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Effect of the absorber surface roughness on the performance of a solar air collector: an 
experimental investigation 

 

Abstract: 

Solar air collectors (SAC) convert the available solar energy into useful thermal energy for 

different heating applications such as drying, space heating, hot water etc. The study aims to 

enhance the thermal performance of a flat plate SAC by modifying the absorber surface. The 

experimental performance of two variant SACs (a sand coated absorber to increase surface 

roughness and a conventional plain absorber) was compared under controlled laboratory 

conditions The experimental tests were performed under a solar simulator for radiation levels of 

400, 600, and 800 W/m2 and variable air mass flow rate ranging from 0.01 to 0.02 kg/s/m2. 

Results indicated that increasing the air flow rate by 90% enhanced the thermal efficiency on a 

plain absorber SAC by almost 68%, and the rate of increase was higher for the sand coated 

absorber. SAC with the sand coated absorber provided additional surface area resulting in an 

increase in the effective heat transfer. The thermal efficiency of the collector was improved by up 

to 17% for the sand coated absorber compared to the plain absorber. The absolute thermal 

efficiency of the SAC varied from 19% to 41% under the different tests conditions.  

Keyword: Solar air collector; sand coated absorber; thermal efficiency; effective thermal 
efficiency; correlation 

1. Introduction 

Solar air collectors (SACs) convert the available solar energy into useful thermal energy 

commonly for drying and space heating. SACs can be classified based on the characteristics of 

the collector cover plate, absorber plate materials use surface configuration, integrated or hybrid, 

number of flow-passes, flow pattern and application. The purpose of the design variation is to 

increase the heat transfer inside the SAC.  

Hegazy [1] investigated SACs to evaluate it performance using variable width and fixed 

length collectors. Results indicated that a trapezoidal absorber plate is far better than a concave 

absorber. Hernández and Quiñonez [2] presented double pass parallel and counter flow SACs 

through an analytical study. It was observed that the performance of SACs for counter and 

parallel flow remained the same at higher flow rates. The performance of a perforated glazed solar 

collector with mass flow rates between 0.017 and 0.036 kg/s was evaluated by Vaziri et al. [3]. 

The maximum and minimum collector efficiency for SAC with black and white coloured absorber 

was found to be 85% and 54%, respectively. Aissaoui et al. [4] studied the performance of a flat 
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plate SAC both experimentally and computationally. The thermal efficiency was found to vary 

between 22% and 40%.  Soriga and Badescu [5] highlighted that the thermal inertia of a solar air 

heater ranged between 0.4 to 0.7.  Sun et al. [6] presented a mathematical model for SACs by 

varying the mass flow rate from 0.02 to 0.05 kg/s and  solar radiation between  100 and 

1000W/m2. Thermo-hydraulic efficiency was found to vary between 35% and 55%. Abdullah et 

al. [7] determined  that the thermal efficiency of a semi-circular plastic SAC was 80% which was 

higher than a flat (35%) and triangular (25%) cover. Caliskan [8] performed a techno-economic 

investigation of a SAC and found the energy efficiency and exergy efficiency of 25.4% and 

0.73%, respectively. Kabeel et al. [9] reported that for a double pass flow SAC with nickel-tin 

selective coated absorber provide 29.23% higher efficiency than only black paint. Debnath et al. 

[10] reported that the efficiency of a flat plate SAC was 37.55% at a mass flow rate of 0.014 kg/s 

for solar radiation between 300 and 900 W/m2 under North-East (NE) Indian climatic conditions..  

The performance enhancement of SACs through surface modification has been studied by 

many researchers. The main aim is to break the formation of boundary layer, to increase the rate 

of redistribution of the flow and to reduce losses. A detailed review of earlier studies was 

presented by Lanjewar et al. [11] and Alam and Kim [12]. 

 Prasad and Saini [13] investigated the effect of artificial roughness on the pressure drop 

and heat transfer of a SAC. Results indicated that heat transfer was enhanced by up to 2.4 times 

whilst the friction factor increased by 4.25 times. El-Sebaii et al. [14] investigated double pass 

SACs with flat and V-corrugated absorber plates. The V-corrugated collector provided 11-14% 

better efficiency than the flat plate SAC. Ho et al. [15] investigated theoretically an upward type 

SAC having a finned absorber with externally recycled air. It was found that the externally 

recycled air strengthened the heat convection and improved the thermal performance. Ho et al. 

[16] also compared a double pass SAC with fins and baffles and reported that the baffles had a 

greater impact when compared to the fins. Benli [17] concluded that a corrugated absorber 

provided an efficiency of 55% at a flow rate of 0.05 kg/s from five different shapes of absorber 

surface (flat, corrugate, reverse corrugate, trapeze and reverse trapeze).  

