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ABSTRACT

NOZZLE CLOGGING PREVENTION
AND ANALYSIS IN COLD SPRAY

SEPTEMBER 2020

ALDEN F. FOELSCHE

B.S., UNIVERSITY OF MASSACHUSETTS, AMHERST

M.S.M.E, UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor David P. Schmidt

Cold spray is an additive manufacturing method in which powder particles are ac-

celerated through a supersonic nozzle and impinged upon a nearby substrate, provided

they reach their so-called critical velocity. True to its name, the cold spray process

employs lower particle temperatures than other thermal spray processes while the

particle velocities are comparably high. Because bonding occurs mostly in the solid

state and at high speeds, cold spray deposits are distinguished for having low porosity

and low residual stresses which nearly match those of the bulk material.

One complication with the cold spray process is the tendency for nozzles to clog

when spraying (in general) low-melting-point or dense metal powders. Clogging oc-

curs when particles collide with the inner nozzle wall and bond to it rather than

bouncing off and continuing downstream towards the substrate. The particles ac-

cumulate and eventually plug the nozzle passage. Clogging is inconvenient because

it interrupts the spraying process, making it impossible to complete a task. Fur-

thermore, when particle buildup occurs inside the nozzle, the working cross-sectional
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area decreases, which decreases the flow velocity and therefore the particle velocity,

ultimately jeopardizing the particles’ ability to reach critical velocity at the substrate.

In this work, computational fluid dynamics (CFD) is used to study various as-

pects of nozzle clogging. Nozzle cooling with supercritical CO2 as the refrigerant is

investigated as a means to prevent clogging. The effects of nozzle cooling on both

the driving gas and the particles are addressed. Simplified pressure oscillations at

the nozzle inlet are imposed to determine whether such oscillations, if present, can

cause clogging. Subsequently, more realistic and complicated flow oscillations are

introduced to isolate a potential root cause of clogging. Finally, several novel nozzle

internal geometries are evaluated for their effectiveness at preventing clogging. A

recommendation is provided for a nozzle to be tested experimentally because it might

completely prevent clogging.
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INTRODUCTION

Cold gas dynamic spraying (cold spray) is a metal deposition process with multiple

industrial applications. It belongs to a wider family of thermal spray processes which

use high-temperature gases to apply coatings to parts. The main difference between

cold spray and other thermal spray processes is that cold spray takes place at rela-

tively low temperatures and much higher particle velocities [15]. Because the particle

bonding occurs mostly in the solid state, the material crystal structure is maintained,

resulting in a deposit with low porosity [10] and low residual stresses [123] similar

to the bulk material. Other thermal sprays largely rely on the rapid solidification of

molten particles for bonding and therefore do not have the same advantages in terms

of porosity and tensile properties. Cold spray deposits are hard, dense, and homoge-

nous. The process is also multipurpose in that it can enhance mechanical properties

[127], allow the joining of two dissimilar metals [14], repair damaged parts [55], and

additively manufacture parts [145]. It can also offer a more sustainable solution com-

pared to other methods both in terms of its environmental impact and its ability to

refurbish expensive parts [136]. Because of these attributes, there is much interest in

further developing cold spray for industry and manufacturing.

In the cold spray process, gas is accelerated (typically helium or nitrogen [88], but

sometimes air [52]) through a converging-diverging de Laval nozzle which carries solid

atomized powder. The powder material is often metal, as is the case in this study,

though polymers [45], ceramics [1], and composites [150] can be deposited with cold

spray as well. During the expansion of gas in the nozzle, particles are accelerated

to high speed and are impinged upon a nearby substrate. Particles will bond to

the substrate if they reach a certain critical velocity [115], and the bonded particles
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accumulate to produce a deposit on the substrate. The whole process is illustrated in

Figure 1, while an axisymmetric diagram of nozzle zone names is provided in Figure

2.

Figure 1: Overview of the Cold Spray Deposition Process [16]

Figure 2: Nozzle Zone Names

One major issue with cold spray is nozzle clogging, which occurs when particles

adhere to the inner nozzle wall rather than exiting the nozzle and adhering to the

substrate [70]. The particles will accumulate on the wall (a phenomenon termed

fouling in cold spray), effectively decreasing the inner diameter of the nozzle to the

point that it clogs and cannot operate. Even as particles accumulate on the nozzle
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wall before it completely clogs, the gas velocity is compromised because the working

diameter has decreased, resulting in lower particle exit velocities, thus jeopardizing the

particles’ ability to bond to the substrate upon impact. The experiments in [81] show

that cold spray nozzles may clog in just three minutes. In general, clogging occurs

with dense powders and with low-melting-point powders. Specifically, aluminum

[124], copper [94], nickel [109], stainless steel [113], Inconel [138], and titanium [109]

are notorious clogging-prone materials. Clogging can occur prior to the nozzle in the

injector tube as well [35], but the focus of this study is specific to nozzle clogging.

