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Abstract

The bullwhip effect (BWE) is a phenomenon, which is caused by ineffective inventory decisions 
made by supply chain members. In addition to known inefficiencies caused by the bullwhip effect 
within a supply chain product flow, such as excessive inventory, it can also lead to inefficiencies in 
cash flow such as the cash flow bullwhip (CFB). The CFB reduces the efficiency of the supply chain 
(SC) through heterogeneous distribution of cash among supply chain members. This paper aims to 
decrease both the BWE and the CFB across a SC through applying a simulation-based optimization 
approach, which integrates system dynamics (SD) simulation and genetic algorithms. For this 
purpose, cash flow modelling is incorporated into the SD structure of the beer distribution game (BG) 
to develop the CFB function. A multi objective optimization model is then integrated with the SD-BG 
simulation model. Finally, a genetic algorithm (GA) is applied to determine the optimal values for the 
inventory, supply line, and financial decision parameters. Results show that the proposed integrated 
framework leads to efficient liquidity management in the SC in addition to cost management. 

Keywords

Supply chain management; artificial intelligence; simulation; genetic algorithms and the 
bullwhip effect. 
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1

Minimizing the cash flow bullwhip effect in a supply chain using 
simulation-based genetic algorithms optimization 

1. Introduction

Supply chain management (SCM) refers to the coordination of various processes, such as 
inventory management and pricing, amongst the members in order to make a trade-off 
between responsiveness and efficiency for the market being served (Hugos 2011). To remain 
responsive to uncertain demand conditions, firms carry inventory to prevent orders being lost 
and also try to update orders placed to their upstream member according to the volatility in 
demand of their downstream member. However, there is a delay between the order placement 
time and the receiving of the order by the upstream member. In other words, the volatility in 
demand is not concurrently perceived by the upstream members such as the manufacturer and 
distributor. This unwanted phenomenon is called the Bullwhip Effect (BWE) and is mostly 
attributed to the lack of coordination between participants, distorted information, and 
information delays in the supply chain (Coppini et al. 2010). 

Cash flow management plays a critical role in supply chain management, as firms 
require cash to implement operational decisions such as holding inventory and capacity 
expansion in order to improve responsiveness. Cash for each supply chain member is 
replenished by receiving cash from the downstream member and depleted by payment to 
upstream members. The inability of a supply chain entity to manage cash effectively, not only 
curbs its ability to implement operational decisions which reduces the level of service to its 
downstream members, but also negatively affects the flow of cash that is transferred to its 
upstream member. Therefore, it is imperative that supply chain members have access to cash 
at the right time.

In addition to the inefficiencies in product flow within a supply chain, such as 
excessive inventory, stock-outs, distorted demand forecasting (Chen et al. 2000; Lee, 
Padmanabhan, and Whang 1997), the BWE also negatively affects the financial flow through 
heterogonous distribution of cash among supply chain members. The cash conversion cycle 
(CCC) is one of the pivotal metrics used to measure supply chain efficiency in cash flow 
management (Zhao et al. 2015). The CCC is defined as the length of time that it takes for a 
company to convert resource inputs into cash flows collected from customers (Stewart 1995). 
The lower the CCC, the more successful the firm is in managing cash flow. For example, 
Amazon is a role model in the effective management of cash flow possessing a CCC of -51 
days in 2009 (Kumar, Eidem, and Perdomo 2012). Indeed, Amazon collects cash from 
customers before providing any service. Reducing the number of days inventory held at a 
firm is one of the actions that can be taken to reduce the CCC (Randall and Theodore Farris 
2009). Volatility in inventory levels, which is caused by the BWE, results in variability in the 
number of days inventory outstanding, and accordingly causes variations in the CCC 
(Tangsucheeva and Prabhu 2013). In such circumstances, supply chain members may face 
liquidity constraints, as they are not able to predict the amount of time that it takes to get 
access to the cash. The term “cash flow bullwhip” (CFB) was first introduced by 
Tangsucheeva and Prabhu (2013) to name this undesirable phenomenon, which is caused by 
variations in the CCC that occurs throughout financial flows in the supply chain.
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Simulation models have been widely applied to supply chain modelling, owing to 
their capability in capturing complexities and incorporating the dynamic behaviour of supply 
chains (Kleijnen 2005). System dynamics (SD) is a simulation approach which captures the 
dynamic behaviour of the system through considering information feedbacks and delays in 
the model (Mula et al. 2013). This approach was applied for modelling the BWE in supply 
chains (Wangphanich, Kara, and Kayis 2010; Adenso-Díaz et al. 2012). SD modelling has 
provided significant insights into the dynamic behaviour of supply chains, however it is not 
able to determine the optimal values for the decision variables. Incorporating an optimization 
algorithm into a SD simulation model is likely to yield optimal decisions (Aslam 2013). Such 
a consolidated framework is called simulation-based optimization (SBO). Therefore, in this 
study, an SBO framework including genetic algorithm (GA) and SD is applied to determine 
the optimal values to the inventory and financial decisions so as to minimize the CFB, BWE, 
and supply chain total cost. 

Although, the SBO methodology has been applied for BWE reduction, it has not been 
applied for CFB minimization. Aslam and Ng (2016) used the SBO methodology to 
determine the optimal values to the inventory and supply line forecasting parameters in order 
to minimize inventory cost, backlog cost, and BWE of the entire supply chain. This study 
minimizes the CFB, the BWE, and the total cost of the supply chain through recognizing 
optimal values for the unit cost and price parameters in addition to the inventory and supply 
line forecasting parameters.

The rest of the paper is organised as follows: the literature review is presented in 
section 2. Modelling of the CFB in a multi-stage supply chain network and the proposed SBO 
framework are described in section 3. Section 4 discusses integrated modelling of the cash 
and material flows in the Beer distribution game. Managerial implications, limitations of the 
study and further research directions are presented in section 5.

2. Literature review

2.1. The bullwhip effect and cash flow bullwhip

Several studies have investigated the BWE (Lin et al. 2014; Ma and Ma 2017). The origin of 
this phenomenon comes from system dynamics theory developed by Forrester (1997), where, 
in many cases, there was a huge discrepancy between the variance of the perceived demand 
for a manufacturer and end customer demand. In addition, it was identified that this high 
positive discrepancy occurred at each stage in the supply chain. The simplest form of the 
BWE was shown by Sterman (1989) through the “Beer Distribution Game” that considered 
the impact of human bounded rationality and also time delays on the dynamic system of 
supply chain. Five main causes of the bullwhip effect were identified as: demand forecasting; 
order batching; rationing and shortage gaming; price fluctuation; and lead time (Lee, 
Padmanabhan, and Whang 1997). Several techniques such as reducing time delays or 
redesigning the supply chain network have been proposed to reduce the bullwhip effect 
through decreasing the degree of uncertainty and variability that exist in the supply system 
(Gangopadhyay and Huang 2002; De La Fuente and Lozano 2007; Chatfield 2013).

Chen et al. (2000) quantified the bullwhip effect by obtaining the ratio between the 
variance of orders and the variance of demand. Dudas, Hedenstierna, and Ng (2011) proposed 
the highest order value as a metric for measuring the BWE. Geary, Disney, and Towill (2006) 
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classified adopted approaches for measuring the BWE into: (1) Operational research and 
statistical approach ,e.g., (Chen et al. 2000), (2) engineering of control systems ,e.g., 
(Hassanzadeh, Jafarian, and Amiri 2014), and (3) simulation, e.g., (Ma and Ma 2017),.

Dolgui et al. (2019) showed that the ripple effect, which is related to the structural 
dynamics in the supply chain can be a driver of the BWE.  They proposed a contingent 
production-inventory control policy to mitigate both ripple and bullwhip effects. Alongside 
this work Ivanov (2017) argues that the potential of applying simulation modelling to the 
ripple effect remains under-explored. Ivanov (2018) also identifies the sustainability factors, 
which either diminish or expand the ripple effect using simulation modelling of a multi-stage 
supply chain. Ivanov (2019) applied discrete-event simulation to investigate the interrelations 
of structural vulnerability including the ripple effect, operational vulnerability and the BWE. 
The results indicate the need for simultaneous consideration of structural and operational 
vulnerabilities in supply chain management. 

Tangsucheeva and Prabhu (2013) quantified the CFB as the ratio of variability in 
CCC to variability in the end customer demand. The BWE and lead time were identified as 
the most significant contributors to the CFB in an inventory system with the order up to 
(OUT) replenishment policy. Goodarzi et al. (2017) integrated system dynamics (SD) and 
response surface methodology (RSM) to identify the most important causes of the CFB 
amongst the lead time, demand forecast updating, and rationing and shortage gaming in 
centralized and decentralized supply chains. They identified rationing and shortage gaming as 
the main cause of CFB in inventory systems with OUT policy, while it was identified as the 
least significant contributor to CFB in Tangsucheeva and Prabhu (2013) study. 

