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Abstract: Respondent-Driven sampling (RDS) is a sampling method de-
vised to overcome challenges with sampling hard-to-reach human popula-
tions. The sampling starts with a limited number of individuals who are
asked to recruit a small number of their contacts. Every surveyed individual
is subsequently given the same opportunity to recruit additional members
of the target population until a pre-established sample size is achieved. The
recruitment process consequently implies that the survey respondents are
responsible for deciding who enters the study. Most RDS prevalence esti-
mators assume that participants select among their contacts completely at
random. The main objective of this work is to correct the inference for de-
parture from this assumption, such as systematic recruitment based on the
characteristics of the individuals or based on the nature of relationships.
To accomplish this, we introduce three forms of non-random recruitment,
provide estimators for these recruitment behaviors and extend three estima-
tors and their associated variance procedures. The proposed methodology
is assessed through a simulation study capturing various sampling and net-
work features. Finally, the proposed methods are applied to a public health
setting.

Keywords and phrases:Hard-to-reach population sampling, non-sampling
errors, network sampling, social networks.
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1. Introduction

Respondent-driven sampling (RDS, Heckathorn (1997)) is a link-tracing network
sampling method widely used to study hard-to-reach human populations con-
nected by a network of social ties. Despite its wide adoption, statistical inference
from RDS data continues to be subject to various sources of bias. Among them,
is the bias induced by the individuals behaviors, such as participants preferen-
tially recruiting subgroups of the population and/or individuals systematically
electing not to participate in the study. Those behaviors are referred to as dif-
ferential recruitment and they may be of particular interest due to the many
documented instances in the context of RDS studies. The main contribution of
this paper is to correct the inference for differential recruitment.

RDS draws its name from the recruiting method: previous respondents choose
which of their network contacts will be recruited next by passing on uniquely-
identified coupons. Researchers limit the branching of the sample, and therefore
reduce the number of highly-dependent pairs in the sample, by limiting the
number of coupons (Gile and Handcock, 2010; Rohe, 2015). This has proven
a highly effective sampling method in many populations, and is widely used,
especially in settings at high risk for HIV (Johnston et al., 2008; Malekinejad
et al., 2008; Montealegre et al., 2013)

The primary object of inference from RDS data is population prevalence, pos-
sibly of a disease, a demographic characteristic, or a behavior. Such inference
relies on many strong assumptions which are sometimes unrealistic in practice
(Gile and Handcock, 2010). In particular, despite the growing empirical evidence
(Frost et al., 2006; Iguchi et al., 2009; Liu et al., 2012; Mccreesh et al., 2012) that
participants choose recruits in systematic ways, most inferential methods assume
respondents make recruitments completely at random among their contacts in
the target population. Sensitivity analysis performed with simulated and real
data demonstrate that non-random recruitment potentially yields large biases in
RDS estimators when the non-random recruitment patterns are associated with
the object of inference (Frost et al., 2006; Gile and Handcock, 2010; Tomas and
Gile, 2011; Lu et al., 2012; Verdery et al., 2015; Shi, Cameron and Heckathorn,
2019). There are also several available methods to diagnose non-random recruit-
ment (Wejnert and Heckathorn, 2008; Liu et al., 2012; Yamanis et al., 2013; Gile,
Johnston and Salganik, 2015; McLaughlin, 2016). The contribution of this work
is to propose mathematical definitions for differential recruitment (DR), present
a framework to estimate sampling probabilities in presence of DR and to correct
prevalence estimators for the induced bias.
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No estimator for RDS data dominates the others Tomas and Gile (2011);
each has strengths and weaknesses. Therefore, rather than introducing a single
proposed estimator, we propose extensions of three existing estimators: those
introduced by Volz and Heckathorn (2008), Salganik and Heckathorn (2004),
and Lu (2013). The estimator proposed by Lu (2013) is a modification of that
of Salganik and Heckathorn (2004) which is partially robust to some forms of dif-
ferential recruitment. Our work improves all three estimators in the case of three
types of differential recruitment. Like Lu’s estimator, our estimators require ad-
ditional data beyond that typically collected in RDS: data on the composition
of each respondent’s local network contacts. It is this information that makes
the recruitment biases identifiable in the context of social network homophily,
or tendency for like to be connected to like (see Crawford et al. (2018) for a
discussion of this non-identifiability). In addition, and unlike Lu’s estimator, we
consider differential recruitment based on both the outcome variable of interest,
or based on another variable. This is especially important when the outcome of
interest, such as HIV status, is not visible to a participant’s contacts, making
it impossible to collect local network composition from respondents (UNAIDS,
2014).

In the next Section, we introduce Respondent-Driven Sampling and the cur-
rent estimators. The proposed prevalence estimators along with the parametriza-
tion of the three form of differential recruitment are discussed in Section 3.
A comparison of their performance under various sampling conditions and net-
work features is assessed in a simulation study presented in Section 4. Section
5 presents an application to a public health setting. Finally, we conclude with
a discussion of the proposed methods in Section 6.

2. Respondent-driven sampling

An RDS sample begins with a set of seeds selected by the researchers, by some
(strategic) convenience mechanism. Beginning with these seeds, each respon-
dent is given a small number of uniquely-identified coupons to pass to contacts
in the target population, making them eligible for enrollment. Respondents are
compensated for their time completing the survey, and also given a small recruit-
ment incentive for each successful recruitment. A key feature of data collection
is that each respondent is asked to report her or his number of contacts in the
target population. For the methods proposed in this paper, it is also necessary
to collect data on the composition of the local contact network in terms of any
variable which is expected to influence recruitment choices, as well as, for some
estimators, on the outcome of interest.

2.1. Notation and sampling methodology

Consider a population of N individuals, also the nodes of the network, with
labels 1, 2, ..., N . These are connected by social ties represented by a sociomatrix
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Y ∈ {0, 1}N×N , such that yij = 1 if i connects to j, and yij = 0 otherwise. We
assume an undirected network such that yij = yji ∀ i, j ∈ {1, 2, ..., N}.

We use the vector z ∈ {0, 1}N to represent the outcome of interest. We refer
to z as “infection status,” zi = 1 for infected persons in reference to the wide
use of RDS in HIV applications, and for ease of discussion, although clearly
it may represent any binary outcome of interest. For some of our proposed
extensions, we also consider another binary nodal variable, denoted x ∈ {0, 1}N ,
a non-outcome variable which may influence sampling decisions. Each node also
has a degree, or number of contacts in the target population. We denote this
di =

∑N
j=1 yij , and assume it is accurately reported by respondents.

Recall that our inferential goal is to estimate the prevalence of infection
status. We denote the true value as μ = 1

N

∑N
i=1 zi. We estimate μ using a

sample of size n. The vector S ∈ {0, 1}N denotes sampling such that:

Si =

{
1 person i has been sampled
0 otherwise

i ∈ {1, 2, ..., N}.

We sometimes refer to sets of nodes based on their variable values. We use
calligraphic letters with superscripts to refer to sets of nodes with common
values of a variable. For example S1 = {i : Si = 1}. S0, X 1, X 0, Z1, and Z0

are defined similarly.
We also sometimes refer to sums. In particular, we sometimes sum degrees

over categories of nodal covariates. These are denoted: dzi1 =
∑N

j=1 yijzj , d
z
i0 =∑N

j=1 yij(1 − zj), d
x
i1 =

∑N
j=1 yijxj , d

x
i0 =

∑N
j=1 yij(1 − xj). We also refer to

counts of sampled nodes in each category: nz
1 =

∑N
i=1 Sizi and nz

0 =
∑N

i=1 Si(1−
zi).

2.2. Prevalence estimators

In this Section, we briefly describe three of the prevalence estimators we later
extend in Section 3: the estimators developed by Volz and Heckathorn (2008),
by Salganik and Heckathorn (2004) and by Lu (2013). They are respectively
denoted μ̂V H , μ̂SH and μ̂Lu and referred to as the VH, the SH and the Lu
estimators.

All three estimators are based on an adapted version of the design-based
estimator introduced by Hansen and Hurwitz (1943), the HH estimator. The
HH estimator depends on pi, that is, the probability that node i is selected at a
given draw. The complexity of RDS and the lack of knowledge about the social
network structure however prevent the exact determination of the sampling
probabilities. For this reason, the described RDS estimators rely on a modified
HH estimator, the HH-style estimator, where the sampling probabilities are
instead estimated and denoted p̂i.

All RDS estimators discussed in this section assume that RDS may be well
approximated by a discrete Markov chain (MC) on the state space of the network
nodes to estimate the sampling probabilities p̂i. Conceptually, the transitions of
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Fig 1. Transition probability matrix (b) for a random walk on the nodes of the network
depicted in (a) under random recruitment.

the MC from one state (e.g. node i) to another (e.g. node j) represents the peer
recruitment (e.g. j was recruited by i) as if nodes were constrained to recruit
exactly one node by transition. Furthermore, even though individuals may only
participate once in an RDS study, the MC representation allows sampling with
replacement. The transitions of the MC are also assumed completely at random
(Salganik and Heckathorn, 2004; Gile and Handcock, 2010). This is equivalent
to presuming that participants recruit completely at random among all their
contacts, or alters, in the target population. Finally, the recruitment process is
assumed to occur on a single component network solely constituted of recip-
rocated ties. In summary, RDS is represented by a random walk (RW) on the
nodes of a fully connected undirected network.

