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Abstract

Activity recognition in smart environments is essential for ensuring the
wellbeing of older residents. By tracking activities of daily living (ADLs),
a person’s health status can be monitored over time. Nonetheless, accurate
activity classification must overcome the fact that each person performs ADLs
in different ways and in homes with different layouts. One possible solution is
to obtain large amounts of data to train a supervised classifier. Data collection
in real environments, however, is very expensive and cannot contain every
possible variation of how different ADLs are performed. A more cost-effective
solution is to generate a variety of simulated scenarios and synthesize large
amounts of data. The challenge then becomes ensuring that simulated data
is a reliable representation of real data. Nonetheless, simulated data can be
considerably different from real data. Therefore, this paper proposes the use of
regression models to better approximate real observations based on simulated
data. This paper compares To achieve this, ADL data from a smart home were
first compared with equivalent ADLs performed in a simulator. The statistical
analysis is based on Such comparison was undertaken considering the number
of events per activity, number of events per type of sensor per activity, and
activity duration. Then, we assessed different regression models were assessed
for calculating real data based on simulated data. The results evidenced that
simulated data can be transformed with a prediction accuracy R2 = 97.03%.

Keywords: Activity recognition, Activity duration, Regression analysis, Non-
linear models, Determination coefficient, Quantile-quantile plots

1 Introduction
The global population is ageing due to improvements in public health, increased life
expectancy, and falling fertility rates.1 The number of people aged 60 years or older
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worldwide is projected to grow from 0.9 billion to 1.4 billion between 2015 and 2050.
Within this age range, the fastest growth is anticipated in those aged 80 or over,
with estimates indicating increases from 125 million in 2015 to 434 million by 2050.2

Older adults are afflicted by 23.1% of the global burden of disease. This is 49.2%
of the burden in high-income regions, and 19.9% of the burden in low and middle-
income regions. The most burdensome health issues include ischaemic heart disease,
stroke, diabetes, falls, dementia and depression.3 The ageing population has seen
an increase in the prevalence of such conditions. For example, as of 2018, dementia
affects 50 million people worldwide. This is predicted to increase to 152 million by
2050.4

Despite these chronic health conditions, it is not uncommon for older adults to
live alone. Recent reports indicate that 26% (12.1 million) of older adults in the
United States, and 32% (3.65 million) of older adults in the UK live alone.5,6 Care for
chronic disease often requires long-term close monitoring, which is resource intensive.
There are indications that health systems around the world are struggling to cope
with this increasing demand.7 For example, an investigation into the UK domiciliary
care market suggested that publicly funded access to domiciliary care is been reduced
and restricted to those with the greatest needs due to budget constraints.8

There is therefore the need for innovative, technology-based approaches to to
help alleviate the strain of these increasing demands on increasingly limited health-
care resources. Such technology-based approaches may be used to improve the
cost-effectiveness of domiciliary care through data-driven decision making and more
efficient use of resources. In addition to maximizing the coverage of care service
offerings, these approaches also aim to produce increased quality of care through
objective rather than subjective decision making, early detection of conditions, pre-
diction of change in condition, and more detailed and earlier insight into the impact
of intervention.9 One area of interest is the automatic analysis of activities of daily
living (ADLs) performed by older adults living alone. ADLs consist of a range of ac-
tivities that are required to manage basic physical needs. These activities span areas
including grooming and personal hygiene, dressing, toileting and continence, ambu-
lation, and eating.10 Independent performance of ADLs is correlated with physical
and cognitive function. Increased dependency in performing ADLs has been asso-
ciated with dementia,10 hospitalisation, morbidity and mortality.11 Previous works
have suggested that ADL monitoring may facilitate the early detection of conditions
such as dementia.12

Activity recognition is the process of automatically recording, identifying and
analysing the performance of activities by processing sensor data.13 Sensors typ-
ically deployed in the home environment include door contact sensors, passive in-
frared (PIR) sensors, pressure sensors, audio sensors, accelerometers, thermal sen-
sors. Activity recognition depends on the creation of accurate and generalizable
classification models.14,15 The creation of such models relies upon the availability of
realistic activity data.16 However, compiling high quality, large datasets is difficult
due to large costs, lack of flexibility and scalability of intelligent environment con-
struction, as well as the practical limitations of recording a comprehensive range of
activities with all possible variations.17,18

One approach to overcome learning ADLs from a limited dataset collected in the
wild is to use transfer learning. By adopting machine learning models to capture the
intrinsic properties of human behaviour (e.g. ADLs) in one home, it is hypothesized
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that the model can be re-used to augment the learning of another person’s ADLs in
another home. A particular challenge here is to make the process unsupervised.19

The barriers to the collection and availability of activity data have been said to
be detrimental to research progress and may slow advances in the field.20,21 Re-
searchers have been exploring the application of simulation approaches to generate
synthetic activity datasets. Simulation can provide a mechanism of rapidly generat-
ing vast datasets spanning extended periods of time without the need for investment
in physical systems nor recruitment of research subjects. Synnott et al17 provide a
comprehensive overview of approaches to the simulation of smart home activity data.
Recently, Alshammari et al14 have developed the OpenSHS smart home simulator,
which facilitates data generation through a hybrid approach combining both interac-
tive and model-based approaches. This simulator has been used to produce datasets
for classification and anomaly detection.22 Francillette et al23 have developed an
intelligent environment simulator capable of generating data from simulated sensors
such as RFID, ultrasound, pressure sensors, and contact sensors, amongst others.
Lee et al24 developed the Persim 3D human activity simulator. Kamara-Esteban et
al25 created MASSHA, which is an agent-based simulator for simulating activities
within intelligent environments. Synnott et al26 created IE Sim, an intelligent en-
vironment simulation tool that has previously been used to generate a benchmark
dataset shared by three international research organisations.

