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ABSTRACT

METRIC LEARNING VIA LINEAR EMBEDDINGS FOR
HUMAN MOTION RECOGNITION

SEPTEMBER 2020

BYOUNGDOO KONG

B.S., DONGGUK UNIVERSITY

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Marco F. Duarte

We consider the application of Few-Shot Learning (FSL) and dimensionality

reduction to the problem of human motion recognition (HMR). The structure of

human motion has unique characteristics such as its dynamic and high-dimensional

nature. Recent research on human motion recognition uses deep neural networks

with multiple layers. Most importantly, large datasets will need to be collected to

use such networks to analyze human motion. This process is both time-consuming

and expensive since a large motion capture database must be collected and labeled.

Despite significant progress having been made in human motion recognition, state-

of-the-art algorithms still misclassify actions because of characteristics such as the

difficulty in obtaining large-scale leveled human motion datasets. To address these

limitations, we use metric-based FSL methods that use small-size data in conjunction

with dimensionality reduction. We also propose a modified dimensionality reduction

scheme based on the preservation of secants tailored to arbitrary useful distances,
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such as the geodesic distance learned by ISOMAP. We provide multiple experimental

results that demonstrate improvements in human motion classification.
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CHAPTER 1

INTRODUCTION

Figure 1.1: CVPR 2019 Submission Top 10 Keywords

Computer vision is the most important part of Artificial Intelligence (AI) [37].

Vision-based Human Motion Recognition (HMR) can be used in several fields such as

visual surveillance, human-robot interaction, self-driving vehicle, and body language

using human motion. Figure 1.1 shows the top 10 keywords among the Conference on

Computer Vision and Pattern Recognition 2019 submissions [52]. Although we may

use labeled datasets for human motion recognition, it is difficult to gather annotated

data at large scale from real-world applications. Automatic labeling using Online
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Training Architecture and movie scripts helps us to get motion annotation but still

has a high level of label noise causing the negative effects on human motion recogni-

tion [37]. Even though the YouTube-8M and Sports-1M datasets used commonly in

HMR provide very large sets of human motion videos, their annotations are obtained

by a retrieval method and thus may be inaccurate. Therefore, we need to develop

methods that learn novel objects from a few samples of the object as robots systems.

Additionally, the high dimensionality of the datasets has negative effects on human

motion modeling. These aspects provide multiple motivations for dimensionality re-

duction. The dimensionality reduction provides advantages such as visualization of

the low dimensional structures in the data and reduces process time.

There are several popular methods to reduce the dimensionality. Principal Com-

ponent Analysis (PCA) involves mapping the high dimensional data into the low

dimensional subspace spanned by the influential eigenvectors of the covariance ma-

trix. Although PCA discovers the average best fitting subspace in a least-squares

sense, the average error metric can distort point cloud geometry [27]. We propose a

linear embedding that used a geodesic distance or dynamic time warping (DTW) to

preserve the geometric properties of the data. Human motion recognition requires the

accurate motion alignment, which is computationally inefficient [18]. In contrast, we

propose a simple yet the powerful method for human motion recognition, as shown

by existing work such as NuMax [27] and manifold sub-sampling [39].

1.1 Purpose of the study

Although remarkable progress in HMR has been made, it is difficult to get higher

performance using simple tasks due to the uniqueness of human action. It is not easy

to gather large-scale annotated data for real applications. Furthermore, each video

frame has a background that includes noise as well as human shapes. We need to use

data conditioning such as motion and trajectory segmentation for action recognition.
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Figure 1.2: Overview of few-shot learning (4-way 4-shot).

This is because it is hard to accurately extract action features in videos. Moreover, it is

important to choose a dimensionality reduction method that preserves the structure

of data as much as possible. We propose the use of secant sets normalized with

geodesic distances or DTW as the foundation of linear dimensionality reduction. We

also evaluate the performance of dimensionality reduction techniques like PCA and

ISOMAP for human motion recognition.

In this thesis, we propose the use of few shot learning based on meta learning for

classification in HMR. Meta learning aims to learn a distribution for a new task from

many past different tasks, instead of learning the representation of the classes [68].

The meta learning models are trained over a variety of learning tasks and optimized

for the best performance on a distribution of tasks, including potentially unseen

tasks. Each task is associated with a dataset D, containing both feature vectors

and true labels. In other words, meta-learning, known as learning to learn, intends

to make methods that can learn novel skills with a few training examples. There

are three different approaches: 1) learn an efficient distance metric (metric-based); 2)

apply recurrent network with external or internal memory (model-based); 3) optimize

the model parameters for fast learning (optimization-based) [60]. Few-shot learning

(FSL) is a field of meta-learning. We use metric-based few-shot learning [28]

because FSL empirically work quite well [41, 51, 61] and we can use several methods

to compare HMR features of datasets with different distances. The objective of FSL is

3



Figure 1.3: Process of FSL using meta(episode) learning.

to learn information from a small size of samples and to relieve the burden of getting

annotated large-scale datasets [65].

Figure 1.2 shows the overview of few-shot learning under the setting of N -way

K-shot classification. The support dataset consists of K samples per class for each of

N classes of interest. Given a support set composed of N labels and, for each label

K labeled images; a query set composed of Q query images, the task is to classify

the query images among the N classes given the N ×K images in the support set.

When K is small (typicall K < 10), we talk about few-shot classification. Figure

1.3 explains the process of FSL through meta learning. The meta-learning adopt an

episodic training strategy whereby each episode contains a meta-task [25]. Since we

want our network to learn from a few data points, that is, we want to perform FSL,

we train our network in the same way. Therefore, we use episodic training for each

episode, we randomly sample a few data points from each class in our dataset and we

call that a support set and train the network using only the support set, instead of
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the whole datset. Similarly, we randomly sample a point from the dataset as a query

point and try to predic its class. So, in this way, our network is trained how to learn

from a smaller set of data points. This is called FSL through meta-learning [44]. Most

importantly, we combine dimensionality reduction and metric-based few-shot learning

with feature extraction methods to discover the best solution for action classification.

1.2 Structure of the Thesis

Chapter 2 provides some approaches for feature extraction from human motion

videos that will be used in the sequel: background subtraction [4], and Histogram

of oriented gradients [20], and human optical flow [43]. We also discuss various

dimensionality reduction methods such as NuMax, PCA and ISOMAP, which will be

used in our numerical comparisons.

Chapter 3 introduces a modified dimensionality reduction method that aims to

preserve a distance measure of interest to the application being considered, and shows

its use in combination with several example recognition techniques. Our method

is based on [27], which is reformulated to use a different distance, in particular,

geodesic distance and dynamic time warping. The objective of our method is to

preserve pairwise distances between human motion data points. After dimensionality

reduction, we test several HMR classification approaches on the resulting data.

Chapters 4 and 5 present the results of various methodologies for HMR. The

accuracy of classification depends on the data dimension and feature extraction meth-

ods. This section discusses future research to be applied to human motion.
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CHAPTER 2

BACKGROUND

2.1 Action Representation

2.1.1 Space-Time Silhouettes

Figure 2.1: The process of background subtraction.

Videos of human motion consist of several frames. The objective of action rep-

resentation is to extract a feature vector from motion videos [53]. The motion rep-

resentation is considered as the temporal variation of human silhouettes. We use

space-time silhouettes as basic inputs for human activity representation [11].

The human silhouettes can be obtained from background subtraction [4], which is

the process of separating out foreground objects from the background in a sequence

of video frames. Figure 2.1 shows the simple process of background subtraction.

Background estimation uses the mean of the first few video frames to obtain an

estimate of the scene, which we call the background frame. Foreground pixels are

estimated as the deviation from the estimated background. We can then find moving

objects using the difference between the current frame and the background image.
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Figure 2.2: An example of the silhouette images (Weizmann datasets).

When we maintain a background frame, we can label a pixel (x, y) as belonging

on the foreground if

|I(x, y, t)−B(x, y, t)| > α (2.1)

where α is the threshold, I(x, y, t) is the image at time t and B(x, y, t) is the back-

ground at time t. In contrast to some data classes such as run, walk, and jumping

sideways, there are no objects in the first frames of data like bend, jump, and wave

for the Weizmann datasets. Therefore, instead of using the first frames of each class,

we experimentally compute the median of the previous n frames as the background

image for image segmentation as the equation:

|I(x, y, t)−median{I(x, y, t− i)}| > α (2.2)

where i ∈ {0, .., n− 1}. Figure 2.2 shows an example of the foreground images using

the Weizmann datasets. The resulting images contain as much foreground as possible

and do not distort the motion shape. For computational efficiency, the resolution of

original data (180 x 144, 25 fps) is resized to 50% size and we use α = 0.5.
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Figure 2.3: Example images and their histograms of gradients (HOGs).