Some studies investigated cash flow risks within supply chain networks. For instance, 
Zhao et al. (2015) studied the cash flow risks in a dual-channel supply chain, in which a 
manufacturer offers a consignment sales contract to the retailer. Applying demand forecasting 
techniques and sharing end customer demand information within the network are 
recommended as ways to reduce demand uncertainty and cash flow risks.  Tsai (2008) 
presented a simulation model to show common solutions for improving CCC such as offering 
early payment discounts, increasing cash flow risks which were measured by the standard 
deviations of cash inflows in a planning horizon. C.-Y. Tsai (2017) show how inventory 
reduction strategies such as just-in-time can lower cash flow risks through shrinking days in 
inventory.

Previous research on the BWE has highlighted the existence of the phenomenon, and 
suggested policies such as information sharing to mitigate its adverse effects. However, the 
aim of the research in this paper is to minimize the BWE by finding the optimal values to the 
controllable decisions of the supply chain members without implementing a corrective policy. 
Moreover, there is a lack of research, which incorporates cash flow modelling into the system 
dynamics simulation of the BWE.

Much of the previous research on the CFB has identified the causes of the 
phenomenon. There is a lack of studies that focus on minimizing the CFB through finding the 
optimal values to the desired inventory, the desired supply line, the demand forecast updating 
parameter ( ), and the rationing and shortage gaming parameter ( ) which lead to the 𝛼 𝛽
inventory bullwhip.  Furthermore, price and unit cost are two decision parameters that assist 
the decision maker in controlling variations in the CCC. This study minimizes the CFB 
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through identifying the optimal values for price, unit cost, and inventory decisions that cause 
the inventory bullwhip.

2.2. Simulation-based optimization (SBO) for the supply chain

Studies have been conducted on applying a SBO approach for modelling supply chain 
networks can be categorized in terms of their simulation approach. Theme 1, as shown in 
Table 1, corresponds to the studies in which SD was applied as simulation technique. For 
instance, O’Donnell et al. (2006) presented an SBO framework which minimized the BWE 
through identifying optimal order quantities for supply chain members. Georgiadis and 
Athanasiou (2013) integrated SD and an optimum-seeking search procedure to determine the 
optimal capacity planning decisions so as to maximize the profit of a SC network. Aslam and 
Ng (2016) consolidated SD and multi-objective optimization (MOO) to study the “Beer 
Distribution Game”. The main objective of their model was to find the optimal values of 
desired inventory, desired supply line, forecasting parameter for inventory, and forecasting 
parameter for supply line for supply chain entities to make trade-offs between supply chain 
inventory cost, backlog cost, and the BWE. Sudarto, Takahashi, and Morikawa (2017) 
developed the SBO model presented by (Georgiadis and Athanasiou 2013) through 
considering social and environmental sustainability. A simplified non-linear multi-objective 
algorithm was applied to determine the optimal values for capacity planning decisions. 

The second group of papers used DES for simulation modelling. For instance, Ding, 
Benyoucef, and Xie (2009) present a simulation-based optimization model which 
incorporates multi-objective genetic algorithm (MOGA) and discrete-event simulation (DES) 
models. The proposed model was applied through a case study from automotive industry and 
provided both optimal configuration decisions and operation strategies in order to make a 
trade-off between customer service level and total cost of the supply chain. Bandaly, Satir, 
and Shanker (2016) coupled DES and GA to determine optimal safety stock level and 
financial options to place in order to minimize the expected total opportunity cost of a three-
echelon beer supply chain. Keramydas et al. (2017) integrated the DES and OptQuest to 
determine the optimal stock levels and SC network design so as to minimize CO2 emissions 
and the total cost of the SC. 

The third category contains studies which applied agent-based simulation. Mele et al. 
(2006) developed an SBO framework to address demand uncertainty in chemical supply 
chains. The proposed model includes an agent-based simulation model which is paired with a 
Genetic Algorithm (GA) to determine optimal operative parameters of supply chain 
members. Nikolopoulou and Ierapetritou (2012) coupled MILP and agent-based simulation to 
minimize total cost of a SC network by recognising the optimal operational decisions such as 
production planning decisions. Peirleitner, Altendorfer, and Felberbauer (2016) integrated a 
Non-dominated Sorting Genetic Algorithm (NSGA-II) and an Agent-based simulation model 
to recognise optimal inventory policies for supply chain members under demand and 
replenishment lead time uncertainties. The objective of the model was to determine an 
optimal reorder point and order quantity of Stock Keeping Units (SKUs) for entities in a 
general supply chain network so as to minimize the total supply chain cost, while maximizing 
service level for retailers. 

Finally, theme 4 includes the studies in which other simulation approaches except for 
the three aforementioned techniques, i.e., SD, DES, and agent-based simulation, were 
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applied. Puigjaner and Laínez (2008) used a SBO approach to find optimal values of design, 
planning, and financial decisions in order to maximize corporate value which was measured 
by the discounted-free-cash-flow method. Gao and Wang (2008) claim that analytical models 
are not able to represent clearly some stochastic variables such as stochastic demand. They 
developed an SBO model that combined simulation and particle swarm optimization (PSO) 
algorithm to determine optimal inventory policies including reorder points and economic 
order quantities of members in a three-echelon supply chain under demand uncertainty. Diaz, 
Bailey, and Kumar (2016) proposed a discrete Markov-modulated demand which is 
integrated with an optimization algorithm, combining simulated annealing, pattern search, 
and ranking and selection (SAPS&RS) to determine optimal values of (s,S) inventory 
decisions in order to minimize total inventory cost. Boulaksil (2016) developed an SBO 
model to recognize safety stock levels in supply chain systems under demand uncertainty. 

As presented in Table 1, most researchers applied SBO approach to model product 
flow within the supply chain. In contrast, integrated modelling of the cash and product flows 
is only considered in a few works (Puigjaner and Laínez 2008; Bandaly, Satir, and Shanker 
2016). Furthermore, much of the literature focuses on reducing the detrimental effects of the 
BWE in material flow. However, limited research has been undertaken on minimizing the 
CFB through finding optimal values for the price, unit cost, and inventory and supply line 
control parameters using SBO modelling based on the replenishment model of Mosekilde et 
al. (1991). Hence, this paper considers price and unit cost parameters for minimizing CCC 
variation and CFB. Moreover, CFB minimization is incorporated into an SBO model as an 
objective function. Such an approach has not been considered in the SBO literature. 

TAKE IN TABLE 1.

Based on the system dynamics structure of the Beer distribution game, firstly a 
simulation model for measuring total cost, BWE, and CCC variance is developed. Feasible 
intervals for model inputs (e.g., inventory and supply line control parameters, price, and unit 
cost) are then defined and the SBO approach is applied to find optimal values for the input 
parameters to minimize the BWE, CFB, and total cost of the chain. Hence, a new approach 
for managing the CFB and its inverse effects is presented. This approach provides supply 
chain managers with a novel way of controlling CCC variability through recognising optimal 
combination of physical and cash flows decisions.

3. The supply chain model for cash flow bullwhip effect 

A supply chain incorporates integrated processes by which products are converted from raw 
material into finished goods. As these processes are performed by different business 
functions in diverse companies such as procurement, production and logistics, the various 
departments of the firms need to collaborate, coordinate, and interact in order to produce the 
product in the supply chain and deliver it to end customers (Kim et al. 2004). Hence, supply 
chains can be considered as complex networks that require the modelling of interaction 
effects between the entities with multiple objectives, which sometimes contradict each other 
(Keramati 2010). In order to study supply chain networks, analytical approaches such as 
optimization models have been frequently utilized to provide optimal values to the decision 
variables for supply chain members (Wu 2006; Torabi and Hassini 2008; Govindan et al. 
2014; Hamta et al. 2015). Although pure mathematical models are useful in many cases, they 
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may not be able to depict complex relationships, including feedback loops and delay 
functions, between supply chain entities existing in real-world problems (Mele et al. 2006). 

On the other hand, simulation has been proved to be an efficient tool to describe and 
analyse inherent dynamic behaviour of complex systems such as supply chains (Dominguez, 
Cannella, and Framinan 2015; Macdonald et al. 2018). Hence, simulation modelling can 
comprehensively handle dynamics rooted in supply chain problems when the problem may 
not be easily formulated in the form of analytical models since solving complicated 
mathematical models is not cost-effective (Wan, Pekny, and Reklaitis 2005). Moreover, 
simulation models provide the opportunity to examine the consequences of diversified 
policies by conducting what-if analysis. There are a variety of simulation tools applied to 
study supply chain issues including Discrete event simulation, Petri nets, Agent-based 
simulation (Kleijnen 2005). System dynamics (SD) is one of the simulators of the “Beer 
Distribution Game”. Given these discussions, simulation stages of our case study model are 
outlined as follows.