The existing approaches to the simulation of ADL data have provided excellent
steps towards producing synthetic data for experimentation and development of
novel approaches. Nevertheless, an ongoing challenge in developing such simulation
software is the ability to generate simulated data that accurately represents real
data.24 A comparison between real data collected within the Gator Tech Smart
House and simulated data generated by Persim 3D24 revealed average data similar-
ities of between 78% and 81%. Another study comparing real data and with data
generated using the simulator MASSHA25 found similarity to be between 88.10%
and 93.52% in terms of frequency, and 98.27% and 99.09% in terms of duration on
datasets containing single user activities.

In light of the reported literature, the evidence base directly concentrating on
comparing real observations and simulated data is largely limited and poorly devel-
oped. In order to improve the similarity between real and simulated data To address
this gap in knowledge, it is important to consider which activity is being performed
(i.e. which sensors are being triggered) as well as the duration and timing of these
activities (i.e. the duration and intensity of sensor triggers). For example, preparing
a meal might have a longer duration in the evening than in the morning.

Existing interactive approaches that rely primarily on avatar and simulated en-
vironment interaction17 to generate synthetic datasets have a limited ability to take
into account the natural differences in activity duration and intensity in relation
to time of day. This is primarily due to the artificial nature by which interaction
takes place. As a result, dataset similarities will not be optimal. To improve upon
this, we propose the application of regression modeling in order to capture ac-
tivity duration and intensity given the time of day. We show that our linear and
non-linear models can improve the similarity of activity data from different environ-
ments. Consequently, the contribution of this paper will be two-fold: i)Verification
of the similarity between real and simulated data in terms of activity duration, num-
ber of events per activity, and number of events per type of sensor per activity, ii)
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Proposal of models that better approximate real observations using data provided
by the simulators.

The remaining Section 2 of this paper presents the methods and models used
within the study. Results are presented and discussed in Section 3 and conclusions
made in Section 4.

2 Method
This section briefly presents the models (linear, logarithmic, quadratic and square
root) and hypothesis tests (ANOVA, Durbin-Watson and Anderson-Darling) used
in this work. More thorough presentations of these methods can be found in various
textbooks. We refer the reader to 27 for a basic introduction and28 and29 for more
extensive introductions.

The most common regression model is the linear (or additive) model, Y = β0 +
βX + ε. Here Y is called response, X = (X1, X2, . . . , Xn)

′) are covariates, and ε is
the residual. When there is no linear dependence between variables, the model can
be simplified as:

Y = β0 +
n∑
k=1

βkXk + ε (1)

In the simplified case, the parameters of the model are the intercept β0 and regression
coefficients β1, β2, . . . , βn (and β = (β1, β2, . . . , βn)). This model is also referred to
as a linear regression. The model in Eq. 1 is the most commonly used. It makes the
least the least assumptions about dependence mechanisms, so it is frequently the
choice where the application does not motivate interdependent covariates.

In order to assess whether a linear model is appropriate, one may test whether
the regression coefficients are non-zero to justify inclusion of the variables in the
model. In addition, one should calculate the determination coefficients to assess the
model fit, and make Quantile-Quantile plots to check that the assumption residuals
are normally distributed, see subsection 2.2.

A means to sort data into different categories may be achieved by using dummy
variables.30 These are binary variables which are 1 for all data where the individual
satisfy some criteria, and 0 for all data when the individual does not.

2.1 Transforms of the linear model

Of course variables may depend on each other in a non-linear way. In which case, a
carefully investigated linear model can be transformed so as to capture more complex
dependencies between variables.

Provided that the response variable is positive, the logarithmic (or multiplicative)
transform

Y = β0

(
n∏
k=1

exp(Xk)
βk

)
exp(ε) (2)

is equivalent to saying that log Y is linearly dependent with X. By logging both
sides, the model in Eq. 2 may alternatively be expressed

log Y = β′0 +
n∑
k=1

βkXk + ε (3)
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where β′0 = log β1.
A logarithmic model according the Eq. 2 and 3 is the right one when the logged

response is proportional to a linear combination of the logged covariates. An example
is population growth: if the response is the population size, this can be modelled
as an initial size to some power. The exponent may be interpreted as the number
of the generation. Covariates may be time elapsed from start and environmental
variables.

In modeling activity duration, Y , by means of time of opening the bedroom
door, X1 and pressure values in a bed sensor, X2, it may be that the relationship is
neither well modeled by a linear nor a logarithmic model. If increased levels of X1

or X2 adds more to Y than would have been the case with just a linear model, it
may be that a model which includes quadratic covariates, X2

1 or X2
2 , is justified.

The quadratic transform is defined by

Y = β0 +
n∑
k=1

(
β1,kXk + β2,kX

2
k

)
+ ε. (4)

If the non-linear effect is even stronger, a higher degree polynomial could be moti-
vated. For a non-negative response variable a squared quadratic transform

√
Y = β0 +

n∑
k=1

(
β1,kXk + β2,kX

2
k

)
+ ε (5)

may be defined as given in the given equation. Both the quadratic transform in
Eq. 4 and squared quadratic transform in Eq. 5 may be referred to as polynomial
regressions.31

2.2 Assessment of the regression model

The validity of any model should be checked by testing that the regression coefficients
are non-zero, and ANOVA may be used to this end.