2.1.2 Histogram of Oriented Gradients

Histogram of Oriented Gradients (HOG) is one of the descriptors proposed for

pedestrian detection [20]. HOG divides the target area into cells of the same size and

calculates a histogram of the direction of edge pixels in each cell. These histogram

bin values are connected in a row. HOG can be viewed as a directional histogram

template of edge. HOG retains geometric information in block units and has some

robust characteristics for local changes by using histograms of each block. HOG is a

suitable feature extraction for identifying objects with simple contour because it uses

silhouette information of objects. Figure 2.3 shows the example images of HOG.

The process of HOG descriptor is as follows:

1. Divide each image into 8×8 cells and compute the gradients of direction x, y

and magnitude, and orientation. The gradients are the change in size and di-

rection.

2. Compute histograms with gradients and orientation. A histogram is a graph of

the frequency of each interval for a variable. The orientation and angle value

of each pixel are used to make a frequency table shown in Figure 2.4. The

frequency table can be converted to the histogram with angle values (x-axis)

and the frequency (y-axis). The concept of bin also can be used in this process
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Figure 2.4: The algorithm of Histogram of oriented gradients (HOG) Descriptor

as each section of a histogram. We divide the image into 8×8 cells and make

the histograms, we obtain a 9×1 matrix for each cell.

The magnitude is the `2-norm of the gradient vector:

Magnitude =
√

(Gx)2 + (Gy)2 (2.3)

where Gx, Gy is the x, y-gradient. The orientation is arctangent of the ratio

between the partial derivatives on two directions:

Orientation = tan−1

(
Gx

Gy

)
(2.4)

3. Normalize the histograms. Since the lighting of each cell is different, gradients

normalization is applied to mitigate the effect of lighting variations. For exam-

ple, 8×8 cells are collected into a 16×16 block, and we normalize the matrix

using the Euclidean norm.
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2.1.3 Human Optical Flow

Figure 2.5: The concept of the optical flow.

Optical flow detects movement by comparing the difference between two consec-

utive images [43]. It is assumed that the brightness of the object is preserved among

images. If there is a noticeable change of brightness between the two adjacent images,

the velocity of the movement is calculated. In other words, optical flow is caused by

a change of brightness, whether an object is stationary or not. It also assumes time

persistence, i.e., that the movement between frames is small. The change can be

seen as the differential of brightness values over time. Space-adjacent objects are

more likely to be the same object. Figure 2.5 shows the concept of human optical

flow. Optical flow is the movement of human motions between continuous frames of

sequences due to the relative movement between human shape and the camera. The

optical flow can be represented as follows:

I(x, y, t) = I(x+ dx, y + dy, t+ dt) (2.5)

The image intensity I(x, y, t) is a current frame and I(x + dx, y + dy, t + dt) is the

next frame after moving by t. An assumption of pixel intensities is needed to apply

the optical flow: there is just a little or no difference in brightness constancy between

consecutive images.
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By applying Taylor series approximation, equation (2.5) is changed to

I(x+ dx, y + dy, t+ dt) = I(x, y, t) +
∂I

∂x
dx +

∂I

∂y
dy +

∂I

∂t
dt + ... (2.6)

Plugging (2.5) in (2.6) and removing common terms,

∂I

∂x
dx +

∂I

∂y
dy +

∂I

∂t
dt = 0. (2.7)

The optical flow equation is derived by dividing by dt:

∂I

∂x
u+

∂I

∂y
v +

∂I

∂t
= 0, (2.8)

where ∂I/∂x, ∂I/∂y and ∂I/∂t are the image gradients of the horizontal axis, the

vertical axis, and time, and u = dx/dt and v = dy/dt are the velocity or optical flow of

I(x+ y+ t). Lucas-Kanade method [57] and Farneback optical flow [29] are proposed

to solve the optical flow equation because there is one equation against two unknown

variables: u and v. The Farneback method [29] is a dense optical flow that uses the

flow vectors of the entire frame, while the Lucas-Kanade method is one of the sparse

optical flow use few pixels of the edges or corners of human shapes. In this paper, we

use Farneback optical flow to improve the classification accuracy despite being more

computationally expensive than the Lucas-Kanade method. The Farneback optical

flow calculates the optical flow vector for all pixels of each image. The Farneback

optical flow estimates the windows of the frames by quadratic polynomials through

polynomial expansion transform [22]. The polynomial expansion approximates some

neighborhood of each pixel with a polynomial [29]. The Farneback optical flow uses

quadratic polynomials expressed in a local coordinate system as below:

f(x) ∼ xTAx+ bTx+ c (2.9)
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Where A is a symmetric matrix, b is a vector and is c a scalar [29]. We assume that

the image f1(x) is taken at time t and f2(x) at time t+dt. The polynomial coefficients

of the previous frame are connected to the ones from the second frame by applying a

displacement d (2.10 ∼ 2.12).

f2(x) = f1(x− d) = (x− d)TA1(x− d) + bT1 (x− d) + c1 (2.10)

= xTA1x+ (b1 − 2A1d)Tx+ dTA1d− bT1 d+ c1 (2.11)

= xTA2x+ bT2 x+ c2. (2.12)

By assuming the brightness of two continuous images, we can get

A2 = A1, b2 = b1 − 2A1d, c2 = dTA1d− bT1 d+ c1. (2.13)

Here d is can be solved using b2 of (2.13) as

d = −1

2
A−1

1(b2 − b1). (2.14)

The −1
2
(b2 − b1) term of equation (2.14) can be modified to ∆b.

∆b = −1

2
(b2(x)− b1(x)). (2.15)

We also write

A(x) =
A1(x) + A2(x)

2
. (2.16)

Therefore, the equation (2.14) can be changed to

A(x)d(x) = ∆b(x). (2.17)

By assuming that all pixels in a window I follow the same model, d can be computed

using A1, b1 and c1 from f1 in each pixel in I. As mentioned in [22], we make the

12



Figure 2.6: Example images of the optical flow

assumption that the displacement field is slowly varying, so that we can integrate in-

formation over a neighborhood of each pixel. Therefore, we try to find d(x) satisfying

the equation (2.17) as well as possible over a neighborhood I of x, or more formally

minimizing:

e(X) =
∑
∆x∈I

w(∆x)||A(x+ ∆x)d(x)−∆b(x+ ∆x)||2, (2.18)

where we let w(∆x) be a Gaussian weight function for the points in the neighborhood.

So, we care more about the center of the neighborhood than the edges [9]. The w(∆x)

is used to reflect the influence degree of each point in the neighborhood area. The

closer each pixel is to the target pixel in the neighborhood area, the greater the value

of the Gaussian weighting function is. The displacement d(x) of the target point

during the corresponding time is determined by minimizing the error function e(X),

from which the velocity of the pixel is deduced as shown the equation (2.18). Figure

2.6 shows example images of human optical flow for the Weizmann datasets.
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2.2 Dimensionality Reduction

To get a compact description and efficient computation, we consider efficient meth-

ods of dimensionality reduction. Dimensionality reduction provides an embedding

onto a low dimensional Euclidean space. In other words, the dimensionality reduc-

tion enforces a distance metric to match the Euclidean distance in the embedded

target space. There are several popular methods for dimensionality reduction e.g.,

isometric mapping (ISOMAP), local linear embedding (LLE) and Linear Discriminant

Analysis (LDA).

2.2.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) is a technique for reducing data in high-

dimensional spaces to low-dimensional space. The dimension of the PCA embedding

is less than or equal to the dimension of the original sample. The principal component

analysis is a projection of the original data onto the directions in which the variance

is greatest. The variance is another measure of the spread of the datasets. Figure 2.7

shows that PCA finds the axes of the principal component of data. PCA calculates

the mean and covariance of the data. The covariance measures the direction of the

linear relationship between variables.

cov(x, y) = E[(x−mx)(y −my)] = E[xy]−mxmy, (2.19)

where mx and my are the average of x and y, E[·] is the expected value. If there are

two dimensional data (x1, y1), (x2, y2), ....(xn, yn), the covariance matrix is calculated

as follows:

C =

 cov(x, x) cov(x, y)

cov(x, y) cov(y, y)

 (2.20)

In this case, PCA finds the eigenvalue and eigenvector that best describes the datasets.

The eigenvector with the highest eigenvalue is the principal component of the data.
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(a) (b)

Figure 2.7: Example of PCA, ”Run” of Weizmann datasets. (a) Original Data. (b)
Transformed Data.

Let A be a square a matrix, v a vector and λ a scalar that satisfies Av = λv, then λ

is a eigenvalue associated with eigenvector v of A. The eigenvalues of A are roots of

the characteristic equation:

det(A− λI) = 0 (2.21)

By sorting the eigenvectors by decreasing eigenvalues and choosing k eigenvectors, a

d × k dimensional eigenvector matrix W is constructed using eigenvectors with the

highest eigenvalues. PCA explains the existing datasets or predicts new datasets

using eigenvalue and eigenvector.