First, nomenclatures are demonstrated. Second, ordering policies applied by supply 
chain members are introduced and causes of the inventory bullwhip are identified in the 
ordering policy. Then, the impact of the ordering policy on CCC is investigated. To measure 
variations of the CCC and CFB, the SD simulation model of the studied supply chain 
composed of one manufacturer, one distributor, one wholesaler, and one retailer is developed. 
Causes of the inventory bullwhip and CFB are part of inputs and outputs of the simulation 
model, respectively. The validity of the SD model is assessed through implementing an 
extreme condition test. Furthermore, the capability of the model in showing the bullwhip 
effect within the supply chain network is another proof of its validity. Thereafter, feasible 
intervals of the input parameters, including causes of inventory bullwhip, price, and unit cost, 
are defined and the SBO approach is applied to derive optimal combination of the parameters 
to minimize CFB, BWE, and SCTC. Nomenclatures are presented in Table 2.

TAKE IN TABLE 2.

3.1. Ordering policy

In this study we have applied the ordering policy developed by Mosekilde et al. (1991) to 
calculate the amount to order (OP) for each member of the supply chain. The placed order 
which must be non-negative is calculated as:

OPt =  MAX (0, DOPt)
(1)

Where the desired amount to order (DOP) is defined as follows:

DOPt =  DFt +  α(DI -  
NI

(INVt -  Bt))
INV Gap

+ β(DSL -  SLt)
SL Gap

(2)

To determine the desired amount to order (DOP), each member endeavours not only 
to meet the forecasted demand of its downstream member but also bridge the inventory and 
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supply line gaps. The exponential smoothing method with a smoothing parameter ( ) that γ
equals to one is used to forecast the demand forecast (DF) as follows:

 (3) DFt =  SMOOTH (Dt, γ)

The inventory gap is the difference between the desired inventory (DI) and net 
inventory (NI) which is calculated by subtracting the unfulfilled orders (B) from the 
inventory (INV). The supply line (SL) gap is defined as the gap between the desired and 
actual supply line. The supply line represents the previous orders which have been sent by the 
upstream member but still have not been delivered. The desired inventory and the desired 
supply line are constant values which are specified by each member and represent the 
inventory levels which are desired to be held or to be on order for each member. As the 
inventory and supply line gaps are not replenished entirely in a review period, smoothing 
replenishment rules should be used to give an appropriate weight (i.e.,  ) to the gap  𝛼 and 𝛽
terms (Disney et al. 2007).

  represent the discrepancy of units needed in the form of on-hand inventory 𝛼 and 𝛽
(INV) and the supply line (SL) respectively. A high  value indicates an aggressive policy to 𝛼
bridge the gap between the desired inventory and the current net inventory. In the case of , a  𝛽
high value shows that all the orders in the supply line have been considered, when deciding 
on the amount of orders to be placed with the upstream member. 

In Expression (2), desired inventory (DI), desired supply line (DSL), inventory 
proportional parameter ( ), and inventory on order proportional parameter ( ) which are 𝛼 𝛽
known as controllable parameters allow us to amend the dynamic behaviour of the supply 
chain. Indeed, changing these exogenous factors results in a set of ordering patterns ranging 
from order variance amplification (bullwhip) to dampening (smoothing) (Disney et al. 2007). 
In the next section, it is explained how Expression (2) may lead to a fluctuation in the CCC 
known as CFB.

3.2. Impact of ordering policy on CCC and CFB

To recognise the relationship between the order quantity and CCC, first the measuring 
procedure of CCC must be elaborated. CCC metric is composed of three factors: (1) days 
inventory outstanding (DIO), (2) days sales outstanding (DSO), and (3) days payable 
outstanding (DPO). CCC can be defined as follows (Randall and Theodore Farris 2009):

CCC =  
Average inventory value

COGS
365

(DIO) +
Average account receivable

Revenue
365

(DSO)

(4)              -
Average account payable

COGS
365

(DPO)                                                                                           

To determine DIO, the value of average inventory value which is the product of inventory 
position (I) and sales price per unit (SP) is divided by the daily cost of goods sold (COGS) 
that is a product of unit cost (UC) and the average demand (D) divided by 365. Dividing 
COGS by 365 assures the expression of DIO in days since both average inventory and COGS 
are expressed in the currency unit (£). Therefore, DIO can be calculated as:

 (5)DIO =  365(SP
UC)( I

D)
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The average accounts receivable (AR) can be expressed in terms of demand, backlog (B) and 
inventory level as follows:

             (6)          AR =  mmin (SP (D +  B), SPI) 

Where m indicates the collection policy of the firm;  It would be equal to 1 if all 0 ≤  m ≤  1.
sales is in the form of credit and would be zero if all value of sales is in the form of advanced 
payment. Replace Eq. (6) in DSO, obtain

                      (7)DSO =  m(min (SP(D + B), SPI)
SPD

365
) =  365 m (

min (D + B,I)
D )

The average accounts payable (AP) can be calculated by order quantity (q) and sales price of 
the upstream member (USP) as follows:

          (8)AP =  nUSPq

Where , shows the payment policy of the company. It would be equal to 1 for all  0 ≤  n ≤ 1
credit purchases and zero for all purchases the price must be paid before delivery.

Replace Eq. (8) in DPO, we get

          (9)          DPO =  nUSPq
UCD

365
= 365 n (

USP
UC )(

q
D)

Given Eq. (4), CCC can be obtained as follows:

                   (10)CCC =  365(SP
UC)( I

D) +  365 m (min (D + B, I)
D ) -  365 n (

USP
UC )(

q
D)

                 

Considering Eq. (10), the cash conversion cycle for supply chain members is a function of 
order quantity (q), inventory (I), demand (D), sales price per unit (SP), upstream sales price 
(USP), and unit cost (UC). Each supply chain member applies the replenishment rule 
presented in Eq. (1) to determine its order quantity. The variability of CCC is used to measure 
the cash flow bullwhip (CFB) for supply chain members as follows (Tangsucheeva and 
Prabhu 2013):

                        (11)CFB =  Variance of CCC
Variance of downstream demand =

VAR(CCC)
VAR(D)

To decrease CFB, the variability of CCC needs to be diminished through determining 
the optimal values for the inventory decision parameters (e.g., ), sales price  α, β, DNI, DSL
per unit (SP), and unit cost (UC). To measure CFB through the supply chain, a system 
dynamics (SD) structure of the Beer distribution game is developed. In this case, inputs are 
inventory decisions parameters, price, and unit cost (i.e., control parameters) and outputs are 
variations of cash to cash cycle and CFB for participants. Simulation models that are 
developed by the SD approach are considered to be more robust than other types of 
simulation models, even though there are robustness tests that can be used to test the validity 
of the model. To show the robustness of our developed simulation model, the extreme 
condition test (Sterman 2000) is applied. The extreme condition test deals with a test 
accompanied by a reasonable expected behaviour according to its inputs values (Sterman 
2000). e.g., dramatic increase in price of a product results in converging the demand function 
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to zero (Sterman 2000). To run the extreme condition test in our developed model, sales price 
per unit of product which is a model input is increased significantly. As a result, the CCC 
rises dramatically. Hence, it can be concluded that the behaviour of the model is reasonable. 

3.3. Simulation-based optimization (SBO)

After simulating the supply chain’s cash flow and observing the CFB across the supply chain 
network, we need to manage its adverse effects through recognizing optimal values for the 
controllable parameters. As was indicated in the previous section, the CCC is a function of 
order size which is affected by ordering parameters including demand forecast updating ( ), 𝛼
and rationing and shortage gaming ( ) given in Eq. (2). That is to say, the CCC is influenced 𝛽
by factors that contribute to inventory bullwhip, hence our objective is to minimize CFB by 
recognising optimal values to the ordering parameters, inventory decisions, price, and unit 
cost. These are input parameters for the simulation model. Moreover, minimizing supply 
chain total cost and the BWE are other objective functions that will be taken into account. 
Here, simulation-based optimization (SBO) is used to determine the optimal decision 
variables through integrating system dynamics (SD) and a Genetic algorithm (GA). SBO is 
an emerging field which consolidates simulation analysis by integrating optimization 
methods into it. In other words, SBO transforms simulation model from a descriptive tool 
toward a prescriptive method. Regardless of the optimization algorithm used, the process of 
optimizing an SD model involves four steps: (1) Developing the stock and flow diagram, (2) 
Selecting control parameters by which performance of the system is adjusted, (3) Specifying 
the lower and upper bounds of control parameters, and (4) Identifying model variables for 
optimization. These variables represent the values that need to be optimized (Duggan 2008).