The described RW is mathematically fully specified by a transition probabil-
ity matrix P , where pij , is the probability that node j is selected conditional
on the process’ current state i. This probability is equal to pij = yij/di ∀ i, j ∈
{1, 2, ..., N}, since node i is constrained to recruit completely at random among
its alters. Panel 1b of Figure 1 illustrates a simple case of a transition matrix P
for the undirected network shown in panel 1a.

Under the presumed network structure, the with replacement MC is irre-
ducible and all states are positive recurrent. The combination of these proper-
ties results in the existence of a unique stationary distribution denoted π (Ross,
2014). As demonstrated by Salganik and Heckathorn (2004), under random re-
cruitment, the unique stationary distribution of this RW on the network nodes
is given by:

πi =
di∑N
i=1 di

∝ di for ∀ i ∈ {1, 2, ..., N}. (2.1)
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This stationary distribution may be interpreted as the proportion of time
the process visits each state in the long run. The RDS estimators developed
under this framework assume the sampling starts at stationarity. If this holds,
participants’ estimated sampling probabilities are proportional to their degree
(p̂i ∝ di).

The resulting estimated sampling probabilities are then used in the prevalence
estimators proposed by Volz and Heckathorn (2008), Salganik and Heckathorn
(2004) and Lu (2013). For instance, the VH estimator takes the form of a gen-
eralized HH-style estimator:

μ̂V H =

1
n

∑N
i=1

Sizi
p̂i

1
n

∑N
i=1

Si

p̂i

=

∑N
i=1

Sizi
di∑N

i=1

Si

di

. (2.2)

As for the SH and Lu estimators, they have been derived based on the idea
that, for an undirected network, the number of cross ties from infected to un-
infected individuals should be equal to number of cross ties from uninfected to
infected individuals. This observation leads to the following relation:

μ =
C01D0

C01D0 + C10D1
, (2.3)

where C10 (C01) is the proportion of cross ties from infected (uninfected) to
uninfected (infected) individuals and where D1 (D0) is the average degree of in-
fected (uninfected) individuals. These quantities are not directly observed from
the RDS sample. Therefore, the SH and Lu estimators replace these quanti-
ties with their estimated counterparts. The estimation of the average degree for
each infection status for both the SH and Lu estimators is determined through
a generalized HH-style estimator.

Although SH and Lu estimators rely on the same average degree estimators,
they differ in the estimation of the proportion of cross ties. The SH method-
ology estimates the proportion of cross ties based on the observed unweighted
recruitment patterns, whereas Lu’s estimators for C10 and C01 are based on a
generalized HH-style estimator. The latter rely on the degrees partitioned with
respect to the outcome variable (dzi0 and dzi0), which have not traditionally been
collected in RDS surveys. However, incorporating this information has the po-
tential of greatly reducing the DR bias (Lu, 2013; Verdery et al., 2015), provided
this information is reported accurately. Expressions for the SH and Lu estima-
tors may be found in equations (2.4) and (2.5). As pointed out by Beaudry, Gile
and Mehta (2017), estimators of the SH form may be expressed as a function of
the VH estimator:

μ̂SH =
μ̂V H

μ̂V H + (1− μ̂V H)
[
nz
1r10(r01+r00)

nz
0r01(r10+r11)

] (2.4)

μ̂Lu =
μ̂V H

μ̂V H + (1− μ̂V H)
[ ∑N

i=1 Sizidz
i0/di∑N

i=1 Si(1−zi)dz
i1/di

] , (2.5)
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where ruv =
∑

i,j Sij1[zi=u,zj=v], u, v ∈ {0, 1} and Sij = 1 if node i recruited
node j and Sij = 0 otherwise. In short, ruv represents the observed number of
recruitments from nodes with infection status “u” to nodes with status “v”.

2.3. Variance estimators

In this section, we describe the bootstrap procedure introduced by Salganik
(2006), referred to as the SH bootstrap, as well as the extension proposed by
Lu (2013), to estimate the variance of RDS prevalence estimators.

In both cases, the bootstrap procedure consists of three steps. First, resamples
of size n are drawn from the observed RDS samples. This step is repeated a large
number of times, denoted B. Second, an RDS prevalence estimate is calculated
for each of the B replicates. Third, a confidence interval is calculated based on
the B prevalence estimates.

One of the main differences between the two bootstrap procedures lies in
their resampling step, which is designed to preserve the transition probabilities
of the estimated matrix P partitioned on the outcome variable. The bootstrap
procedures are derived to be consistent with the respective estimated C01 and
C10. In the case of the SH bootstrap, the probability of sampling node j given
that the RW process is at node i is equal to:

Pr(RSH.boot
t = j|RSH.boot

t−1 = i, zk) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1/(r10 + r11), if zi = zk = 1

1/(r01 + r00), if zi = zk = 0

0, otherwise,

(2.6)

where k refers to the individual who recruited node j in the actual RDS survey.
Lu (2013) proposed two bootstrap procedures. We consider the one which

produces transition probabilities corresponding to the methodology employed
in μ̂Lu. The bootstrap procedure sequentially samples nodes in a RW fashion.
The RW probabilities of transitions depend on the nodes membership to the sets
Z1 and Z0. For instance, if the recruiting node is in Z1, then the probability of
transitioning to a node in Z0 (Z1) is equal to ĈLu

10 (1−ĈLu
10 ). By construction, the

bootstrap transition probabilities are consistent with the estimated proportion
of ties between the infection groups in the network.

3. Differential recruitment

In this section, we extend the RDS estimators presented in Sections 2.2 and
2.3 to improve inference in the presence of differential recruitment (DR). We
begin by operationalizing the concept of DR. Then, we specify new transition
matrices reflecting three distinct forms of DR and derive the associated random
walk stationary distributions. A maximum likelihood estimator is subsequently
proposed to estimate the DR parameters required to estimate the sampling
probabilities. Lastly, we present the extended versions of μ̂V H , μ̂SH and μ̂Lu,
and corresponding measures of uncertainty.
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3.1. Specification of differential recruitment

Under random recruitment, participants are assumed to recruit among their
alters completely at random. Because recruitment is a social act, it is naive to
assume this is always the case. Systematic violations of the random recruitment
assumption are referred to as DR.

DR may arise in a variety of ways. Participants may favor the recruitment of
individuals based on their characteristics (nodal attributes), or based on the na-
ture of their relationship (tie attributes). The nodal characteristic inducing DR
is represented by the indicator vector x ∈ {0, 1}N whereas the tie characteristic
is represented by the symmetric indicator matrix W ∈ {0, 1}N×N . Although we
treat the binary case for the vector x and matrix W , these objects do not nec-
essarily need to be binary. We provide some results for the general case where
x is a categorical variable with G ∈ {2, 3, ...} categories in the appendix.

Consistent with Tomas and Gile (2011), DR on the nodal attributes may be
classified into two categories: within group and between group DR. Within group
DR occurs when participants preferentially select alters similar to themselves,
such as contacts of the same ethnic group, whereas between group DR results
from all classes of respondents preferentially recruiting their contacts with a
given characteristic. Gile, Johnston and Salganik (2015) find, for example, that
respondents in four studies of injecting drug users in the Dominican Republic
seem to systematically recruit their employed contacts more often than their un-
employed contacts, perhaps due to the recruiters elevated confidence that these
more reliable contacts would follow through in participating in the study. DR on
the tie attribute is the result of participants preferably selecting individuals on
the basis of their relationship with them. For example, Wang et al. (2005) found
that 78.9% of respondents in an MDMA users study reported being recruited
by a friend as opposed to 14.9% by an acquaintance and 3.4% by a relative.
Participants’ actual tie composition differing from those proportions would be
evidence of recruitment based on tie characteristic. In this section, we address
these three forms of DR.

The magnitude of differential recruitment behavior is quantified by parameter
φ. In each case, this parameter represents the ratio of the probability of selecting
a member of the target population with the nodal or tie preferred attribute to the
probability of recruiting a member without it. For example, survey participants
systematically recruiting males with a probability twice as high as other genders
is denoted φ = 2. Also, a recruitment regime completely at random implies that
φ = 1.

Definitions for the three parameters are presented in Table 1. The subscripts
b, w, t indicate the form of DR, that is, between groups, within groups, and on
tie attribute, respectively.

3.2. Sampling probabilities

To estimate the sampling probabilities, we derive the stationary distributions
of the random walks with DR. We define in this Section the transition matrices



2686 I. S. Beaudry and K. J. Gile

Table 1

Specification of three forms of DR under the RW scheme.
Rt indicates the state of the RW at step t.