2.2.2 ISOMAP

We use Isometric Mapping (ISOMAP) as a non-linear embedding to compare

with the performance of linear embeddings. Linear embeddings such as PCA reduce

the dimensions based on Euclidean distances, whereas ISOMAP uses the geodesic

distance approach among the multivariate data points. ISOMAP is a non-linear

dimensionality reduction method widely used for manifold learning and based on a
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spectral theory which tries to preserve the geodesic distances in the lower dimension

[58]. The manifold is a topological space that on small scale resembles the Euclidean

space of a specific dimension. ISOMAP seeks lower levels of embedding to maintain

geodetic distance between all points. Geodesic distance is the distance between two

stations along an elliptical plane.

The first step in ISOMAP is to measure which points are located close to each

other on the manifold and connect all points using a k-nearest neighbor (KNN) graph.

In the second step, ISOMAP calculates the geodesic distance between all pairs of

points using Dijkstra or Floyd’s algorithm with the aforementioned graph. Finally,

ISOMAP applies multidimensional scaling (MDS) to the matrix of graph distances.

MDS finds an embedding space Y , when given a matrix D containing the pairwise

geodesic distances, that minimize the differences between the Euclidean distances

‖yi − yj‖ in the embedded space and distance matrix entries to preserve all pairwise

geodesic distances.

2.2.3 NuMax

Nuclear norm minimization with Max-norm constraints (NuMax) [27] is a near-

isometric linear dimensionality reduction technique. Given a dataset X ⊂ RN that

contains Q points, NuMax discover a linear embedding P : RN → RM , M � N , that

satisfies the restricted isometry property (RIP) on X with parameter δ > 0, referred

to as the isometry constant [27,54]. The RIP is defined as follows:

(1− δ)||x− x′||22 ≤ ||Px− Px′||22 ≤ (1 + δ)||x− x′||22. (2.22)

Both x and x′ are points from the dataset. NuMax use the secant set of S =
(
Q
2

)
unit vectors S(X) = {v1, v2, ..., vs}. The normalized secant set of x is proposed by

Whitney Reduction Network (WRN) [15] as follows:
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S(X) =

{
x− x′

||x− x′||2
, x, x′ ∈ X, x 6= x′

}
. (2.23)

NuMax computes a projection matrix Ψ ∈ RM×N with as few rows as possible that

satisfies the RIP on S(X) [27]. Let SN×N be the set of symmetric N ×N matrices.

NuMax defines P = ΨTΨ ∈ SN×N and rank(P ) = M . NuMax uses the constraints

|||Ψvi||22 − 1| = |vTi Pvi − 1| < δ for every secant vi in S(X). Let 1s denote the

S-dimensional all-ones vector, and let A denote the linear operator that maps a

symmetric matrix X to the S dimensional vector A : X → {vTi Xvi}Si=1. NuMax finds

the matrix P as the optimization problem.

minimize rank(P )

subject to ||A(P )− 1S||∞ ≤ δ, P ≥ 0. (2.24)

NuMax computes a nuclear-norm relaxation of (2.25) as proposed in [24, 45] since

rank minimization is a non-convex problem:

minimize ||P ||∗

subject to ||A(P )− 1S||∞ ≤ δ, P ≥ 0 (2.25)

The nuclear norm of P is the same as its trace because P is a positive semidefinite

symmetric matrix. When the solution P ∗ = UΛUT of equation (2.26) is computed,

rank(P ∗) decides the value of the dimensionality M of the linear embedding M . The

linear embedding Ψ can be computed using a simple matrix square root:

Ψ = Λ1/2
MU

T
M (2.26)

where ΛM = diag{λ1, λ2, ....., λM} denotes the M leading non-zero eigenvalues of

P ∗ and UM denotes the set of corresponding eigenvectors. NuMax returns a low-
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rank matrix Ψ ∈ RM×N that satisfies the RIP on the secant set S(X) with isometry

constant δ. These concepts of NuMax are used in Chapter 3 to make a novel linear

dimensionality reduction.

2.3 Related Work in Computer Vision

Human motion recognition is a rapidly growing branch of computer vision. In

recent years, due to developments in artificial intelligence and convolutional neural

networks (CNN), the accuracy of human motion recognition is mostly improving. For

example, L. Wang et al. [64] use deep learning architectures for human motion recog-

nition in videos; and S. Ji et al. [32] provide convolutional neural networks (CNN)

based on 3D convolutions to extract features from temporal and spatial dimensions.

H. Wang et al. [62] propose an approach to classify videos through dense trajectories.

The motion trajectory is an efficient method to model long-period motion. There

are several techniques such as histogram of oriented gradients (HOG), a histogram

of optical flow (HOF) and motion boundary histograms (MBH) descriptors to dis-

cover the trajectories [59, 62]. Kalouris et al. [34] combine data augmentation such

as rotation, scale and jitter, and transfer learning to improve the performance of pre-

diction, and performance and robustness. Huseyin et al. [18] propose metric learning

using a triplet architecture and recurrent neural network (RNN) to control sizes of

embedding. Kalouris et al. [37] summarize the pros and cons of motion recognition

approaches. Shallow methods for human motion recognition such as space-time and

sequential techniques are easy to use and can achieve high performance. However,

each technique needs extra annotations on the data. On the other hand, methods

like hybrid and multi-stream methods are straightforward to implement using present

convolution networks. But these methods are difficult to fine-tune.

Although state-of-the-art techniques show high performance in results, they mostly

need to gather a large amount of annotated data. Negative effects on incorrect label-
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ing should also be considered. Since the use of many layers in convolutional neural

networks (CNN) is related to the pervasive use of nonlinearities, it is useful to extract

features from the data. The larger and more complex the network is, the more time

it takes to learn and test. Therefore, some of these methods are computationally

expensive. To solve these limited conditions, FSL techniques are being developed.

FSL uses only a few data points in its training datasets. FSL uses a support data

set for training and query data for testing. These tasks of FSL are called N -way

K-shot. For example, 2-way 5-shot approach use two categories like dog and cat and

five images per category. Similar to an example of deep learning that uses millions

of images of cats and dogs, increasing the value of shots K improves classification

accuracy. FSL is simply the idea of using only a few labeled samples. FSL learns

how to make the data of the same classes be closer while keeping data from different

classes separated. Although some FSL techniques use graph neural networks to max-

imize the classification performance, we use FSL based on distance learning such as

prototypical networks and matching networks.

2.4 Datasets

Our experiments for this thesis use two datasets. The Weizmann dataset [12, 26]

is consists of short video segments and has ten different actions: running, jumping

in place, jumping forward, bending, waving with one hand, jumping jack, jumping

sideways, jumping on one leg, walking, and waving with two hands from 9 people.

The resolution is 180 × 144 pixels, and we randomly select 6 people for training

and 3 people for testing. The datasets contain 90 videos. The KTH dataset [48] are

consists of 6 different types of activities: boxing, handclapping, handwaving, jogging,

running and walking performed by 25 subjects in 4 different scenarios: outdoors,

outdoors with scale variation, outdoors with different clothes and indoors. The total

number of videos is 600 (25×4×6) for each combination of 25 subjects, 6 actions
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(a)

(b)

Figure 2.8: Human motion datasets. (a) Weizmann datasets. (b) KTH datasets.

and 4 scenarios. Each video contains about 4 sub sequences used as a sequence in

our experiments. Table 2.1 represents the size of two datasets before and after being

applied feature extraction.

Original dataset After feature extraction
Dataset Methods

Height Width frames Feature vector Frame length
Background Subtraction 25920 19

HOG 12852 21Weizmann
Optical flow

144 180 28 ∼ 50
25920 25

Background Subtraction 19200 19
HOG 9576 25KTH

Optical flow
120 160 25 ∼ 200

19200 50

Table 2.1: Summary of datasets and extracted features.
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CHAPTER 3

MULTI-COMBINATION METHODS FOR HUMAN
MOTION CLASSIFICATION

Figure 3.1: The flowchart of the proposed framework of human motion recognition

We propose an integrated framework, as shown in Figure 3.1, for the task of

human motion recognition. The proposed framework consists of three major parts:

feature extraction, dimensionality reduction and motion classification in an

embedded space. In particular, we propose a customized dimensionality reduction

method to preserve the intrinsic structure of the motion feature vectors that is useful

in human motion recognition. The objective of dimensionality reduction is to reduce

the negative effects of the curse of dimensionality [38], which causes lower performance

of motion classification. We use various dimensionality reduction techniques after

feature extraction for learning algorithms. Finally, we apply metric-based FSL to

improve the classification accuracy for human motion recognition.
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3.1 Linear Embeddings from Optimization

In this paper, we modify NuMax [27], which is a linear dimensionality reduction

as mentioned in Section 2.2.3, to use a different distance when defining the secant set.