Clogging of cold spray nozzles is an expensive problem because they are usually

made from specialized materials such as tool steels [63], alloys [63], plastics [86],

carbides [109], and cermets [116]. The high cost of nozzles makes their frequent

replacement impractical. Clogging is also troublesome because the operation window

is drastically shortened, making it difficult to effectively spray a surface and finish a

task. Nozzles can be cleaned and restored to proper specifications, but this requires

inconvenient machining operations. Spraying a mix of clogging-prone powders with

ceramic particles can keep the nozzle from clogging [51, 109], but it is not always

favorable to risk the impingement of extraneous material on the substrate.

Wang et al. found that the two factors primarily responsible for clogging are a

high-temperature nozzle wall and particle dispersion [132], and their conclusion is in

harmony with other work. A copious amount of studies have concluded that increased

substrate temperature better facilitates particle bonding in cold spray [134, 148, 99].

Since the hot applicator region transfers significant heat axially through the nozzle

material [132], the substrate heating principle can be applied to the nozzle wall: the

greater the nozzle wall temperature, the greater the particles’ propensity for bonding

to the nozzle wall will be, and the greater the propensity for particle-wall bonding,

the greater the propensity for clogging.
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Particle dispersion is the other primary culprit of clogging. Upon exiting the

feeder tube and entering the prechamber, the particles disperse and occupy the entire

prechamber volume [72]. This dispersion is likely promoted in multiple stages of the

cold spray process. During their ten-foot journey from the powder feeder to the nozzle,

the particles collide with the feeder tube wall a myriad of times, acquiring radial

velocities before they even arrive at the nozzle. They carry those radial velocities

into the prechamber, and their inertia prevents them from perfectly following the

fluid streamlines, allowing for dispersion immediately upon entering the prechamber.

Another factor contributing to dispersion in the prechamber is the shear produced by

the cold gas from the powder feeder and the hot main gas from the applicator mixing

at different velocities, which produces increased levels of turbulence in that region.

This turbulence has potential to contribute to particle dispersion as well.

Furthermore, once the particles occupy the prechamber volume, they are bound to

collide with the converging section of the nozzle just downstream, obtain significant

radial velocities, and carry those radial velocities into the diverging section. Since

there are also high levels of turbulence at the throat, there is an increased likelihood

that particles will be scattered away from the centerline as they enter the supersonic

region [72, 146]. Nozzle clogging occurs in the diverging section because it is in that

region that particles reach critical velocity [70, 109]. When they collide with the wall

at such speeds, they bond, accumulate, and eventually clog.

Although particle temperature is known to affect bonding in cold spray [105],

several studies have indicated that particle temperature does not play the dominant

role, both in cases of substrate heating [29] and specifically nozzle clogging [70].

Because it is not a primary factor for clogging, particle temperature will not be

discussed at length in this study.

To better comprehend the clogging problem and to suggest methods of mitigating

it, four computational fluid dynamics (CFD) efforts have been embarked upon in this
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work, separated by chapter. To outline broadly, the first chapter addresses the first

primary cause of clogging in cold spray (the high-temperature nozzle wall), while the

last three chapters address the second primary cause (particle dispersion). In the first

chapter, a summary of new nozzle cooling experiments is provided with simulations

describing the effects that cooling has on the flow and ultimately on the particles. The

second chapter presents simplified simulations of pressure fluctuations in the feeder

tube which serve to inquire whether such flow oscillations, if present, would cause

clogging. In light of the conclusion from chapter two that pressure oscillations can

cause clogging, the third chapter is dedicated to implementing a more realistic and

specific oscillating mass flow condition to determine whether the flow oscillations from

the metering wheel are large enough to cause the clogging observed in experiments.

Chapters two and three are based on specific clogging experiments [109]. The fourth

chapter describes novel nozzle geometries and determines how effective they are at

preventing clogging. A recommendation is provided for a nozzle geometry to be

experimentally tested because it might completely prevent clogging. The final chapter

summarizes the findings from chapters one through four and gives recommendations

for future studies. ANSYS Fluent version 19.1 was used for all simulations in this

work.
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CHAPTER 1

NOZZLE COOLING WITH SUPERCRITICAL CO2

1.1 Motive and Background

Because the high-temperature nozzle wall is a primary cause of clogging in cold

spray [132], this study has sought to cool the nozzle wall to suppress clogging. Nozzle

cooling has been implemented in many past works for this purpose. Wang et al. suc-

cessfully prevented the clogging of aluminum powder by putting a home-made water

cooling device on the nozzle [132]. Huang et al., in their study on the relationship

between particle velocity and particle-substrate adhesion strength, used water cooling

to prevent their copper particles from clogging [39]. Lehtonen et al. likewise relied

on water cooling to avoid nozzle clogging and carry out their study [57], as did Singh

et al. [108], Wong et al. [138], and others [125, 67]. Because of its effectiveness,

water cooling of cold spray nozzles has become standard practice both in academia

and industry [41].