DR Form Parametrization

Between groups φb =
Pr(Rt = j| Rt−1 = i, yij = 1, xj = 1)

Pr(Rt = j| Rt−1 = i, yij = 1, xj = 0)

Within groups φw =
Pr(Rt = j| Rt−1 = i, yij = 1, xi = xj)

Pr(Rt = j| Rt−1 = i, yij = 1, xi �= xj)

Tie φt =
Pr(Rt = j| Rt−1 = i, yij = 1, wij = 1)

Pr(Rt = j| Rt−1 = i, yij = 1, wij = 0)

characterizing the three Markov chains and prove the existence and uniqueness
of their stationary distributions contingent on some network features.

The transition matrices, P , specify the conditional probabilities of getting to
any states given the previous state visited. For instance, pij is the probability
of next selecting node j given that node i is the recruiting node.

Figure 2 shows simple examples of transition matrices for each of the three
cases of DR of magnitude two (φ = 2). Let us suppose that the size of the nodes
in figure 2a and 2b represents a nodal attribute inducing DR. For instance,
let the large nodes indicate that the individual resides in neighborhood N1 as
opposed to living in neighborhood N2 depicted by the smaller size nodes. Under
the previously introduced notation, x = {0, 0, 1, 0, 1, 0} where the nodes are
arranged in alphabetical order. Figure 2a illustrates the case of between group
DR so that all classes of participants favor the recruitment of nodes in N1. This
represents a hypothetical situation where every participant systematically favors
the recruitment of their contacts living in the neighborhood where the study is
conducted, for instance. As the left hand side of Figure 2a suggests, when the
RW is in state B, the probability of selecting node C or E (pBC = pBE = 2/6)
is twice as high as the probability of selecting node A or D (pBA = pBD = 1/6),
that is, φb = 2. The entire transition matrix P for this small network may be
found in the right hand side of Figure 2a. More generally, P is given by:

pbij =
φ
xj

b yij∑N
j′=1 φ

xj′
b yij′

(3.1)

in the random walk (RW) with between group DR. For φb = 1, that is, for a
recruitment regime completely at random, pbij =

yij∑N
j′=1

yij′
=

yij

di
as expected.

The transition probabilities for the general case where x has multiple categories
is given in the appendix.

The derivation of within group DR transition probabilities is similar. How-
ever, instead of always favoring individuals residing in N1, participants recruit
more heavily alters living in the same neighborhood as themselves. Node B in
Figure 2b for instance recruits A or D with a probability twice as large as the
probability of selecting node C or E (φw = 2). Consequently, we obtain the
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Fig 2. Transition probability matrix (right) for a random walk on the nodes of the networks
depicted on the left with three forms of DR of magnitude two (φ = 2).
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following expression for the within group transition probability between node i
and j:

pwij =
[φxi

w xj + φ1−xi
w (1− xj)]yij∑N

j′=1[φ
xi
w xj′ + φ1−xi

w (1− xj′)]yij′
. (3.2)

An illustration for transition probabilities for tie attribute DR is provided in
Figure 2c. Thicker ties in the plot on the left panel signify that the relationship
type induces DR. Participants may exhibit the tendency to recruit more fre-
quently close friends than acquaintances for example. According to this figure,
only six entries in the underlying matrix of tie attributes W are equal to one,
wAD, wAE , wBD, and since W is assumed symmetric, the corresponding recip-
rocal relationships wDA, wEA and wDB . Under this RW, B is twice as likely to
select D over the other incident nodes. The entire matrix P for this example is
provided in the right panel of Figure 2c, but the expression for any entry ptij is
given by:

ptij =
φ
wij

t yij∑N
j′=1 φ

wij′
t yij′

. (3.3)

We now consider the stationary distributions which are used as sampling
weights in the extended versions of μ̂V H , μ̂SH and μ̂Lu. To ensure the Markov
chains (MC) are irreducible, we strictly consider random walks on fully con-
nected undirected networks where self ties are not permitted, a standard as-
sumption for RDS, and assume φ > 0. Finally, we assume a finite network to
ensure the MC is positive recurrent. If those conditions are met, then there ex-
ists a unique stationary distribution for each of those stochastic processes (Ross,
2014).

Result 3.1. Let Rt denote the state at step t of a MC on the nodes of a fully
connected undirected network without self ties. Assume that this MC has the
following transition probabilities:

pbij =
φ
xj

b yij∑N
j′=1 φ

xj′
b yij′

,

where φb > 0. Then the stationary distribution of this random walk is such that:

πb
i ∝ dbi = φxi

b (φbd
x
i1 + dxi0) for i ∈ {1, 2, ..., N}. (3.4)

Result 3.2. Let Rt denote the state at step t of a MC on the nodes of a fully
connected undirected network without self ties. Assume that this MC has the
following transition probabilities:

pwij =
[φxi

w xj + φ1−xi
w (1− xj)]yij∑N

j′=1[φ
xi
w xj′ + φ1−xi

w (1− xj′)]yij′
,
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where φw > 0. Then the stationary distribution of this random walk is:

πw
i ∝ dwi = φxi

w dxi1 + φ1−xi
w dxi0 (3.5)

for i ∈ {1, 2, ..., N}.
Result 3.3. Let Rt denote the state at step t of a MC on the nodes of a fully
connected undirected network without self ties. Assume that the MC has the
following transition probabilities:

ptij =
φ
wij

t yij∑N
j′=1 φ

wij′
t yij′

,

where φt > 0. Then the stationary distribution of this random walk is:

πt
i ∝ dti = φtd

w
i1 + dwi0 i ∈ {1, 2, ..., N}. (3.6)

The proofs for Results 3.1, 3.2 and 3.3 as well as the stationary distribution
for the general case of between-group DR may be found in the appendix.

The resulting stationary distributions all involve the φ parameters which are
generally unknown since the sampling is driven by the respondents. However,
these parameters may be estimated by maximizing the following likelihood func-
tions:

L(φ|R = r) ∝
∏

i∈S1\S0

Pr(Ri = ri|Ri−1 = ri−1, φ∗) =
∏

i∈S1\S0

p∗ri−1ri , (3.7)

where R is an n-dimensional random vector specifying the state of the RW, S0

is the set of seeds in the RDS study, and p∗ij is the DR transition probabilities
from node i to node j where ∗ ∈ {b, w, t} identifies the form of DR.

The resulting estimate for φ’s may be replaced in the stationary distribu-
tions so that the estimated stationary distributions for node i ∈ {1, 2, ..., N} in
equations (3.4), (3.5) and (3.6) respectively become proportional to:

d̂bi = φ̂xi

b (φ̂bd
x
i1 + dxi0), (3.8)

d̂wi = φ̂xi
w dxi1 + φ̂(1−xi)

w dxi0, and (3.9)

d̂ti = φ̂td
w
i1 + dwi0, (3.10)

which are consistent estimators under the RW and network models assumed in
this manuscript.

3.3. Extended prevalence estimators

In this section, we discuss the adjustments to the prevalence estimators to ad-
dress DR. With the exception of the μ̂SH , the extension consists in replacing
the random recruitment sampling probabilities with the appropriate DR ones.
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The extended prevalence estimator based on the VH estimator is:

μ̂∗
V H.dr =

∑N
i=1 Sizi/d̂∗i∑N
i=1 Si/d̂∗i

, (3.11)

where ∗ ∈ {b, w, t} identifies the form of DR. Correspondingly, every generalized
HH-style estimator entering the μ̂Lu estimator, that is, ĈLu

01 , ĈLu
10 , D̂0 and D̂1,

is modified in the same fashion, thus leading to:

μ̂∗
Lu.dr =

μ̂∗
V H.dr

μ̂∗
V H.dr + (1− μ̂∗

V H.dr)

[ ∑N
i=1 Sizid

z
i0/d̂

∗
i∑N

i=1 Si(1− zi)d
z
i1/d̂

∗
i

] . (3.12)

Under non-random recruitment, the observed recruitment patterns fail to pro-
vide an unbiased estimate of the socio-matrix cross ties. The systematic over
recruitment of infected individuals for instance, translates into larger r01 and
r11 than expected at random and therefore, compromises the estimation of the
cross tie proportions. Consequently, in addition to replacing the selection prob-
abilities with the DR stationary distribution, modifications to the estimators
ĈSH

01 and ĈSH
10 need also to be considered to adapt the SH methodology for DR.

We propose the following estimators:

ĈSH.b
01 =

r01

r01 + φ̂z
br00

, ĈSH.b
10 =

φ̂z
br10

φ̂z
br10 + r11

; (3.13)

ĈSH.w
01 =

φ̂z
wr01

φ̂z
wr01 + r00

, ĈSH.w
10 =

φ̂z
wr10

φ̂z
wr10 + r11

; (3.14)

ĈSH.t
01 =

rw01 + rw̄01φ̂
z
t

rw01 + rw00 + (rw̄01 + rw̄00)φ̂
z
t

, ĈSH.t
10 =

rw10 + rw̄10φ̂
z
t

rw10 + rw11 + (rw̄10 + rw̄11)φ̂
z
t

; (3.15)

where φ̂z
∗ is an estimate of the relative probability of being recruited for infected

individuals when compared to uninfected individuals and where:

rwkl =
∑
i,j

Sij1[zi=k,zj=l]wij , rw̄kl =
∑
i,j

Sij1[zi=k,zj=l](1− wij) (3.16)

for k, l ∈ {0, 1} such that rwkl (r
w̄
kl) represents the observed number of recruit-

ments from nodes with infection status “k” to nodes with infection status “l”
which are (not) preferentially recruited. The resulting extended SH estimator
is:

μ̂∗
SH.dr =

μ̂∗
V H.dr

μ̂∗
V H.dr + (1− μ̂∗

V H.dr)
[(

ĈSH.∗
10

ĈSH.∗
01

) ∑N
i=1 Sizidi/d̂∗

i∑N
i=1 Si(1−zi)di/d̂∗

i

] . (3.17)
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The estimators shown in equations (3.11), (3.12), and (3.17) are consistent
estimators for μ under the sampling and network assumptions discussed in this
manuscript. A detailed discussion on the asymptotic properties of the estimators
is provided in the appendix.