We generally apply the concept of NuMax [27] as a linear embedding, but we design

a variant that uses a custom distance measure to be leveraged in the application

of interest. We use two distances: geodesic distance and dynamic time warping

(DTW) distance. First of all, we employ geodesic distance, which is a generalization

of a straight line to curved surfaces, to preserve the human motion vector as much

as possible. With neighbors known, the shortest path geodesic distance (nonlinear

distance) between each pair of samples in the dataset are determined [5]. In contrast

to Euclidean distance, the geodesic distance depends on the manifold where the points

lie. Firstly, we pick and connect k nearest neighbor points based on the input space

distance:

d(xi, xi+1) = ||xi − xi+1|| (3.1)

These neighborhood relations are represented as a weighted graph G over the data

points. We build a graph using a k-NN approach. We then apply Dijkstra’s algorithm

with the nearest neighbor graph G to discover the shortest-path distances for all pairs

of data points. We apply the shortest-path distances D(xi, xi+1) to normalize the

corresponding secants s = xi+1−xi. The geodesic distance with respect to a data set

D, a distance d(u, v) and a neighborhood k are defined as follows:

D(a, b) = min
p

∑
i

d(pi, pi+1) (3.2)

where p is a sequence of points of length l ≥ 2 with p1 = a, pl = b, pi ∈ D ∀i ∈

{2, ..., l− 1} and (pi, pi+1) and k-nearest-neighbors [8]. Figure 3.2 illustrates the con-

cept of Euclidean distance and geodesic distance. We calculate geodesic distance using

the same procedure as ISOMAP [36]. Inspired from NuMax [27] and SLRNILE [54],
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(a) (b)

Figure 3.2: Two different types of distances. (a) Euclidean distance. (b) Geodesic
distance.

we find the low-rank linear mapping that satisfies the restricted isometric property

(RIP) condition on the secant set. Unlike in [27,54], we use a different secant set based

on geodesic distance. The secant set based on geodesic distance is defined as

follows :

S(xi, xi+1) =

{
xi − xi+1

D(xi, xi+1)
, xi, xi+1 ∈ X, xi 6= xi+1

}
(3.3)

where xi and xi+1 are the pairwise pixels of frame. The secant vector can be re-

garded as a normalized difference vector between two different pixels for human mo-

tion datasets. The objective of our method is to find a linear embedding matrix

P : RN → RM ,M � N . Inspired from NuMax [27], we find a projection matrix

Φ ∈ RM×N that satisfies the RIP on our secant set S(xi, xi+1) based on geodesic

distance.

NuMax has to satisfy the restricted isometry property (RIP) on the secant set

(3.2). RIP is defined as follows:

(1− δ)||x1 − x2||2 ≤ ||Φx1 − Φx2|| ≤ (1 + δ)||x1 − x2||2. (3.4)
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where δ is referred to as the isometry constant [27]. When δ approaches zero, both

ends of the inequality become closer to each other. In this case, the embedding

matrix Φ is the best matrix which allows only for minor corruption to the geometric

information of the datasets. The embedding matrix Φ does not alter the secant

vectors much in terms of their magnitude. Therefore, it is important to calculate the

embedding matrix Φ with RIP properties. We estimate the variation of the isometry

constant δ with the number of measurements M . Through (3.2) and (3.4), the RIP

condition of linear embedding matrix P are changed as follows:

(1− δ)||Sl||2 ≤ ||ΦSl|| ≤ (1 + δ)||Sl||2. (3.5)

where Sl is a secant in the set S(X). Consider a linear transform A : RN×N → RK

as A(ΦTΦ) : ΦTΦ→ {vTl ΦTΦvl}Kl=1 where K = |S(ΦTΦ)| for every secant vi in S(X).

The output of A(ΦTΦ) is a K dimensional vector with the lth entry being vTl ΦTΦvl.

As mentioned in NuMax [27] and SLRNILE [54], we link the number of rows of Φ

with the rank of ΦTΦ and find an optimal linear mapping using rank minimization

together with the isometry constraint:

minimize rank(P )

subject to ||A(P )− 1K ||∞ ≤ δ, P ≥ 0. (3.6)

where 1K is a K dimensional all ones vector and the `∞ norm ||.||∞ ensures that the

worst case of distortion for any secant vector satisfies the RIP condition with isometry

constant δ [6]. Since affine rank minimization, which aims at finding a matrix of

minimum rank that satisfies a given system of linear equality constraints, is an NP-

hard problem to solve, we use convex relaxation to obtain a trace-norm minimization

[19]. A common trick to solve the rank-minimization problem approximately is to

replace the rank function with the nuclear norm of the matrix. The nuclear norm
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is the sum of the singular values of the matrix [45]. Given a symmetric matrix

X ∈ RN×N , the nuclear norm of X, denoted by ||X||∗, is equal to the sum of its

singular values, or equivalently, the `1-norm of σ:

||X||∗ =
r∑
i=1

σi(X). (3.7)

The nuclear norm is a convex function, can be optimized efficiently, and is the best

convex approximation of the rank function [27, 45]. Thus, the problem of rank min-

imization is solved using the nuclear norm, the convex relaxation of rank penalty.

In other words, the relaxation of the rank minimization that is more computational

amenable is the following nuclear norm minimization:

minimize ||P ||∗

subject to ||A(P )− 1K ||∞ ≤ δ, P ≥ 0. (3.8)

As mentioned in NuMax [27], we use the Alternation Direction Method of Multipliers

(ADMM) to solve the optimization (3.8). ADMM is an approximate algorithm that

divides the complex equation into sub-problems easier for optimization. A convex

problem with a linear constraint can be solved by using an auxiliary variable. We

rewrite the equation (3.8) by applying the auxiliary variables L ∈ SN×N and q ∈ RK

to get the optimization problem:

min
P,L,q
||P ||∗ subject to ||q − 1K ||∞ ≤ δ, P = L, q = A(L), P ≥ 0 (3.9)

Next, we relax the linear constraints and form an augmented Lagrangian of (3.9) and

update all variables by solving sub-problems with the ADMM [13]:

min
P,L,q
||P ||∗ +

β1

2
||P − L−4||2F +

β2

2
||A(L)− q − ω||22

subject to ||q − 1K ||∞ ≤ δ, P = L, q = A(L), P ≥ 0. (3.10)
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where the symmetric matrix4 ∈ RN×N and vector ω ∈ RK show the scaled Lagrange

multipliers with a defined parameter β1, β2 > 0. We then optimize P , Φ, q, 4 and ω

with iterative procedures and updates each variable at the stopping iteration n + 1

get the low-dimensional embedding Y of human motion data while keeping the others

fixed. When setting the other variables fixed, we gets a new estimate of qk+1 by solving

the optimization program:

qk+1 ←− arg min
q

β2

2
||A(Lk)− ωk − q||22, subject to ||q − 1K ||∞ ≤ δ (3.11)

We then denote z = A(Lk) − ωk − 1K to obtain the closed form solution qk+1 =

1K+sign(z)·min(|z|, δ), where the operators sign(·) and min(·) are applied component-

wise. When setting the other variables fixed, Pk+1 is updated by solving the following

objective function:

Pk+1 ←− arg min
P
||P ||∗ +

β1

2
||P − Lk −4k||F2 , subject to P ≥ 0. (3.12)

We denotes P ′ = Lk +4k and perform the eigendecomposition P ′ = V ΣV T , where

Σ = diag(σ). The optimum Pk+1 then can be shown as

Pk+1 = V Dα(Σ)V T , Dα(Σ) = diag({(σi − α)+}), (3.13)

where α = 1/β1 and t+ represents the positive part of t. Isolating the terms that in-

volve L, we get a new estimate Lk+1 as the solution of the unconstrained optimization

problem

Lk+1 ←− arg min
L

β1

2
||Pk − L−4j||F2 +

β2

2
||A(L)− qk+1 − ω||22 (3.14)

The least-squares problem can be updated by solving the linear system

β1(Pk − L−4j) = β2A
∗(A(L)− qk+1 − ωk), (3.15)
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where A∗ is the adjoint of A. Finally, having the qk+1, Pk+1, Lk+1, 4k+1 and ωk+1

are iteratively updated using a gradient ascent scheme with the step size of µ on the

Lagrange multipliers as follows:

4k+1 ←− 4k − µ(Pk − Lk), ωk+1 ←− ωk − µ(A(Lk)− qk) (3.16)

This process is repeated until the number of iterations exceeds the predefined max-

imum. We dub our method NILEG, an abbreviation for Near-Isometric Linear

Embeddings using Geodesic distance.

