d log(λ )

≤ d(1+ log(‖A‖2
2 +λ )− log(λ ))

= d(1+ log(1+‖A‖2
2/λ )).

And so, with high probability,

n

∑
i=1

l̃i ≤ 8d +8
n

∑
i=1

δi

≤ 16d +8d log(1+‖A‖2
2/λ )

= O(d log(‖A‖2
2/λ )).

Proof of Theorem 2.3. The statement follows immediately from Lemmas 3.3 and 3.4.

Observe that by Theorem 2.3, ONLINE-SAMPLE stores O(d logd log(ε‖A‖2
2/δ )/ε2) rows in memory.

We now consider a simple modification of the algorithm, SLIM-SAMPLE (Figure 2), that removes the
1/ε2 factor from the working memory usage with no additional cost.

Lemma 3.5. Let Ã be the matrix returned by SLIM-SAMPLE(A,ε,δ ). Then, with high probability,

(1− ε)AT A−δ I� ÃT Ã� (1+ ε)AT A+δ I,

and the number of rows in Ã is O(d logd log(ε‖A‖2
2/δ )/ε2).

Moreover, with high probability, the memory requirement of SLIM-SAMPLE is dominated by storing
O(d logd log(ε‖A‖2

2/δ )) rows of A.

Proof. As the samples are independent, the statement follows from Theorem 2.1 and Lemmas 3.3
and 3.4.

THEORY OF COMPUTING, Volume 16 (15), 2020, pp. 1–25 12

http://dx.doi.org/10.4086/toc


ONLINE ROW SAMPLING

Ã = SLIM-SAMPLE(A,ε,δ ), where A is an n×d matrix with rows a1, . . . ,an,
ε ∈ (0,1), δ > 0.

1. Set λ := δ/ε , c := 8logd/ε2.

2. Let Ã0 be a 0×d matrix.

3. Let l̃1, . . . , l̃n be the approximate online leverage scores computed by an independent
instance of ONLINE-SAMPLE(A,1/2,δ/(2ε)).

4. For i = 1, . . . ,n:

(a) Let pi := min(cl̃i ,1).

(b) Set Ãi :=


[

Ãi−1

ai/
√

pi

]
with probability pi,

Ãi−1 otherwise.

5. Return Ã := Ãn.

Figure 2: The low-memory online sampling algorithm

4 Asymptotically optimal algorithm

In addition to sampling by online leverage scores, we introduce a row sampling algorithm, ONLINE-BSS
(Figure 3), which improves the row count of ONLINE-SAMPLE by a logd factor, to

O(d log(ε‖A‖2
2/δ )/ε

2).

This improved bound matches the lower bound for online sampling given in Theorem 5.1. This approach
uses a variant of the deterministic “BSS” method, introduced by Batson, Spielman, and Srivastava in
[2]. It is well known that this method yields spectral approximations with a logd factor fewer rows than
leverage scores sampling in the offline setting, and we show that this improvement extends to online
approximation.

Unlike the original BSS algorithm of [2], our algorithm is randomized. It is similar to, and inspired by,
the randomized version of BSS from [19], especially “Algorithm 1” from that paper. In both algorithms,
like in online leverage score sampling, when a new row is processed, a probability pi is assigned to it, and
it is kept with probability pi and rejected otherwise. The key difference between the algorithms is in the
definition of pi. Like ONLINE-SAMPLE, at each step, ONLINE-BSS maintains a row sample Ãi which
approximates the matrix Ai that has been seen so far. However, pi cannot be computed solely based
on Ãi−1—it is necessary to “remember” the entire input. Thus, ONLINE-BSS is not memory efficient,
using O(d2) space. One may improve the memory dependence by simply running ONLINE-BSS on
the output stream of rows produced by ONLINE-SAMPLE. This reduces the storage cost to the size of
that output spectral approximation. Of course, this does not mean that ONLINE-BSS leads to a space

THEORY OF COMPUTING, Volume 16 (15), 2020, pp. 1–25 13

http://dx.doi.org/10.4086/toc


MICHAEL B. COHEN, CAMERON MUSCO, AND JAKUB PACHOCKI

savings over ONLINE-SAMPLE. However the number of rows in its output stream will be less than that
of ONLINE-SAMPLE, by a logd factor.

We also remark that ONLINE-SAMPLE gives bounds on both the size of the output spectral approxi-
mation and its accuracy with high probability. In contrast, ONLINE-BSS gives an expected bound on the
output size, while it never fails to output a correct spectral approximation. These guarantees are similar to
those given in [19]. Below, we give present the performance guarantees of ONLINE-BSS and its analysis.

Theorem 4.1. Let Ã be the matrix output by ONLINE-BSS(A,ε,δ ) (Figure 3).

1. We always have (1− ε)AT A−δ I≺ ÃT Ã≺ (1+ ε)AT A+δ I.

2. The expected number of rows in Ã is O(d log(ε‖A‖2
2/δ )/ε2).

Ã = ONLINE-BSS(A,ε,δ ), where A is an n×d matrix with rows a1, . . . ,an,
ε ∈ (0,1), δ > 0.

1. Set cU = 2
ε
+1 and cL = 2

ε
−1.

2. Let Ã0 be a 0×d matrix, BU
0 = δ I, BL

0 =−δ I.

3. For i = 1, . . . ,n:

(a) Let XU
i−1 = (BU

i−1− ÃT
i−1Ãi−1), XL

i−1 = (ÃT
i−1Ãi−1−BL

i−1).

(b) Let pi := min(cU aT
i (XU

i−1)
−1ai + cLaT

i (XL
i−1)

−1ai ,1).