To justify the inclusion of variables in the model, correlation analysis may be
used to check which variables are highly correlated with the response or with the
residuals from a previous model.

The residuals of a regression model are assumed be independent of each other
so the the autocorrelation of residuals should be zero, a property which may be
measured by Eq. 6. The Durbin-Watson statistic

DW =

∑N
i=2(εi − εi−1)2∑n

i=1 ε
2
i

(6)

can be used to estimate these autocorrelations.
In order to check the assumption of normally distributed residuals, quantiles of

the observed sample could be plotted against corresponding quantiles of the normal
distribution. This is often referred to as Quantile-Quantile plots or QQ-plots. Also,
an Anderson-Darling hypothesis test may be performed to check for deviation from
normality of the residuals.
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2.3 Experiment description

An experiment was conducted at the Halmstad Intelligent Home (HINT), Halmstad
University, Sweden.32 HINT is equipped with over 60 sensors including door contact
sensors, passive Infrared (PIR) sensors, and pressure sensors, amongst others. The
environment was designed to facilitate physiological monitoring, safety monitoring,
functional monitoring, and emergency detection and response.32 The left side of Fig.
1 shows HINT’s floor plan. This floor plan was used to create a virtual environment
within IE Sim, complete with virtual sensors (shown on the right side of Fig. 1).

Figure 1: Left picture: The floor plan of the Halmstad Intelligent Home. Right
picture: The virtual environment created within IE Sim, representing the Halmstad
Intelligent Home. (1) PIR sensor; (2) Pressure sensor; (3) Door sensor.

Eleven participants were asked to perform a set of activities in the virtual envi-
ronment by controlling a virtual avatar. Fig. 2 is the activity list that was provided
to participants. Once participants had performed the activities within IE Sim, they
were asked to perform the same activities (in person) within HINT. The output from
the two data collections is structured as a list of events, where each event has a time
stamp, sensor ID, sensor type (e.g. PIR or door sensor) and sensor state (e.g. open
or closed). Moreover, at HINT the participants carried a button which was pressed
when switching activity in order to ease annotation of the data set.

3 Results and Discussion
All 11 participants were able to complete the assigned tasks successfully. In total,
1105 simulated sensor events were generated, with a mean of 100.45 (SD: 29.97)
sensor events per participant. The mean time taken per participant to complete all
simulated activities was 521.45 (SD: 123.20) seconds. The participants then per-
formed these activities at (HINT). As a result, 930 real sensor events were produced
with an average of 116.25 (SD: 14.39) events per participant. The average time
spent per each person to finish all the activities was 835.9 (SD: 213.42) seconds.
Our analysis consisted of assessing how similar simulated data are to real data.
Then, regression analysis was used to determine whether the simulated data could
be used to predict real data.
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Figure 2: The activity list provided to participants.

3.1 Comparison of simulated data and real data

A paired t-test (α = 0.05, CL = 0.95) was conducted to compare the simulated
and real data in terms of the activity duration,33 number of events per activity and
number of events per type of sensor per activity. In this analysis, eight ADLs were
considered: Go to bed, Use bathroom, Prepare breakfast, Leave house, Get cold drink,
Be in the office, Get hot drink, and Prepare dinner.

Variable 1: Activity duration (AD)

Table 1 and Fig. 3 present the results of the comparative analysis between simulated
and real activity duration for User 1 as an example. Given that the 95% confidence
interval for the difference between the two activity duration values exclude zero;
then the variables are statistically different. The p-value (p = 0.013) indicates that
the data do not provide support for the null hypothesis, that is, the activity duration
derived from simulated and real-environment are not statistically equivalent in User
1. Specifically, activity duration from real-environment (µ = 137.1s) is significantly
higher than activity duration from simulation (µ = 46.5s). Therefore, the null
hypothesis is rejected and we conclude, in the case of User 1, that there statistically
significant difference between simulation and real-environment in terms of activity
duration with a confidence level of 95%.

A summary of the results from the comparative analysis for all users can be
found in Table 3. Based on a paired t-tests for activity duration, we found that
in 75% of the users, the null hypothesis was rejected (p-value < 0.05). Therefore,
it can be concluded that the activity duration derived from the simulated and real
environments tend to be statistically different with a confidence level of 95%.

The next step is to identify the causes of this difference. Future work should de-
termine whether differences are more common during performance of specific ADLs.
Additionally, it is also recommended to study the profile of the users who performed
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Figure 3: Boxplot for differences between real and simulated activity duration –
User 1

equally (User9 and 10) in both simulated and real environments to establish whether
they are experienced in the use of simulation tools. On the other hand, it was no-
ticed that the activity duration derived from the real environment was significantly
higher compared to the simulated data for all the cases in which the null hypothesis
was rejected.

Variable 2: Number of events per activity (NEPA)

Table 4 and Fig. 4 outline the results of the comparative analysis between simulated
and real number of events per activity for User 1 as an example. The p-value
(p = 0.141) indicates that the data provide support for the null hypothesis. That
is, the number of events per activity derived from simulated and real-environment
are statistically equivalent for User 1. Based on these findings, we conclude, in case
of User 1, that there is no statistically significant difference between simulation and
real-environment regarding the number of events per activity with a confidence level
of 95%.

A summary of the results derived from the comparative analysis for all users
can be found in Table 5. Based on statistical tests, it was concluded that in 75%
of the users, the null hypothesis was accepted. It can thus be assumed that the
number of events per activity derived from simulation and real-environment tend to
be statistically equivalent with a confidence level of 95%.