We also use dynamic time warping (DTW) distance, which is defines the discrep-

ancy between two time series. In time series analysis, DTW is one of the algorithms

for measuring similarity between two temporal sequences, which may vary in speed.

DTW is a method to compare two time series which may be different in length, DTW

operates by trying to find the optimal alignment between two time series by means of

dynamic programming [30]. DTW provides an approximate similarity measurement

while allowing for matching partially identical sequences. Suppose we have two dif-

ferent arrays red and blue with different length as shown Figure 3.3. Although these

two series follow the same pattern (Figure 3.3(a)), the blue curve is longer than the

red. Using DTW allows us to match the troughs and peaks with the same pattern

(Figure 3.3(b)). DTW is a method that calculates an optimal match between two

given sequences with certain restriction and rules [67]. For example, every index from

the first sequence must be matched with one or more indices from the other sequence.

Also the first index from the first sequence must be matched with the first index from

the other sequence. In the first sequence, the mapping of indices to indexes of other

sequence increases monotonically. More specifically, given two time series x1, ..., xn

and y1, ..., ym, the DTW distance D(i, j) is calculated as the equation (3.17).
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(a) (b)

Figure 3.3: Dynamic Time Warping (DTW) process in time series. (a) Euclidean
distance between two arrays. (b) DTW between two arrays.

D(i, j) =


D(i, j − 1)

D(i− 1, j)

D(i− 1, j − 1)

+ d(xi, yi). (3.17)

where d(·, ·) is the local distance function specific to application. Equation (3.17)

means that the DTW distance between two arrays with length i and j equals the

distance between the tails and the minimum of cost in arrays with length i − 1, j,

i, j − 1, and i − 1, j − 1. Figure 3.4 and Table 3.1 shows the examples of DTW

for data points from the Weizmann dataset. We vectorize each frame and calculate

DTW between two consecutive frames for HMR. DTW distance between same classes

is smaller than distances between different classes. We use DTW distance to make

secant set and then apply the process of linear Embeddings from optimization. we call

this method as NILED, an abbreviation for Near-Isometric Linear Embeddings

using DTW. The secants set based on DTW distance is defined as follows :

S(x) = {d1, d2, ..., dl} (3.18)

where dl is made by reindexing of D(i, j) of the equation (3.17) for consecutive frames.
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two sequences
boxing

vs boxing
walking

vs boxing
running

vs boxing
jogging

vs boxing
handwaving
vs boxing

handclapping
vs boxing

DTW distance 0.5796 1.7782 0.8616 1.1747 1.3516 0.969

Table 3.1: The examples of DTW distance for the Weizmann datasets.

(a) (b)

(c) (d)

Figure 3.4: DTW distances of two sequences. (a) boxing vs boxing dataset. (b)
walking vs boxing. (c) running vs boxing. (d) jogging vs boxing.
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3.2 Classification

Figure 3.5: The pipeline of the proposed methods

In this chapter, we compare the classification performance of several combinations

according to methods of feature extraction and dimensionality reduction by varying

the embedded dimensions M of the low dimensional embeddings. We use classifiers

such as large margin networks, prototypical networks and matching networks as shown

in Figure 3.5. The objective of these methods is to gather the same classes to improve

classification accuracy.

3.2.1 Large Margin Networks

Large Margin Nearest Neighbors (LMNN) is an algorithm that uses Mahalanobis

distance [66]. Mahalanobis distance is a distance measurement method that takes

into account the standard deviation of variables as well as the correlation between

variables. This metric can solve the problem that Euclidean distance does not take

into account the correlation of datasets, and is also scale-invariant. The Mahalanobis

distance is defined between two vectors x and y as follows [66]:
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d(~x, ~y) =
√

(~x− ~y)TS−1(~x− ~y) (3.19)

where S is the class covariance matrix. However, it is difficult to calculate the co-

variance matrix of the random datasets whose actual distribution is unknown. LMNN

is a method for learning the covariance matrix S [7]. As mentioned in [66], we get

a family of metrics over a vector space X by computing Euclidean distances after

performing a linear transformation ~x′ = L~x. The linear transformation L is chosen to

maximize the variance of the projected inputs, subject to the constraint that L defines

a projection matrix. The large margin networks tries to learn a matrix M = LTL.

that maximizes the distances between examples with different labels and minimizes

the distances between nearby examples with the same label. The Mahalanobis dis-

tance can be represented as

d(~xi, ~xj) = ||L(~xi − ~xj)||2 (3.20)

where the linear transformation in the equation (3.17) is parameterized by the

matrix L. The cost function of LMNN can be written as

ε(L) =
∑
ij

ηij ||L(~xi − ~xj)||2 + c
∑
ijl

ηij(1− yil)h[1 + ||L(~xi − ~xj)||2 − ||L(~xi − ~xl)||2], (3.21)

where ηij is a binary variable that indicates whether ~xj is a target neighbor of ~xi,

and yil is a binary variable that represents whether label yi and yl are equal to each

other, h(x) is the so-called hinge function h(x) = max(0, x), c is a weight that controls

a trade-off between the pull and push terms. The first term pulls distances between

inputs and target neighbors, while the second term pushes distances between datasets

that have different labels. In other words, the first term minimizes the distances for

the same labels between target neighbors. The second term pushes the distances of

target neighbor xi and xj as far away as possible for l which have different labels. We

refer to the differently labeled inputs in the training set that invade this perimeter
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(a) (b)

(c)

Figure 3.6: Effect of Large Margin Networks (x-axis:M= 1, y-axis:M= 2, Z-axis:M=
3)(Classes 1: bend, 2: jack, 3: jump, 4: pjump, 5: run, 6: side, 7: skip, 8: walk, 9:
wave1, 10: wave2). (a) Before Margin Networks (HOG+NILEG). (b) After Margin
Networks (HOG+LMNN). (c) After Margin Networks (HOG+NILEG+LMNN).

as impostors. The impostors are differently labeled neighbors defined by a simple

inequality [66]. The second term is generated by the equation (3.19). This is achieved

by penalizing distances to impostors ~xl that are less than one unit further away than

target neighbors ~xj and therefore pushing them out of the local neighborhood of ~xi.

For an input ~xi with label yi and target neighbor ~xj, an impostor is any input ~xl with

label ~yl 6= ~yi as follows:

d(~xi, ~xj) + 1 ≤ d(~xi, ~xl). (3.22)
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Figure 3.7: Prototypical Networks for human motion recognition

In contrast to previous approaches, we use NILEG and NILED as dimensionality

reduction to solve the overfitting issue as mentioned in [66]. We also use ~xi as sup-

port set to apply metric-based few-shot learning. Basically, our method use 5-way

5-shots(videos) as metric-based FSL. Figure 3.6 shows the large margin networks clas-

sification results for the Weizmann datasets. Finally, K = 3 nearest neighbor method

is used as classifier [35]. Figure 3.6(a) shows the classification performance when we

use histogram of oriented gradients as feature extraction and NILEG for dimension-

ality reduction. After being applied large margin networks, each class of datasets is

gathered separately according to labels as shown in Figure 3.6(c). We also tested

in cases of combinations of HOG+LMNN without any dimensionality reduction as

shown in Figure 3.6(b). When we use the combination of HOG+NILEG+LMNN, the

classes of human motion datasets are gathered well. We repeat our experiments for

various combinations of feature extraction, dimensionality reduction and classifica-

tion to prove the performance of NILEG and NILED. We set the number of neighbors

K = 5 to make a secant set based on geodesic distance in NILEG.

3.2.2 Prototypical Networks

We use prototypical networks that learn a metric space in which few-shot clas-

sification can be performed by computing Euclidean distances to prototype repre-
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sentations of each class [41, 51]. Figure 3.7 shows the performance of prototypical

networks for human motion recognition. We use a support set of N labeled examples

S = {(x1, y1), ..., (xN , yN)} and yi ∈ {1, ..., K} is the corresponding label. Sk de-

notes the set of examples labeled with class k. First of all, the prototypical networks

compute the mean of the support vectors to obtain a class prototype Ck for each

class:

Ck =
1

|Sk|
∑

(xi,yi)∈Sk

f(xi) (3.23)

where Sk is the support set belonging to class k and f is the embedding function. We

use our dimensionality reduction methods like NILEG, NuMax and ISOMAP as the

embedding function. The embedding vectors f are calculated from feature extraction

and dimensionality reduction, and we calculate Euclidean distances between the fea-

ture vector of the query image and the class prototype. Prototypical Networks make

a distribution over classes for a query point x based on a softmax mapping distances

to the prototypes in the embedding space [51]:

P (y = k|x) =
exp(−d(f(x), ck))∑
k′ exp(−d(f(x), ck′))

(3.24)

where d is the squared Euclidean distance. Its goal is to maximize the cross-

entropy with the prototypes-based probability expression. The following loss function

is minimized using the negative log-probability of the true class k via stochastic

gradient descent (SGD):

J = −logP (y = k|x) (3.25)

Finally, we compute the loss J for a randomly generated training episode. Our

approach uses human motion vectors composed from a succession of frames as in-

puts and applies the prototypical networks after linear embeddings to make simpler

without convolution operation unlike existing works related to image classification.
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(a) (b)

Figure 3.8: Effect of Prototypical Networks (x-axis: M = 1, y-axis: M = 2). (a)
Before Prototypical Networks(Background Subtraction + NILEG). (b) After Proto-
typical Networks(Background Subtraction + NILEG + Prototypical Networks).