Ravi and Saini [18] performed an experimental investigation on double pass SAC with flat 

and V-corrugated absorber to obtain Nu and friction factor. Results showed a 4.5 times increment 

in Nu number for the V-corrugated absorbers compared to the flat plate, whilst the friction factor 

increased by 3.1. An experimental investigation conducted by Kabeel et al. [19] on SACs using 

flat and V-corrugated absorber with PCM based energy storage showed that a collector with V-

corrugated absorber with PCM storage was 12% to 21% more efficient than a flat plate SAC with 
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and without PCM. Effectively Ho et al. [20] reported that for a V-corrugated SAC with double 

pass recycling, the collector performance improved at higher recycle ratios and mass flow rates 

compared to a conventional SAC. Kabeel et al. [21] investigated SAC with flat plate, finned, 

baffled, and baffled fin absorber and found that the maximum efficiency of a baffled fin absorber 

was 83.8% at flow rate of 0.04 kg/s.  A comparative study conducted by Sevik and Abuska [22] 

on SACs having flexible aluminium foil absorber with and without glass covers showed that a 

maximum efficiency of 81.3% was obtained for an aluminium foil absorber at a flow rate of 0.044 

kg/s. Debnath et al. [23] compared the performance of SACs with plain and wavy absorbers in 

NE India with variable  flow rates, tilt angles, and number of glazing layers, the efficiency of the 

wavy absorber was 14% higher than the flat plate SAC.  

 Boukadoum and Benzaoui [24] carried out a CFD study to determine the enhancement of 

the heat transfer rate using rectangular transverse type ribs inside the collector. Results indicated 

that the rate of heat transfer is increased without huge losses in friction. A correlation between the 

Nusselt numbers and friction factor for a triangular SAC having rectangular chamfered ribs were 

proposed by Kumar et al. [25] based on the CFD study by Sharma and Kalamkar [26] conducted 

an experimental study on SAC having four different thin rib configurations under forced 

convection to estimate the thermo-hydraulic performance, friction factor, and heat transfer. A 

computational analysis of a flat-plate SAC operating with a recycled working fluid (0-7 times) 

showed that the efficiency was increased by 118% due to recycling of the working fluid by 7 

times [27-28]. Naphon [29] performed an analytical study to determine the effect of fin height, 

number of fins, and air flow rate on the performance of a SAC.  

Mohamad [30] observed that by minimizing the collector losses especially losses through 

the glass cover, the collector thermal efficiency was around 75%. Ozgen et al. [31] found that the 

collector efficiency increased by up to 45% at peak solar conditions by attaching aluminium cans 

with a flat absorber. Omojaro and Aldabbagh [32] studied the performance of single and double 

pass SACs with finned and wire mesh absorbers. Double pass collector provided up to 19% 

higher efficiency than that of plain absorber. A maximum efficiency of a conical spring attached 

to a flat plate SAC was around 68% as reported by Abuska and Akgul [33] and Abuşka [34]. 

Ansari and Bazargan [35] reported that a ribbed SAC provided up to 9% higher overall thermal 

efficiency compared to a flat plate SAC. Velmurugan and Kalaivanan [36] studied a single pass 

SAC with different geometrical configurations. The maximum efficiency was found to be 

76.46%. Ahmadi et al. [37] reported that the thermal performance of a collector enhanced by 
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18.87% by using graphene nanoplatelets. Table 1 summarises the thermal efficiency of different 

configurations of SAC.  

Previous studies indicate that the design enhancements such as the incorporation of fins, 

baffles, vortex generator, nanopatlets, etc. on the absorber enhances the performance of the SAC. 

However, these methods are expensive and complex thus has limited commercial applications.  

To the best of knowledge of the authors the only work available on solar collector with sand 

coated absorber has been reported by Lati et al. [38], in which air flow under the absorber plate at 

a fixed mass flow rate. This study aims to improve the thermal performance of a SAC by 

augmenting the absorber surface with a sand coating over the absorber surface, offering a more 

cost-effective enhancement.  

2. Experimental Set Up 

 The experimental setup of the SAC including temperature sensors position is shown in Fig. 1. 

The cross-sectional area of the collector was 1.44 m2 with a space for absorber plate of 0.97 m 

×0.97 m. Other than the absorber plate, the technical specifications of both the SACs were the 

same. The sides and back of the collector were insulated with thermocol of 0.02 m thick, and the 

whole system was made up of plywood with the thickness of 0.015 m. Both absorber plates were 

coated with black paint to increase the absorptivity. For the sand coated absorber, first the black 

paint and preheated sand of 35-371 micron were mixed by agitating until the sand got a 

homogeneous mixture and then coated sand were painted over the aluminium absorber and let to 

dry up. The size and spatial distribution of the used sand is shown in Fig. 2. To reduce the top 

losses and to drive the air over the absorber, a glazing cover made of acrylic perspex sheet of 

0.005 m thick was used. At the inlet section of SAC two DC fans powered from a DC source were 

used to force air over the absorber. The speed of the fan was controlled by varying the input 

power supply. 