After following these steps, the optimization algorithm can be implemented. In all 
cases, SBO involves an iterative process between the optimizer and the simulation model, 
where firstly the optimization algorithm inputs a set of parameter values to the simulation 
model and the simulation model then outputs performance measurements of the model to the 
optimizer. The optimization algorithm then compares the performance of the system with the 
performance produced by previous permutations of the parameters in order to generate a new 
set of parameter values. This process continues until a stop criterion has been met, such as 
performing a defined number of evaluations, elapsing a specific amount of time or any user-
specified criterion (Syberfeldt 2009). The framework of the SBO approach in this study is 
shown in Figure 1.

TAKE IN FIGURE 1.

3.4. Genetic algorithms (GAs)

Genetic algorithms (GAs) are computational algorithms inspired by Darwinian evolutionary 
theory which can be called in short as “survival of the fittest” (Darwin 1859). In GAs it is 
assumed that fittest solutions survive and their characteristics are transferred from one 
generation to the next (Zaman, Paul, and Azeem 2012). To optimize SD models using GAs, 
each solution known as a chromosome is represented by an array of elements, where each 
position in the array pertains to a possible parameter value. A solution pool named population 
is formed by a set of chromosomes. The algorithm starts with setting up a population of 
random possible solutions. Then, the chromosomes are evaluated based on the objective 
function to obtain the fitness of the solution. A fitness value shows how good each solution is 

Page 12 of 42

http://mc.manuscriptcentral.com/tprs  Email: TPRS-peerreview@journals.tandf.co.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

file:///C:/Users/e212741/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/CA6US0NO/figures%20and%20tables.docx


For Peer Review Only

10

in satisfying objective functions. Applying the rule of survival of the fittest, strongest 
solutions are selected from the population. Subsequently, solutions with higher fitness are 
combined to produce new solutions by performing a crossover operator. These solutions are 
known as parent solutions. To ensure maintaining variety in the overall population, new 
solutions may then be subjected to small variations from parent solutions called a mutation 
operator. Each population then represents a generation, and the process continues until 
predefined stopping criteria are met, such as convergence of fitness over generations or 
reaching the maximum number of generations (Lu et al. 2012). 

GAs are well suited for parameter optimization and can also be extended to multiple 
objective optimization (MOO) (Streichert 2002). Therefore, in this research, a GA is 
employed to specify optimal values to the control parameters (e.g. ).  𝛼, 𝛽,𝐷𝑁𝐼, 𝐷𝑆𝐿,𝑆𝑃,𝑈𝐶
The proposed fitness function is defined as the inverse of the SCTC, BWE, and CFB as 
shown in Eq. (12), where a lower TC, BWE, and CFB results in a higher fitness value. SCTC 
aggregates inventory holding cost and backlog cost of all the members. The BWE is 
quantified through the ratio between the variance of orders and the variance of demand (Chen 
et al. 2000). Finally, the CFB is measured through Eq. (11).

                           Fitness Function =
1

SCTC +  MBWE +  MCFB
(12)               

As the initial population in GA, i.e. solution set, is randomly selected within the 
solution space and also that the optimization process is stochastic, the exact same results will 
not be replicated every time. To obtain a wide range of optimal results, the optimal parameter 
sets are gained by defining various initial population. Thereafter, non-dominated optimal 
solutions are chosen from generated optimal solutions. Finally, the most ideal solution is 
selected by the decision maker based on higher level information (Duggan 2008). In this 
work, MATLAB GA toolbox was used to perform the simulation with the fitness function of 
Eq. (13) with the restriction set on the ranges of the control parameters (e.g. α, β, DNI, DSL, 

).SP, UC

4. The beer distribution game

The beer game (BG) is a role-playing simulation game and was originally developed by  
Sterman (1989). The main objective of the game was to demonstrate the existence of the 
BWE within supply chain networks. In this paper, the flow of cash within the supply chain 
network is considered in modelling of the BG, in addition to material and information flows, 
to show the presence of the CFB. 

The studied supply chain model is shown in Figure 2. This model consists of four 
actors: a retailer, a wholesaler, a distributor, and a manufacturer. As in the case of the original 
BG, there is no information sharing between the supply chain entities and each entity places 
orders with its upstream member using the ordering policy outlined in section 3.1. The stock 
and flow structure of the material flow is shown in Figure 3. Joshi (2000) provides a 
complete description of the BG stock and flow model. Another relevant variable in this 
model, in addition to the orders placed to the upstream members, is the supply chain total cost 
(SCTC) (13), which is calculated by aggregating the total cost of the supply chain members. 
Total cost (14) for each agent is composed of the inventory holding cost and backlog cost. 
Inventory holding cost (15) is the product of inventory level and unit holding cost. However, 
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the backlog cost (16) is determined by multiplying the backlog level into the unit stock out 
cost.

Supply chain total cost =  TCM +  TCD +  TCW +  TCR (13)
Total cost =  Inventory holding cost +  backlog cost (14)
Inventory holding cost =  Inventory ×  unit holding cost (15)
Backlog cost =  Backlog ×  unit stock out cost (16)

TAKE IN FIGURE 2.

TAKE IN FIGURE 3.

The financial stock and flow model is shown in Figure 4. Each member pays for the 
orders placed to its upstream member, and is paid for the orders received from its 
downstream member. The variable of interest in this model is the CCC which is determined 
by Eq. (10). The detailed description of the equations used in the financial stock and flow 
model is provided in Appendix 1. 

TAKE IN FIGURE 4.

4.1. MOO of the BG

To determine the optimal decision parameters for the supply chain members, an optimization 
problem which contains the objective functions and constraints on parameter values should to 
be formulated. The objective functions for the optimization problem are denoted as (17):

      (17){Min SCTC =  Min μSCTC =  ∑T
t = 0

SCTC
T

Min MBWE =  Min
σ2

MPO
σ2

DD
 

Min MCFB =  Min
σ2

MCCC
σ2

DD

    

Decision variables: αi, βi, DIi, DSLi, SPi, UCi

Subject to:

0 ≤  αi ≤  1,  0 ≤  βi ≤  1,  0 ≤  DIi ≤  12,  0 ≤  DSLi ≤  15, 1 ≤  SPi ≤  4,  

     (18)                      0.5 ≤  UCi ≤  3.5

The first objective function is related to minimizing the SCTC which is measured by 
the mean of supply chain total cost over the SBO period. The second objective is to minimize 
the BWE for the manufacturer which is formulated as the ratio of variation in manufacturer’s 
order to variation in its downstream demand. The third objective function pertains to CFB 
minimization for the manufacturer quantified by the ratio of variation in the manufacturer’s 
CCC to variation in its downstream demand. The lower and upper bounds for the decision 
parameters of entity i (e.g., manufacturer, distributor, wholesaler, and retailer) are defined by 
Eq. (18). The manufacturer, as the final upstream member of the supply chain, endeavours to 
manage variations in the order quantity, and cash conversion cycle (CCC) in order to reduce 
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the BWE, and CFB respectively. It would be interesting to know whether minimizing the 
order quantity and CCC fluctuations for the manufacturer results in volatility reduction in 
order quantity and CCC for other supply chain members. The premise for this model is that 
the decision maker aims to minimize SCTC and also minimize the BWE and CFB throughout 
the supply chain network.

5. Experiments

This section outlines the results of the tests conducted on the beer distribution game using the 
SBO methodology and information sharing, which are two common techniques for bullwhip 
effect reduction. The SBO aims to minimize the total cost of the supply chain in addition to 
the BWE and CFB for the manufacturer by obtaining the optimal price, unit cost, and 
inventory decision parameters for all members. The information sharing strategy involves 
supply chain members being informed about end customer demand.

5.1. Experiment 1

The first experiment was designed to test the performance of the SBO and information 
sharing under the assumptions of the original beer game, which included deterministic 
demand and lead times. According to the assumptions of the beer game (BG), customer 
demand starts by ordering 4 crates of beer during the first four weeks and then suddenly, in 
week 5, the customer demand rises to 8 crates per week for the rest of the simulation (Joshi 
2000). Aslam and Ng (2016) provides the initial values for material flow variables and 
parameters at each entity at . The values for cash flow parameters, unit cost and price,  t =  0
are shown in Table 3. As expected from running the SD-BG model, Figure 5 clearly 
demonstrates the existence of the BWE. The placed orders by upstream members is several 
orders of magnitude larger than the end customer demand. The manufacturer placed order 
(MPO) is 3.4 times more than the end customer demand at week 12. This oscillating effect 
shows how an increase in the customer demand, from four to eight in week 5, has resulted in 
a huge oscillating effect at the final upstream member, manufacturer. 