The ColdSpray PCS-1000 is a cold spray water cooling device [67] created by

Plasma Giken with advertised capability to spray aluminum, copper and copper al-

loys, nickel and nickel alloys (including Inconel), stainless steel, and titanium [92],

which are all clogging-prone powder materials [109]. The ColdSpray PCS-1000 has

made ground-breaking progress in clogging prevention, especially in its proven ability

to deposit Inconel; first with a narrow particle size distribution [67] and later with

a broader one [138], obtaining identical velocity and porosity results in both studies.

Conventional water cooling methods have been unreliable at preventing clogging with

Inconel.

6



As is common of industrial cold spray powder feeders [95], Plasma Giken’s cooling

device can accept a powder feed rate up to 500 g/min [92], which is large compared to

those typically implemented in cold spray processes, providing users with the liberty

to choose a preferable rate. The ColdSpray PCS-1000 is rated to 1000 °C and 5 MPa

inlet conditions [93], which covers most (but not all) relevant cold spray conditions.

Despite the successes of the ColdSpray PCS-1000, more progress must be made

before the clogging issue is fully resolved. In their technical report, Vo et al. used

the ColdSpray PCS-1000 while spraying copper powder, and experienced clogging at

800 °C [125]. Upon lowering the applicator temperature from 800 °C to 600 °C, the

clogging ceased. Their report concludes: “Clogging is a general issue that limits the

number of powders available for practical use in cold spray”. Additionally, some cold

spray processes employ a 6 MPa inlet pressure [100], which exceeds the allowable

operating range of the ColdSpray PCS-1000.

The motive behind using supercritical CO2 as a means of nozzle cooling stems

from the limitations associated with using water. It is well-known that water has a

freezing temperature of 273 K, which puts a lower-bound on its cooling capabilities.

CO2, on the other hand, is famous for being quite cold upon flashing and forming

dry ice. Flashing occurs when the supercritical fluid experiences a sudden pressure

drop below its critical point, causing a phase change from supercritical fluid to both

solid and gas. The phase change to distinct gas causes the CO2 to absorb energy

from its surroundings, but the primary reason CO2 becomes so cold when flashing is

because it has a uniquely high Joule–Thomson coefficient [128]. The Joule–Thomson

coefficient of a fluid determines how much its temperature changes when passing

through a small orifice (or throttling valve). Because the Joule–Thomson coefficient

for CO2 is so high, it experiences a large temperature drop upon flashing, which is

advantageous for cooling.
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In-house lab measurements of flashing CO2 recorded temperatures of 203 K - well

below the coldest operating temperature of water. As a refrigerant, CO2 presents

major improvements, showing promise for expanding spray capabilities previously

unattainable. Unlike the ColdSpray PCS-1000, the CO2 cooling collar used in this

study does not have limitations on allowable inlet conditions since it simply slides

over the outer diameter of the nozzle without otherwise affecting the process. Of

course, it does not necessarily follow that because the collar can be used with a 6

MPa inlet that it will eradicate clogging at that condition, but the present cooling

jacket can at least be used at that condition. In addition to the thermal benefits, CO2

is environmentally benign, non-hazardous, and inexpensive [73], which motivates its

regular use in the food and beverage industry for refrigeration [13].

Another improvement that CO2 cooling may provide is an ability to use nitro-

gen driving gas rather than helium for clogging-prone particles with high critical

velocities. It is well-known in the field of cold spray that helium can achieve higher

velocities than nitrogen can, and helium’s advantage is due to its larger specific heat

ratio and specific gas constant [88]. Helium is extremely expensive compared to ni-

trogen though, so the capability of using nitrogen instead is desirable. Although it is

possible to reach higher particle velocities by increasing inlet temperature [6], there

are drawbacks to this technique. As applicator temperature increases, the nozzle wall

gets hotter, promoting clogging. Helium is often used because it enables clogging-

prone powders to be sprayed at lower temperatures and reach the same velocity [140].

With CO2 cooling, however, these low applicator temperatures may not be necessary.

The cooling may be so effective that even high-temperature nitrogen cannot bring

the nozzle wall to clogging-prone temperatures. The theory has not been tested, but

if CO2 does enable a switch to nitrogen, it will reduce costs appreciably. A limita-

tion of this potential improvement is the spraying of low-melting-point metals like

aluminum, which cannot be cold sprayed in the first place if exposed to gas temper-

8



atures above its melting point. For such metals, helium would still be required to

reach high velocities.

The primary goals of the present cooling device are twofold: to make more powders

sprayable without clogging and to allow more conditions for them to be sprayed at.

1.2 Experiments

1.2.1 Experimental Setup

The experiments in this study incorporated a novel nozzle cooling jacket that

fits around the nozzle’s outer diameter (see Figure 4), employing flashing CO2 for

cooling. The jacket was 3-D printed out of Inconel (which has a low ductile to brittle

transition temperature) to avoid brittle material from fracturing and shattering with

high-pressure and low-temperature CO2. There are several stages for the CO2 to

undergo in this cooling process. It begins as a liquid in a pressurized tank and is

transported through a siphon into a chiller. From there, it flows through a high-

pressure pump, ensuring the fluid is supercritical. The CO2 is constricted through

a small capillary tube until it reaches the cooling jacket chamber (which envelopes

the nozzle), where the volume increases, pressure drops, and the CO2 flashes. Figure

3 shows a diagram of the cooling process as a whole, while Figure 5 presents an

illustration of CO2 flashing inside the collar and onto the nozzle.