Tests were performed under a solar simulator at the CST laboratory at Ulster University. 

In the present study the radiation level was varied form 400 W/m2 to 800 W/m2. A pyranometer 

was used to measure the radiation level at nine different points on the collector surface to check 

the uniformity of radiation on the surface before each set of tests. Radiation level was observed to 

vary by 10%. The average intensity on the collector surface varied between ±15 W/m2. The 

inclination of the SAC and the solar simulator lamp array were kept fixed at 45º. A digital 

anemometer was used to measure the exit air velocity. Temperature readings from the T-type 

thermocouples were recorded by a data logger (data taker, DT85) at 30 sec intervals. The 



5 

 

accuracy of the instruments and corresponding uncertainties are calculated using the following 

equation and for each of the parameters are presented in Tables 2 & 3. 

�� = �� �����	
�
� + � �����	��

� + � �����	��
� +⋯………+	� ����� ��

��   (1) 

3. Thermal modelling 

Energy balance (Analysis)  

The instantaneous thermal efficiency (η) of the SAC is defined as the fraction of the heat 

transferred to the working fluid (Qu) to the total solar radiation incident on the absorber surface 

(Qab), [23]: 

 � = ��
���          (2) 

 The amount of heat absorbed by the air is estimated as: 

�� = �� ("#,%�& − "#,())         (3) 

where, �  is the specific heat capacity of air, �∙  is the air flow rate, "a,in and "a,out are the inlet and 

outlet temperatures of air, respectively.  

The amount of radiation incident on the absorber is calculated as: 

 �#, = -.          (4) 

where, .	is the irradiance, -.	is the collector aperture area.   

By applying the net energy balance to the collector, the thermal energy lost (01 ) from the 

collector to the surroundings can be evaluated. Mathematically, the net thermal loss is the product 

of a heat transfer coefficient 01times the difference between the temperature of the absorber plate 

("#,2) and the ambient temperature	("#3,). By applying this energy balance, the thermal loss 

coefficient (Qu) can be evaluated as: 

�� = -4. − 01("#,2 − "#3,)5       (5) 

The physical property of the fluid is determined relative to the average air temperature. The 
average air temperature is calculated as:  

 "#6 = 78�,9�:8�,;�<=
�          (6) 

The effective heat transfer (�>??) is evaluated by subtracting the energy consumption of the DC 

fans (Wfan) from the extracted heat, and evaluated as: 

�>?? = �� − 7�?#)=         (7) 

 



6 

 

Thus, the effective efficiency is evaluated as: 

�>?? = �@AA
���           (8) 

 

4. Results and discussion 

A series of tests were conducted to evaluate the performance of the SAC with and without a sand 

coated absorber under controlled laboratory conditions. The experiments were performed at three 

different mass flow rates (0.01, 0.015, and 0.02 kg/s/m2) and three different radiation intensities 

(400, 600 & 800 W/m2) over a 2-hr period.  

4.1. Temporal variation of temperature  

Collector and air temperatures for the sand coated absorber at different positions for  mass flow 

rate (m) and radiation intensity (I) of 0.01 kg/s/m2 and  400 W/m2, respectively are shown in Figs. 

3(a) and (b). The ambient temperature (Tamb) was maintained nearly constant during the test 

period by using air conditioning units. Fig. 3a also presents the temperature of back side 

insulation (Tins) and glazing (Tglaz), inlet air temperature to the absorber (Ta,in) and outlet air 

temperature (Ta,out). After a rapid initial increase, the temperature tends toward a quasi-steady 

state. Variation in the average absorber temperature at three different locations (inlet (Tabs,in), 

middle (Tabs,mid), and outlet (Tabs,out)) are shown in Fig. 3(b). It can be seen that the temperature of 

the absorber near the inlet is low due to higher rate of heat transfer. Further, the magnitudes of the 

absorber temperature keep on increasing along the downstream, indicating lower rate of heat 

transfer since air temperature increases due to higher absorbance of heat near the inlet. For 

m=0.01 kg/s/m2 and at I=400 W/m2 the typical values of Tins, Tglaz, Tabs, and Tout, are 26.6ºC, 

47.5ºC, 63.2ºC, and 46.4ºC, respectively.  