(c) Set Ãi :=


[

Ãi−1

ai/
√

pi

]
with probability pi,

Ãi−1 otherwise.

(d) Set BU
i = BU

i−1 +(1+ ε)aiaT
i , BL

i = BL
i−1 +(1− ε)aiaT

i .

4. Return Ã := Ãn.

Figure 3: The Online BSS Algorithm

Proof of Theorem 4.1 Part 1. As in [2], a key of idea of ONLINE-BSS is to maintain two matrices, BU
i

and BL
i , acting as upper and lower “barriers.” We will prove that the current approximation Ãi always

falls between them:

BL
i ≺ ÃT

i Ãi ≺ BU
i . (4.1)

Equivalently, XU
i and XL

i will always remain positive definite. Since, at the completion of the algorithm,
BU

n = (1+ ε)AT A+ δ I and BL
n = (1− ε)AT A− δ I this ensures that the final approximation always

satisfies the approximation bound in claim (1) of the theorem. pi is chosen at step 3(b) to ensure this

THEORY OF COMPUTING, Volume 16 (15), 2020, pp. 1–25 14

http://dx.doi.org/10.4086/toc


ONLINE ROW SAMPLING

invariant—if either XU
i or XL

i are too small (we are too close to one of the barriers) then at least one of
aT

i (XU
i−1)

−1ai or aT
i (XL

i−1)
−1ai will be large and so pi will be large.

We can prove this invariant if (4.1) holds, by induction on i. The base case follows from the
initialization of Ã0 with ÃT

0 Ã0 = 0, BU
0 = δ I, and BL

0 = −δ I since clearly −δ I ≺ 0 ≺ δ I. For each
successive step, we consider two possibilities.

Case 1: pi = 1. When pi = 1, ÃT
i Ãi = ÃT

i−1Ãi−1 + aiaT
i . Since we set BU

i = BU
i−1 +(1+ ε)aiaT

i
and BL

i = BL
i−1 +(1− ε)aiaT

i , we can see that XU
i = XU

i−1 + εaiaT
i and XL

i = XL
i−1 + εaiaT

i . Since by the
induction assumption, XU

i−1 and XL
i−1 are both positive definite, so are XU

i and XL
i , giving the claim.

Case 2: pi < 1. In this case, with probability pi, ÃT
i Ãi = ÃT

i−1Ãi−1 + aiaT
i /p. With probability

1− pi, ÃT
i Ãi = ÃT

i−1Ãi−1. Thus, in any case, ÃT
i Ãi ≺ ÃT

i−1Ãi−1 +aiaT
i /p. In turn, XU

i �XU
i−1−aiaT

i /pi.
Observe that cU = 2/ε + 1 > 1 and thus pi > aT

i (XU
i−1)

−1ai. This gives XU
i−1 � aiaT

i /pi and so since
XU

i � XU
i−1−aiaT

i /pi, it must be postive definite.
Analogously, since BL

i = BL
i−1 + (1− ε)aiaT

i , we have XL
i � XL

i−1 − (1− ε)aiaT
i � XL

i−1 − aiaT
i .

Since cL = 2/ε − 1 > 1 for ε ∈ (0,1), and since pi < 1 (by the fact that we are in Case 2), we have
aT

i (XL
i−1)

−1ai < 1. This in turn gives XL
i−1 � aiaT

i and thus since XL
i � XL

i−1−aiaT
i , it must be positive

definite, giving the claim in this case.
Thus, we have shown (4.1) for all i. In particular, BU

n ≺ ÃT Ã≺ BL
n . We can see by construction that

BU
n = (1+ ε)AT A+δ I and BL

n = (1− ε)AT A−δ I.

Thus, we have (1− ε)AT A−δ I≺ ÃT Ã≺ (1+ ε)AT A+δ I, which gives the first claim of the theorem.

In our proof of the second claim, bounding the expected number of rows sampled, we will need the
following technical lemma, which is derived from the Sherman–Morrison formula [24].

Lemma 4.2. Given a positive definite matrix X, two vectors u and v, two scalar multipliers a and b, and
a probability p, define the random variable X̂ to be X−auuT with probability p and X−buuT otherwise.
Then if uT X−1u = 1,

E
[
vT X̂−1v−vT X−1v

]
= (vT X−1u)2 · pa+(1− p)b−ab

(1−a)(1−b)
.

Proof. We apply the Sherman–Morrison formula to each of the two possibilities (X̂ = XX−auuT and
X̂ = X+buuT respectively). These give respective X̂−1 values of

X̂−1 = X−1 +a · X−1uuT X−1

1−auT X−1u
= X−1 +

a
1−a

·X−1uuT X−1

and

X̂−1 = X−1 +b · X−1uuT X−1

1−buT X−1u
= X−1 +

b
1−b

·X−1uuT X−1.

The values of vT X̂−1v−vT X−1v are then respectively

a
1−a

·vT X−1uuT X−1v = (vT X−1u)2 · a
1−a

THEORY OF COMPUTING, Volume 16 (15), 2020, pp. 1–25 15

http://dx.doi.org/10.4086/toc


MICHAEL B. COHEN, CAMERON MUSCO, AND JAKUB PACHOCKI

and
b

1−b
·vT X−1uuT X−1v = (vT X−1u)2 · b

1−b
.

Combining these gives the stated result.

Proof of Theorem 4.1 Part 2. We will show that the probability that row ai is included in Ã is at most
8/ε2 · li, where li is the online 2δ/ε-ridge leverage score of ai, i. e.,

li = min(aT
i
(
AT

i−1Ai−1 +2δ/ε · I
)−1 ai ,1).