The chiller used in this study was a Cool Clean® LC CO2 Liquid Condensing

System and the pump was a Cool Clean ® LB-40 Liquid CO2 Booster System. The

specific design features of the cooling jacket are not presented in this work but will

be published elsewhere.

A VRC Gen III Cold Spray System was used to conduct these cooling experiments.

Three powder materials were used in this study: two stainless steel powders (Praxair

17-4PH and FE-101) and a high-purity nickel (Praxair Ni-914-3). The 17-4PH and

nickel powders were sieved to a minimum of 16 microns to avoid using fines (small

9



Figure 3: Overview of Cooling System

Figure 4: Illustration of Cooling Collar on Nozzle
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Figure 5: Illustration of Flashing CO2 Inside Cooling Collar

particles), which are known to cause clogging [94], while the FE-101 was sprayed first

without sieving and later after being sieved to a minimum diameter of 22 microns

and a maximum of 46.

A common nozzle geometry made of tungsten-carbide was used, the dimensions of

which are provided in Figure 6, and helium was used as the driving gas. An applicator

condition of 600 °C and 3 MPa was used for the 17-4PH and nickel powders, while

multiple applicator temperatures were used to spray the FE-101. The applicator

pressure was 3 MPa for all experiments in this study. The feeder tube gas volumetric

flow rate was 120 standard liters per minute (SLPM) and was measured at room

temperature (293 K).

1.2.2 Experimental Results

The nickel and stainless steel powders sprayed in this study are known to clog at

these conditions without cooling, and the results are summarized in Table 1. Without

cooling, the nickel powder clogged in the diverging section near the throat while the

stainless steel clogged at the nozzle exit. The results in Table 1 prove, at the very least,

that CO2 cooling can successfully deposit the same material that water cooling can
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Table 1: Cooling Results with Nickel (Praxair Ni-914-3) and Stainless Steel (Praxair
17-4PH) Powders

Powder
Material

Cooling
Method

Observable
Clogging

Ni-914-3 water no
Ni-914-3 CO2 no
17-4PH water no
17-4PH CO2 no

Table 2: Cooling Results with Stainless Steel (Praxair FE-101) Powder

Applicator
Temperature

Cooling
Method

Sieved
Observable
Clogging

350 CO2 no yes
500 CO2 no yes
350 water no yes
500 water no yes
350 water yes no
500 water yes no
600 water yes yes

without clogging. A goal for future experiments is to demonstrate a superior ability

to mitigate clogging with CO2, but a preliminary study needed to be completed first.

The FE-101 results in Table 2 serve to demonstrate some limitations of nozzle

cooling with both CO2 and water. In past works, FE-101 powder was found to clog

when helium applicator temperatures exceeded 350 °C and with particle diameters

ranging from 15 to 45 microns [2]. In the present study, when the powder was not

sieved, it always clogged regardless of inlet conditions and cooling material, including

at 350 °C and 3 MPa, which is a condition known to be acceptable when the minimum

particle diameter is 15 microns [2]. At a condition where cooling is not necessary

when fines are sieved out, clogging occurred with fines present even when cooling was

applied.

Upon sieving to a minimum particle diameter of 22 microns and a maximum of

46, clogging ceased with the water cooler until the applicator temperature reached
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600 °C, at which point fouling resumed. There is an applicator temperature limit at

which water cooling cannot prevent clogging, which is a similar result to conclusions

found in other works [125]. At present, an experiment with sieved FE-101 powder

has yet to be conducted with the CO2 cooler.

It is already well-known that small particles and high applicator temperatures

promote clogging, but the conclusion that fines promote clogging even with nozzle

cooling breaks new ground. Evidently, cooling cannot entirely mitigate the clogging

effect of fines, even with CO2. Table 2 shows that cooling is effective for FE-101

particles larger than 22 microns, but there is a limiting diameter below 22 microns

at which cooling cannot prevent clogging. A valuable future study could involve

identifying this limiting diameter, but the limit would probably be unique for each

powder material and thus be inconvenient to obtain.

The most crucial future study is to test more powders and inlet conditions with

the CO2 cooler, especially those for which water cooling fails to prevent clogging.

Although it may expand spray condition possibilities for certain powders, cooling

alone cannot prevent clogging for all materials of all particle sizes, especially fines. If

clogging is to be completely eradicated, other methods of clogging prevention must

be incorporated as well. Such methods are presented in chapter four. Regardless,

CO2 cooling shows promise for better suppressing clogging, and thus it is worth

investigating further.