It is worth noting that users who performed differently regarding activity dura-
tion, now have been categorized with p-values lower than the significance level α. It
seems that these measures are not strongly correlated and the gap perceived may
be due to users who do not have prior experience using simulation tools.

The next step will aim to validate these hypothesis through correlation analysis
and other statistical tools allowing us to also identify potential sources of variation.
This analysis can be replicated in other comparisons to establish whether the dataset
derived from the simulation is equivalent to the real-environment and subsequently
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improve the performance of classifiers.

Figure 4: Boxplot for differences between real and simulated number of events per
activity – User 1.

Variable 3: Number of events per type of sensor per activity (NEPSTPA)

Table 6 and Fig. 4 detail the results of the comparative analysis between the simu-
lated and real number of door sensor events per activity for User 1 as an example.
The confidence interval for the mean difference between the numbers of door sen-
sor events per activity values does not include zero, which evidences a significant
difference. This is also confirmed by the p-value (p = 0.014) that indicates that
the data are consistent with the alternative hypothesis. That is, the number of
door sensor events per type of sensor (door) per activity, derived from simulated
and real-environment, are statistically different for User 1 with a confidence level of
95%. Specifically, this variable is significantly higher in the real-environment.

According to the results provided in Table 7, we found that for 75% of the users
the null hypothesis was accepted. It can be therefore assumed that the number of
events per door sensor per activity derived from simulation and real-environment
are statistically equivalent with a confidence level of 95%.

On the other hand, when considering the pressure sensor, for 75% of users, the
null hypothesis was rejected. Thus, the number of events per pressure sensor per
activity tend to be statistically different with a confidence level of 95%. In particular,
the number of events of the pressure sensor are higher in the real environment.

3.2 Modifying simulated data for predicting real data: The
use of regression analysis

Considering the fact that the null hypothesis was rejected in most of the comparisons
made between the real and simulated activity duration and the number of events per
door sensor per activity, the next question is: How can simulated data be adjusted
in order to better reflect real data? For this purpose, two types of regression-based
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Figure 5: Boxplot for differences between real and simulated number of events per
door sensor per activity – User 1.

approaches were investigated: Activity-based regression models and regression model
with dummy variables.

3.2.1 Activity-based regression model

A regression equation was developed for each ADL using Minitab 17® software.
The regression assumptions were also validated to determine whether they could
be used in practice (see Section 2.2). These models enables the transformation
of simulated data to more realistic observations so that they can be used to train
activity recognition models. Given that activities are very different from each other,
we chose to develop separate models for each considered activity.

• Activity 1: Go to bed

The p-value (0.003) for the regression model indicated in Eq. 7 below showed
that the model was significant at a level of 5%. This implies that at least one
coefficient is significantly different from zero. The p-values for the estimated
coefficients of both Activity duration and Number of events per activity derived
from the simulation were 0.001 and 0.004 (both below the 5% level), and they
were therefore correlated to the real activity duration. This suggested that a
model with both predictors may be more appropriate.

The determination coefficient (R2) told that the predictors explained 95.52%
of the total variance in real activity duration. The adjusted version (R2

adj) was
found to be 92.16%, which demonstrated high fit provided by the model. The
predicted determination coefficient, R2

pred, was 85.53%. Since R2
pred was close

to the R2 and R2
adj, the model did not appear to be overfitted and had adequate

predictive ability, which was in accordance with34 where similar situations were
considered. Consequently, there were many reasons for assuming the derived
regression model developed for the prediction of real activity durations in Go
to bed as

lnY = 5.466− 0.06857X1 + 0.1026X2 (7)
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as an adequate one. Here Y is the response variable AD_Go to_bed_Real, X1 is
the covariate AD_Go to_bed_Sim and X2 is the covariate NEPA_Go to_bed_Sim.
An optimal λ was estimated to be −0.0144583 in order to improve the predic-
tive ability and fit of the regression model. A linear model provided a medium-
high performance with determination coefficient R2 = 82.53%, R2

adj = 75.55%
and R2

pred = 56.99%. Therefore, an Euler regression model was explored aim-
ing to achieve better results.

When validating the regression assumptions (normality, homoscedasticity and
independence) through the residuals, all of them were found to be satisfied.
Particularly, the normality was verified by applying an Anderson-Darling test
where AD = 0.279, with a p-value of 0.5444 and mean 0. More to the point,
for independence validation, the Durbin-Watson statistic D = 3.2430 was
calculated. In this case (k′ = 2, n = 8), the lower bound L = 0.345 and upper
bound U = 1.489. As D > U , no correlation could be claimed to exist. Finally,
unequal variances were not observed and hence, there was no evidence that
the spread of residual values tend to increase with increased fitted values.

• Activity 2: Use bathroom

The p-values for the predictors Activity duration (0.000) and Activity duration2

(0.002) were lower than the level of significance α = 0.05 and they were hence
deemed adequate for a model of the response variable. This was an indication
that an expression with these predictors was appropriate. The coefficient of
determination, R2, for the model of real activity duration was 97.90%. In ad-
dition, the adjusted determination coefficient, R2

adj, was found to be 97.20%,
which supports the good fit provided by the model. The prediction perfor-
mance (R2

pred) for this case was 95.34%. Considering the proximity among R2,
R2

adj and R2
pred, the model was not found to be overfitted and provided high-

precision predictions. For the parameter λ the value 0 was used to improve
the prediction performance and fit of the regression model. In this case, an
Euler regression model was proposed to achieve better results. Consequently,
the regression model developed for the prediction of real activity durations for
Use bathroom is

lnY = 0.2006X1 − 0.002229X2
1 (8)

Here Y is the response variable AD_Use bathroom and X1 is the covariate
AD_Use bathroom_Sim. In this ADL, a logarithmic regression model was sug-
gested to obtain better results.