Since ∑
n
i=1 li =O(d log(ε‖A‖2

2/δ )) by Theorem 2.2, this implies that Ã has O(d log(ε‖A‖2
2/δ )/ε2) rows

in expectation, completing the second claim of the theorem.
First, we introduce some notation to help in the analysis. Let qi be the probability that row ai is

sampled in the algorithm. Note that qi is fixed and we seek to prove that qi ≤ 8/ε2 · li. The probability
pi that ai is sampled at step i is a random variable. We have qi = E [pi]. Thus it suffices to prove
E [pi]≤ 8/ε2 · li. We define

CU
i, j = δ I+

ε

2
AT

i Ai +
(

1+
ε

2

)
AT

j A j

CL
i, j =−δ I− ε

2
AT

i Ai +
(

1− ε

2

)
AT

j A j .

Note that CU
i,i = BU

i , CL
i,i = BL

i , and for j ≤ i, CU
i, j � BU

j and CL
i, j � BL

j . We can then define

YU
i, j = CU

i, j− ÃT
j Ã j

YL
i, j = ÃT

j Ã j−CL
i, j .

We then have, similarly, YU
i,i = XU

i , YL
i,i = XL

i , and for j ≤ i, YU
i, j � XU

j and YL
i, j � XL

j .
Assume that li < 1. Otherwise, since pi ≤ 1 (it is a probability), we trivially have E [pi]≤ 8/ε2 · li as

desired. Now, note that for all i > 0,

aT
i (Y

U
i,0)
−1ai = aT

i (Y
L
i,0)
−1ai

= aT
i

(
ε

2
AT

i Ai +δ I
)−1

ai

=
2
ε

aT
i

(
AT

i Ai +
2δ

ε
I
)−1

ai ≤ 2
ε

li . (4.2)

Next, we will show that for j < i−1,

E
[
aT

i (Y
U
i−1, j+1)

−1ai
]
≤ E

[
aT

i (Y
U
i−1, j)

−1ai
]

(4.3)

and

E
[
aT

i (Y
L
i−1, j+1)

−1ai
]
≤ E

[
aT

i (Y
L
i−1, j)

−1ai
]
. (4.4)

THEORY OF COMPUTING, Volume 16 (15), 2020, pp. 1–25 16

http://dx.doi.org/10.4086/toc


ONLINE ROW SAMPLING

Combined with (4.2) and the fact that YU
i,i = XU

i , YL
i,i = XL

i , (4.3) and (4.4) give

E [pi] = cUE
[
aT

i (X
U
i−1)

−1ai
]
+ cLE

[
aT

i (X
L
i−1)

−1ai
]

= cUE
[
aT

i (Y
U
i−1,i−1)

−1ai
]
+ cLE

[
aT

i (Y
L
i−1,i−1)

−1ai
]

≤ cUE
[
aT

i (Y
U
i−1,0)

−1ai
]
+ cLE

[
aT

i (Y
L
i−1,0)

−1ai
]

=
2
ε

li · (cU + cL) =
8
ε2 li .

The last equality follows from the fact that in ONLINE-BSS we set cU = 2/ε +1 and cL = 2/ε−1. This
completes the claim that for all i, the probability qi that row ai is sampled is bounded by qi = E [pi]≤
8/ε2 · li, giving the second part of Theorem 4.1.

It remains to prove (4.3) and (4.4). To do this we will show a somewhat stronger statement: condi-
tioned on any choices for the first j rows, the expected value of aT

i (YU
i−1, j+1)

−1ai is no larger than that of
aT

i (YU
i−1, j)

−1ai, and analogously for (YL
i−1, j+1)

−1. Similar to the proof of part 1, we consider two cases:
Case 1: p j+1 = 1. In that case, the positive semidefinite matrix a j+1aT

j+1 is added at step j+1 to give
ÃT

j+1Ã j+1 = ÃT
j Ã j +a j+1aT

j+1. This gives that

YU
i−1, j+1 = CU

i, j+1− ÃT
j+1Ã j+1

= CU
i, j +

(
1+

ε

2

)
a j+1aT

j+1− (ÃT
j Ã j +a j+1aT

j+1)

= YU
i−1, j +

ε

2
·a j+1aT

j+1.

Thus we have YU
i−1, j+1 � YU

i−1, j and so aT
i (YU

i−1, j+1)
−1ai ≤ aT

i (YU
i−1, j)

−1ai, giving (4.3). An analo-
gous argument holds for YL

i−1, j+1, giving (4.4).
Case 2: p j+1 < 1. This case is more tricky. Importantly, by how p j+1 is set in step 3(b) of ONLINE-

BSS and by the observation that YU
i−1, j � XU

j and YL
i−1, j � XL

j for j ≤ i−1 (recall that we must prove
(4.3) and (4.4) under the assumption that j ≤ i−1), we have

p j+1 ≥ cU ·aT
j+1(X

U
j )
−1a j+1 ≥ cU ·aT

j+1(Y
U
i−1, j)

−1a j+1 (4.5)

and

p j+1 ≥ cL ·aT
j+1(X

L
j )
−1a j+1 ≥ cL ·aT

j+1(Y
L
i−1, j)

−1a j+1. (4.6)

Now, we define w j+1 = a j+1/
√p j+1 and additionally

sU
j+1 = wT

j+1(Y
U
i−1, j)

−1wT
j+1

sL
j+1 = wT

j+1(Y
L
i−1, j)

−1wT
j+1

uU
j+1 =

w j+1√
sU

j+1

uL
j+1 =

w j+1√
sL

j+1

.