1.3 Modeling

1.3.1 Purpose of Computational Work

The primary purpose of the CFD in this work is to evaluate whether particle

velocity or temperature are substantially altered by cooling the nozzle. Concern has

been raised both in literature [151] and in technical discussions that the particles may
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be so affected that the deposit is compromised, and this computational effort seeks

to address those concerns.

1.3.2 Modeling Methodology

1.3.2.1 Boundary Conditions

A 2-D axisymmetric model was used for all simulations in this chapter. The

nozzle geometry was modeled according to those used in the experiments, and an

axisymmetric schematic of its dimensions is provided in Figure 6. The interior walls

of the nozzle were given the no-slip condition and were thermally coupled to the fluid

flow. The outlets were set to atmospheric conditions: zero gauge pressure and 293 K.

There was no heat transfer computed between the fluid and the feeder tube wall, and

likewise for the substrate, since those heat transfer effects are not the focus of this

study. Nozzle cooling was modeled by applying a temperature boundary condition

on the exterior nozzle wall of 203 K, which was the in-lab measurement of that

wall upon flashing CO2 without any driving gas flowing through. Although methods

exist for modeling heat transfer effects with flashing CO2 [12], a fixed temperature

boundary makes the simulations appreciably simpler. Plus, the nozzle is almost

certainly warmer than 203 K while operating due to high driving gas temperatures,

which ensures cooling effects are not understated in the present models.

For simulations where the nozzle was not cooled, the outer wall (represented by a

blue line in Figure 6, dimension O) was set to adiabatic. Throughout this study, the

adiabatic case refers to the simulation with an adiabatic outer nozzle wall, while the

cooled case refers to the simulation with a cooled outer wall.

In the experiments, the feeder tube volumetric flow rate was set to 120 SLPM and

the main gas was measured at roughly room temperature (293 K). Because Fluent

requires a mass flow rate as input rather than a volumetric flow rate, the volumetric

flow rate was converted into a mass flow rate by using equations 1-3. First, the
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Figure 6: Nozzle Geometry (with Wall)

volumetric flow rate in SLPM was corrected for pressure, providing a flow rate in

liters per minute (LPM):

V̇LPM = V̇SLPM
Tf
Troom

14.696

Pf,psi

(1)

Next, the helium density at the feeder tube inlet was obtained with the ideal gas law:

ρf =
M × Pf

R× Tf
(2)

Finally, the mass flow rate was computed:

ṁ = V̇LPM × ρf = 0.33296 g/s (3)

The annulus (dimension G in Figure 6) was held at constant temperature and

pressure throughout the experiments, but in this computational work it was the

subject of a parameter study; the temperatures being 673 K and 873 K and the

pressures being 3 MPa and 4 MPa. The feeder tube inlet (dimension F in Figure 6)

was held at a constant 0.33296 g/s and 293 K.

The boundary between the solid nozzle wall and the atmosphere (dimension P in

Figure 6) was thermally coupled in this study, despite conventional practice in cold

spray being to set this boundary as heat-insulated [147]. It was desirable to allow heat
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transfer at dimension P because the gas flow exiting the domain passing by the nozzle

tip has a convective cooling effect, even if only slight. Since the aim of this study is

to ascertain cooling effects, the cooling effects at the nozzle tip were computed.

1.3.2.2 Mesh Description

A mesh dependence study with a large range of mesh sizes was conducted, and

although it was preferable to use a finer (larger) mesh, especially in the supersonic re-

gion, it was not computationally feasible due to the number of simulations involved in

this project. In particular, when cell layers are added near the fluid-wall interface, the

wall time required for convergence was considerably increased. The mesh finally im-

plemented in this study consisted of 186,860 quadrilateral cells, and its specifications

based on zone name are provided in Table 3.

Six thin cell layers were applied to each side of the fluid-wall boundary in an

effort to resolve the flow features near the wall and the solid wall temperature at the

boundary. The wall yplus values ranged from 0.0004 near the nozzle exit and 0.0225

at the throat, which are well within recommended values for computing heat transfer

in supersonic converging-diverging nozzles [152].

Table 3: Mesh Specifications Based on
Zone Name for Cooling Simulations

Zone Cell Size (mm)
inlets 0.2
prechamber 0.2
converging 0.2
diverging 0.05
standoff 0.1
atmosphere 0.4
nozzle 0.4
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1.3.2.3 Gas Phase Modeling

Since the flow is supersonic and compressible, the density-based implicit solver

was required. All simulations were converged to first-order accuracy. The helium

density was set to vary according to the ideal gas law, while a temperature dependent

thermal conductivity and viscosity were implemented according to the correlation

equations in Kreith and Manglik’s textbook [53]. The thermal conductivity formula

is presented in equation 4 and the viscosity formula is presented in equation 5:

k =

[
88.89 +

(
93.04× 10−2

)
T +

(
− 1.79× 10−4

)
T 2

+

(
3.09× 10−8

)
T 3

]
4.186× 10−4

(4)

µ =

[
54.16 +

(
50.14× 10−2

)
T +

(
− 89.47× 10−6

)
T 2

]
10−7 (5)

where the units of k are W/m-K and the units of µ are kg/m-s.