To have a better idea on the absorptivity/reflectivity of the absorber plate, a test was 

conducted under natural convection mode, by keeping both the absorber plate (plain, sand coated) 

under solar simulator (Fig. 3c). In general reflectivity of the sand is high. However, it is assumed 

that the reflectivity of the sand coated absorber is reduced due to the black paint and the non-

uniform surface of the absorber. For a period of 2 hours tests, the variation of temperature 

indicate that, solar absorber plate with sand coating has always at higher temperature, which 

varies from 1-3 ºC.  This indicates that lower reflectivity and higher absorptivity of sand coated 

absorber. This is in order with the results of Lati et al. [38]. 
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4.2. Variation of average temperature difference 

Variations in the temperature difference for collector with and without sand coated absorber with 

respect to air mass flow rate for three different radiation levels are shown in Figs. 4a to 4c.  In the 

figures ∆"#(C	represents the temperature difference between air inlet and outlet, ∆"DE#F	represents 

the temperature difference between the glazing surface and the ambient, and ∆"#,2	represents the 

temperature difference between the absorber surface and ambient. Results indicated that with the 

increase in air mass flow rate all the values of ∆"  decreases. The reduction in the value of 

∆"#(C		is due to the lower retention time of the travelling fluid. Further, the heat removal capacity 

of the working fluid increases with increasing the air mass flow rate thus reduce the values of 

∆"#,2	and ∆"DE#F. The slope of the curves indicate that the rate of decrease of ∆"#,2is slightly 

higher than the others; this further reduces the gap between ∆"#,2 and ∆"#(C, especially at higher 

values of m, indicating better thermal performance of the solar air collector. A comparison of the 

trend of ∆" indicates that ∆"#(C	 is always higher for the sand coated absorber for all radiation 

levels, with heat transfer rates as high as 17% greater. Conformity of higher heat transfer for sand 

coated absorber may also be seen in the trend for	∆"#,2. Values of  ∆"#,2 for the sand coated 

absorber are always lower than that of the plain absorber. The maximum reduction is  ∆"#,2 for 

the sand coated absorber is as high as 11% compared to the plain absorber.  

The higher heat transfer rate for the sand coated absorber was attributed to three factors; 

(i) sand provides higher effective heat transfer area per unit volume and thus increase the heat 

transfer capacity; [38] (ii) due to the artificial roughness extended by the presence of the sand 

particles, this helped to break the development of the thermal boundary layer by allowing better 

recirculation of flow; and (iii) due to the additional surface area provided by the sand particles, 

this allowed better heat transfer coupled with the reduction of reflection losses due to non-

uniformity of the absorber surface. Increases in radiation power 600 to 800 W/m2 (Fig. 4(b-c)) 

increases ∆" by 65-80% for both the SACs.  

4.3 Variation of pressure drop 

The variation of pressure drop (∆G) for both plain and sand coated absorbers is presented in Fig. 

5. It can be seen that the magnitude of ∆G increases continuously with the increase in air flow rate 

(m). This might be due to higher frictional resistance, which in turn increases the requirement of 

fan power. Furthermore, it is relevant to mention that, due to inclination of the channel, a 

difference of potential head between the inlet and outlet plays a crucial role, even though part of 

this is overcome by the chimney effect. Increasing in the value of m by 90%, the ∆G is found to 
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increase by around 50% for the plain absorber. For the sand coated absorber, the pressure drop is 

8-11% higher than the plain absorber.       

4.4 Variation of effective heat transfer  

Figs. 6 (a-d) highlight the temporal variation of the effective heat transfer (�>??) calculated using 

Eq (7) for the collectors with and without sand coating. After 60 min, the system tends to reach its 

steady state, after which the rate of rise of �>?? is insignificant. Furthermore, it can be seen that 

Qeff is higher at higher flow rates for each radiation level. For the SAC with the sand coated 

absorber (Fig. 4(a-b)) with the increases in the flow rates from 0.01 to 0.02 kg/s/m2, �>??  is 

enhanced by around 77%. For the SAC with the plain absorber, the enhancement is 57% and 70% 

at the radiation level of 400 and 800 W/m2, respectively. 

4.5 Variation of overall heat loss coefficient 

Temporal variations of overall loss coefficient (0E) are depicted in Fig. 7(a-d) for the collectors 

with and without the sand coating. The overall heat loss consists of losses through the back and 

side insulation, and through the glazing.  Top loss (including convection and radiation) through 

the glazing is much higher than the back losses. This might be the reason for a steady state value 

of overall loss coefficient after a typical value of time period even though the back losses tend to 

increase continuously with time (refer the temperature variation of glazing and insulation in Fig. 

3).  

In general, with an increase in the air flow rate the value of 0E	decreases monotonically 

indicating better thermal performance. This is due to a better heat extraction rate at a higher mass 

flow rate which in turn reduces the heat loss. At higher heat extraction rates by the working fluid, 

the system temperature remains lower resulting in a lower rate of heat loss from the top and back. 