THEORY OF COMPUTING, Volume 16 (15), 2020, pp. 1–25 17

http://dx.doi.org/10.4086/toc


MICHAEL B. COHEN, CAMERON MUSCO, AND JAKUB PACHOCKI

We then deploy Lemma 4.2 to bound the expectations in (4.3) and (4.4).
Upper barrier bound (4.3): Here we apply Lemma 4.2 with X = YU

i−1, j, u = uU
j+1, v = aT

i , a =

sU
j+1(1− p j+1(1+ ε/2)), b =−sU

j+1 p j+1(1+ ε/2), p = p j+1. Note that we have

uT X−1u = 1/sU
j+1 ·wT

j+1(Y
U
i−1, j)

−1w j+1 = 1

as required. Additionally, with probability p j+1,

X̂ = X−auuT

= YU
i−1, j− sU

j+1(1− p j+1(1+ ε/2)) ·uU
j+1uU

j+1
T

= YU
i−1, j− (1− p j+1(1+ ε/2)) ·w j+1w j+1

T

= YU
i−1, j−

1
p j+1

·a j+1a j+1
T +(1+ ε/2)a j+1a j+1

T .

Similarly, with probability 1− p j+1,

X̂ = X−buuT

= YU
i−1, j + sU

j+1 p j+1(1+ ε/2)uU
j+1uU

j+1
T

= YU
i−1, j +(1+ ε/2)a j+1a j+1

T .

That is, X̂ = YU
i−1, j+1. Thus, Lemma 4.2 gives

E
[
aT

i X̂−1ai−vT X−1v
]
= E

[
aT

i YU
i−1, j+1

−1ai

]
−E

[
aT

i YU
i−1, j

−1ai

]
= (vT X−1u)2 · pa+(1− p)b−ab

(1−a)(1−b)
.

To prove (4.3) it suffices to show that

pa+(1− p)b−ab
(1−a)(1−b)

is non-positive. Letting r = aT
j+1(YU

i−1, j)
−1aT

j+1 we can write a = r · (1/p j+1− (1+ ε/2)) and b =
−r · (1+ ε/2) < 0. By (4.5), r ≤ p j+1/cU and thus a ≤ r/p j+1 ≤ 1/cU = 1/(2/ε + 1) < 1. Thus, the
denominator (1−a)(1−b) is positive, and so it remains to show that the numerator pa+(1− p)b−ab
is non-positive. We can write

pa+(1− p)b−ab =−r · ε
2
+ r2 ·

(
1

p j+1
−
(

1+
ε

2

))
·
(

1+
ε

2

)
≤−r · ε

2
+ r2 ·

(
1

p j+1

)
·
(

1+
ε

2

)
≤−r · ε

2
+ r · 1

2/ε +1
·
(

1+
ε

2

)
=−r · ε

2
+ r · ε

2
≤ 0.

THEORY OF COMPUTING, Volume 16 (15), 2020, pp. 1–25 18

http://dx.doi.org/10.4086/toc


ONLINE ROW SAMPLING

This completes the argument that E
[
aT

i YU
i−1, j+1

−1ai

]
−E

[
aT

i YU
i−1, j

−1ai

]
≤ 0, giving (4.3).

Lower barrier bound (4.4): For the lower barrier bound we give a similar argument. We use X = YL
i−1, j,

u = uL
j+1, v = aT

i , a =−sL
j+1(1− p j+1(1− ε/2)), b = sL

j+1 p j+1(1− ε/2), and p = p j+1. We again have

uT X−1u = 1/sL
j+1 ·wT

j+1(Y
L
i−1, j)

−1w j+1 = 1,

as required. Additionally, with probability p j+1, we have

X̂ = X−auuT

= YL
i−1, j + sL

j+1(1− p j+1(1− ε/2)) ·uL
j+1uL

j+1
T

= YL
i−1, j +

1
p j+1

·a j+1a j+1
T − (1− ε/2)a j+1a j+1

T .

Similarly, with probability 1− p j+1,

X̂ = X−buuT

= YL
i−1, j− sL

j+1 p j+1(1− ε/2)uL
j+1uL

j+1
T

= YL
i−1, j− (1− ε/2)a j+1a j+1

T .

That is, X̂ = YL
i−1, j+1 . Thus, Lemma 4.2 gives

E
[
aT

i X̂−1ai−vT X−1v
]
= E

[
aT

i (Y
L
i−1, j+1)

−1ai
]
−E

[
aT

i (Y
L
i−1, j)

−1ai
]

= (vT X−1u)2 · pa+(1− p)b−ab
(1−a)(1−b)

.

Again, to prove (4.4) it suffices to show that

pa+(1− p)b−ab
(1−a)(1−b)

is non-positive. Let r = aT
j+1(YL

i−1, j)
−1a j+1. We can write a = −r (1/p j+1− (1− ε/2)) < 0 and b =

r (1− ε/2). Note that by (4.6), r ≤ p j+1/cL = p j+1/(2/ε−1)< 1, and thus b < 1. So the denominator
(1−a)(1−b) is positive. It thus remains to show that the numerator pa+(1− p)b−ab is non-positive.
We simplify this numerator as

pa+(1− p)b−ab =−r · ε
2
+ r2

(
1

p j+1
−
(

1− ε

2

))
·
(

1− ε

2

)
≤−r · ε

2
+ r2 ·

(
1

p j+1

)
·
(

1− ε

2

)
≤−r · ε

2
+ r · 1

2/ε−1
·
(

1− ε

2

)
=−r · ε

2
+ r · ε

2
≤ 0,

giving the required bound. This proves (4.4) and completes the theorem.