The regression assumptions were verified and found as satisfied through a
residual analysis. In particular, the normality was validated using Anderson-
Darling test where AD = 0.446, the p-value = 0.204 and the mean was equal
to 0. For independence verification, the Durbin-Watson statistic D = 2.976
was calculated. Considering that (k′ = 1, n = 8), the lower bound L = 0.497
and upper bound U = 1.003. As D > U , no correlation exists. In this case,
unequal variances were not detected and therefore, there was no further evi-
dence that the spread of residual values tend to increase as the fitted values
increase.
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Figure 6: QQ plots of residuals of activity duration. The activities are in the first
row from the left: Go to bed, Use the bathroom, in the second row: Prepare breakfast,
Leave house, in the third row: Get cold drink, Be in office and in the fourth row:
Get hot drink and Prepare dinner.
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• Activity 3: Prepare breakfast

In Prepare breakfast, the p-value for the regression model was 0.000 and the
regression model was therefore concluded to be significant at the 5% level.
Furthermore, the p-values for the predictors Activity duration (0.001) and
(Activity duration)2 (0.019) were also well below the 5% level and thus sig-
nificant for the response. These results revealed that a model with these pre-
dictors may provide a good performance. The determination coefficient (R2)
was calculated as 96.98% while the R2

adj was found to be 95.97%. Both metrics
indicate that the model fits the data well. In addition, R2

pred = 92.32%. Here
R2, R2

pred and R2
adj were found to be close to each other, and therefore the model

was not considered to be overfit and had very good predictive performance. To
this end, a quadratic regression model was suggested. The regression model
developed for the prediction of real activity durations in Prepare breakfast is

Y = 3.372X1 − 0.02722X2
1 (9)

Here Y is the response variable AD_Prepare breakfast and X1 is the covari-
ate AD Use bathroom_Sim. The regression assumptions were then validated
and assumed to be satisfied considering the results of the residual analysis.
In detail, the normality was assessed by applying an Anderson-Darling test
where AD = 0.179, p-value = 0.879 and the mean was approximately equal
to 0. For the independence validation, the Durbin-Watson statistic D (1.294)
was estimated. Considering that (k′ = 1, n = 8), the lower bound L and upper
bound U were established as 0.497 and 1.003 respectively. As D > U , no cor-
relation could be discerned. As also seen in previous ADLs, unequal variances
were not detected and there was then no evidence of heteroscedasticity.

• Activity 4: Leave house

Regarding Leave house, the p-value for the regression model was 0.000, i.e.
significant at a level of 5%. Besides, the p-value for the predictor Activity
duration (0.000) was lower than the 5% level and therefore it was inferred to
be significant for the response variable. This predictor was then incorporated
with the model to provide better predictive ability and fit.

Further, the determination coefficient, R2, was 97.08% while R2
adj was found

to be 96.66%. These results suggested a very good fit for the data. Also, R2
pred

was found to be equal to 96.23%. Taking into account the proximity among
R2, R2

adj and R2
pred, the model was not overfitted and had superior prediction

performance. In this case, a square root regression model (with λ = 0) was
concluded to offer very good results. As a consequence, the regression model
provided for the prediction of real activity durations in Leave house is

Y = 0.0238X2
1 (10)

Similar to the previous models, Y represents the response variable, in this
case AD_Leave house and X1 is the covariate AD Leave house_Sim. The nor-
mality, homoscedasticity and independence assumptions were also tested and
found not to be violated. Specifically, the normality was validated using the
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Anderson-Darling test where AD = 0.212 and p − value = 0.779. On the
other hand, the Durbin-Watson statistic D (2.450) was calculated for auto-
correlation assumption. Considering that (k′ = 1, n = 8), the lower L and
upper U were established as 0.497 and 1.003 respectively. As D > U , no
correlation exists. Also, equal variances of the residuals were found in this
analysis.

• Activity 5: Get cold drink

A regression model was found to be significant (with p-value = 0.000) for ac-
tivity duration of Get cold drink. This suggested that at least one coefficient
was different from zero. In addition, the p-values for the predictor Number of
events per activity (0.000) and (Number of events per activity)2 (0.002) were
less than the 5% level and therefore significant for the prediction of activity
duration. In this case, the R2 (96.76%) and R2

adj (95.68%), was concluded to
explain a high portion of the variance in real activity duration. The message
from both of these measures was that the model provided a good fit for the
data. Further, there are no significant differences among R2 (91.61%), R2

adj
and R2

pred and thus, there was no sign that the model was overfit. The afore-
mentioned results were provided by a quadratic regression model developed
for the prediction of activity duration in Get cold drink as

Y = 12.61X1 − 0.5332X2
1 (11)

Here, Y is the response variable NEPA_Get cold drink and X1 is the covariate
NEPA Get cold drink_Sim. For this model, the regression assumptions were
also evaluated for ensuring a high reliability of the prediction in addition to
verifying the presence of potential bias. In this particular case, no violation
was found. First, the normality was assessed using an Anderson-Darling test
where AD = 0.199, p− value = 0.824 and the mean was approximately equal
to 0. The auto-correlation was tested through the Durbin-Watson statistic D
(2.462). Considering (k′ = 1, n = 8), the lower bound L and the upper bound
U were defined as 0.497 and 1.003 correspondingly. As D > U , there are no
indications of any correlation. Finally, no evidence was found regarding the
violation of homoscedasticity assumption.