TAKE IN TABLE 3.

TAKE IN FIGURE 5.

The inventory levels for entities is shown in Figure 6. The inventory level for the 
manufacturer between weeks 25 and 35 remains at 60, which is 7.5 times larger than the 
customer demand. 

TAKE IN FIGURE 6.

The variability of the cash conversion cycle (CCC) for supply chain members is 
shown in Figure 7. The existence of the BWE results in an increase in inventory levels which 
subsequently leads to a rise in days inventory outstanding (DIO). An increase in DIO also 
results in CCC growth. The oscillations in CCC rises significantly as we move toward 
upstream members of the chain so that CCC for the final entity, manufacturer, ranges from 30 
to 500 days. Hence, it can be concluded that the existence of the BWE prolongs the cash to 
cash cycle for the upstream members. 

TAKE IN FIGURE 7.
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5.1.1 Impact of information sharing

Considering the assumption that SC members do not share the demand information, each 
entity forecasts the end customer demand based on the previous orders of its downstream 
member. Most companies amplify the demand of their downstream member which leads to 
information distortion throughout the supply chain that is one of the main drivers of the 
BWE. Information sharing is a mechanism which eliminates information distortion and 
reduces the BWE through sharing the end customer demand between the SC members (Yu et 
al .2001). 

To illustrate the impact of information sharing on diminishing the BWE, CFB and 
SCTC, the results of the original SD model in which the demand information are not shared 
among the SC members are compared with the results obtained from the SD model in which 
there is information sharing between the entities. According to the results shown in Figure 
8(a)-(c), the information sharing among the SC members reduces the variability in the placed 
orders by the customers, variability in inventory levels of the entities, and variability in cash 
conversion cycles of the entities. According to the results shown in Figure (5), the placed 
orders by the SC members in the original SD model has a scale of 0-27. While, after the 
information sharing the placed orders by the SC members vary in the range of [1, 12] (see 
Figure 8(a)). According to the results shown in Figure (6), the inventory levels of the SD 
members in the original SD model has a scale of 0-60. While, after the information sharing 
the inventory levels of the SC entities vary in the range of [0, 20] (see Figure 8(b)). 
According to the results illustrated in Figure (7), the CCCs of the members has a scale of 30-
500. Although, after the information sharing the CCCs of the SC entities vary in the range of 
[0, 27] (see Figure 8(c)).

As explained, the DIO volatility is caused by increasing the inventory levels. 
Therefore, mitigating the inventory levels through information sharing reduces the CFB in 
addition to the BWE. Although the BWE and CFB decrease dramatically as a result of 
implementing the information sharing strategy, the impact of the strategy on reducing the 
SCTC is not significant. The SCTC decreases by 8 percent, from £10816 to £9915.65. The 
reason is that the information sharing strategy does not identify the optimal values for the 
inventory decision parameters which affect the inventory levels of the SC members and 
consequently the SCTC.

TAKE IN FIGURE 8.

5.1.2 SBO implementation

The execution of the SBO methodology is based on the process referred to in section 3.3. In 
order to implement the SBO, a number of specific values need to be decided on, including:

 The range of values for decision parameters which are defined by Eq. (18).
 The parameters for the GA which are set as follows: the population size is 200, the 

crossover and mutation rates are set to be 0.8 and 0.1, respectively. To specify an 
appropriate population size, a number of population sizes are selected and the 
algorithm is run 15 times for each population size. The results are reported in Table 4. 
Increasing the population size improves the mean and the standard deviation of the 
fitness function. The population size of 200 is an appropriate population size as the 
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population size of 250 does not improve the best fitness value. However, it slightly 
reduces the standard deviation of the fitness function.

TAKE IN TABLE 4.

The optimal solution recommends a non-aggressive strategy toward bridging the gap 
between the desired inventory and current net inventory, i.e., the value of  for all members 𝛼
is less than 0.5, and a cautious approach to order quantity for distributor and retailer, i.e., the 
value of  for distributor and retailer is more than 0.5.𝛽

To illustrate the effectiveness of the SBO methodology in minimizing the BWE, CFB, 
and SCTC, the results of the SBO model in which the end customer demand is not shared 
among the members are compared with the results obtained from the SD model in which 
there is information sharing between the entities. According to the results shown in Figure 
9(a), order quantities of all supply chain members converge with customer demand (8 
crates/week) at week 40. Whilst, before applying the SBO notwithstanding sharing the 
demand information within the SC network, the placed orders adjust to customer demand at 
week 60 (see Figure 8(a)). SC members are not required to hold inventory from week 60 until 
the end of the simulation in the SBO model (see Figure 9(b)) , while in the SD model with 
information sharing at the same period the SC members hold 10 crates/week in inventory (see 
Figure 8(b)). Similarly, optimal controllable parameters lead to a 0 day cash conversion cycle 
for all the members at week 30 (see Figure 9(c)). However, the non-optimal parameter values 
result in an 11 day cash cycle for the retailer at week 40 (see Figure 8(c)). In addition to the 
BWE and CFB reduction, implementing the SBO methodology leads to a 29% decrease in 
the SCTC due to the lower inventory levels which is held by the SC members. The SCTC 
reduced from £9915.65 obtained from the SD model with information to £7017.94 after 
employing the SBO methodology.

TAKE IN FIGURE 9.

5.2 Experiment 2

The second experiment examines the performance of the SBO and information sharing under 
stochastic demand where it is assumed that the customer demand fluctuates in the range of 
[0,15] (Kimbrough et al. 2002). Figure 10(a) illustrates the ordering quantities for each 
member of the supply chain before applying the SBO and information sharing. It 
demonstrates the amplifications occurring in the orders and the customer’s orders cannot be 
easily tracked. The manufacturer placed order (MPO) is 3.4 times more than the highest 
orders could be placed by the end customer at week 12. As expected the performance of the 
members in tracking the customer’s demand is inferior to their performance in experiment 1. 
Therefore, the inventory levels of the members that are shown in Figure 10(b) are higher than 
the inventory levels in experiment 1 (see Figure 6). In experiment 2 before employing the 
information sharing and SBO, the highest inventory level which held by the SC members is 
110 which is held by the distributor at week 30 of the simulation (see Figure 10(b)). While, in 
experiment 1 the highest inventory level held by the SC members before employing the 
information sharing and SBO is 60, which was held by the manufacturer between weeks 25 
and 35 (see Figure 6). Figure 10(c) depicts the oscillations in cash cycles of the members, 
which are higher than the cash cycle oscillations in experiment 1. The highest CCC for the 
SC members before information sharing and SBO in experiment 2 is 1432 days. While, the 
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highest CCC for the SC members before information sharing and SBO in experiment 1 is 27 
days. The accumulated cost of the supply chain in this experiment before applying BWE 
reduction techniques is £14283.42, which is higher than the total cost in experiment 1.

TAKE IN FIGURE 10.

5.2.1 Impact of information sharing

The impact of information sharing on reducing the BWE, CFB, and SCTC is shown in Figure 
11(a)-(c). The ordering quantity of all members is given in Figure 11(a), which has a scale of 
0-27. While before information sharing, the placed orders by the SC members has a scale 0-
51 (see Figure 10(a)). According to the results shown in Figure 10(b), the inventory levels of 
the SC members before information sharing has a scale of 0-110. While, after the information 
sharing the inventory levels of the SC entities vary in the range of [0, 83] (see Figure 11(b)). 
According to the results illustrated in Figure 10(c), the CCCs of the members before 
information sharing has a scale of 0-1432. Although, after the information sharing the CCCs 
of the SC entities vary in the range of [0, 712] (see Figure 11(c)). In addition to the BWE and 
CFB reductions, the SCTC decreased dramatically as a result of implementing the 
information sharing strategy. The SCTC reduced by 23 percent, from £14283.42 before 
information sharing to £10947.54 after information sharing. 

TAKE IN FIGURE 11.