THEORY OF COMPUTING, Volume 16 (15), 2020, pp. 1–25 19

http://dx.doi.org/10.4086/toc


MICHAEL B. COHEN, CAMERON MUSCO, AND JAKUB PACHOCKI

5 Matching lower bound

Here we show that the row count obtained by Theorem 4.1 is in fact optimal. While it is possible to obtain
a spectral approximation with O(d/ε2) rows in the offline setting, online sampling always incurs a loss
of Ω

(
log(ε‖A‖2

2/δ )
)

and must sample Ω
(
d log(ε‖A‖2

2/δ )/ε2
)

rows.

Theorem 5.1. Assume that ε‖A‖2
2 ≥ c1δ and ε ≥ c2/

√
d, for fixed constants c1 and c2. Then any algo-

rithm that selects rows in an online manner and outputs a spectral approximation to AT A with (1+ε) mul-
tiplicative error and δ additive error with probability at least 1/2 must sample Ω

(
d log(ε‖A‖2

2/δ )/ε2
)

rows of A in expectation.

Note that the lower bounds we assume on ε‖A‖2
2 and ε are very minor. They just ensure that

log(ε‖A‖2
2/δ )≥ 1 and that ε is not so small that we can essentially sample all rows.

Proof. We apply Yao’s minimax principle, constructing, for any large enough M, a distribution on
inputs A with ‖A‖2

2 ≤M for which any deterministic online row selection algorithm that succeeds with
probability at least 1/2 must output Ω

(
d log(εM/δ )/ε2

)
rows in expectation. The best randomized

algorithm that works with probability 1/2 on any input matrix with ‖A‖2
2 ≤M therefore must select at

least Ω
(
d log(εM/δ )/ε2

)
rows in expectation on the worst case input, giving us the theorem.

Our distribution is as follows. We select an integer N uniformly at random from [1, log(Mε/δ )]. We
then stream in the vertex-edge incidence matrices of N complete graphs on d vertices. We double the
weight of each successive graph. Intuitively, spectrally approximating a complete graph requires selecting
Ω(d/ε2) edges [2] (as long as ε ≥ c2/

√
d for some fixed constant c2). Each time we stream in a new

graph with double the weight, we force the algorithm to add Ω(d/ε2) more edges to its output, eventually
forcing it to return Ω(d/ε2 ·N) edges, which is Ω(d log(Mε/δ )/ε2) in expectation.

Specifically, let Kd be the
(d

2

)
×d vertex-edge incidence matrix of the complete graph on d vertices.

KT
d Kd is the Laplacian matrix of the complete graph on d vertices. We weight the first graph so that its

Laplacian has all its nonzero eigenvalues equal to δ/ε . (That is, each edge has weight δ/(dε)). In this way,
even if we select N = blog(Mε/δ )c we have overall ‖A‖2

2 ≤ δ/ε +2δ/ε + · · ·+2blog(Mε/δ )c−1δ/ε ≤M.
Even if N = 1, all nonzero eigenvalues of AT A are at least δ/ε , so achieving (1+ ε) multiplicative

error and δ I additive error is equivalent to achieving (1+ 2ε) multiplicative error. AT A is a graph
Laplacian so has a null space. However, as all rows are orthogonal to the null space, achieving additive
error δ I is equivalent to achieving additive error δ Ir where Ir is the identity projected to the span of AT A.
δ Ir � εAT A which is why we must achieve (1+2ε) multiplicative error.

In order for a deterministic algorithm to be correct with probability 1/2 on our distribution, it must
be correct for at least 1/2 of our blog(Mε/δ )c possible choices of N.

Let i be the lowest choice of N for which the algorithm is correct. By the lower bound of [2], the
algorithm must output Ω(d/ε2) rows of Ai to achieve a (1+2ε) multiplicative-error spectral approxi-
mation. Here Ai is the input consisting of the vertex-edge incidence matrices of i increasingly weighted
complete graphs. Call the output on this input Ãi. Now let j be the second lowest choice of N on which
the algorithm is correct. Since the algorithm was correct on Ai to within a multiplicative (1+2ε), to be
correct on A j, it must output a set of edges Ã j such that

(AT
j A j−AT

i Ai)−4εAT
j A j � ÃT

j Ã j− ÃT
i Ãi � (AT

j A j−AT
i Ai)+4εAT

j A j .

THEORY OF COMPUTING, Volume 16 (15), 2020, pp. 1–25 20

http://dx.doi.org/10.4086/toc


ONLINE ROW SAMPLING

Since we double each successive copy of the complete graph, AT
j A j � 2(AT

j A j −AT
i Ai). So,

ÃT
j Ã j − ÃT

i Ãi must be a 1 + 8ε spectral approximation to the true difference AT
j A j −AT

i Ai. Not-
ing that this difference is itself just a weighting of the complete graph, by the lower bound in [2] the
algorithm must select Ω(d/ε2) additional edges between the ith and jth input graphs. Iterating this
argument over all blog(Mε/δ )c/2 inputs on which the algorithm must be correct, it must select a total of
Ω(d log(Mε/δ )/ε2) edges in expectation over all inputs.

6 Future work

The main open question arising from the original publication of this work [13] was if one could prove
that the algorithm of [16] works despite dependencies arising due to the row pruning step. By operating
in the online setting, our algorithm avoids row pruning, and hence is able to skirt these dependencies, as
the probability that a row is sampled only depends on earlier rows in the stream. However, because the
streaming setting offers the potential for sampling fewer rows than in the online case, obtaining a rigorous
proof of [16] is very interesting. This open question was essentially resolved in [18], which presents an
algorithm similar to the one presented in [16] for insertion-only streams that admits a correct proof.