We note that, through the sampling probabilities, all extended prevalence
estimators require ego-network composition on the DR characteristic, that is,
dxi1 and dxi0, ∀ i ∈ S1. This information has not traditionally been collected
in RDS surveys (Lu, 2013), however an increasing number of studies now in-
clude this information (Liu et al., 2009, 2012; Crawford et al., 2018). We also
note that μ̂b

V H.dr is the only estimator not requiring the ego network com-
position on the outcome variable, that is, dzi1 and dzi0, ∀ i ∈ S1. This is es-
pecially relevant in the context of RDS as important outcome variables may
not be visible to network contacts. Not relying on such information to esti-
mate the prevalence while alleviating the effect of DR therefore constitutes a
substantial contribution to the current RDS prevalence estimation methodol-
ogy.

For simplicity purposes, sections 3.2 and 3.3 presented results for the specific
case of binary DR variables. Estimators for the general case of between group
DR along with a simulation study are discussed in the appendix. This illustrates
that our methodology may be adapted to treat various specifications of DR by
simply carefully defining the recruitment process and deriving the associated
stationary distribution.

3.4. Uncertainty of the estimators

So far, we have discussed methodology to estimate the prevalence of an out-
come variable z with RDS data when participants preferentially recruit indi-
viduals based on their characteristics or relationships. In this section we de-
velop methodology to assess the uncertainty of the proposed estimators μ̂∗

V H.dr,
μ̂∗
SH.dr and of μ̂∗

Lu.dr. We focus on the between group DR. Specifications for
the other forms of DR are included in the appendix. Our proposed variance
estimators extend the bootstrap procedure proposed by Lu (2013) summarized
in Section 2.3.

Under the random recruitment assumption, uniform edge sampling assures
the proportion of cross recruitment from one infection group to the other is
an unbiased estimator for the proportion of cross ties in Y , the network adja-
cency matrix. However, in the presence of DR, the observed proportion may be
severely biased. Since the objective of the bootstrap procedure is to reflect the
recruitment process of RDS as closely as possible through the RW representa-
tion, we emphasize that the transition probabilities in the variance estimator are
designed to model the recruitment process and not necessarily the proportion of
cross ties. Therefore, one of the fundamental differences between our proposed
methodology and the SH and Lu’s procedures is that the transition probabilities
are driven by the DR characteristic and its associated parameter φ rather than
by the outcome variable. More specifically, we propose the following uncertainty
estimation algorithm:
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1. Step 1 – Re-sampling: After selecting the first individual completely
at random, the next individuals are selected sequentially with probability
varying based on their membership in the sets X 1 or X 0 and also, based
on the membership of the recruiting individual. Table 2 summarizes the
transition probabilities for each of the four possible cases.

Table 2

Transition probabilities used in the bootstrap procedure under between group DR, where i
is index of the recruiting node and j �= i is the index of any available node for recruitment.

j ∈ X 0 j ∈ X 1

i ∈ X 0 1
nx
0

[
1− φ̂b ∑N

i=1 Si(1−xi)d
x
i1/d

b
i

nx
0

]
1
nx
1

[
φ̂b ∑N

i=1 Si(1−xi)d
x
i1/d

b
i

nx
0

]

i ∈ X 1 1
nx
0

[
φ̂b ∑N

i=1 Sixid
x
i0/d

b
i

nx
1

]
1
nx
1

[
1− φ̂b ∑N

i=1 Sixid
x
i0/d

b
i

nx
1

]

2. Step 2 – Estimation: Prevalence estimates are computed for all repli-
cates. In the present case, the prevalence is determined based on the ex-
tended prevalence estimator for which the variability is estimated. For
example, if the objective is to estimate the variability of μ̂b

V H.dr, then the
prevalence estimates are calculated with equation (3.11).

3. Step 3 – Confidence Interval: The first two steps are repeated a large
number of times B. The standard deviation calculated from the obtained
prevalence estimates is used to construct a studentized confidence interval.

We propose two variations of the bootstrap procedure. Both approaches begin
by generating replicates (step 1) based on the transition probabilities calculated

with the original φ̂b, that is, φ̂b used in the DR prevalence estimate. For each of
these replicates, a new φ̂b is calculated from the re-sampled data. The resulting
set of φ̂b’s is referred to as the bootstrapped φ̂b’s and are used to determined the
prevalence estimates in step 2. The only difference between the two variations of
the procedures is that under the second version, step 1 is repeated twice. Once
with the transition probabilities determined based on the original φ̂b and again,
based on the bootstrapped φ̂b’s.

The resulting bootstrap procedures are intended to capture the uncertainty
pertaining to the sampling process assuming a random walk approximation to
RDS. Also, by recalculating φ̂b for each replicate, we adjust for the variability
of this parameter. However, neither variability due to a super-population model
nor variability induced by other RDS-specific characteristics is reflected in these
bootstrap estimators.

To estimate the variance of μ̂∗
SH.dr, we have also extended the original SH

bootstrap discussed in Section 2.3. New transition probabilities are derived
based on equations (3.13), (3.14) and (3.15) to capture the various forms of
DR.
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4. Simulation study

4.1. Simulation study design

The complexity of the RDS sampling method prevents an analytical assessment
of the performance of the proposed prevalence estimators. Therefore, we present
a simulation study to compare their performance under a variety of sampling
conditions and network features. In this section, we present the design and
results from the simulation study. The simulation study was performed with the
statistical software R (R Core Team, 2018) and the packages statnet (Handcock
et al., 2015) and RDS (Handcock, Fellows and Gile, 2015).

4.1.1. Network features

There is a vast body of literature studying the tendency of people to form
ties with individuals with whom they share common attributes (Kandel, 1978;
McPherson, Smith-Lovin and Cook, 2001; Currarini, Jackson and Pin, 2009).
Therefore, it is critical for this simulation study to evaluate the sensitivity of
the proposed methodology to this social behavior, known as homophily.

Exponential-family random graph models (ERGMs) (Frank and Strauss, 1986;
Hunter, Goodreau and Handcock, 2008; Hunter and Handcock, 2006) provides
the flexibility to incorporate this feature. This may be done by parametrizing
the model so that the rate of ties among a certain group of individuals, η11,
differs from the rate of ties among members belonging to different groups, η10.
We use the following ERGM parametrization for undirected networks:

Pr(Y = y|X = x, H) =
exp

{
HT g(y,x)

}
c(H|x) , (4.1)

where HT g(y,x) is equal to:

η
∑
i,j

yij + η01
∑
i,j

yijxi(1− xj) + η11
∑
i,j

yijxixj , (4.2)

and where

c(H|x) =
∑

s∈Y(x)

exp
{
HT g(s,x)

}
, (4.3)

where Y(x) is the space of all binary undirected networks of N nodes consistent
with x. This allows to control the overall propensity of forming a tie as well as
the density of ties among alike members and across groups. In summary, this
model formulation allows for homophily, which we define as:

τ =
Pr(Yij = 1|Xi = Xj = 1)

Pr(Yij = 1|Xi �= Xj)
. (4.4)
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The simulated networks were generated using τ = 1 (no homophily) and τ = 5
(elevated homophily) with respect to the DR variable x. The rate of ties was also
chosen so to produce an average degree of ten. The vector x contained 35% of
individuals with the DR characteristic, μx = 0.35, and the outcome variable was
positive 20% of the time, μz = 0.20. Infected individuals were selected among
the individuals with the DR characteristics. A total of one thousand networks
of size N = 1000 nodes were generated, for each of the values for τ using the R
packages statnet (Handcock et al., 2015).

4.1.2. Sampling

The simulated RDS process in this study is intended to exhibit features ap-
proaching those of actual RDS studies. For instance, the nodes are sampled
without replacement. Also, ten seeds initiate the sample instead of one as as-
sumed by the estimators. Such seeds are selected according to the stationary
distribution. Each sampled node subsequently recruits a maximum of two par-
ticipants. A smaller number of recruits is allowed when there are less than two
unsampled alters connected to the recruiting node. Nodes are presumed to re-
cruit under one of the three recruitment regimes:

• recruitment completely at random (φ = 1),
• moderate differential recruitment (φ = 2), or
• elevated differential recruitment (φ = 4)

with respect to the DR variable x or to the tie attribute matrixW . Nodes receiv-
ing an invitation to participate into the survey are presumed to systematically
accept the invitation. The sampling process stops when the target sample size
of two hundred is attained. One RDS sample is drawn from each network.