5.2.2 Impact of SBO

Using the values for the GA parameters presented in the previous section, the SBO is run for 
15 times. The standard deviation of the obtained fitness values is 6.71 and the best fitness 
value is 8332.83. The order quantities of the members are shown in Figure 12(a), which has a 
scale of 0-45. The largest order placed by a member in the SBO method is higher than the 
largest order placed in the case of information sharing, i.e., 27(see Figure 11(a)). While, the 
inventory levels of the members, as illustrated in Figure 12(b), are significantly lower than 
the inventory levels in the information-sharing scenario. The inventory levels of the SC 
members in the SBO model reaches to 0 at week 30 and remains unchanged until the end of 
the simulation. While, in the SD model with information sharing the inventory of the retailer 
who possess the lowest volatility among the SC members fluctuates in the range of [0, 38] 
from week 30 until the end of the simulation (see Figure 11(b)). The cash cycle of the 
members after using the SBO method is indicated in Figure 12(c) that proves the cash flow 
bullwhip is significantly reduced comparing the SD model with information sharing. After 
employing the SBO method, the CCC of the all members remains at 0 day from week 40 until 
the end of the simulation. While, after employing the information sharing strategy, the CCC 
of the manufacturer who possess the lowest volatility in cash to cash cycle among the SC 
members varies in the range of [0, 225] (see Figure 11(c)).

The SBO method proposes an aggressive approach toward bridging the gap between 
the desired inventory and current net inventory for the manufacturer and retailer. This implies 
that the value of  for the manufacturer and retailer is less than 0.5. A cautious strategy is 𝛼
needed for orders in the supply line for the retailer as, the value of  for the retailer is more 𝛽
than 0.5. Further experiments were performed to investigate if the recommended policy was 
robust for all random values in the range of [0-15] and deterministic lead times. 50 sets of 
random customer’s demand was generated by MATLAB, and the SBO was run 15 times for 
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each set to determine the fitness function. The lowest fitness function found would be the 
optimal solution for that specific set of random values when all 50 sets of random values are 
examined. The results indicate that the aggressive approach to inventory gap for the 
manufacturer and retailer and cautious approach to order quantity for the retailer was optimal 
in 45 sets. This shows that the recommended policy for inventory replenishment is an 
effective policy for diminishing the BWE, CFB, and SCTC when demand varies slightly [0-
15], and the lead times are deterministic. The lower inventory levels held by the SC members 
after employing the SBO method leads to lower SCTC comparing the information sharing. 
The total cost of the supply chain after using the SBO method decreased by 24 percent. The 
SCTC reduced to £8292.74 from the total cost of £10947.54 in SD model with information 
sharing. 

TAKE IN FIGURE 12.

5.3 Experiment 3

Experiment 3 extends the experiment 2 through considering the stochastic lead times in 
addition to the stochastic demand. The shipping lead time varies in the range of [0, 4] in each 
time period. Figure 13(a) illustrates the ordering quantities for each member of the supply 
chain before applying the SBO and information sharing. It demonstrates the amplifications 
occurring in the orders and the customer’s orders cannot be easily tracked. The manufacturer 
placed order (MPO) is 2.7 times more than the highest orders could be placed by the end 
customer at week 12. Although amplifications occurred in the placed orders, the performance 
of the members in tracking the customer’s demand is better than their performance in 
experiment 2. Therefore, the inventory levels of the members that are shown in Figure 13(b) 
are lower than the inventory levels in experiment 2.

In experiment 3, before employing information sharing and SBO, the highest inventory level 
held by the SC members is 27, which is held by the distributor at week 30 of the simulation. 
Whilst in experiment 2 the highest inventory level held by the SC members before employing 
the information sharing and SBO is 110, which was held by the distributor at week 35 (see 
Figure 10(b)). Figure 13(c) depicts the oscillations in cash cycles of the members, which are 
lower than the cash cycle oscillations in experiment 2. The highest CCC for the SC members 
before information sharing and SBO in experiment 3 is 40 days. Whilst the highest CCC for 
the SC members before information sharing and SBO in experiment 2 is 1432 days. The 
accumulated cost of the supply chain in this experiment before applying BWE reduction 
techniques is £18387.96, which is higher than the total cost in experiment 2, notwithstanding 
the lower levels of the inventory held by the members. The reason is that uncertainty in lead 
times affects the on-time delivery of the products negatively and consequently stock outs 
increase. As the unit stock out cost is higher than the unit inventory holding cost, the total 
cost of the supply chain in experiment 3 is higher than the total cost in experiment 2.

TAKE IN FIGURE 13.

5.3.1 Impact of information sharing

The impact of information sharing on reducing the BWE, CFB, and SCTC is shown in Figure 
14(a)-(c). The ordering quantity of all members is given in Figure 14(a), which has a scale of 
0-23. While before information sharing, the placed orders by the SC members has a scale 0-
40 (see Figure 13(a)). Although the ability of the members in tracking the customer’s demand 
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is ameliorated as a result of information sharing, the inventory levels illustrated in Figure 
14(b) show amplifications and are higher than the inventory levels before information 
sharing. The inventory levels of the SC members before information sharing has a scale of 0-
27(see Figure 13(b)). While, after the information sharing the inventory levels of the SC 
entities vary in the range of [0, 42] (see Figure 14(b)).  The higher inventory levels help the 
members to mitigate the lost sale, which decreases the total cost to £10672.94 after 
information sharing, from the original cost of £18387.96 before information sharing. Figure 
14(c) depicts the CCC of the members after information sharing that have risen compared 
with before information sharing. The CCC increases are caused by higher days inventory 
outstanding that is caused by higher inventory levels. According to the results illustrated in 
Figure 13(c), the CCCs of the members before information sharing has a scale of 0-40. 
Although, after the information sharing the CCCs of the SC entities vary in the range of [0, 
687] (see Figure 14(c)).

TAKE IN FIGURE 14.

5.3.2 Impact of SBO

Using the values for the GA parameters presented in experiment 1, the SBO is run 15 
times. The standard deviation of the obtained fitness values is 8.59 and the best fitness value 
is 8761.54. The order quantities of the members are shown in Figure 15(a), and have a scale 
of 0-30. Similar to experiment 2, the largest order placed by a member in the SBO method is 
higher than the largest order placed in the case of information sharing, i.e., 23 (see Figure 
14(a)). Whilst the inventory levels of the members, are illustrated in Figure 15(b), are much 
lower than the inventory levels in the information-sharing scenario. In the SBO model, the 
inventory of the retailer who possess the highest inventory level among the SC members from 
week 60 until the end of the simulation remains at 8 crates. While, in the SD model with 
information sharing the inventory of the retailer who possess the lowest volatility among the 
SC members fluctuates in the range of [0, 42] at the same time period (see Figure 14(b)). The 
cash cycle of the members after using the SBO method is shown in Figure 15(c) that proves 
the cash flow bullwhip is significantly reduced comparing the SD model with information 
sharing. After employing the SBO method, the CCC of the retailer who possess the highest 
cash to cash cycle among the members remains at 10 days from week 60 until the end of the 
simulation. While, in the SD model with information sharing the CCC of the retailer has a 
scale of 0-275 (see Figure 14(c)).

TAKE IN FIGURE 15.

The SBO method proposes an aggressive approach to bridging the gap between the 
desired inventory and current net inventory for the distributor and the wholesaler.  The value 
of  for the distributor and wholesaler is less than 0.5, and a cautious strategy is required for 𝛼
orders in the supply line for the distributor and wholesaler, i.e., the value of  for the retailer 𝛽
is more than 0.5. Further experiments were performed to investigate if the recommended 
policy was robust for all random values in the range of [0-15] and random lead times in the 
range of [0-4]. 50 random sets representing customer’s demand and lead times were 
generated, and the SBO was run 15 times for each set to determine the fitness function. The 
lowest fitness function found would be the optimal solution for that specific set of random 
values. To identify the most frequent policy for bridging the inventory gap and supply line 
consideration, the recommended policies for the random sets are examined. Table 5 shows 
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the replenishment policies that occurred most frequently and the associated mean fitness 
values.

This experiment proves that the replenishment policy is found by the SBO method. 
Aggressive policies by the distributor and wholesaler for inventory gap and cautious policies 
by the distributor and wholesaler to supply line are not robust for every set of random 
customer orders and lead times within the defined ranges. However, these policies occur most 
frequently and provide the highest fitness value. The lower inventory levels held by the SC 
members after employing the SBO method leads to lower SCTC comparing the information 
sharing. The accumulated cost of the supply chain in the SBO method amounts to £8729.90 
which is 18 percent lower than the accumulated cost in the SD model with information 
sharing. 

TAKE IN TABLE 5.

6. Concluding discussion

Supply chain management seeks to match the supply of products with the demand of 
customers. To maintain responsiveness in the supply chain, in addition to the product flow, 
the supply of monetary flow is required to be matched with the demand of the agents. 
Heterogeneous distribution of cash between supply chain members known as the cash flow 
bullwhip (CFB) decreases the efficiency of the supply chain. To address the issue, this study 
presented a simulation-based optimization approach in which a system dynamics simulation 
model and a multi objective optimization model are integrated to minimize CFB through the 
supply chain network in addition to minimization of the BWE and SCTC which have been 
investigated (O’donnell et al. 2006; Hassanzadeh, Jafarian, and Amiri 2014; Goodarzi et al. 
2017).