While our work focuses on spectral approximation, variants on (ridge) leverage score sampling and the
BSS algorithm are also used to solve low-rank approximation problems, including column subset selection
[5, 12] and projection-cost-preserving sketching [10, 12]. Compared with spectral approximation, there is
less work on streaming sampling for low-rank approximation, and understanding how online algorithms
may be used in this setting would an interesting directino. Since initial publication, this question has
been studied extensively [6, 8, 7], with online ridge leverage scores being employed for online low-rank
approximation of kernel matrices and for low-rank approximation in sliding window streams.

Acknowledgements. The authors would like to thank Kenneth Clarkson, Jonathan Kelner, Gary Miller,
Christopher Musco and Richard Peng for helpful discussions and comments. Cameron Musco and
Jakub Pachocki both acknowledge the Gene Golub SIAM Summer School program on Randomization in
Numerical Linear Algebra, where work on this project was initiated.

References

[1] AHMED ALAOUI AND MICHAEL W. MAHONEY: Fast randomized kernel ridge regression with
statistical guarantees. In Adv. Neural Info. Proc. Sys. 30 (NIPS’15), pp. 775–783. Curran Assoc.,
Inc., 2015. NIPS. [arXiv:1411.0306] 4, 5

[2] JOSHUA BATSON, DANIEL A. SPIELMAN, AND NIKHIL SRIVASTAVA: Twice-Ramanujan
sparsifiers. SIAM J. Comput., 41(6):1704–1721, 2012. Preliminary version in STOC’09.
[doi:10.1137/090772873, arXiv:0808.0163] 4, 13, 14, 20, 21

[3] ANTOINE BORDES AND LÉON BOTTOU: The huller: a simple and efficient online SVM. In
Machine Learning: ECML’05, pp. 505–512. Springer, 2005. [doi:10.1007/11564096_48] 3

THEORY OF COMPUTING, Volume 16 (15), 2020, pp. 1–25 21

http://papers.nips.cc/paper/5716-fast-randomized-kernel-ridge-regression-with-statistical-guarantees
http://arxiv.org/abs/1411.0306
https://doi.org/10.1145/1536414.1536451
http://dx.doi.org/10.1137/090772873
http://arxiv.org/abs/0808.0163
http://dx.doi.org/10.1007/11564096_48
http://dx.doi.org/10.4086/toc


MICHAEL B. COHEN, CAMERON MUSCO, AND JAKUB PACHOCKI

[4] CHRISTOS BOUTSIDIS, DAN GARBER, ZOHAR KARNIN, AND EDO LIBERTY: Online principal
components analysis. In Proc. 26th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA’15), pp.
887–901. ACM Press, 2015. [doi:10.1137/1.9781611973730.61] 3

[5] CHRISTOS BOUTSIDIS AND DAVID P. WOODRUFF: Optimal CUR matrix decompositions. SIAM J.
Comput., 46(2):543–589, 2017. Preliminary version in STOC’14. [arXiv:1405.7910] 21

[6] VLADIMIR BRAVERMAN, PETROS DRINEAS, CAMERON MUSCO, CHRISTOPHER MUSCO,
JALAJ UPADHYAY, DAVID P. WOODRUFF, AND SAMSON ZHOU: Numerical linear algebra in the
online and sliding window models. In Proc. 61st FOCS, pp. 517–528. IEEE Comp. Soc., 2020.
[doi:10.1109/FOCS46700.2020.00055, arXiv:1805.03765] 3, 21

[7] DANIELE CALANDRIELLO, ALESSANDRO LAZARIC, AND MICHAL VALKO: Efficient second-
order online kernel learning with adaptive embedding. In Adv. Neural Info. Proc. Sys. 30 (NIPS’17),
pp. 6140–6150. Curran Assoc., Inc., 2017. NIPS. 3, 21

[8] DANIELE CALANDRIELLO, ALESSANDRO LAZARIC, AND MICHAL VALKO: Second-order kernel
online convex optimization with adaptive sketching. In Proc. 34th Int. Conf. on Machine Learning
(ICML’17), pp. 645–653, 2017. MLR Press. [arXiv:1706.04892] 3, 21

[9] KENNETH L. CLARKSON AND DAVID P. WOODRUFF: Low rank approximation and regression
in input sparsity time. J. ACM, 63(6):54:1–54:45, 2017. Preliminary version in in STOC’13.
[doi:10.1145/3019134, arXiv:1207.6365] 2

[10] MICHAEL B. COHEN, SAM ELDER, CAMERON MUSCO, CHRISTOPHER MUSCO, AND

MADALINA PERSU: Dimensionality reduction for k-means clustering and low rank approxi-
mation. In Proc. 47th STOC, pp. 163–172. ACM Press, 2015. [doi:10.1145/2746539.2746569,
arXiv:1410.6801] 21

[11] MICHAEL B. COHEN, YIN TAT LEE, CAMERON MUSCO, CHRISTOPHER MUSCO, RICHARD

PENG, AND AARON SIDFORD: Uniform sampling for matrix approximation. In Proc. 6th Innova-
tions in Theoret. Comp. Sci. conf. (ITCS’15), pp. 181–190. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2015. [doi:10.1145/2688073.2688113, arXiv:1408.5099] 2, 3, 5

[12] MICHAEL B. COHEN, CAMERON MUSCO, AND CHRISTOPHER MUSCO: Input spar-
sity time low-rank approximation via ridge leverage score sampling. In Proc. 28th Ann.
ACM-SIAM Symp. on Discrete Algorithms (SODA’17), pp. 1758–1777. ACM Press, 2017.
[doi:10.1137/1.9781611974782.115, arXiv:1511.07263] 21