• Activity 6: Be in the office

For the variable Be in the office, a quadratic regression model was found to of-
fer the best predictive ability and fit (p-value = 0.000). This pointed out that
at least one coefficient was different from zero. In addition, the p-values for
the predictors Number of events per activity (0.000) and (Number of events per
activity)2 (0.004) were lower than the 5% level and they were hence significant
for the activity duration of Be in the office. A model including these predictors
was therefore suggested. For this model, the determination coefficient R2 spec-
ified that the predictors accounted for 96.50% of the variance in real activity
duration of Be in the office whilst R2

adj (95.34%) indicated a high explanatory
power of the proposed model. In this case, both coefficients contributed to
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the good fit provided by the model. In addition, R2
pred (93.94%) was found

to be close to both R2 and R2
adj; thus, the model was not concluded to be

overfit and had high prediction performance. The regression model developed
for predicting the real activity durations of Be in the office is

√
Y = 2.526X1 − 0.1345X2

1 (12)

Here, Y represents the response variable AD_Be in the office and X1 is the
covariate NEPA Be in the office_Sim. The model assumptions were also
validated through the residual analysis and it was found that all of them
are satisfied. In particular, the normality was confirmed using an Anderson-
Darling test where AD = 0.212 and p-value = 0.779. As for auto-correlation
validation, the Durbin-Watson statistic D was found to be 1.343. Consider-
ing that (k′ = 1, n = 8), the lower bound L and the upper bound U were
calculated as 0.497 and 1.003 correspondingly. As D > U , no correlation was
distinguished. Finally, the homoscedasticity of the residuals was also verified.

• Activity 7: Get hot drink

The regression model here provided was found to be significant (p-value =
0.000) at a level 5%. Furthermore, the p-value for the predictors Activity
duration (0.001) and (Number of events per activity)2 (0.008) were below the
5% level. Hence, they were significant for the activity duration of Get hot
drink. A quadratic regression model including these predictors was concluded
to be appropriate. More to the point, the R2 (94.43%) and R2

adj (92.58%)
explained a high proportion of the variance in real activity duration. These
values pinpointed that the model fitted the data well. Regarding the prediction
performance, R2

pred (90.60%) was found to be reasonably close to R2 and R2
adj.

Therefore, the model
√
Y = 0.5641X1 − 0.1345X2

1 (13)

was not overfitted and had a high-precision predictive performance (in accor-
dance with34).

In Eq. 13, Y represents the response variable AD_Get hot drink and X1 is the
covariate Get hot drink_Sim. A quadratic regression model was also found to
provide the highest predictive ability and fit. When validating the regression
assumptions through the residuals, it was proved that all of them were satisfied.
In particular, the normality was checked by means of an Anderson-Darling
test where AD = 0.361 and p-value = 0.348. The Durbin-Watson statistic
D (2.656) was estimated to verify the independence assumption. Given that
(k′ = 1, n = 8), the lower bound L and upper bound U were established as
0.497 and 1.003 respectively. As D > U , there are no signs of correlation.
Finally, there was also evidence that the homoscedasticity of the residuals is
not violated.

• Activity 8: Prepare dinner

For Prepare dinner, a square root (with λ = 0.5) regression model (p-value =
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0.000) was concluded to provide the highest fit and predictive ability. Indeed,
this indicates that at least one coefficient is non-zero. Additionally, the p-value
for the predictor Activity duration (0.000) was less than the 5% level. It was
therefore significant for the activity duration of Prepare dinner and should be
included in the prediction model. The determination coefficient, R2, for this
model was 85.75% whilst R2

adj (83.71%) confirmed a good fit provided by the
model. In addition, R2

pred (80.12%) was close to the R2 and adjusted R2 values.
Based on these results, the model

Y = 0.053X2
1 (14)

was not concluded to be overfit and had an acceptable predictive capability.

In this case, Y denotes the response variable AD_Prepare dinner and X1 rep-
resents the covariate AD Prepare dinner_Sim. In this case, a quadratic re-
gression model was found to provide the highest predictive performance and
fit. Similar to the above mentioned ADLs, the residual analysis supported
the regression assumptions. More precise, the normality was tested with
the Anderson-Darling statistic where AD = 0.526, p-value = 0.121 and the
mean was approximately equal to 0. To validate the independence of residu-
als, the Durbin-Watson statistic D (2.003) was calculated. Considering that
(k′ = 1, n = 8), the lower bound L and the upper bound U were established
as 0.497 and 1.003 respectively. As D > U , no correlation could be concluded.
Finally, no evidence was found for rejecting the homoscedasticity of residuals.

Please, refer to Table 9 for a summarized presentation of the R2 values for the
regression analyses of the different activities. Table 9 also contains the validation
results for normality, independence and homoscedascticity assumptions.

3.2.2 Regression model with dummy variables

A general regression model with dummy variables was also explored. These variables
act as switches turning several parameters on and off in the predictive equation. In
this case, they represent the type of ADL and assume the value of 0 or 1 indicating
the presence or absence of a particular ADL. The dummy variables are defined as
follows:

D1 (Go to bed): D1 = 1 if the ADL is Go to bed, 0 otherwise.