6.1. Theoretical contribution

Incorporating financial flow modelling into SC models results in identifying the optimal 
financial decisions in addition to the optimal operational decisions (Tangsucheeva and 
Prabhu 2013; Goodarzi et al. 2017). This paper makes three main contributions. Firstly, it 
extends previous supply chain research on the application of GAs on minimizing the BWE 
(Lu et al. 2012; Duggan 2008) through diminishing the destructive effects of the BWE in SC 
cash flow in addition to the product flow. Secondly, it incorporates the cash flow modelling 
into inventory planning models and recognises the optimal values to the financial decisions 
parameters, in addition to the inventory decisions. Thirdly, it incorporates CFB minimization 
as an objective function into an SBO model. The results show that the GA has the ability to 
find the optimal financial and inventory decisions parameters for each member of the SC to 
reduce the total cost, BWE, and CFB.

The initial model is developed as in (Aslam and Ng 2016) to validate the approach by 
observing similar results and then extending the SBO model. The main objective of the 
proposed SBO model is to find the optimal values of desired inventory, desired supply line, 
forecasting parameter for inventory, forecasting parameter for supply line, sales price per 
unit, and unit cost for supply chain entities to make trade-offs between the SCTC, CFB, and 
BWE. Three experiments were developed to investigate the ability of the SBO model in 
identifying the optimal replenishment policy. The first experiment was the MIT beer 
distribution game, which employs deterministic demand and lead times. The SBO found the 
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optimal replenishment policy to be non-aggressive approach to the inventory gap for all 
members, and a cautious approach to orders in the supply line for the retailer and distributor. 
The second experiment tested random demand and deterministic lead times. The SBO found 
the optimal replenishment policy to be an aggressive approach to the inventory gap for the 
retailer and manufacturer, and a cautious approach to orders in the supply line for the retailer. 
The third experiment extended the second experiment through considering random lead times 
in addition to the random customer demand. In this experiment, an aggressive approach to the 
inventory gap for the distributor and wholesaler and cautious approach to orders in supply 
line for the distributor and wholesaler was identified to be the optimal replenishment policy, 
However, the recommended policy may not be optimal for every set of random customer 
demand and lead times. 

The SD methodology which has been frequently used for BG modelling lacks the 
capability of providing optimal values to the decision variables. By applying SD modelling, 
the modeller is solely able to compare the effects of varied policies, different values of the 
controllable parameters, through performing what-if analysis which may not be an effective 
strategy particularly, when the decision parameters are continuous. Consequently, 
incorporating optimization algorithms into the SD simulation transforms it to a prescriptive 
tool, rather than a descriptive one. The results demonstrated the superiority of the SBO 
approach over SD modelling with and without information sharing between supply chain 
members as it can manage the CFB within supply chain networks through deriving optimal 
values for the inventory, supply line, and financial decisions parameters in presence of 
conflicts between supply chain objectives. 

6.2. Managerial implications

Working capital optimization in addition to the total cost optimization plays a pivotal role in 
boosting the efficiency of SCM. Therefore, it is imperative that working capital metrics such 
as the CCC are incorporated into supply chain models. The CCC represents the performance 
of a firm in managing its capital. The lower the CCC the more successful the firm is in 
managing its capital. High volatility in the CCCs of the SC members caused by the BWE 
yields volatility in liquidity that may trigger inefficiencies in operational processes of the 
members such as purchasing, and consequently reduce SC service levels. Given the results of 
our study, SC managers should control the fluctuations in the CCCs of the SC members, if 
they want to manage the liquidity within the SC network. The proposed SBO model in this 
research allows SC managers to mitigate the CFB significantly under deterministic and 
stochastic demand and lead time. This is achieved through identifying the optimal values for 
the sales price, unit cost, and inventory decisions of the members. In the original model of the 
BG, the CCC for the SC members ranges from 30 to 500 days. After employing the SBO 
methodology, the CCC ranges from -15 to 32 days. In the presence of demand uncertainty in 
the BG model, the cash to cash cycle ranges from -5 to 1500 days. However, after employing 
the SBO methodology the CCC ranges from -5 to 40 days. In the presence of uncertainty in 
demand and lead times in the BG model, the CCC ranges from -5 to 40 days. After applying 
the SBO technique, the CCC ranges from -5 to 32 days. 

As well as reducing the CFB, the proposed SBO model shows how SC managers can reduce 
the SCTC significantly. In the original model of the BG, the SCTC amounted to £10816. 
However, after employing the SBO methodology the SCTC decreased to £7017.94. In the 
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presence of demand uncertainty in the BG model, the SCTC amounted to £14283.42. 
Although, after employing the SBO methodology the SCTC reduced to £8292.74. In the 
presence of uncertainty in demand and lead times in the BG model, the SCTC amounted to 
£18387.96. While after applying the SBO technique, the SCTC diminished to £8729.90.

Moreover, the results of the conducted experiments show the superiority of the proposed 
SBO model over the information sharing strategy which is often implemented by SC 
managers in practice to mitigate the SCTC. After employing the SBO technique the SCTC 
reduced by 29% comparing the SCTC of the SD model with information sharing. Similarly, 
the SCTC in the SBO model under demand uncertainty and demand and lead time 
uncertainties reduced by 24% and 18%, respectively comparing the SD model with 
information sharing. Reducing the gap between the SD model, with information sharing and 
the SBO model as the number of stochastic parameters increase, highlights the importance of 
information sharing among supply chain members in mitigating the SCTC. Therefore, SC 
managers who are managing SC networks which encounter various uncertainties could 
benefit from significant cost reduction through applying this information sharing strategy.
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6.3. Limitations and future research

To recognize directions for future research, the limitations of this work are as follows. Firstly, 
our simulation model was developed based on the beer distribution game structure (Sterman 
1989; Joshi 2000). Similar simulation models can be developed to control cash flow bullwhip 
(CFB) for other supply chain networks. Secondly, in this paper, anchoring and adjustment 
heuristic (Tversky and Kahneman 1974) was employed as an inventory ordering policy. 
There are other replenishment policies such as reorder point-order quantity (Q,r) which may 
be integrated into future research. Thirdly, other BWE contributors such as order batch and 
lead time have not been optimized in this study. Another research opportunity may arise by 
extending this paper through considering the aforementioned parameters. Fourthly, further 
work can be carried out to identify an optimization algorithm which is more effective than the 
GA in CFB minimization under lead time uncertainty. Another research topic is to define 
other metrics rather than cash conversion cycle to measure cash flow bullwhip and 
controlling CFB through tuning its controllable parameters. 
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Fig. 1. SBO process

Fig. 2. A four-echelon supply chain
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Figure 5. The bullwhip effect

Figure 6. The inventory of supply chain members
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Figure 2. The cash flow bullwhip

 

 
Figure 8. Impact of information sharing for experiment 1 
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Figure 9. Impact of employing SBO for experiment 1 

Figure 10. Results for experiment 2 before using information sharing and SBO 

(a) (b)

(c)

(a) (b)

(c)

Page 34 of 42

http://mc.manuscriptcentral.com/tprs  Email: TPRS-peerreview@journals.tandf.co.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only
 

Figure 11. Impact of information sharing for experiment 2

 

Figure 12. Impact of employing SBO for experiment 2 
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Figure 13. Results for experiment 3 before using information sharing and SBO 

 

Figure 14. Impact of information sharing for experiment 3
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Figure 15. Impact of employing SBO for experiment 3 
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Table 1. Review of the SBO modelling in supply chain

Authors 
(years)

Research 
scope

Optimization 
technique

Simulation 
technique

Optimization 
objective

Case 
study

Key decision 
variables

(O’donnell 
et al. 2006)

SC inventory 
planning

Genetic 
Algorithm 
(GA)

System 
Dynamics 
(SD)

Min: Total 
cost

Beer 
distributi
on game

Order 
quantities

(Georgiadis 
and 
Athanasiou 
2013)

SC capacity 
planning

Proposed 
MOO 
methodology

SD Min: 
sustainability 
dimensions 
performance 
cost
Min: 
remanufacturi
ng capacity 
expansion

- Capacity 
planning 
decisions

(Aslam and 
Ng 2016)

. SC 
Inventory 
planning 
. Bullwhip 
effect

NSGA-II SD Min: 
Inventory 
holding cost
Min: Backlog 
cost
Min: 
Bullwhip 
effect

- Inventory 
planning 
decisions

(Sudarto, 
Takahashi, 
and 
Morikawa 
2017)