[13] MICHAEL B. COHEN, CAMERON MUSCO, AND JAKUB PACHOCKI: Online row sampling. In Proc
19th Internat. Workshop on Approximation Algorithms for Combinat. Opt. Probl. (APPROX’16), pp.
7:1–7:18. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016. [doi:10.4230/LIPIcs.APPROX-
RANDOM.2016.7] 21

[14] KOBY CRAMMER, OFER DEKEL, JOSEPH KESHET, SHAI SHALEV-SHWARTZ, AND YORAM

SINGER: Online passive-aggressive algorithms. J. Mach. Learning Res., 7:551–585, 2006. JMLR.
3

THEORY OF COMPUTING, Volume 16 (15), 2020, pp. 1–25 22

http://dx.doi.org/10.1137/1.9781611973730.61
http://doi.org/10.1145/2591796.2591819
http://arxiv.org/abs/1405.7910
http://dx.doi.org/10.1109/FOCS46700.2020.00055
http://arxiv.org/abs/1805.03765
https://papers.nips.cc/paper/7194-efficient-second-order-online-kernel-learning-with-adaptive-embedding
http://proceedings.mlr.press/v70/calandriello17a.html
http://arxiv.org/abs/1706.04892
https://doi.org/10.1145/2488608.2488620
http://dx.doi.org/10.1145/3019134
http://arxiv.org/abs/1207.6365
http://dx.doi.org/10.1145/2746539.2746569
http://arxiv.org/abs/1410.6801
http://dx.doi.org/10.1145/2688073.2688113
http://arxiv.org/abs/1408.5099
http://dx.doi.org/10.1137/1.9781611974782.115
http://arxiv.org/abs/1511.07263
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.7
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.7
http://jmlr.csail.mit.edu/papers/volume7/crammer06a/crammer06a.pdf
http://dx.doi.org/10.4086/toc


ONLINE ROW SAMPLING

[15] MICHAEL KAPRALOV, YIN TAT LEE, CAMERON MUSCO, CHRISTOPHER MUSCO, AND AARON

SIDFORD: Single pass spectral sparsification in dynamic streams. SIAM J. Comput., 46(1):456–477,
2017. Preliminary version in in FOCS’14. [doi:10.1137/141002281, arXiv:1407.1289] 2

[16] JONATHAN A. KELNER AND ALEX LEVIN: Spectral sparsification in the semi-streaming setting.
Theory Comput. Sys., 53(2):243–262, 2013. [doi:10.1007/s00224-012-9396-1] 2, 3, 4, 21

[17] IOANNIS KOUTIS, GARY L. MILLER, AND RICHARD PENG: Approaching optimality for solving
SDD linear systems. SIAM J. Comput., 43(1):337–354, 2014. Preliminary version in in FOCS’10.
[doi:10.1137/110845914, arXiv:1003.2958] 5

[18] RASMUS KYNG, JAKUB PACHOCKI, RICHARD PENG, AND SUSHANT SACHDEVA: A framework
for analyzing resparsification algorithms. In Proc. 28th Ann. ACM-SIAM Symp. on Discrete
Algorithms (SODA’17), pp. 2032–2043. ACM Press, 2017. [doi:10.1137/1.9781611974782.132,
arXiv:1611.06940] 3, 21

[19] YIN TAT LEE AND HE SUN: Constructing linear-sized spectral sparsification in almost-
linear time. SIAM J. Comput., 47(6):2315–2336, 2018. Preliminary version in in FOCS’15.
[doi:10.1137/16M1061850, arXiv:1508.03261] 13, 14

[20] MU LI, GARY L. MILLER, AND RICHARD PENG: Iterative row sampling. In Proc. 54th FOCS, pp.
127–136. IEEE Comp. Soc., 2013. [doi:10.1109/FOCS.2013.22, arXiv:1211.2713] 2

[21] EDO LIBERTY, RAM SRIHARSHA, AND MAXIM SVIRIDENKO: An algorithm for online k-means
clustering. In Proc. 18th Workshop on Algorithm Engineering and Experiments (ALENEX’16), pp.
81–89, 2016. [doi:10.1137/1.9781611974317.7, arXiv:1412.5721] 3

[22] XIANGRUI MENG AND MICHAEL W. MAHONEY: Low-distortion subspace embeddings in input-
sparsity time and applications to robust linear regression. In Proc. 45th STOC, pp. 91–100. ACM
Press, 2013. [doi:10.1145/2488608.2488621, arXiv:1210.3135] 2

[23] JELANI NELSON AND HUY LÊ NGUY ˜̂EN: OSNAP: Faster numerical linear algebra algorithms
via sparser subspace embeddings. In Proc. 54th FOCS, pp. 117–126. IEEE Comp. Soc., 2013.
[doi:10.1109/FOCS.2013.21, arXiv:1211.1002] 2

[24] JACK SHERMAN AND WINIFRED J. MORRISON: Adjustment of an inverse matrix corresponding
to a change in one element of a given matrix. Ann. Math. Stat., 21(1):124–127, 1950. JSTOR. 15

[25] DANIEL A. SPIELMAN AND NIKHIL SRIVASTAVA: Graph sparsification by effective resis-
tances. SIAM J. Comput., 40(6):1913–1926, 2011. Preliminary version in in STOC’08.
[doi:10.1137/080734029, arXiv:0803.0929] 7

[26] DANIEL A. SPIELMAN AND SHANG-HUA TENG: Nearly-linear time algorithms for graph parti-
tioning, graph sparsification, and solving linear systems. In Proc. 36th STOC, pp. 81–90. ACM
Press, 2004. [doi:10.1145/1007352.1007372, arXiv:cs/0310051] 2