Algorithm 1 Prototypical Networks algorithm

Step 1 → Human motion datasets D, comprising {(x1, y1), ..., (xn, yn)} where x is
the feature and y is the class label.
Step 2 → Randomly select sample 5 videos of data points per each action class
for our datasets, D, and prepare our support set, S.
Step 3 → Similarly select 5 videos of data points and prepare the query set, Q.
Step 4 → Compute the mean (=prototype Ck) of each class.
Step 5 → Calculate the Euclidean distance, d, between query set and each proto-
type.
Step 6 → Predict the probability, P (y = k|x), of the class of the query set by
using softmax over distance d.
Step 7 →Compute the loss function, J(θ), as the negative log probability and try
to minimize the loss using stochastic gradient descent.

Prototypical networks pull the distance between class prototype CK and a query sam-

ple for the same class while keeping prototypes from other classes separate. In other

words, the process of the prototypical networks is as follows:

3.2.3 Matching Networks

Matching networks compute an attention matrix from a cosine similarity between

the support set and the query set [61], as shown in Figure 3.9. Matching networks

multiply the attention matrix and one-hot encoder to calculate a probability for each
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Figure 3.9: Matching Networks for human motion recognition

class. Next, softmax is applied to make an attention map. Cosine similarity calculates

the cosine of the angle between two vectors to find the similarities in subspace. The

larger the cosine value, the smaller the angle and the greater the match between

vectors. Given two vectors, A and B, the cosine similarity, cos(θ), is represented as

similarity = cosine(A,B) =
A ·B
||A||||B||

=

∑n
i=1AiBi√∑n

i=1 A
2
i

√∑n
i=1B

2
i

(3.26)

In other words, matching networks are a method for learning a classifier CS with

a small data set of support set S = {xi, yi}ki=1 (k-shot). Given the test samples X,

the classifier defines a probability distribution for the output label y. Similar to other

metric-based models, the output of the classifier is defined as the weighted label sum

over the support samples using weights from the attention kernel a(x, xi). The value

of the attention kernel should be proportional to similarity level between the images:

CS(x) = P (y|x, S) =
k∑
i=1

a(x̂, xi)yi, where S = {(xi, yi)}ki=1, (3.27)

where P (y|x, S), the predicted probability, is the weighted sum of the labels yi, of

the support set; xi is the input of the support set; x̂ is the query input; and a is a

kernel function that calculates the similarity between xi and x. The attention kernel

is changed according to f and g, which are the embedding functions for the query
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and support set samples respectively. The attention weight a(x̂, xi) between two

data points depends on the the cosine similarity (cosine(·)) between two embedding

vectors:

a(x̂, xi) = softmax(cosine(f(x̂), g(xi))) =
exp(cosine(f(x̂), g(xi))∑k
j=1 exp(cosine(f(x̂), g(xj))

(3.28)

Vinyals et al. [61] use short-term memory (LSTM) recurrent neural network to embed

the support and test datasets. In contrast, we use the embeddings obtained by our

dimensionality reduction methods as the input to the matching networks. Therefore,

we do not use the LSTM network for embeddings of the support set and query set. Our

method is simpler than the related work, which uses Convolutional Neural Network

(CNN) to obtain feature vectors [17].
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CHAPTER 4

EXPERIMENTAL RESULTS

In this section, we show experimental results using three different classification

methods on two datasets of human motion. NILEG is compared against other di-

mensionality reduction techniques including NuMax, PCA and ISOMAP. Table 4.1

provides a summary of the classification accuracy on the Weizmann dataset. The

classification results represent that the combination of HOG, NILEG, and Large

margin networks outperforms other combination methods in embedded dimension

M (classification accuracy: 99.47%). NILEG preserves the nearest neighborhood

of the datasets and therefore gets better classification accuracy of the human mo-

tion datasets. We prove that the combination of feature extraction, dimensionality

reduction, and metric-based few-shot learning performs the improvement of the clas-

sification accuracy through multiple evaluations.

Analogous evaluation tests were taken concerning the KTH datasets. Although

the combination of the best classification accuracy is different between the Weizmann

datasets and the KTH datasets, NILEG obtains the higher classification accuracies in

NILEG NILED NuMax PCA ISOMAP
Methods

M Accuracy M Accuracy M Accuracy M Accuracy M Accuracy
Background 220 99.42 90 97.86 190 95.24 190 92.26 160 88.1

HOG 190 99.47 130 99.31 220 99.21 110 97.22 210 91.67
Large margin

networks
Opticalflow 220 85.29 150 93.75 240 58.33 60 64.29 90 59.92
Background 390 94.53 270 93.59 390 99.17

HOG 150 98.62 300 94.72 390 89.63
Prototypical

networks
Opticalflow 240 92.92 300 94.58 120 98.33
Background 60 56.08 90 63.42 60 65.04

HOG 360 66.46 60 44.58 390 66.08
Matching
networks

Opticalflow 720 77.86 420 83.40 120 32.33

The Best combination :

HOG +
NILEG +

Large margin networks

Table 4.1: Summary of evaluation results for the Weizmann datasets [%].
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NILEG NILED NuMax PCA ISOMAP
Methods

M Accuracy M Accuracy M Accuracy M Accuracy M Accuracy
Background 630 96.93 270 94.64 690 99.18 390 99.66 420 93.45

HOG 420 99.25 510 96.28 510 96.84 150 94.54 300 89.61
Large margin

networks
Opticalflow 510 94.7 510 97.95 450 74.54 150 28.15 420 25.53

Background 180 99.85 270 99.43 240 96.97
HOG 210 99.44 120 94.95 270 99.44

Prototypical
networks

Opticalflow 180 97.65 30 98.02 30 89.56
Background 600 80.76 540 82.45 720 68.28

HOG 510 91.84 720 98.96 480 94.45
Matching
networks

Opticalflow 690 97.3 90 97.80 720 84.32

The Best combination :

HOG +
NILEG +

Large margin networks

Table 4.2: Summary of evaluation results for the KTH datasets [%].

both datasets. The combination of background subtraction, NILEG, and prototypical

networks shows the best accuracy (99.85%) as shown the Table 4.2. Moreover, when

using a larger embedded dimension M , the classification accuracies were increased.

4.1 Experimental Results of Dimensionality Reduction

In this part, we shows more detailed results of each dimensionality reduction

including PCA, ISOMAP, NuMax, NILEG, and NILED. These dimensionality reduc-

tion methods can speed up the process because the dimensions of feature extraction is

too high. We visualize the results of dimensionality reduction methods in each case.

First of all, we evaluate the performance of PCA algorithm. We apply PCA to

reduce that high dimensional data into 2 dimensions for the KTH and Weizmann

datasets. After feature extraction methods including background subtraction, HOG,

and Optical flow, the dimensions of feature extraction are between 9576 and 25920

as shown in Table 2.1. We standardize the dataset’s features onto unit scale which

is a requirement for the optimal performance of several machine learning algorithms.

We reduce the dimensionality of the datasets to several dimensions increasing by ten

intervals. The results of visualization about 2-dimensional data are different varying

each feature extraction as shown in Figure 4.1.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Example of PCA [(a)∼(c):KTH datasets, (d)∼(f):Weizmann datasets].
(a) HOG. (b) opticalflow. (c) background. (d) HOG. (e) opticalflow. (f) background.
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Figure 4.2: Manifolds of Activities of KTH datasets

Secondly, we use the ISOMAP to get template models of the observed human

motions. ISOMAP can be used as a means of representing the actual intrinsic dimen-

sionality of the analyzed data. We use ISOMAP to make a manifold representation

of our human motion sequence [10]. The input data used by this step is a set of of

silhouette images and HOG, and optical flow obtained by the preprocessing step of

our method. For all methods, the local manifold similarity is based on the K-nearest

neighbors. We use value of 5 as used in [10]. Each motion manifold space generated

by this embedding contains two dimensions and is generated from the image without

considering time information into consideration as shown in Figure 4.2. Figure 4.3

shows the results of ISOMAP for the KTH and Weizmann datasets. The ISOMAP

algorithm reduces the dimensionality of the datasets to a specific dimensions for the

KTH and Weizmann datasets. In constrast to HOG and optical flow, the results of

background subtraction are clustered in some rows as shown in Figure 4.3(c) and

4.3(f). We apply some dimensions increasing by ten intervals as in the case of other

dimensionality reduction methods.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Example of ISOMAP [(a)∼(c):KTH datasets, (d)∼(f):Weizmann
datasets]. (a) HOG. (b) opticalflow. (c) background. (d) HOG. (e) opticalflow.
(f) background. 42



(a) (b)

(c)

Figure 4.4: Example of NuMax for the KTH datasets. (a) HOG. (b) opticalflow. (c)
background subtraction.