It was found that by increasing the air mass flow rate from 0.01 to 0.02 kg/s/m2 resulted in a 

decrease in the heat loss coefficient by about 10-12% at 400-800 W/m2 for SAC with sand coated 

absorber and 4-9% for the plain absorber.  

4.6  Variation of thermal efficiency and output temperature 

The performance of the SAC with respect to thermal efficiency (�) and the corresponding output 

air temperature ("#,%�&) is shown in Fig. 8(a-c). The thermal efficiency of the SAC increases with 

the increase in mass flow rate under all conditions.  Higher heat extraction rate by the working 

fluid (due to higher thermal capacity of air) is the reason for the same. Thermal efficiency 

increases at higher mass flow rates for between 0.01 and 0.015 kg/s/m2, after that the rate of 

increase decreases. This may be due to the increases in leakage losses in the SAC and the lower 



9 

 

retention time of the fluid. Overall by increasing the flow rate by 90%, at a radiation level of 400 

W/m2, the thermal efficiency for the SAC with plain and sand coated absorber is found to be 

enhanced by about 25% and 17%, respectively. Thus, to obtain a similar rate of rise in thermal 

efficiency, the SAC with a sand coated absorber will require a higher fan power to overcome 

higher frictional losses. 

For all values of m, the sand coated absorber provides higher thermal efficiencies than that 

of the plain absorber and is as high as 17%, at radiation level of 400 W/m2. This is due to better 

mixing of the fluid and higher absorption and emission of heat. In this case, the higher rate of 

required fan power for SAC with a sand coated absorber may be overlooked due to the better 

thermal efficiency.  

In general, due to lower retention time of the working fluid for a higher flow rate, the 

output air temperature ("#,%�& ) decreases even though the value of total extracted heat is 

increased. Results showed that the efficiency of SAC for the plain and sand coated absorber 

varies from 17-22% and 20-24%, respectively at 400 W/m2 and the corresponding output 

temperature variation is between 30 and 32ºC and 31 and 34 ºC.  Increases in the radiation level 

from 400 to 600 and 400 to 800 W/m2 resulted in enhancements in thermal efficiency by 36-63% 

for the plain absorber and 30-68% for the sand coated absorber (Fig. 8(b-c)). The maximum value 

of thermal efficiency for the plain and sand coated SACs is found to be 34 and 41%, respectively. 

4.7 Variation of effective thermal efficiency  

Performance of the collector with thermal rise parameter is shown in Fig. 9(a-b) in the 

conventional Hottel-Whillier-Bliss type format. Results indicated that the effective efficiency 

(�>??) decreases with the increase in performance parameter (∆T/I), indicating better operation at 

lower performance parameter value. For a fixed insolation (I), the lower value of ∆T is obtained at 

higher air mass flow rates similar to the trend observed for the variation of thermal efficiency 

with respect to air mass flow rate. On the contrary, for a similar range of ∆T, increases in 

insolation (I) will result in lower values of	∆"/.. However, higher levels of insolation is limited 

with the metrological constraints, thus the former method of increase in effective efficiency may 

be preferred.  

The magnitude of �>?? for the sand coated absorber (Fig. 9(a)) increases from 0.19-0.24 

with decrease in ∆"/. from 3.3×10-2 to 2.6×10-2 at a mass flow rate of 0.01 kg/s/m2. While the 

same is increased from 0.31-0.38 with decrease in ∆"/. from 2.7×10-2 to 2.0×10-2 at a mass flow 

rate of 0.02 kg/s/m2. Thus, a lower ∆"/. is preferred to obtain better efficiencies and in the 
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present study the same is obtained by both increasing the magnitudes of I and the air mass flow 

rate. For a SAC with plain absorber,  �>??	 I�J	∆"/. vary between 0.15-0.33 and 1.5-3.2×10-2, 

respectively (see Fig 7 (b). The sand coated absorber provided better effective thermal efficiency 

for the same mass flow rate. 

A linear correlation between �>??and ∆"/. is proposed for the SAC with and without 

absorber using the experimental results. The accuracy of the correlation is determined with the 

help of a correlation coefficient (CC) and the coefficient of determination (R2). It is well known 

that the higher the value of CC and R2, the correlation is more accurate. Along with the 

experimental data the correlated data are also plotted in Fig. 9. The CC varies between 0.992 and 

0.996, and the R2 lies within 0.8-0.98. The proposed correlations and the coefficient values are 

presented in Table 3.   