THEORY OF COMPUTING, Volume 16 (15), 2020, pp. 1–25 23

https://doi.org/10.1109/FOCS.2014.66
http://dx.doi.org/10.1137/141002281
http://arxiv.org/abs/1407.1289
http://dx.doi.org/10.1007/s00224-012-9396-1
https://doi.org/10.1109/FOCS.2010.29
http://dx.doi.org/10.1137/110845914
http://arxiv.org/abs/1003.2958
http://dx.doi.org/10.1137/1.9781611974782.132
http://arxiv.org/abs/1611.06940
https://doi.org/10.1109/FOCS.2015.24
http://dx.doi.org/10.1137/16M1061850
http://arxiv.org/abs/1508.03261
http://dx.doi.org/10.1109/FOCS.2013.22
http://arxiv.org/abs/1211.2713
http://dx.doi.org/10.1137/1.9781611974317.7
http://arxiv.org/abs/1412.5721
http://dx.doi.org/10.1145/2488608.2488621
http://arxiv.org/abs/1210.3135
http://dx.doi.org/10.1109/FOCS.2013.21
http://arxiv.org/abs/1211.1002
https://www.jstor.org/stable/2236561
https://doi.org/10.1145/1374376.1374456
http://dx.doi.org/10.1137/080734029
http://arxiv.org/abs/0803.0929
http://dx.doi.org/10.1145/1007352.1007372
http://arxiv.org/abs/cs/0310051
http://dx.doi.org/10.4086/toc


MICHAEL B. COHEN, CAMERON MUSCO, AND JAKUB PACHOCKI

[27] DANIEL A. SPIELMAN AND SHANG-HUA TENG: Nearly linear time algorithms for preconditioning
and solving symmetric, diagonally dominant linear systems. SIAM J. Matrix Anal. Appl., 35(3):835–
885, 2014. [doi:10.1137/090771430] 7

[28] JOEL A. TROPP: Freedman’s inequality for matrix martingales. Electr. Comm. Probability,
16(25):262–270, 2011. [doi:10.1214/ECP.v16-1624, arXiv:1101.3039] 8

AUTHORS

Michael B. Cohen†

Massachusetts Institute of Technology
Cambridge, MA, USA

Cameron Musco
Assistant Professor
College of Information and Computer Sciences
University of Massachusetts Amherst
Amherst, MA, USA
cmusco cs umass edu
https://people.cs.umass.edu/~cmusco/

Jakub Pachocki
Research Lead
Open AI
San Francisco, CA, USA
jakub openai com

ABOUT THE AUTHORS

MICHAEL B. COHEN (1992–2017) received his Ph. D. from the Massachusetts Institute
of Technology posthumously in 2018. He was advised by Jonathan Kelner. He was
supported by an NSF Graduate Student Fellowship and was awarded the Machtey Award
for the best student paper at FOCS 2016. He made important contributions to algorithmic
spectral graph theory, randomized numerical linear algebra, and convex optimization.

Michael tragically passed away in September 2017 due to complications from undi-
agnosed Type I diabetes. He is dearly missed and remembered for his unbounded
excitement, his energy, and his love of both knowledge and people.

THEORY OF COMPUTING, Volume 16 (15), 2020, pp. 1–25 24

http://dx.doi.org/10.1137/090771430
http://dx.doi.org/10.1214/ECP.v16-1624
http://arxiv.org/abs/1101.3039
https://people.cs.umass.edu/~cmusco/
http://web.mit.edu/
http://web.mit.edu/
https://math.mit.edu/~kelner/
https://www.computer.org/csdl/pds/api/csdl/proceedings/download-article/12OmNCdk2R8/pdf
https://www.computer.org/csdl/pds/api/csdl/proceedings/download-article/12OmNCdk2R8/pdf
https://simons.berkeley.edu/news/memoriam-michael-cohen
https://news.mit.edu/2017/celebrating-life-of-doctoral-student-and-alumnus-michael-b-cohen-1005
https://news.mit.edu/2017/celebrating-life-of-doctoral-student-and-alumnus-michael-b-cohen-1005
http://dx.doi.org/10.4086/toc


ONLINE ROW SAMPLING

CAMERON MUSCO is an Assistant Professor at the University of Massachusetts Amherst.
He received his Ph. D. from Massachusetts Institute of Technology in 2018, where he
was advised by Nancy Lynch and supported by an NSF Graduate Student Fellowship.
After MIT, Cameron was a postdoctoral researcher at Microsoft Research New England.
He studies algorithms, often randomized ones, working at the intersection of theoretical
computer science, numerical linear algebra, optimization, and machine learning

JAKUB PACHOCKI is a Research Lead at OpenAI. He received his Ph. D. from Carnegie
Mellon University in 2016, where he was advised by Gary Miller. After that he was a
postdoctoral fellow under Jelani Nelson at Harvard University.

THEORY OF COMPUTING, Volume 16 (15), 2020, pp. 1–25 25

https://www.cics.umass.edu/
http://web.mit.edu/
https://people.csail.mit.edu/lynch/
https://www.microsoft.com/en-us/research/lab/microsoft-research-new-england/
https://www.cmu.edu/
https://www.cmu.edu/
http://www.cs.cmu.edu/~glmiller/
https://people.eecs.berkeley.edu/~minilek/
https://www.harvard.edu/
http://dx.doi.org/10.4086/toc

	Online Row Sampling
	Introduction
	Background
	Streaming and online row sampling
	Our results

	Overview
	Analysis of sampling schemes
	Asymptotically optimal algorithm
	Matching lower bound
	Future work
	References