Figure 7 depicts how, according to several sources [53, 89, 91, 122, 135], the

thermal conductivity and viscosity vary across the relevant temperature range of this

cold spray operation. Kreith and Manglik’s correlation equations [53] for viscosity

and thermal conductivity strongly agree with Petersen’s viscosity equation [91] and

Vargaftik and Yakush’s thermal conductivity equation [122]. Three renditions of

the Sutherland Law are depicted, some showing better agreement than others. The

Sutherland Law is a gas viscosity approximation, resulting from a kinetic theory, that

uses an idealized intermolecular force potential [117]. The formula is:

µ = µ0

(
T

T0

)3/2
T0 + S

T + S
(6)

where µ0 is a reference value for viscosity, T0 is a reference value for temperature,

and S is an effective temperature, also called the Sutherland constant. Each gas
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Figure 7: Temperature-Dependent Helium Gas Properties

has its own unique Sutherland constant. Most cold spray studies assume a constant

gas viscosity, but when the viscosity’s temperature dependence is accounted for, the

Sutherland Law is almost always the method used [147]. Despite the Sutherland

Law being incorporated with some regularity, the literature to date lacks unanimity

as to the value of S for helium. In his textbook on viscous flow, White provides a

value of S = 79 K [135], while Papyrin et al. provide a value of S = 122 K in their

book on the cold spray process [89]. Both results are plotted in Figure 7. Papyrin’s

Sutherland constant seems most justified since it results in a viscosity closer to those

produced by Petersen and Krieth and Manklik, whereas White’s Sutherland constant

produces a viscosity that deviates from Petersen and Krieth and Manklik’s. Of course,

Petersen and Krieth and Manglik are not necessarily correct because they agree, but

in light of the inconsistent Sutherland constants between Papyrin and White, and the

excellent agreement between Petersen and Kreith and Manglik, Kreith and Manglik’s

correlation equations were used in these simulations. Plus, the Sutherland Law is an
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approximation for all gases, whereas Petersen and Kreith and Manglik’s equations

are specific to helium. There is a simplified version of the Sutherland Law used in

some cold spray studies [58, 83] that uses two coefficients instead of three (the three-

coefficient version is given in equation 6), but it is seldom used for helium and thus

it will not be expounded upon in this study.

To exemplify the repercussions of selecting an improper Sutherland constant, a

third Sutherland curve with S = 36 K was included in Figure 7. Since White’s con-

stant is 43 below Papyrin’s, this exemplifying constant was set to 43 below White’s.

Admittedly, the curves in Figure 7 representing S = 122, 79, and 36 K are some-

what close, and certainly describe viscous effects better than a constant viscosity

assumption does. The difference is still noticeable though, and could result in inac-

curacies especially in simulations predicting cooling effects where the boundary layer

temperatures differ drastically between the cooled and adiabatic cases.

Because an improper Sutherland constant can have potentially significant conse-

quences, future cold spray studies should be more careful to include the constants

they used. Several cold spray studies that incorporate the Sutherland Law do not

include the Sutherland constant they used, or even whether they used the two or three-

coefficient version of the Sutherland’s Law [4, 32], which leaves room for uncertainty

with helium. The Sutherland constant for nitrogen is more consistent throughout the

literature, with Sutherland himself [117] providing a value of SN2 = 109 K and White

providing 107 K [135].

The k-ε realizable turbulence model was used to predict the turbulence effects in

this chapter. After comparing the results of several turbulence models with this noz-

zle geometry, the k-ε realizable model was implemented because it produced a peak

in turbulence at the throat, which is physically likely according to Lupoi and O’Neill

[72] and Yin et al. [146]. Furthermore, when Zhalehrajabi et al. evaluated the abil-

ity of three different turbulence models to predict heat transfer inside a supersonic
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converging-diverging nozzle, they found the k-ε model outperformed the k-ω and k-ω

SST models [152]. They did not evaluate the k-ε realizable model specifically, but the

k-ε and k-ε realizable models at least have similar forms with transport equations for

k (turbulent kinetic energy) and ε (turbulent dissipation rate) [26]. Plus, the k-ε real-

izable turbulence model has been used in many cold spray studies [147]. Admittedly,

the turbulence was not fully resolved in the supersonic region because a sufficiently

fine mesh could not be afforded. Standard wall functions were used at the nozzle wall

boundary.

1.3.2.4 Discrete Phase Modeling

The Discrete Phase Model (DPM) with Lagrangian particle tracking was required

to obtain the individual particle trajectories [137]. Neglecting all body and surface

forces other than drag, the particle equation of motion reduces to:

dup
dt

= FD

(
uf − up

)
(7)

Gravitational effects were neglected in this study because cold spray nozzles do

not have a standard orientation relative to the direction of gravity; nozzles are often

fixed at an angle relative to the substrate [108] or even hand-held [24], rendering

gravity’s inclusion futile. It should be noted though that in reality, gravity has some

effect on the particles [153].