5. Conclusion 

The thermal performance of solar air collectors (SAC) with plain and sand coated absorbers was 

been carried out under controlled laboratory conditions for radiation levels of 400, 600, and 800 

W/m2 and air flow rate ranging between 0.01-0.02 kg/s/m2. The following observations are made: 

• The difference of air temperature between inlet and outlet increases by 66% for increases 

in radiation levels from 400 to 800 W/m2 for a sand coated absorber.  

• The surface temperature of the sand coated absorber is 4-7% lower than that of plain 

absorber due to a larger surface area at the same radiation level, indicating higher rate of 

absorption and emission. Furthermore, the temperature difference of the air between the 

inlet and outlet for the sand coated absorber is higher by 11% compared to the plain 

absorber, despite a lower absorber surface temperature. 

•  The increase in the surface roughness due to the sand coating on the absorber increases 

the pressure drop by around 8-11% compared to the plain absorber thus requiring higher 

fan power input. 

• The effective heat transfer of the sand coated absorber is always higher than that of the 

plain absorber and the difference increases with air flow rate. The magnitude of difference 

ranges between 21-24%. 

• Overall the heat loss coefficient for the sand coated absorber is slightly higher than the 

plain absorber and tends to decrease with increases in the air flow rate and level of 

radiation. 
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• The thermal efficiency of the SAC increases with increases in the air flow rate, and the 

rate of increase for the sand coated absorber is higher than the plain absorber. The 

maximum increase of 20% and 24% are observed for the plain and sand coated absorber, 

respectively at 800W/m2. 

• The thermal efficiency of the SAC varies from 17-34% and 20-41% for plain and sand 

coated absorbers, respectively.  

• The sand coating on the absorber improves the thermal efficiency of the SAC. Overall at 

radiation levels of 800 W/m2 and mass flow rate of 0.02 kg/s/m2, the sand coated absorber 

provides 17.6% higher thermal efficiency compared to the plain absorber.   

• The effective efficiency of SACs tends to be enhanced with the decrease in the 

temperature rise parameter. In general the sand coated absorber provides better effective 

efficiency than the plain absorber.  
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Table 1. List of earlier works on solar air collector. 

Authors Mass flow 
rate 

Flow pass  Glazing no. and 
material 

Dimensions 
of the 
collector 

Air gap Absorber Remarks Thermal 
efficiency 

Hernández and 
Quiñonez [2] 

0.01-0.1 
kg/s 

Single and 
double pass,  
Double flow: 
parallel and 
counter  

02, 
Polycarbonate 

2 m×0.9 m 0.025 
m 

Flat plate • For double flow SAC, with same inlet 
condition, mass flow rate of air in the 
channel between the absorber and the 
glazing is higher than at the bottom 
channel between the absorber and 
insulation.  

• At higher mass flow rate double parallel 
flow is better than double counter flow 
collector.  

0.49-0.62 

Vaziri et al. 
[3] 

0.017-
0.036 kg/s 

Single pass flow 01,  
Plexi glass 
perforated with 
0.003 m hole  

0.9m×0.9 m 0.03m Flat plate with 
black, green, blue, 
red, violet, light 
yellow and white 
colour  

• Thermal efficiency of perforated glazed 
solar air heaters (PGSAH) increases with 
mass flow rate. 

• Black colour absorber provided highest 
efficiency than other 6 colour. 

• PGSAH provided better performance than 
unglazed one.  

0.55-0.85 

Aissaoui et al. 
[4] 

0.1324 
kg/s 

Single pass 
between the 
absorber and 
bottom plate 

01, 
glass 

2m×1m - Flat plate black 
coated 

• Thermal efficiency increased with the 
solar intensity (400-900W/m2) 

• Computational and experimental 
convection coefficient compared 

0.22-0.4 

Sun et al. [6] 0.02-0.03 
kg/s 

Single pass - 2m×2m 0.08m Flat plate black 
coated 

• During experimentation with radiation of 
800W/m2 thermal efficiency varied from 
0.56 to 0.64, increases with increase in 
mass flow rate. 

• Computational study is performed for 
mass flow rate of 0.02-0.05 kg/s. 
Maximum efficiency of 0.54 was obtained 
at 0.04 kg/s at radiation of 700 W/m2. 

• Beyond mass flow rate of 0.04kg/s, 
efficiency did not increase significantly. 
Also tend to reduce at lower intensity of 
radiation. 

Experiment: 
0.56-0.64 
Computational:  
0.35-0.55 

Abdullah et al. 
[7] 

0.05-0.25 
kg/s 

Single pass Single (flat, 
triangular, semi 

5m ×1.25m - Semi-circular 
having ɸ1.25m 

• The highest efficiencies of 80% were 
achieved for the circular configuration 

0.45-0.85 
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circular) (semi-circular absorber and semi-circular 
transparent cover) with a flow rate of 0.18 
kg/s and average solar radiation of 925 
W/m2. 