SC capacity 
planning

Proposed 
MOO 
methodology

SD Min: 
sustainability 
dimensions 
performance 
cost
Min: 
remanufacturi
ng capacity 
expansion

- Capacity 
planning 
decisions

Authors 
(years)

Research 
scope

Optimization 
technique

Simulation 
technique

Optimization 
objective

Case 
study

Key decision 
variables

(Ding, 
Benyoucef, 
and Xie 
2009)

. SC network 
design 
. Distribution 
planning 
. Inventory 
planning

Non-
dominated 
sorting 
genetic 
algorithm
(NSGA-II)

Discrete 
event 
simulation 
(DES)

Min: Total 
cost

Max: Service 
level

Automoti
ve
industry

. Network 
design 
decisions
. Operation 
strategies

(Bandaly, 
Satir, and 
Shanker 
2016)

SC inventory 
planning and 
financial 
hedging

GA DES Min: Total 
opportunity 
cost

Beer 
industry

. Quantity of 
financial 
options
. Safety stock 
levels

(Keramydas 
et al. 2017)

SC network 
design and 
inventory 
planning

OptQuest DES Min: Total 
cost
Min: CO2 
emissions

White-
goods

. Safety stock 
levels
. The order 
frequency
. Network 
design 
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Authors 
(years)

Research 
scope

Optimization 
technique

Simulation 
technique

Optimization 
objective

Case 
study

Key decision 
variables

(Mele et al. 
2006)

SC inventory 
planning

GA Agent-based 
modelling

Max: Total 
profit

Chemical 
industry

Inventory 
parameters

(Nikolopoul
ou and 
Ierapetritou 
2012)

. SC 
production 
scheduling
. Distribution 
planning and 
scheduling

MILP Agent-based 
modelling

Max: Total 
cost

- . Production 
planning 
decisions
. Distribution 
planning and 
scheduling 
decisions

(Peirleitner, 
Altendorfer, 
and 
Felberbauer 
2016)

SC inventory 
planning

NSGA-II Agent-based 
modelling

Min: Total 
cost
Max: Service 
level

- (s,Q) 
inventory 
parameters

Authors 
(years)

Research 
scope

Optimization 
technique

Simulation 
technique

Optimization 
objective

Case 
study

Key decision 
variables

(Puigjaner 
and Laínez 
2008)

. SC network 
design
. Distribution 
planning
. Cash 
management
. Bullwhip 
effect

Mixed integer 
linear 
programming 
(MILP)

Predictive 
control

Max: 
Corporate 
value

- . Financial 
decisions
. Network 
design 
decisions
. Planning 
decisions

(Gao and 
Wang 2008)

SC inventory 
planning

Particle 
Swarm 
optimization  
(PSO)

NA Min: Total 
cost

- (r,Q) 
inventory 
parameters

(Diaz, 
Bailey, and 
Kumar 
2016)

SC
Inventory 
planning

Simulated 
Annealing
Pattern 
Search
Ranking and 
Selection 
(SAPS&RS)

Discrete 
Markov-
modulated 
Chain 
(DMC)

Min: Total 
inventory cost

- (s,S) 
inventory 
parameters

(Boulaksil 
2016)

SC inventory 
planning

LP NA Min: Total 
cost
Max: Service 
level

- Safety stock 
levels
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Table 2. Nomenclatures

Symbol Definition
𝑂𝑃𝑡 Ordering decision made at the end of period t;
𝐷𝐹𝑡 Demand forecast at period t;
𝑁𝐼𝑡 Net inventory at time t;
𝑆𝐿𝑡 Supply line at time t;
γ Smoothing parameter;

COGS Cost of goods sold;
DIO Days inventory outstanding;
DSO Days sales outstanding;
DPO Days payable outstanding;

q Order quantity;
D Demand;
I Level of average inventory;
B Backlog;
m Collection policy;
n Payment policy;

SCTC Supply chain total cost;
MBWE Manufacturer bullwhip effect;
MCFB Manufacturer cash flow bullwhip;

𝑇𝐶𝑖 Total cost of entity i;
MPO Manufacturer placed orders;

MCCC Manufacturer cash conversion cycle;
𝜎2

𝑀𝑃𝑂 Variance of manufacturer placed order;
𝜎2

DD Variance of distributor demand;
𝜎2

𝑀𝐶𝐶𝐶 Variance of manufacturer cash conversion cycle;

𝛼𝑖
A fraction of the gap between desired on-hand inventory and current level of on-hand 
inventory of entity i;

𝛽𝑖
A fraction of the gap between desired supply line and current level of supply line of 
entity i;

𝐷𝐼𝑖 Desired inventory of entity i;
𝐷𝑆𝐿𝑖 Desired SL of entity i;
𝑆𝑃𝑖 Sales price per unit of entity i;
𝑈𝐶𝑖 Unit cost of entity i;
RPO Retailer placed orders;
WPO Wholesaler placed orders;
DPO Distributor placed orders;

RI Retailer inventory;
WI Wholesaler inventory;
DI Distributor inventory;
MI Manufacturer inventory;

RCCC Retailer cash conversion cycle;
WCCC Wholesaler cash conversion cycle;
DCCC Distributor cash conversion cycle;

i Supply chain member index;

Table 3. Sales price and unit cost of supply chain members

Manufacturer Distributor Wholesaler Retailer
𝑆𝑃 𝑈𝐶 𝑆𝑃 𝑈𝐶 𝑆𝑃 𝑈𝐶 𝑆𝑃 𝑈𝐶
1.5 1.25 2 1.75 2.5 2.25 3 2.75
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Table 4. Impact of population size on fitness function

Reverse fitness valuePopulation size Best (Min) Worst (Max) Mean Standard deviation
50 7055.64 7116.68 7072.37 28.68

100 7049.38 7136.38 7050.40 25.26
150 7046.29 7073.51 7047.80 14.62
200 7035.64 7053.38 7043.72 5.50
250 7035.64 7052.23 7041.52 5.21

Table 5. Replenishment policies found optimal for random demand and lead times

Replenishment policy Rate of occurrence Mean reverse fitness value
Aggressive distributor and 
wholesaler to net inventory gap
Cautious distributor and 
wholesaler to supply line

23 8876.28

Aggressive manufacturer and 
retailer to net inventory gap
Cautious retailer to orders in 
supply line

19 8935.61

Non-aggressive members to 
inventory gap
Cautious retailer and distributor

8 9027.52
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1

Appendix 1

The detailed description of the financial stock and flow model are presented as follows. The 
accounts receivable for each agent (19) is the product of downstream shipments and unit sales 
price of the product. The sales price of each member’s product is determined by (20)-(23).

The revenue of each agent (24) is defined as the product of unit sales price and 
downstream orders. The days sales outstanding (DSO) (25) is defined as average accounts 
receivable divided by the daily revenue. As the simulation model is run weekly, the revenue 
is divided by seven to determine daily revenue. To measure inventory value (26), the 
inventory level is multiplied by the product unit sales price. The cost of goods sold (COGS) 
(27) is measured by multiplying downstream orders and unit product cost. The unit product 
cost is composed of all the costs that the members incur for unit of product, such as the 
production cost for the manufacturer and purchasing cost for the distributor. The unit product 
cost for each member is defined by (28)-(31). 

d(Accounts receivable)
dt

 =  downstream shipments ×  product unit sales price (19)

Manufacturer unit sales price =  1.5 (20)

Distributor unit sales price =  2 (21)

Wholesaler unit sales price =  2.5 (22)

Retailer unit sales price =  3 (23)

d(Revenue)
dt

 =  downstream orders ×  product unit sales price (24)

DSO =  
Average(accounts receivable)

Revenue
7

(25)

d(Inventory value)
dt

 =  Inventory ×  product unit sales price (26)

d(COGS)
dt

= downstream orders ×  unit product cost (27)

 Manufacturer unit product cost =  1.25 (28)

 Distributor unit product cost =  1.75 (29)

 Wholesaler unit product cost =  2.25 (30)

Retailer unit product cost =  2.75 (31)

The days inventory outstanding (DIO) (1) is measured by dividing the average 
inventory value into the daily COGS. To measure the amount of payables (33), product unit 
sales price of the upstream member is multiplied by orders. The days accounts payable 
outstanding (DPO) (34) is the ratio of average accounts payable and daily COGS. Cash 
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2

conversion cycle (CCC) (35) for each supply chain member is the summation of DSO, and 
DIO minus DPO. 

DIO =  
Average (inventory value)

COGS
7

(32)

d(Accounts payable)
dt

=  orders ×  upstream unit sales price (33)

DPO =  
Average(accounts payable)

COGS
7

(34)

CCC =  DSO +  DIO -  DPO (35)
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