(a) (b)

Figure 4.5: Example of NuMax on Weizmann datasets with optical flow features. (a)
Before NuMax (b) After NuMax.

Figure 4.4 shows the results of NuMax for the KTH datasets. We use NuMax

by varying the embedded dimensions M of the low dimensional embeddings using

isometry constant δ. We manually select ω = 1.618 and β1 = β2 = 1, iterations = 1000
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like as used in [27]. Figure 4.5 shows the results of NuMax for the Weizmann datasets.

The results of NuMax reduce the dimension of datasets as well as cluster each class

of feature extraction. The embedded dimensions M for KTH and Weizmann datasets

are manually set between 2 and 750 respectively to compare other dimensionality

methods on the same conditions.

Figure 4.6 and 4.7 shows the outcome of NILEG applied to the KTH and Weiz-

mann datasets, respectively. After background subtraction is used (Figure 4.7(a)),

NILEG is applied(Figure 4.7(b)). The classes of NILEG are gathered well than other

methods such as NuMax, PCA and ISOMAP. The results causes better classification

accuracy of human motion datasets as mentioned Section 4.2. We demonstrate that

NILEG can be applied as a dimensionality reduction for human motion videos. We

first consider the motion datasets X of size 144 (height) × 180 (width) × 28 (frames).

In case of background subtraction as feature extraction, we convert the 3D matrix

(144 × 180 × 28) into 2D matrix (4032 × 180). The secant set of NILEG and NILED

is made by randomly sampling pairs of dataset points from X. We test the isometry

constants of NILEG and NuMax. Figure 4.8 shows the number of measurements M

according to the isometry constant δ. Figure 4.8(a) shows that NILEG and NuMax

achieve the desired isometry constant on the secants using a small number of mea-

surements. We use the same secants except for normalization in NuMax and NILEG.

NILEG reduces the number of measurements M more than NuMax. For example,

NILEG attains a distortion of δ = 0.35 with 1.5 times fewer measurements than Nu-

Max. In Figure 4.8(b), we compare the number of measurements M according to the

number of neighbors (K = 5, 15, 30). When we use the smallest K, the number of

measurements M also is reduced. In other words, we can preserve the datasets using

the fewer number of measurement of M . As the isometry constant δ increases, M is

converged to similar values (M=2).
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(a) (b)

(c)

Figure 4.6: Example of LILEG for the KTH datasets. (a) HOG. (b) opticalflow. (c)
background subtraction.

(a) (b)

Figure 4.7: Example of NILEG on Weizmann datasets with background subtraction
features. (a) Before NILEG (b) After NILEG.
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(a) (b)

Figure 4.8: Isometry constant δ vs. Number of measurements M . (a) NILEG and
NuMax. (b) NILEG(Nearest neighbors K = 5, 15, 30).

Figure 4.9 shows the example of NILED for the KTH datasets. We test our

method on a set of human motion sequences widely used in the literature [10]. We

divided the data set into training subset and testing subset. These two subsets cover

all individuals performing all actions for the KTH and Weizmann datasets. The re-

sult of NILED through background subtraction shows that the datasets are gathered

well than HOG and optical flow. The results cause high accuracy of classification

in Section 4.2. In contrast to existing research [10], we construct secant set based

on DTW distance through neighbor sequences for each activity for the comparison

to NuMax and LILEG. We prove the efficiency of DTW distance as well as geodesic

distance in HMR. DTW can be successfully used for matching motion patterns of

embedded manifolds as shown Figure 4.9 and 4.10. Although previous research use

DTW as a classifier [55], our paper aims at demonstrating the effectiveness of the fea-

ture extraction-DTW-FSL combinations. We use the same parameters like isometry

constant δ to make holistic comparisons with NuMax and NILEG.
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(a) (b)

(c)

Figure 4.9: Example of NILED for the KTH datasets. (a) HOG. (b) opticalflow. (c)
background subtraction.

(a) (b)

Figure 4.10: Example of NILED on Weizmann datasets with HOG features. (a)
Before NILED (b) After NILED.
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4.2 Classification Performance

In this section, we conduct experiments of several combinations on two datasets to

testify our proposed methods for HMR. We implement existing methods to make com-

parisons with NILEG (geodesic distance) and NILED (DTW), including the classical

method PCA and ISOMAP as dimensionality reduction methods.

Figure 4.11 shows the results of classification accuracy for various methods using

the large margin networks for the Weizmann datasets. We use three different meth-

ods: space-time silhouettes, the histogram of oriented gradients and human optical

flow for feature extraction as mentioned in Section 2.1. We then apply various di-

mensionality reduction techniques including NILEG and NILED. We also compare to

the performance when no dimensionality reduction is performed. In Figure 4.11, as

the number of measurements M increases, the accuracy tends to improve gradually.

Our experimental results generally show that NILEG obtains the highest classifi-

cation accuracy. As shown in Figure 4.11(a), there are a variety of performance levels

when M varies between 2 and 80. For example, NILED gets the highest accuracy

between M = 20 and M = 100. In the case of M ≥ 110, NILEG performs almost per-

fectly with classification accuracy of 99.42%. In Figure 4.11(b), we show results when

HOG is used for feature extraction and several dimensionality reduction methods as

M varies. NILEG outperforms other methods once the number of measurements M is

sufficiently large. The best classification accuracy is 99.47% through HOG, NILEG,

and large margin networks. When we use optical flow for feature extraction as shown

in Figure 4.11(c), the classification accuracy is mostly lower than for competing fea-

ture extraction methods. The best classification result is 92.29% through NILED. In

case of optical flow (Figure 4.11(c)), we use any of the pair (Vx, Vy) or (Orientation,

Magnitude) as a reference to check if an object is moving. We cluster the points

which have same (Vx, Vy) in a region that might represent an object because for a

single object its velocity for every point remain same.
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(a)

(b)

(c)

Figure 4.11: Classification Accuracy for Large Margin Networks for the Weizmann
datasets using different feature extraction and dimensionality reduction algorithms.
(a) Background Subtraction. (b) HOG. (c) Optical flow.
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We also use the different datasets to escape data dependence and prove the per-

formance of various methods including NILEG and NILED. Figure 4.12 shows the

results of the classification errors for various methods for the KTH datasets. When

we use background subtraction as feature extraction to KTH datasets as shown in

Figure 4.12(a), the classification performance of NuMax and PCA is higher than NI-

LEG for some values of M . (For example, the classification accuracy of NILEG :

65.52%, NILED : 79.89%, NuMax : 64.37%, PCA : 89.83% for M = 60). However,

NILEG generally has the best classification accuracy when being applied background

subtraction when the embedded dimension M > 180. Next, the accuracies of NILED

are higher than NuMax, PCA, and ISOMAP.

NILEG also has the best classification accuracy when being applied HOG when the

embedded dimension M > 390. The best classification accuracy is 98.25% through

NILEG, HOG and large margin networks when the embedded dimension M = 390.

The results show that NILEG performs the best classification among the tested em-

bedding methods. As shown in Figure 4.12(c), we get the classification accuracy

97.95% through optical flow, NILED and large margin networks in M = 480. In case

of optical flow as feature extraction, NILED has the best classification performance

among all methods for all embedding dimensions in shown as Figure 4.12(c). These

empirical results show that the secant set based on geodesic distance and DTW

preserve human motion metrics better rather than other dimensionality reduction

methods. This is because these methods better preserves the properties of human

motion datasets captured by geodesic and DTW distance. Our experimental results

generally show that NILED obtains the highest classification accuracy when being

applied optical flow for two datasets as shown in Figure 4.11(c) and 4.12(c).
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(a)

(b)

(c)

Figure 4.12: Classification error for Large Margin Networks for the KTH datasets
using different feature extraction and dimensionality reduction algorithms. (a) Back-
ground Subtraction. (b) HOG. (c) Optical flow.
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(a)

(b)

Figure 4.13: Evaluation of prototypical networks. (a) KTH datasets. (b) Weizmann
datasets.