Debnath et al. 
[10]  

0.0039 to 
0.0118 
kg/s 

Single pass 01-02, glass 1.52 m x 
0.52 m x  

0.045-
0.055 
m 

Flat plate & wavy 
plate 

• Double glazing provided better thermal 
performance 

• Optimum performance was predicted 
through expert system at mass flow of 
0.00785 kg/s, inclination 45°, radiation 
level of 583 W/m2. 

• Wavy absorber provided better thermal 
performance than flat plate SAC.  

26-38% 

Benli et al. 
[17]  

0.02-0.05 
kg/s 

Single pass Single glass 0.70 m × 0.7 
m 

- Flat, corrugate, 
reverse corrugate, 
trapeze,  and 
reverse trapeze 

• Efficiency of the collector varied from 5-
55% for corrugate, from 22-46% for 
reverse corrugate, from 20-42% for 
trapeze, from 15-28% for reverse trapeze 
and between 7% and 17% for flat plate 
absorber under similar working condition 

• Increase in mass flow rate from 0.02-0.5 
kg/s, friction coefficient increased by 2.8-
fold, 6-fold, 7.6-fold, 9.6-fold and 11.6-
fold, for flat-plate, trapeze, reverse 
trapeze, corrugate, and reverse corrugate, 
collector. 

5-55% 

Ravi and Saini 
[18] 

Re=2000 -
20000 

Double pass Single glass 1m ×0.3m 0.025 
m 

V-shaped, 
Stagger, 
Ribbed 

• Nusselt number was found to enhance by 
4.52 times compared to that of smooth 
duct. 

• Friction factor (f) enhanced by 3.13 folds  
• Correlation proposed to predict the both  

- 

Kabeel et al. 
[19] 

0.009-
0.062 kg/s 

Single pass Single glass 1.0 m x?? 0.005 
m 

Flat and V-
corrugated 

• Efficiency of the conventional collector 
was 47% and 40.7%, with and without 
PCM at a mass flow of 0.062 kg/s. 

• With PCM, the highest efficiency of the v-
corrugated solar heater was 62%, at flow 
rates 0.062 kg/s. 

Flat plate with 
PCM: 18-47% 
V-corrugated 
with PCM: 27-
62% 

Kabeel et al. 
[21] 

0.013 - 
0.04 kg/s 

Single pass Single glass 2m × 1m 0.01 m Flat, Baffle, Fin • Thermal efficiency of flat,  baffled and 
finned SAC found to be 57.07, 43.1 and 
32.12%, respectively. 

• Baffles fixed with fin provided highest 
efficiency of 83.8%. 

0.15-0.83 
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Sevik and 
Abuska [22] 

0.013-
0.044 kg/s 

Single pass No glass, single 
glass 

2m × 1m 0.013-
0.1 m 

Flat, Flexible duct • The highest thermal efficiency of 81.3% 
was obtained with flexible duct.  

• Collector with flexible duct provided 
15.9–41.2% higher thermal efficiency. 

• Increase mass flow rate from 0.013 to 0.04 
raised the Nusselt number by 1.7 times. 

0.23-0.83 

Yeh and Ho 
[27] 

 0.01 - 
0.02 kg/s 

Single pass ( 
internal 
recycleflow) 

Single  0.6 m × 
0.6 m 

0.05 m Fin  • Compare to external recycle, internal 
recycle enhance the thermal performance 
at higher rate.  

• Recycle up to 7 nos. increase the 
efficiency up to 118%. 

0.35-0.62 
 

Yeh and Ho 
[28] 

0.01 - 
0.02 kg/s 

Single pass 
(external 
recycle) 

Single 0.6 m× 
0.6 m 

0.05 m Fin  • Recycle up to 5 nos. increase the 
efficiency up to 83% compare to 
traditional no recycle SAC. 

0.24-0.45  

Naphon [29] 0.02-0.1 
kg/s 

Double (counter) 
pass flow 

Single glass 2.4 m × 
1.2 m 

0.15 m Fin • Increase in mass flow rate from 0.02 to 0.1 
kg/s enhances the thermal efficiency up to 
100%. 

• Increase in fin height from 0.05 to 0.08 m 
increases the efficiency up to 50%.  

0.3-0.58 

Ozgen et al. 
[31] 

0.03 - 
0.05 kg/s 

Double pass 
flow  
 

Single 2.14 m × 
0.84 m 

  • Canned absorber provided efficiency of up 
to 72% as for  the flat plate SAC up to 
51%.  