In summary, the six basic scenarios correspond to all possible permutations
of the three levels of DR and the two levels of network homophily.

4.2. Results: Point estimates

Results from the simulation study for between group DR are presented in Fig-
ure 3 (and in Table 6 of the appendix). Figure 3 displays results for the six
scenarios described in the previous section. The two levels of network homophily
are shown on the horizontal panels, τ ∈ {1, 5} and the three levels of DR on x
are shown on the vertical panels, φ ∈ {1, 2, 4}. Estimates for the prevalence of
z obtained from the six estimators are summarized by box plots which appear
in the following order within each scenario: μ̂V H , μ̂b

V H.dr, μ̂SH , μ̂b
SH.dr μ̂Lu and

μ̂b
Lu.dr. Estimators are grouped into three categories μ̂V H , μ̂SH , and μ̂Lu on the

x-axis of each scenario and the box plot color within each category indicates
the specific version of the estimator: original estimators (purple), and the ex-
tended estimators for DR proposed in this paper (yellow). The true population
parameter μ is represented by the horizontal blue line.
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Fig 3. Estimates produced with varying levels of network homophily, that is, τ ∈ {1, 5}, (hor-
izontal panels) and between group DR on x, that is, φ ∈ {1, 2, 4} (vertical panels). Estimators
are presented in the following order: μ̂V H , μ̂b

V H.dr, μ̂SH , μ̂b
SH.dr μ̂Lu and μ̂b

Lu.dr. The blue
horizontal line represents the true population prevalence for the variable z.

We first observe that all estimators have virtually no bias in the scenarios
where no DR is simulated. In addition, in comparison with μ̂V H and μ̂SH , Lu
and the extended DR estimators display a reduced and similar variability. The
reduction in the uncertainty is partly attributable to the fact that although
φ is approximately equal to one on average, it slightly varies from this value
in any particular simulated sample. These small departures from recruitment
completely at random are corrected for in the extended estimators and therefore,
produce estimates with smaller errors. For μ̂V H.dr, the variability introduced by
the network homophily offsets this effect. For Lu and the extended SH and
Lu estimators, the decrease in variability is also explained by the improved
estimation of the cross-recruitments.

Our simulation also corroborates the findings discussed in various studies
that DR induces strong biases in μ̂V H and μ̂SH (Frost et al., 2006; Gile and
Handcock, 2010; Tomas and Gile, 2011; Lu et al., 2012; Verdery et al., 2015;
Shi, Cameron and Heckathorn, 2019). This holds even for a moderate value
for φ. A between group DR of magnitude two, for instance, yields a relative
bias of approximately 34% in the original VH and SH estimators in scenarios
without homophily and a relative bias of 61% with homophily. As pointed out
by Lu (2013) and Verdery et al. (2015), the estimator proposed by Lu, which
incorporates information about ego-network composition, is far more robust to
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DR than the original estimators under all assessed scenarios. Without network
homophily, a relatively small bias remains when φ �= 1. The remaining bias is
explained by the fact that the estimator relies on sampling probabilities which
do not account for DR. Conversely, our simulation study suggests that, when
the outcome variable differs from the DR characteristic, a significant relative
bias (33% for φ = 2) remains in presence of network homophily.

As observed in Figure 3 all discussed extended estimators reduce, in some
cases substantially, the DR bias when compared to their original counterpart.
To assess the performance of the extended estimators more formally, we tested
how significantly different the mean square error of the estimators were using a
pairwise Bonferroni procedure at a family-wise error rate of 5% for each of the
six scenarios. Firstly, we assumes that only ego-network composition on the DR
characteristic could reasonably be trusted (dxi0 and dxi1). Under this assumption,
only μ̂V H , μ̂b

V H.dr and μ̂SH may be computed as μ̂b
SH.dr μ̂Lu and μ̂b

Lu.dr also
require ego network composition on the outcome variable (dzi0 and dzi1). The
estimators included in the best set of estimators identified by this procedure are
indicated by blue crosses in Figure 3. We observe that only μ̂b

V H.dr systematically
appears in the best set of estimators. Secondly, we presumed that participants
may also accurately report on the ego-network composition with respect to the
outcome variable. The estimators included in the best set of estimators are
labelled with the red X’s. Those results suggest that only μ̂b

Lu.dr consistently
appears in the best set of estimators.

These conclusions also hold when the outcome variable coincides with the
DR characteristic (z = x), with the exception that Lu estimator is less sensitive
to this class of DR. Results are presented in the appendix as well as results for
the other two forms of DR.

The analysis presented above supposes that the outcome variable z is closely
related to the DR characteristic. A simulation study has also been performed
to assess the performance of the estimators when the variable inducing DR is
unrelated to z. The results indicated that the DR bias is smaller in instances
where the variable x is not closely related to the outcome variable z.

Additional scenarios under between group DR have also been simulated to
heuristically evaluate the magnitude of seed selection bias, such as when seeds
are selected strictly among infected individuals. We found that, except when
there is no DR and the network is homophilous, the DR methodology still
provides substantial bias reduction compared to the alternative estimators.

Finally, a simulation study where DR takes place on a variable with multiple
groups is also presented in the appendix. We discuss results under scenarios
under which the DR model is correctly specified as well as misspecified.

4.3. Results: Variance estimates

In this section, we assess the performance of the proposed bootstrap vari-
ance estimators described in Section 2.3 and Section 3.4 at various levels of
between group DR and network homophily. We also evaluate the impact of



Inference for RDS with DR 2697

DR on the overall inference by comparing coverage rates of the 95% confi-
dence intervals for the traditional RDS estimators and their extended ver-
sions.

The performance of the uncertainty estimators is evaluated by comparing
the estimated standard deviation (σ̂) to our best estimates of the true vari-
ability which consists of the standard deviation of the simulated prevalence
estimates under each scenario (s’s). Figure 4 presents the coverage rate of
the 95% confidence intervals (upper plot) along with the difference between
σ̂ and s (lower plot). The results are shown for the nine bootstrap proce-
dures under between group DR on x while making inference about the z.
These figures are organized in the same way as Figure 3, that is, the two
horizontal panels display the results for the two levels of network homophily
(τ ∈ {1, 5}) and the vertical panels are divided according to the DR parameter
φ ∈ {1, 2, 4}. The estimators are presented in the following order within each
scenario: σ̂(μ̂V H), σ̂(μ̂V H.drv1), σ̂(μ̂V H.drv2), σ̂(μ̂SH), σ̂(μ̂SH.drv1), σ̂(μ̂SH.drv2),
σ̂(μ̂Lu), σ̂(μ̂Lu.drv1) and σ̂(μ̂Lu.drv2).

The first row of the upper plot shows that, without homophily, the 95%
confidence intervals’ coverage rates for the extended bootstrap procedures are
either similar (no DR) or significantly better (DR > 1) than the original VH and
SH or slightly better than Lu’s variance estimators. This improvement is mostly
attributable to the reduction in bias in the point estimation. However, in the
case of the VH estimators, the higher coverage is also explained by the improved
estimation of the variance as it may be seen in the bottom plot of the same figure.
The results displayed in the second row of the two plots were produced with
homophilous networks. Although the coverage rates are significantly lower than
for non homophilous networks, we may conclude that, in the presence DR, the
proposed inferential procedures provide higher coverage rates than the presented
alternative methods. However, the poor coverage of the confidence intervals
produced with σ̂(μ̂SH.drv1), and σ̂(μ̂SH.drv2), is mostly due to the remaining
bias in the point estimates.

The comparison of the coverage rates further demonstrates that when the ego
network composition on the DR characteristic is available, then inference may
be improved by using the extended VH methodology. In the presence of strong
network homophily however, it is preferable to also incorporate ego network
data on the outcome variable through the Lu extended methodology.

The results presented in Figure 4 only suggest a slight outperformance of
the bootstrap procedures where the estimated φ are resampled (v2) over the
versions without this resampling step (v1).

The analysis presented in this section corresponds to the case in which the
DR is related to the variable x, but the inference is performed about the out-
come variable z. The appendix includes results for the case where the outcome
variable and the DR characteristic coincide. The conclusions are similar, with
the exceptions that the extended SH and Lu’s methodologies perform better
than the cases presented here whereas the results for the extended VH proce-
dures deteriorate. Overall though, the proposed methods still outperform the
studied alternatives in presence of DR.
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Fig 4. 95% confidence interval coverage rates, where the coverage rates are the percentage of
the intervals including the true population proportion μ of 20%. The dashed line is set at 95%.
Bias of the standard deviation estimates calculated as ¯̂σ− s, where ¯̂σ is the average estimated
standard deviation under a bootstrap methodology and s is the sample standard deviation.