D2 (Use bathroom): D2 = 1 if the ADL is Use bathroom, 0 otherwise.
D3 (Prepare breakfast): D3 = 1 if the ADL is Prepare breakfast, 0 otherwise.
D4 (Leave house): D4 = 1 if the ADL is Leave house, 0 otherwise.
D5 (Get cold drink): D5 = 1 if the ADL is Get cold drink, 0 otherwise.
D6 (Be in the office): D6 = 1 if the ADL is Be in the office, 0 otherwise.
D7 (Get hot drink): D7 = 1 if the ADL is Get hot drink, 0 otherwise.
D8 (Prepare dinner): D8 = 1 if the ADL is Prepare dinner, 0 otherwise.

In addition, X1 (Activity duration) and X2 (Number of events per activity) were
included in the predictive model. Table 8 describes the set of predictors that were
found to be significant for real activity duration Y at a significance level of 5%. This
suggests that a model with these predictors may be more suitable.
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In Table 2, R2 told that the significant predictors explained 98.69% of the vari-
ance in real activity duration Y . The value of the adjusted determination coefficient
R2

adj was found to be 98.48%, supporting an excellent fit. The predicted determi-
nation coefficient R2

pred was 97.03%), close to the R2 and R2
adj values. Hence, the

model was not overfitted (in accordance with34).
Also, λ = 0 proved to improve the predictive ability and fit of the regression

model. In this case, the square root regression model

lnY = 0.175X2 + 0.761D1 + 2.780D2 − 0.004X1∗X2 − 0.004X1∗D2+
+ 0.009X1∗D3 + 0.037X1∗D4 + 0.017X1∗D5 + 0.00002X2

1 ∗X2
(15)

was concluded to offer very good results as seen below in Figures 7 and 8.

Figure 7: Auto-correlation and QQ-plot of activity duration.

Figure 8: Homoscedasticity for residuals of activity duration.

When validating the regression assumptions through the residuals, all of them
were found to be satisfied. In particular, normality was verified by applying an
Anderson-Darling test resulting in AD = 0.427, p-value = 0.304 and mean approx-
imately equal to zero. When checking independence, the Durbin-Watson statistic
D was equal to 2.3502. In this case (k′ = 9, n = 64), the lower bound L and the
upper bound U were established as 1.1084 and 1.771 respectively. As D > U , there
were no signs of correlation. Finally, unequal variances were not concluded using
Bartlett method (p-value = 0.167) and there was no evidence that the spread of
residual values tend to increase as the fitted values increase.
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4 Conclusions
Caring for older adults living alone can be made safer and less costly by automati-
cally monitoring how they perform activities of daily living (ADLs) using smart home
sensors. One important step in this process is the automatic detection and recogni-
tion of which activity is being performed. Accurate activity recognition models are
highly dependent on the availability of adequate and sufficient data. Unfortunately,
the acquisition of large amounts of data is costly and resource intensive.

We postulate that a more cost-effective solution to acquiring data is the use of
simulation tools and synthetic datasets. The main challenge with this approach is
the generation of synthetic data with the exact same characteristics as real data.
It is important to note that simulated data can be considerably different from real
data and may depend on the experience of the simulation operator. In this regard,
significant differences were found regarding the activity duration and the number of
events per door sensor.

In this work we evaluate the characteristics of simulated data sets with respect
to real data, and propose the use of regression models to transform simulated data
in order to better represent real observations. All single activity models were sub-
ject to simple regression (i.e. a single covariate) with one exception: activity 1. Go
to bed which included both covariates Activity Duration and Number of Events Per
Activity. It turns out that the activities 1. Go to bed and 2. Use bathroom (see
Equations 7 and 8) were successfully modeled by variants of the logarithmic trans-
form as defined in Equation 3. Further, the activities 3. Prepare breakfast, 4. Leave
home, 5. Get cold drink and 8. Prepare dinner (see Equations 9, 10, 11 and 14) are
well captured by quadratic transform models as defined in Equation 4 but without
intercept and regarding activities 4. and 8. just with the quadratic term. Activities
6. Be in office and 7. Hot drink (see Equations 12 and 13) were modeled by squared
quadratic transform as defined in Equation 5. All covariates were included in an
omnibus model (see Equation 15) including both dummy variables and interaction
terms. Results demonstrate that simulated data can be post-processed to better ap-
proximate real data (R2

pred = 97.03%) when using a regression incorporating dummy
variables.

We have, in this work, only considered the duration and intensity of sensor
activations, regardless of sensor types. However, human behaviour captured as a
sequence of sensor events is in general complex and may (besides duration and
number of events) contain permutations of events within a sequence or for the sub-
sequences of a sequence. An interesting direction to investigate is how to assess the
realism of synthetic data given the statistical properties of the sensor event ordering.
Future work will consider the different types of sensors involved in each activity so
as to improve the accuracy of transformations.
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Tables

Variable Mean Standard dev. S.E. of the mean
AD_User 1_Simulation 46.5 16.5 5.8
AD_User 1_Real environment 137.1 77.1 27.3
Difference −90.6 77.8 27.5

Table 1: Paired t-test results for comparison between real and simulated activity
duration in User1.

S R2 95% C.I. R2 (adj.) 95% C.I. R2 (pred) 95% C.I. PRESS
0.5515 0.9869 [0.7843, 1] 0.9848 [0.7827; 1] 0.9703 [0.6308; 1] 38.0572

Table 2: Summary of determination coefficient values for the regresion model based
on dummy variables.