0.21-0.72  

Omojaro and 
Aldabbagh 
[32] 

0.012 -
0.038 kg/s 
 
 

Single pass, 
double pass 

Single glass 1.0 m ×1.5 
m 

0.03-
0.07 m 

Fin • The highest efficiency of single and 
double pass collector were 59.62% and 
63.74%, respectively, at mass flow rate of 
0.038 kg/s. 

0.18-0.63  

Ansari and 
Bazargan [35] 

Re=1.9-
39×103 

Single pass Single glass 1.6m × 
0.073 m 

0.073 
m 

Flat and ribbed  • At lower flow rate (Re=0.5×104) ribs 
improve the efficiency up to 20%. 

• At around Re=2.0×104 optimum thermal 
efficiency was observed 

• At higher flow rate (Re=2.0×104) the 
performance of the flat absorber was better 
than ribbed.  

Flat: 0.42-0.54 
Ribbed: 0.2-0.58 
 

Velmurugan 
and 
Kalaivanan 
[36] 

0.01- 0.04 
kg/s 

Single pass, dual 
pass 

Double glass 2m × 0.46m - Flat, 
Fin, 
Wire mesh 

• Experimental results indicated that that 
wire meshed double pass SAC provided 
13.71–22.86% higher efficiency than 
traditional SAC.  

0.32-0.76 
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Table 2a: Accuracy and percentage errors for various instruments  

 Instrument Accuracy Range % error 

T-type thermocouple ± 0.5⁰C 0 – 300 ⁰C 1.25 

Pyranometer ± 5 W/m2 0 – 4000 W/m2 2.5 

Anemometer ± 0.01 m/s 0 – 25 m/s 0.5 

Differential 
manometer 

± 0.05 hpa 0-100 hpa 5 

 

Table 2b: Uncertainties of different measurement  

Parameter % Uncertainties 

Temperature ±0.5 
Solar Radiation ±2.5 
Velocity ± 0.5 
Pressure drop ±5 
Efficiency ±2.6 
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 Table 3. Correlation coefficient (CC) and coefficient of determination (R2) for correlation of 
effective efficiency.  

Flow rate CC R2 
Sand coated absorber 

m=0.01 kg/s/m2 0.987 0.8916 
m=0.015 kg/s/m2 0.984 0.8455 
m=0.02 kg/s/m2 0.982 0.8093 

Plain absorber 
m=0.01 kg/s/m2 0.995 0.9665 
m=0.015 kg/s/m2 0.994 0.8653 
m=0.02 kg/s/m2 0.996 0.9874 
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Fig. 1. Detail of the tested solar air collector, including temperature sensor positions. 
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Fig. 2 SEM image of used sand. 
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(c) 

 Fig. 3. Variation in temperatures at different positions within the collector at air mass flow rate of 

0.01 kg/s/m2 for the sand coated absorber: (a) air, glazing, and insulation temperature; (b) 

absorber surface temperature at the inlet, middle and outlet; (c) both plain and sand coated 

absorber plates under the solar simulator under natural convection mode. 
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Fig. 4. Variation in temperature difference (∆T) for the collector with plain (dotted line) and sand 

coated (continuous line) absorbers with respect to air mass flow rate (m) at (a) 400 W/m2; (b) 600 

W/m2 and (c) 800 W/m2 
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Fig. 5. Variation in pressure drop (∆P) with respect to air mass flow rate (m) for the absorber with 
and without sand coating.  
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Fig. 6. Variation of effective heat transfer (Qeff) within the test period for different air mass flow 
rates (m): (a) Sand coated at 400 W/m2 (b) Sand coated at 800 W/m2 (c) Plain absorber at 400 
W/m2 (d) Plain absorber at 800 W/m2.  
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Fig. 7. Variation in overall heat loss coefficient (Ul) within the test period for different air mass flow rates (m). 
(a) Sand coated at 400 W/m2 (b) Sand coated at 800 W/m2 (c) Plain absorber at 400 W/m2 (d) Plain absorber at 
800 W/m2.  
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Fig. 8. Variation in thermal efficiency and outlet temperature of the SAC with plain and sand 
coated absorbers with respect to air mass flow rate at (a) 400 W/m2 (b) 600 W/m2 (c) 800 W/m2. 
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Fig. 9. Experimental and correlated data for the effective thermal efficiency with respect to temperature rise 
parameters for SAC. (a) sand coated absorber; (b) plain absorber.  

 



Highlights: 

• Performance of solar air collector (SAC) with sand coated absorber is presented 
• Increase in air flow rate by 90% enhance efficiency by 68% for plain absorber 
• SAC with sand coated absorber provides 17% higher efficiency than plain absorber  

• The absolute thermal efficiency of the SAC varied from 19% to 41%  
• Low cost addition of a layer of sand coating improves thermal performance of SAC 
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