The drag force in Fluent’s DPM [26] is provided in equation 8:

FD =
18µ

ρpd2p

CDRe

24
(8)

The high-Mach-number drag law, created by Clift et al. [18], was used to cal-

culate the coefficient of drag for the spherical particles because it properly corrects

for particle Mach numbers greater than 0.4 and particle Reynolds numbers greater
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than 20 [26]. The high-Mach number drag law defines the drag coefficient with the

following equation:

CD =
24

Rep

(
1 + 0.15Re0.687p

)
+

0.42

1 + 4.25× 104Re−1.16p

(9)

Particles were tracked stochastically using the Discrete Random Walk (DRW)

model, which incorporates instantaneous turbulent velocity fluctuations on the parti-

cle trajectories via stochastic methods [26]. The particles were one-way coupled to the

fluid in this chapter, not necessarily because that assumption is realistic, but because

it is unlikely that the magnitude of particle cooling depends on two-way coupling

effects.

Since the particles are assumed to maintain uniform temperature throughout their

volume [26], the convective heat transfer at the particle surface is governed by the

equation:

mpcp
dTp
dt

= hAp(T∞ − Tp) (10)

The heat transfer coefficient and Nusselt number were computed with the corre-

lation of Ranz and Marshall [97, 98], provided in equation 11. Liao and Lucas show

that Ranz and Marshall’s correlation accurately predicts heat transfer rates on solid

spheres at high Reynolds numbers [65], affirming the Ranz and Marshall correlation

is valid for cold spray conditions.

Nu =
hdp
k∞

= 2.0 + 0.6Re
1/2
d Pr1/3 (11)

Cold spray particles remain entirely in the solid state and chemically inert during

their journey through the nozzle [106]. Although combustion and chemical reactions

with cold-spray-sized metal particles are possible [27], these phenomena occur when

there are oxides present on the particle surface, which the cold spray particle atom-

ization process intentionally minimizes [15].
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In each simulation of this chapter, 5,000 particles were injected into the domain

at room temperature with zero initial velocity and diameters distributed uniformly

randomly from 5 to 100 microns. This diameter range was not implemented to ac-

curately replicate the diameter distribution in the experiments, but rather to make

conclusions about particle behavior based on diameter. To model a particle injec-

tion, particles were randomly generated inside the entire feeder tube volume with a

preference away from the axis by a factor of the square root of radial position. This

preference ensured a uniform particle location density as if the particles occupied a

3-D space, which accounted for the 2-D axisymmetric assumption. Particles in these

simulations replicated the stainless steel Praxair 17-4PH powder, with an assigned

density of 7800 kg/m3 and specific heat capacity of 460 J/kg-K [75].

1.3.3 Modeling Results

1.3.3.1 Contours

Contours of the experimental condition, with a 3 MPa and 873 K annulus con-

dition, are provided in Figure 8. The cooled results are provided on top, contrasted

by the adiabatic results which mirror them underneath. The most significant dif-

ference between the adiabatic and cooled cases is in the solid nozzle wall, which is

observed to cool radially from the outer wall to the fluid-wall interface. In the inlet

and prechamber regions, there are no noticeable differences between the adiabatic

and cooled nozzles, but the wall temperature begins to differ between the cases at

the converging section. Although cooling only begins at the throat (see Figure 6),

the conductive heat transfer occurs lengthwise in addition to radially, cooling the

converging wall section as well.

The boundary layer is noticeably warmer than its cold surroundings due to vis-

cous heating. The high temperature in the solid nozzle tip (near the exit) is caused

by viscous heating too. The nozzle tip is hotter than the atmosphere, which reveals
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Figure 8: Contours of Experimental Condition, Cooled and Adiabatic
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Figure 9: Magnified Contours of Nozzle Tip and Standoff Region, Cooled and
Adiabatic

that the tip heats the atmosphere, rather the other way around. Evidently, the hot

boundary layer acts as an insulator on the nozzle tip. Further confirming this hy-

pothesis is the boundary layer temperature being nearly equal to the tip temperature,

which suggests that the boundary layer transmits heat efficiently to the nozzle tip

which, in turn, transmits heat (less efficiently) into the atmosphere. In the next de-

sign iteration of the CO2 cooling collar, the cooling will span the entire length of the

diverging section (including dimension P of Figure 6) in order to cool as much of the

clogging-prone region as possible.

As expected, the pressure starts high at the inlet and sharply decreases at the

throat, exiting at low pressure after expanding. The gas velocity is observed to change

in proportion to the temperature, the significant differences between the cooled and

adiabatic velocity contours being in the standoff region, which Figure 9 magnifies. In

the standoff region, the velocity fluctuates in both cases due to Mach diamonds, but

the velocity is consistently higher in the adiabatic case.
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1.3.3.2 Nozzle Wall Properties

To gauge the effectiveness of the cooler at reducing wall temperature, the inner

nozzle wall temperature is provided in Figure 10 for the inlet condition in the experi-

ments (3 MPa and 873 K). In addition to the simulations based on the experimental

setup, another simulation was run with a cooled condition (outer wall boundary con-

dition of 203 K) on both dimension O and dimension P (see Figure 6), rather than

only on dimension O. In Figure 10, the cooled short case is that which is cooled only

on dimension O (representing the actual cooler length), and the cooled long case is

cooled on both dimensions O and P. This additional simulation was conducted to

ascertain how the nozzle would behave if it were cooled along its entire length.