5. Application

The US Centers for Disease Control and Prevention (CDC) use RDS for behav-
ioral surveillance of people who inject drugs (PWID) and high risk heterosexuals
(HRH) in 25 US cities every 3 years (Gallagher et al., 2007). While the resulting
data are highly sensitive human subjects data, and also do not include known
true values to which to compare our results, we conduct our analyses on simu-
lated datasets created to match the characteristics of fourteen CDC studies of
PWID (Lansky et al., 2007). These simulated datasets are data-matched on:

• Estimated prevalence of and mean degree by one high-homophily binary
variable denoted z

• Estimated prevalence of and mean degree by one moderate-homophily
binary variable denoted x

• The joint prevalence (therefore relationship between) z and x.
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Simulated networks of size N = 10, 000 nodes were generated as simulations
from exponential random graph models (ERGMs) using the statnet R package
(Handcock et al., 2015; R Core Team, 2018). These networks are ideal for ap-
plying the proposed methodology because they reflect realistic characteristics
of two related variables which may influence sampling, in a setting in which the
true prevalence of the outcome variable z is known. One hundred network repli-
cates for each of the fourteen realistic networks were simulated. In addtion, RDS
samples were drawn for each of the simulated networks starting with ten seeds.
Everyone recruited up to 2 individuals, without replacement, until a sample
size of 500 was attained. Recruitment was assumed to follow a between group
differential recruitment scheme, where φ = 2.

Fig 5. Prevalence estimates for 14 populations simulated to reproduce realistic features of
CDC data and where RDS is simulated with between group DR on x such that φ = 2. Esti-
mators are presented in the following order: μ̂V H , μ̂b

V H.dr, μ̂SH , μ̂b
SH.dr μ̂Lu and μ̂b

Lu.dr.
The blue horizontal line represents the true population prevalence for the variable x.

The simulated distributions of the prevalence estimates for this application
are shown in Figure 5. Every rectangle represents one of the fourteen simulated
population conditions. The populations are ordered based on the prevalence
of the outcome variable, which are represented by the blue horizontal lines.
Within each area, the distribution of the six prevalence estimators discussed
in this manuscript are displayed, that is, the three original estimators in pur-
ple paired with their respective extended version in yellow. For the purpose of
the illustration, z is assumed to be equal to x, that is, the DR occurs on the
outcome variable. As it may be observed from Figure 5, while μ̂Lu is consid-
erably more robust to DR than the VH and SH, all three versions of the DR
estimators reduce the DR bias. The root mean square error (RMSE) is smaller
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for the extended estimators and is minimized with the μ̂b
Lu.dr under every sce-

nario.
Figure 6 shows the coverage rates of the 95% confidence intervals constructed

based on the original methodology and the two extensions of the bootstrap
variance estimators. The results are consistent with those obtained in the sim-
ulation study. The highest coverage rates are produced from the Lu extended
procedures. Also, similar to previous results, the original VH and SH procedures
produce very low coverage rates, sometimes none of the intervals contains the
true value even for a relatively small value of DR (φ = 2).

Fig 6. 95% confidence interval coverage rates, where the coverage rates are the percentage of
the intervals including the true population proportion μ. The dashed line is set at 95%.

Although not presented in this section, inference on an outcome variable z
different than x has also been performed. The induced DR on z resulting from
DR on x was however minimal thus suggesting a weak relation between the
two variables. In most populations, the RMSE was also minimized by μ̂b

Lu.dr.
However, in some cases, μ̂Lu produced a similar but lower RMSE than μ̂b

Lu.dr.
As for the coverage rates of the 95% confidence intervals, Lu DR procedures
appeared to outperform or perform similarly to other methods in the majority
of the populations thus highlighting the advantage of utilizing both ego network
information when available.

6. Discussion

Sampling hard-to-reach populations is a challenging problem. RDS has provided
ways to circumvent some of the issues specific to those populations that make
the use of traditional sampling methods impractical. However, the sampling
process under RDS is out of the control of the researchers conducting the studies
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and therefore, this sampling method is highly susceptible to biases induced
by participants’ behaviors. The main contribution of this work is to introduce
inferential methodologies correcting existing RDS prevalence estimators and
their uncertainty estimators for biases induced by various forms of differential
recruitment (DR), where DR is understood as a systematic departure from
recruitment completely at random. The methodology addresses biases induced
by DR arising from participants preferentially recruiting a sub-group of their
contacts or from a systematic nonresponse of a sub-group of their contacts.
However, it does not explicitly distinguish the source of the DR bias.

The estimators presented in this work suppose participants’ sampling proba-
bilities may be estimated from the stationary distribution of a random walk (RW)
on the state space of the network nodes. The derivation of the stationary distri-
bution for the original estimators assumes that participants recruit completely
at random among their contacts in the target population. Our approach modi-
fies this assumption and instead proposes three sampling schemes under which
participants systematically recruit individuals based on one of their nodal char-
acteristics or based on their type of relationship with them. By explicitly defin-
ing those sampling schemes we were able to derive the RW characterizing those
behaviors and their associated stationary distributions. The revised estimators
rely on the stationary distributions of the modified RW. Results from the sim-
ulation study show that this methodology greatly reduces biases induced by
the various forms of DR. However, these methods require additional data about
participants’ ego-network compositions.

The comparison of the estimators’ bias in our simulation study suggests that
μ̂b
Lu.dr generally outperforms the discussed alternative estimators. However, this

estimator requires participants to correctly report the ego-network composition
on both the outcome variable and on the characteristic driving DR. In the
context of RDS, it might be unrealistic to assume participants will be able to
provide the outcome variable ego-network composition, as in the case of disease,
this information is generally not visible to other members of the target popula-
tion. Under such circumstances, it is recommendable to instead use μ̂b

V H.dr to
estimate the prevalence, as this estimator does not require this information and
produces smaller biases than μ̂V H and μ̂SH in presence of DR.

We have also proposed uncertainty estimators. The uncertainty is estimated
through a bootstrap procedure capturing the variability associated with the RW
sampling as well as with the estimation of the magnitude of the DR parameter.
Results from the simulation study show that the variance estimators perform
relatively well with non homophilous networks. Combined with the lower bias
of the point estimate, this significantly improves the coverage rates of the 95%
confidence intervals from the original version of the VH and SH estimators in
presence of DR. The coverage rates under those assumptions are also greater
than under Lu’s methodology, but to a lesser extent. With homophilous networks
however, the proposed bootstrap procedures tend to underestimate variability.
This may be explained by the fact that those procedures do not reflect some of
the RDS specific features. Although the underestimation of the variance affects
the width of the 95% confidence intervals, the coverage rates for μ̂b

V H.dr and
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μ̂b
Lu.dr are significantly better than those produced by the conventional estima-

tors when with φ = 2 or 4. We conclude that the proposed extended methods
improve the inference in the presence of DR despite the underestimation of the
variance.

We have applied the proposed methods to data simulated to match some
features of data collected by the US Centers for Disease Control and Preven-
tion (CDC) for behavioral surveillance among people who inject drugs (PWID).
The findings from this analysis are similar to the conclusions obtained from the
simulation study. In presence of DR, there is a significant reduction in the bias
for the extended versions of the VH and SH estimators and a moderate reduc-
tion in the case of the extended version of the Lu estimator. The example also
highlights that in cases where the outcome variable differs from the DR charac-
teristic, the improvement is not as significant when the DR is weakly related to
the outcome variable.

Although the methodology presented in this manuscript addresses specific
forms of DR, we believe it provides a general framework where one could assess
different forms of DR by deriving new stationary distributions for alternative
random walks. For instance, one might consider treating nonuniform DR. Con-
sequently, we believe that the proposed methodologies are promising and could
significantly improve traditional estimators when participants do not recruit at
random.

Appendix

A.1. Stationary distributions with DR

In this section, we prove Results 3.1–3.3, which correspond to the stationary
distributions of the random walk with three forms of differential recruitment.

Proof Result 3.1.

By assumption, pbij =
φ
xj

b yij∑N
j′=1 φ

xj′
b yij′

.

Therefore, we have that:

N∑
i=1

πb
i p

b
ij =

N∑
i=1

[
φxi

b (φbd
x
i1 + dxi0)

K

] [
φ
xj

b yij∑N
j′=1 φ

xj′
b yij′

]

=
φ
xj

b

K

N∑
i=1

φxi

b yji =
φ
xj

b (φbd
x
j1 + dxj0)

K
= πb

j ,

where K is a normalizing constant such that
∑N

i=1 π
b
i = 1. Therefore, πb

i satisfies
the global balance equations for all i ∈ {1, 2, ..., N} and πb = {πb

1, π
b
2, ..., π

b
N} is

the stationary distribution for this RW.
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Proof Result 3.2.

By assumption, pwij =
[φxi

w xj + φ1−xi
w (1− xj)]yij∑N

j′=1[φ
xi
w xj′ + φ1−xi

w (1− xj′)]yij′
.

Therefore, we have that:

N∑
i=1

πw
i p

w
ij =

N∑
i=1

[
φxi
w dxi1 + φ1−xi

w dxi0
K

] [
[φxi

w xj + φ1−xi
w (1− xj)]yij∑N

j′=1[φ
xi
w xj′ + φ1−xi

w (1− xj′)]yij′

]

=
1

K

N∑
i=1

[φxj
w xi + φ1−xj

w (1− xi)]yji =
φ
xj
w dxj1 + φ

1−xj
w dxj0

K
= πw

j ,

where K is a normalizing constant such that
∑N

i=1 π
w
i = 1. Therefore, πw

i satis-
fies the global balance equations for all i∈{1, 2, ..., N} and πw = {πw

1 , π
w
2 , ..., π

w
N}

is the stationary distribution for this RW.