Figure 4.13 describes experimental results from nine methods using prototypical

networks. For the KTH datasets, we get the best performance (99.85%) using NILEG

for dimensionality reduction and background subtraction for feature extraction when

using the embedded dimension M = 180 as shown in Figure 4.13(a). The best per-
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forming methods in terms of classification accuracy are different for the Weizmann

datasets and the KTH datasets. The combination of NILEG and HOG has the highest

classification accuracy (98.62%) in the case M = 150 for the Weizmann datasets. The

fluctuation of classification accuracy of NILED + background subtraction is larger

than other methods according to M . Figure 4.14 shows the performance of matching

networks using NILEG, NuMax and NILED. The evaluation was done using a 5-fold

cross-validation technique for an out-of-sample test. The combination of NILED for

dimensionality reduction and HOG for feature extraction have the best classification

accuracy among different five combinations to whole embedded dimension M in KTH

datasets as shown in Figure 4.14(a). When having a larger embedded dimension M ,

NILED+HOG mostly outperforms other combinations including NILEG + HOG, Nu-

Max + HOG, and NuMax + Background subtraction. The combination of NuMax +

Background subtraction shows the worst performance for the KTH datasets as shown

in Figure 4.14(a). For the Weizmann datasets, the combination of NILED and opti-

cal flow outperforms other methods when the embedding dimensionality M ≥ 150 as

shown the Figure 4.14(b). The average classification accuracies of the matching net-

works are lower than large margin networks and prototypical networks as discussed

in section 3.2. The best classification accuracy on the Weizmann dataset is 84.24%

for M = 540. Generally, we get higher accuracy for a larger dimension M with lower

isometry constant δ. As seen from the above, our proposed approach outperforms

those existing in the literature. Therefore, NILEG and NILED can be a good choice

for dimensionality reduction in human motion datasets.
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(a)

(b)

Figure 4.14: Evaluation of matching networks. (a) KTH datasets. (b) Weizmann
datasets.
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CHAPTER 5

CONCLUSIONS

Weizmann dataset KTH dataset
Methods Accuracy [%] Methods Accuracy [%]

Fathi et al. [23] 90.00 Schuldt et al. [48] 71.70
Ali et al. [3] 94.75 Dollar et al. [21] 81.20

Bregonzio et al. [14] 96.66 Niebles et al. [42] 83.30
Seo. et al. [49] 97.50 Jhuang et al. [31] 91.70

Wang et al. [63] 96.70 Ji et al. [33] 90.20
Arac et al. [1] 97.77 Schindler et al. [47] 92.70

Fadwa et al. [2] 97.02 Arac et al. [1] 95.36
Our best method 99.47 Our best method 99.85

Table 5.1: The results of Human motion recognition [%].

In this research, we propose novel metric-based few shot learning via linear em-

beddings for human motion recognition. The main contributions of this proposed

approach are two-fold. First, we propose the first application for combinations of

feature extraction, dimensionality reduction, and metric-based few-shot learning to

improve the classification performance for human motion datasets. Contrary to the

usual methods of classifiers such as support vector machine [16, 23, 50], we apply

metric learning-based classifiers such as large margin networks to increase the clas-

sification accuracy for human motion recognition. Metric learning based on deep

neural networks provides good performance, however, they are often computationally

inefficient and the network training requires significant amounts of training data and

computation. To compare the performance of neural networks with our methods,

we used a video classification model by combining a pre-trained image classification
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Division NILEG NILED CNN [36] PCA ISOMAP
Computation times (Minuites) 24.21 15.64 49.47 5.01 10.36

Classification Accuracy (%) 99.47 99.31 88.89 88.11 90.48

Table 5.2: Computation times and classification accuracy of five methods.

and an LSTM network provided by MATLAB [40]. GoogLeNet Network [56] is used

as pre-trained deep learning toolbox. As shown in Table 5.2, the computational

times of convolutional neural networks (CNN) were 49.47 minutes for computation of

classification accuracy through background subtraction to training with classification

accuracy 88.89%. The computational times of NILEG and ISOMAP took less than

CNN, the classification accuracy of NILEG and ISOMAP was higher than CNN. Our

proposal makes a simple and general framework for human motion recognition.

Second, the highest classification accuracy can be achieved even when a few sam-

ples are available for query class based on few-shot learning, in particular, in the

case of prototypical networks. Although our methods do not use state-of-the-art

techniques such as Deep Neural Networks (DNN) or Convolutional Neural Networks

(CNN), we get better results for human motion recognition as shown in Table 5.1.

We assess the capability of our combination with linear embedding and metric-based

few-shot learning to provide features that allow for reliable recognition of the hu-

man motion from small datasets. Unlike related works [46], we use NILEG using a

secant set based on geodesic distance as linear embeddings. We compare several em-

beddings techniques to discover the best results. NILEG preserves the properties of

human motion datasets and designs efficient and scalable algorithms for embedding.

This motivates specific computational challenges and solutions. We use the respec-

tive merits of linear embeddings and metric-based few-shot learning. Our method

might widen an area from images classification to human motion analysis using small

datasets. Although existing works in the field of few-shot learning are related to image

classification, this work can be used to effectively study human motion recognition,
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prediction, and other applications. We obtain high performance for human motion

recognition through the best combinations.

We discuss some future aspects in the field of human vision. We will study human

motion prediction beyond the classification. On the contrary to motion classification,

human motion prediction focuses on future scenarios. We may combine various meth-

ods such as metric learning as well as motion trajectory for short-term and long-term

prediction. Besides, it is worth trying to study from multi-modal data including videos

as well as audio and text, etc. The analytical methods of complex action datasets

can be improved the performance of human motion classification and prediction [37].

Finally, learning human motions without labels for more efficient solutions can be

studied in computer vision.
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[22] Farnebäck, Gunnar. Two-frame motion estimation based on polynomial expan-

sion. In SCIA (2003).

[23] Fathi, Alireza, and Mori, Greg. Action recognition by learning mid-level motion

features. 2008 IEEE Conference on Computer Vision and Pattern Recognition

(2008), 1–8.

60



[24] Fazel, Maryam, Hindi, H., and Boyd, S. A rank minimization heuristic with

application to minimum order system approximation. Proceedings of the 2001

American Control Conference. (Cat. No.01CH37148) 6 (2001), 4734–4739 vol.6.

[25] Fei, Nanyi, Lu, Zhiwu, Gao, Yizhao, Tian, Jia, Xiang, Tao, and Wen, Ji-Rong.

Meta-learning across meta-tasks for few-shot learning, 02 2020.

[26] Gorelick, Lena, Blank, Moshe, Shechtman, Eli, Irani, Michal, and Basri, Ronen.

Actions as space-time shapes. Transactions on Pattern Analysis and Machine

Intelligence 29, 12 (December 2007), 2247–2253.

[27] Hegde, Chinmay, Sankaranarayanan, Aswin C., Yin, Wotao, and Baraniuk,

Richard G. Numax: A convex approach for learning near-isometric linear em-

beddings. IEEE Transactions on Signal Processing 63 (2015), 6109–6121.

[28] Hochreiter, Sepp, Younger, A. Steven, and Conwell, Peter R. Learning to learn

using gradient descent. In ICANN (2001).

[29] Huttunen, Heikki. Sahar husseini a survey of optical flow techniques for object

tracking.

[30] Ikizler, Nazli, and Sahin, Pinar Duygulu. Human action recognition using distri-

bution of oriented rectangular patches. In Workshop on Human Motion (2007).

[31] Jhuang, Hueihan, Serre, Thomas, Wolf, Lior, and Poggio, Tomaso A. A bio-

logically inspired system for action recognition. 2007 IEEE 11th International

Conference on Computer Vision (2007), 1–8.

[32] Ji, Shuiwang, Xu, Wei, Yang, Ming, and Yu, Kai. 3d convolutional neural net-

works for human action recognition. IEEE Transactions on Pattern Analysis

and Machine Intelligence 35 (2010), 221–231.

61



[33] JiShuiwang, Xuwei, Yang-ming, and Yu-kai. 3d convolutional neural networks for

human action recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence (2013).

[34] Kalouris, Gerasimos, Zacharaki, Evangelia I., and Megalooikonomou, Vasileios.

Improving cnn-based activity recognition by data augmentation and transfer

learning. 2019 IEEE 17th International Conference on Industrial Informatics

(INDIN) 1 (2019), 1387–1394.

[35] Khan, M. M. R., Arif, R. B., Siddique, M. A. B., and Oishe, M. R. Study and

observation of the variation of accuracies of knn, svm, lmnn, enn algorithms on

eleven different datasets from uci machine learning repository. In 2018 4th Inter-

national Conference on Electrical Engineering and Information Communication

Technology (iCEEiCT) (2018), pp. 124–129.

[36] Kimmel, Ron, and Sethian, James A. Computing geodesic paths on manifolds.

Proceedings of the National Academy of Sciences of the United States of America

95 15 (1998), 8431–5.

[37] Kong, Yu, and Fu, Yun. Human action recognition and prediction: A survey.

ArXiv abs/1806.11230 (2018).
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