User code
Confidence interval
for the difference in

seconds (95%)
t-value p-value Conclusion

001 [−155.7,−25.5] −3.29 0.013 Statistically different
002 [−68.6,−7.4] −2.93 0.022 Statistically different
003 [−121.3,−22.0] −3.41 0.011 Statistically different
004 [−79.2,−5.3] −2.70 0.031 Statistically different
005 [−170.0,−10.5] −2.68 0.032 Statistically different
006 [−132.4,−14.6] −2.95 0.021 Statistically different
007 [−63.1, 41.8] −0.48 0.647 Statistically equivalent
008 [−68.8, 15.0] −1.52 0.173 Statistically equivalent

Table 3: Results of comparative analysis between simulated and real data in terms
of Activity duration

Variable Mean Standard dev. S.E. of the mean
NEPA_User1_Simulation 10 6.00 2.12
NEPA_User1_Real environment 18 8.96 3.17
Difference −8 13.63 4.82

Table 4: Paired t-test results for comparison between real and simulated number of
events per activity in User 1.
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User 95% C.I. for the
difference t-value p-value Conclusion

001 [−19.39, 3.39] −1.66 0.141 Statistically equivalent
002 [−3.22, 4.47] 0.38 0.712 Statistically equivalent
003 [−11.90, 2.65] −2.91 0.023 Statistically different
004 [−11.90, 2.65] −1.50 0.176 Statistically equivalent
005 [−13.60, 3.10] −1.49 0.180 Statistically equivalent
006 [−159.1,−33.4] −3.62 0.009 Statistically different
007 [−9.52, 20.02] 0.84 0.428 Statistically equivalent
008 [−12.29, 24.29] 0.78 0.463 Statistically equivalent

Table 5: Results of comparative analysis between simulated and real data in terms
of Number of events per activity

Variable Mean Standard dev. S.E. of the mean
NEPSTPA_DOOR_Simulation 6.75 3.96 1.40
NEPSTPA_DOOR_Real environment 8.13 4.29 1.52
Difference −1.38 1.19 0.42

Table 6: Paired t-test results for comparison between real and simulated number of
events per DOOR sensor per activity.

User Type of sensor 95% C.I. for the
difference t-value p-value Conclusion

001 DOOR [−2.368.− 0.382] −3.27 0.014 Different
PRESSURE [−11.62,−3.63 −4.51 0.003 Different

002 DOOR [−3.043, 0.293] −1.95 0.092 Equivalent
PRESSURE [−7.68,−0.07] −2.41 0.047 Different

003 DOOR [−3.095, 0.845] −1.35 0.219 Equivalent
PRESSURE [−8.95,−1.30] −3.16 0.016 Different

004 DOOR [−3.095, 0.845] −1.35 0.219 Equivalent
PRESSURE [−8.52,−1.23] −3.16 0.016 Different

005 DOOR [−2.715, 0.215] −2.02 0.083 Equivalent
PRESSURE [−11.69,−2.81] −3.86 0.006 Different

006 DOOR [−3.248,−0.502] −3.23 0.014 Different
PRESSURE [−8.99, 0.74] −2.01 0.085 Equivalent

007 DOOR [−6.52, 0.52] −2.02 0.084 Equivalent
PRESSURE [−6.60, 2.10] −1.22 0.261 Equivalent

008 DOOR [−3.670, 0.420] −1.88 0.102 Equivalent
PRESSURE [−6.34,−1.41] −3.72 0.007 Different

Table 7: Results of comparative analysis between simulated and real data in terms
of Number of events per type of sensor per activity.
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Predictor DF Seq SS Contribution Adj SS Adj MS F-value P-value
X2 1 743.37 0.5804 5.02 5.018 16.49 0.000
D1 1 431.09 0.3366 4.98 4.979 16.37 0.000
D2 1 44.45 0.0347 23.42 23.421 76.99 0.000

X1∗X2 1 11.05 0.0086 4.16 4.157 13.66 0.001
X1∗D2 1 0.03 0.0001 1.70 1.699 5.58 0.022
X1∗D3 1 2.25 0.0018 9.58 9.583 31.50 0.000
X1∗D4 1 24.96 0.0195 21.94 21.944 72.13 0.000
X1∗D5 1 3.59 0.0028 5.30 5.299 17.42 0.000
X2

1 ∗X2 1 3.26 0.0025 3.26 3.260 10.72 0.002
Error 55 16.73 0.0131 16.73 0.304
Total 64 1280.79 1

Table 8: ANOVA analysis for the regression model with dummy variables.

ADL
Go to
bed

Use
bathroom

Prepare
breakfast

Leave
house

Get cold
drink

Be in
office

Get hot
drink

Prepare
dinner

Regression
model Log. Log. Quadr.

Squared
quadr. Quadr. Quadr. Quadr.

Squared
quadr.

R2 0.9042 0.9790 0.9698 0.9708 0.9676 0.9650 0.9443 0.8575
R2 (adj.) 0.8659 0.9720 0.9597 0.9666 0.9568 0.9534 0.9258 0.8371
R2 (pred.) 0.7002 0.9534 0.9232 0.9623 0.9161 0.9394 0.9060 0.8012
Residual analysis
Durbin-
Watson 2.737 2.976 1.294 2.450 2.463 1.344 2.657 2.004
Normality
p-value 0.325 0.204 0.879 0.779 0.824 0.779 0.348 0.121
Homoscedasti-
city p-value 0.303 0.445 0.445 0.127 0.445 0.537 0.445 0.537

Table 9: Summary of determination coefficient values for the different activities.
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