Proof Result 3.3.

By assumption, ptij =
φ
wij

t yij∑N
j′=1 φ

wij′
t yij′

.

Therefore, we have that:

N∑
i=1

πt
ip

t
ij =

N∑
i=1

[
φtd

w
i1 + dwi0
K

] [
φ
wij

t yij∑N
j′=1 φ

wij′
t yij′

]

=
1

K

N∑
i=1

φ
wji

t yji =
φtd

w
j1 + dwj0
K

= πt
j ,

where K is a normalizing constant such that
∑N

i=1 π
t
i = 1. Therefore, πt

i satisfies
the global balance equations for all i ∈ {1, 2, ..., N} and πt = {πt

1, π
t
2, ..., π

t
N} is

the stationary distribution for this RW.

A.2. Consistency of the prevalence estimators

This section discusses the consistency of the estimators μ̂∗
V H.dr, μ̂∗

Lu.dr and
μ̂∗
SH.dr and the necessary conditions for them to be consistent. All derivations

are based on the assumptions stated in the manuscript, that is, that the sam-
pling is performed through a random walk over a fully connected undirected
network. This asymptotic framework is consistent with Volz and Heckathorn
(2008) and Goel and Salganik (2009), who assume a RW on the state space of
the nodes of a fully connected network, but contrasts with the framework used
by Li et al. (2017), who consider asymptotic unbiasedness based on RDS being
represented as a tree indexed Markov process.

These proofs addresses consistency as the length of a Markov chain (MC)
sample drawn from a fixed network increases. We therefore condition on the fixed
network structure, and these proofs are agnostic to the network distribution from
which the network was drawn. Finally, since we let the MC sample size go to
infinity, the estimators μ̂∗

V H.dr, μ̂
∗
Lu.dr and μ̂∗

SH.dr are expressed in a slightly
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different form than shown in the manuscript. In particular, we now assume that
i represents the indexing of the MC sample order instead of the indexing of the
nodes in the network.

Result A.1. Let Rt denote the state at step t of a Markov chain (MC) on the
nodes of a fully connected undirected network without self ties. Assume that this
MC has transition probabilities defined in equations (3.1), (3.2) or (3.3), where
φ∗ > 0. Also, suppose that φ∗ is estimated by maximizing the likelihood function
shown in equation (3.7) using n steps of the MC. Then, μ̂∗

V H.dr is a consistent

estimator for μ if
∑n

i=1 1/d̂
∗
i does not tend to 0 as n → ∞.

Proof. By the properties of the maximum likelihood estimators, φ̂∗ is a consis-
tent estimator for φ∗. As such, equations (3.8)–(3.10) are consistent estimators
for equations (3.4)–(3.6), respectively. Therefore, the estimators for the sampling
probabilities are consistent for the true sampling probabilities.

By Hastings (1970) and Chebyshev’s inequality, since the estimators for the
sampling probabilities are consistent, μ̂∗

V H.dr is a consistent estimator for μ if

its denominator,
∑n

i=1 1/d̂
∗
i , does not tend to zero for large n.

Result A.2. Let Rt denote the state at step t of a MC on the nodes of a
fully connected undirected network without self ties. Assume that this MC has
transition probabilities defined in equations (3.1), (3.2) or (3.3), where φ∗ > 0.
Also, suppose that φ∗ is estimated by maximizing the likelihood function shown
in equation (3.7) using n steps of the MC. Then, μ̂∗

Lu.dr is a consistent estimator

for μ if
∑n

i=1 1/d̂
∗
i and

∑n
i=1(1− zi)d

z
i1/d̂

∗
i do not tend to zero as n → ∞.

Proof. To show that μ̂∗
Lu.dr is a consistent estimator for μ, it suffices to show

that c =
∑n

i=1 zid
z
i0/d̂

∗
i∑n

i=1(1−zi)dz
i1/d̂

∗
i

is a consistent estimator for 1. This is due to the fact

that, as per equation (3.12) when c → 1, then μ̂∗
Lu.dr → μ̂∗

V H.dr and as such,
using Result A.1, μ̂∗

Lu.dr is consistent for μ.
Since the estimators for the sampling probabilities are consistent for the true

sampling probabilities, then:

•
∑n

i=1 zid
z
i0/d̂

∗
i is a consistent estimator for T10; and

•
∑n

i=1(1− zi)d
z
i1/d̂

∗
i is a consistent estimator for T01,

where, T10 is the number of ties from nodes in Z1 to nodes in Z0 and T01 is the
number of ties from nodes in Z0 to nodes in Z1. Since the network is assumed
undirected, we have that T10 = T01. We therefore conclude that c is a consistent
estimator for 1. Consequently, μ̂∗

Lu.dr is a consistent estimator for μ provided∑n
i=1 1/d̂

∗
i or

∑n
i=1(1− zi)d

z
i1/d̂

∗
i do not tend to zero for large n.

We demonstrate the consistency of μ̂b
SH.dr in the specific case of between-

group DR on the outcome variable z. Similar derivations may be obtained for
the other forms of DR.

Result A.3. Let Rt denote the state at step t of a MC on the nodes of a
fully connected undirected network without self ties. Assume that this MC has
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transition probabilities defined in equations (3.1), where xi = zi and φb > 0.
Also, suppose that φb is estimated by maximizing the likelihood function shown
in equation (3.7) using n steps of the MC. Then, μ̂b

SH.dr is a consistent estimator

for μ if
∑n

i=1 1/d̂
b
i and

∑n
i=1(1− zi)di/d̂bi do not tend to zero as n → ∞.

Proof. To show that μ̂b
SH.dr is a consistent estimator for μ, it suffices to show

that

c =

(
ĈSH.b

10

ĈSH.b
01

) ∑n
i=1 zidi/d̂

b
i∑n

i=1(1− zi)di/d̂bi

is a consistent estimator for 1. This is due to the fact that, as per equation (3.17)
when c → 1, then μ̂b

SH.dr → μ̂b
V H.dr and as such, using Result A.1, μ̂b

SH.dr is
consistent for μ.

Using similar arguments as in the ones used in the proof of Results A.1 and
A.2, we note that ∑n

i=1 zidi/d̂
b
i∑n

i=1(1− zi)di/d̂bi

is a consistent estimator for T1·
T0·

, provided that
∑n

i=1(1 − zi)di/d̂bi does not
converge to 0 for large n, where T1· and T0· are the total number of ties for
nodes in Z1 and Z0, respectively. Therefore, for c to be consistent for 1, we

need to show that
ĈSH.b

10

ĈSH.b
01

is a consistent estimator for T0·
T1·

.

We first observe that ĈSH.b
10 =

φ̂z
br10

φ̂z
br10+r11

=
φ̂z
bs10

φ̂z
bs10+s11

, where skl = rkl/(n− 1)

for k, l ∈ {0, 1} is the proportion of recruitments from nodes in Zk to nodes in Z l

in the MC of n steps. Secondly, let us define the corresponding random variable
Skl,n = 1

n−1

∑n−1
g=1 1[zg=k∩zg+1=l]. Then, E[Skl,n] =

∑
i∈Zk

∑
j∈Zl pbijπ

b
i , which,

for fixed φb, leads to:

•E[S01,n] =
∑

i∈Z0

∑
j∈Z1 pbijπ

b
i =

∑
i∈Z0

∑
j∈Z1

[
φbyij

φbdz
i1+dz

i0

][
φbd

z
i1+dz

i0

K

]
= φbT01

K ,

•E[S00,n] =
∑

i∈Z0

∑
j∈Z0 pbijπ

b
i =

T00

K ,

•E[S10,n] =
∑

i∈Z1

∑
j∈Z0 pbijπ

b
i =

φbT10

K , and

•E[S11,n] =
∑

i∈Z1

∑
j∈Z1 pbijπ

b
i =

(φb)
2T11

K ,

where K is the normalizing constant of the stationary distribution and where
Tkl is the number of ties from nodes in Zk to nodes in Z l for k, l ∈ {0, 1}. Also,
the variance for these random variables is:

V ar[Skl,n] =

[
1

n− 1

]2 ∑
q∈Ω

[
n−1∑
t=1

1[zqt=k,zqt+1
=l] − (n− 1)E[Skl,n]

]2

πq1

n−1∏
t=1

pbqtqt+1

where q = {q1, ..., qn} is a possible sequence of n states of the MC, Ω is the

sample space of q, and where πq1

∏n−1
t=1 pbqtqt+1

is the probability of observing
the sequence of states q. Consequently, the variance tends to zero as the sample

size increases since
(∑n−1

t=1 1[zqt=k,zqt+1
=l] − (n − 1)E[Skl,n]

)2
< (n − 1)2. By

Chebychev’s inequality and the asymptotic properties of the MLE, we conclude
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that skl is a consistent estimator for E[Skl,n], and therefore, ĈSH.b
10 is a consistent

estimator for

φbE[S10,n]

φbE[S10,n] + E[S11,n]
=

φb × φbT10

φb × φbT10 + (φb)2T11
=

T10

T1·
.

Similarly, ĈSH.b
01 is a consistent estimator for T01

T0·
. We recall that under the as-

sumption that the network is undirected, T01 = T10 and therefore, this shows

that
(

ĈSH.b
10

ĈSH.b
01

)
is a consistent estimator for T0·

T1·
, which also proves that c is con-

sistent for 1.

A.3. Multilevel between group DR

Suppose that the between group DR variable x is such that x ∈ {1, ..., G}N .
Therefore, there are G possible values for xi, for i ∈ {1, ..., N}. Without loss
of generality, also suppose that the G-th group is the reference group for the
DR, which we define as the group serving as the comparison to measure the
magnitude of the DR:

φg =

⎧⎪⎨⎪⎩
Pr(Rt = i| Rt−1 = j, yij = 1, xi = g)

Pr(Rt = i| Rt−1 = j, yij = 1, xi = G)
, g ∈ {1, ..., G− 1}

1, g = G

.

Then, assuming a RW on the nodes of a single component undirected network
with transition probabilities:

pij =
φxjyij∑N

j′=1 φxj′ yij′
, (A.1)

it is possible to demonstrate that the stationary distribution of this RW is
such that πi ∝ φxi

∑G
g=1 d

g
i φg, where dgi =

∑N
j=1 yij1[xj=g]. Since the φxi ’s are

unknown, they are estimated by maximizing the following likelihood function:

L(φ1, ..., φG−1|R = r) ∝
∏

i∈S1\S0

pri−1ri , (A.2)

where pri−1ri are the transition probabilities according to equation A.1 for each
of the observed recruitment. Finally, the extended VH and Lu prevalence esti-
mators remain as shown in equations 3.11 and 3.12, with d̂∗i now proportional

to φ̂xi

∑G
g=1 d

g
i φ̂g to take into account the multilevel between group DR.

We have performed an additional simulation study to evaluate the estimators
under between group DR with multiple groups. In this simulation, we created
a DR variable x with 3 groups such that: φ1 = 4, φ2 = 2, and φ3 = 1. We
assumed that 35% of the population belonged to the first group, 35% to the
second group, and 30% to the last group. Also, we assumed the prevalence of the
outcome of interest to be 20%, equally split between the first and second group.
We applied the multilevel methodology for 3-group between group DR, first
assuming that the model specification was correct (with g1) and then assuming
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that the researcher was unaware of the first group (without g1). Therefore, the
model misspecification scenario ignores the groups with the highest level of DR.
We calculated μ̂V H , μ̂V H.dr, μ̂Lu and μ̂Lu.dr. The results are shown in Table 3.
We note the good performance of μ̂V H.dr and μ̂Lu.dr under the scenario “with
g1” when making inference for either the prevalence of g2 (35%) or the outcome
variable (20%). Model misspecification does not seem to alter significantly the
performance of μ̂V H.dr nor μ̂Lu.dr under the simulated scenario when estimating
the prevalence of g2. However, we note that μ̂V H.dr is biased when estimating
the prevalence of the outcome variable. Therefore, we would recommend using
μ̂Lu.dr to minimize the impact of model misspecification.

Table 3

Model Misspecification.

Estimator mean (truth =0.35) sd mean (truth =0.20) sd
μ̂V H 0.515 0.034 0.239 0.028
μ̂V H.dr (with g1) 0.360 0.023 0.202 0.024
μ̂V H.dr (without g1) 0.345 0.023 0.241 0.028
μ̂Lu 0.369 0.016 0.204 0.013
μ̂Lu.dr (with g1) 0.353 0.017 0.200 0.022
μ̂Lu.dr (without g1) 0.348 0.021 0.204 0.022

A.4. Transition probabilities in uncertainty estimators

In this section, we present the transition probabilities used in our extension
of Lu’s bootstrap procedure for the cases of within group and tie differential
recruitment. In both Table 4 and Table 5, i represents the index of the recruiting
node and j �= i the index of any available node for recruitment.

Table 4

Within group DR bootstrap transition probabilities.

j ∈ X 0 j ∈ X 1

i ∈ X 0 1
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[
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∑N
i=1 Si(1−xi)d

x
i1/d

w
i

nx
0

]
1
nx
1

[∑N
i=1 Si(1−xi)d

x
i1/d

w
i

nx
0

]

i ∈ X 1 1
nx
0

[∑N
i=1 Sixid

x
i0/d

w
i

nx
1

]
1
nx
1

[
1−

∑N
i=1 Sixid

x
i0/d

w
i

nx
1

]

Table 5

Tie DR bootstrap transition probabilities.

j ∈ X 0 j ∈ X 1

i ∈ X 0 1
nx
0

[
1−

∑ ∑
i �=j(φ̂

t)
wijSi(1−xi)xjyij/d

t
i

nx
0

]
1
nx
1

[∑ ∑
i �=j(φ̂

t)
wijSi(1−xi)xjyij/d

t
i

nx
0

]

i ∈ X 1 1
nx
0

[∑ ∑
i �=j(φ̂

t)
wijSixi(1−xj)yij/d

t
i

nx
1

]
1
nx
1

[
1−

∑ ∑
i �=j(φ̂

t)
wijSixi(1−xj)yij/d

t
i

nx
1

]



2708 I. S. Beaudry and K. J. Gile

Fig 7. Estimates produced with varying levels of network homophily, that is, τ ∈ {1, 5}, (hor-
izontal panels) and between group DR on x, that is, φ ∈ {1, 2, 4} (vertical panels). Estimators
are presented in the following order: μ̂V H , μ̂b

V H.dr, μ̂SH , μ̂b
SH.dr μ̂Lu and μ̂b

Lu.dr. The blue
horizontal line represents the true population prevalence for the variable x.

Table 6

Mean, standard deviation (sd) and root-mean-square error (RMSE) of the estimates
produced with varying levels of network homophily, τ ∈ {1, 5}, and between group DR on x,

φ ∈ {1, 2, 4}. The true population prevalence for the variable z is μ = 0.2.

Estimator φ τ mean sd RMSE φ τ mean sd RMSE
μ̂V H 1 1 0.201 0.026 0.835 1 5 0.201 0.042 1.342
μ̂V H.dr 1 1 0.201 0.024 0.753 1 5 0.201 0.049 1.539
μ̂SH 1 1 0.200 0.027 0.842 1 5 0.201 0.042 1.331
μ̂SH.dr 1 1 0.200 0.016 0.519 1 5 0.199 0.035 1.103
μ̂Lu 1 1 0.200 0.013 0.411 1 5 0.200 0.025 0.788
μ̂Lu.dr 1 1 0.200 0.013 0.412 1 5 0.201 0.029 0.915
μ̂V H 2 1 0.269 0.030 2.372 2 5 0.321 0.046 4.103
μ̂V H.dr 2 1 0.205 0.022 0.718 2 5 0.235 0.050 1.927
μ̂SH 2 1 0.267 0.032 2.336 2 5 0.316 0.046 3.934
μ̂SH.dr 2 1 0.203 0.017 0.554 2 5 0.265 0.039 2.409
μ̂Lu 2 1 0.208 0.013 0.479 2 5 0.265 0.028 2.235
μ̂Lu.dr 2 1 0.202 0.013 0.405 2 5 0.219 0.029 1.114
μ̂V H 4 1 0.332 0.031 4.288 4 5 0.425 0.040 7.222
μ̂V H.dr 4 1 0.208 0.020 0.675 4 5 0.264 0.046 2.493
μ̂SH 4 1 0.329 0.033 4.203 4 5 0.418 0.042 7.009
μ̂SH.dr 4 1 0.205 0.018 0.608 4 5 0.330 0.036 4.261
μ̂Lu 4 1 0.214 0.013 0.603 4 5 0.327 0.025 4.096
μ̂Lu.dr 4 1 0.203 0.013 0.420 4 5 0.236 0.030 1.472
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Fig 8. 95% confidence interval coverage rates, where the coverage rates are the percentage
of the intervals including the true population proportion μ of 35%. The dashed line is set at
95%. Bias of the standard deviation estimates calculated as ¯̂σ − s, where ¯̂σ is the average
estimated standard deviation under a bootstrap methodology and s is the sample standard
deviation.

A.5. Simulation study results

In this Section, we present results from the simulation study, which correspond
to the results presented in Figure 3. Also, we present additional results.

Figure 7 and 8 correspond to the point estimate and variance estimation
simulation study results when the object of inference is the prevalence of the
DR characteristic x. This variable is also assumed to be the one inducing
DR.

Figure 9 compares the point estimate results for the three forms of differential
recruitment for a moderate level of DR (φ = 2) and for two levels of network
homophily.
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Fig 9. Point estimates produced at varying levels of network homophily, that is, τ ∈ {1, 5},
(horizontal panels) under three forms of DR on x with a parameter φ = 2: between group,
within group and tie DR (vertical panels). Estimators are presented in the following order:
μ̂V H , μ̂∗

V H.dr, μ̂SH , μ̂∗
SH.dr μ̂Lu and μ̂∗

Lu.dr. The blue horizontal line represents the true
population prevalence for the variable z.
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