Figure 10: Inner Wall Temperature vs Nozzle Length

Figure 10 clearly shows a maximum wall temperature in the inlet and prechamber

region for all cases, which is due to the high applicator temperature. These wall

temperature profiles are in excellent agreement with those of Wang et al. [132].

They are not in agreement, however, with those of Li et al., who found a maximum

temperature at the throat in their study on temperature distribution in the substrate
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and nozzle wall (without cooling) [63]. The nozzle geometry in Li et al.’s study is quite

different from that of the present study in that it lacks a prechamber - the feeder tube

is located inside their converging section. This cannot explain the difference in wall

temperature profiles though, because Wang et al. produced the same temperature

profile as that of this study with a very similar nozzle geometry to Li et al.

The cause of this discrepancy could be due to an insufficient mesh in Li et al.’s

study. They used several meshes depending on substrate location and shape, which

ranged in grid number from 36,660 to 111,140. Wang et al., on the other hand,

mention that their study required 240,200 to achieve a grid-independent solution.

Both studies used similar nozzle geometries, yet Li et al.’s largest mesh was still

less than half the size of Wang et al.’s. Moreover, while Wang et al. only meshed

the driving gas domain, nozzle wall, water coolant domain, and a small atmospheric

region, Li et al. also meshed the substrate and a massive atmospheric region. If Wang

et al. required 240,200 to reach a grid-independent solution, Li et al. likely needed

a larger (or at least equal) mesh size to resolve thermal features in more regions

(namely the substrate). Additionally, since Li et al.’s mesh size only depended on

the substrate size and location, their 36,660 cell mesh is actually more representative

of their mesh quality in the nozzle region than their 111,140 cell mesh is because the

extra cells were dedicated to the substrate, not the nozzle wall. Li et al.’s nozzle mesh

was only 15% of the size of Wang et al.’s, so if they disagree, Wang et al.’s mesh is

more likely to produce accurate results.

In the present work, a mesh dependence study was conducted and, although all

the flow features in the diverging section are not completely resolved, Figure 10

demonstrates that the temperature at the nozzle wall is almost completely resolved,

so there is good reason to trust the nozzle wall temperature profiles in the present

study.
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According to Figure 10, the cooling jacket makes a roughly 500 K difference in wall

temperature - a remarkable cooling effect. It is important to notice from this figure

the repercussions of using a cooling jacket that does not extend the full length of the

diverging section: viscous heating increases the uncooled nozzle tip by nearly 200 K,

possibly promoting clogging in that warm region. It is especially important that the

nozzle tip is cooled when spraying powders prone to foul towards the exit, like the

steel powders in the present study and the nickel powder in Luo et al.’s study [70]. It

is likewise necessary that a cooling jacket begins cooling at the throat, as the present

design does. If the jacket begins earlier than the throat, energy will be removed

from the hot applicator gas at the detriment of particle velocity downstream. If the

jacket begins too far downstream from the throat, certain particles may begin clogging

between the throat and the cooler due to the exposed high-temperature region. The

cooling collar should begin precisely at the nozzle throat and end precisely at the

nozzle exit.

1.3.3.3 Centerline Flow Properties

Although the experiments were conducted at inlet conditions of 3 MPa and 873 K,

four different sets of inlet conditions were evaluated in this CFD project to understand

how nozzle cooling affects a variety of cold spray scenarios, since a long term goal

of this project is to apply a cooling jacket to any combination of cold spray nozzle,

powder, and inlet condition. These particular conditions (3 MPa, 4 MPa, and 673 K,

873 K) were selected for a parameter study because they are common inlet conditions

in cold spray. For each of the four inlet combinations, both a cooled and adiabatic

nozzle were simulated so that the particles from the cooled nozzle could be compared

to identical particles from the adiabatic nozzle.

Figure 11 compares the cooled and adiabatic centerline velocities for the four

different inlet conditions. In both the cooled and adiabatic nozzles, higher inlet
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Figure 11: Centerline Velocity vs Nozzle Length – Annulus Parameter Study

Figure 12: Centerline Temperature vs Nozzle Length – Annulus Parameter Study
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temperatures result in higher gas velocities, which agrees with the findings of Yin et

al. [144]. For the most part, there is close agreement between the two nozzles, an

exception being in the standoff region and nearby, where the cooled nozzle’s velocity

is observed to drop below that of the adiabatic nozzle’s. In the standoff region, Mach

diamonds are observed with both the cooled and adiabatic nozzles, but the gas from

the cooled nozzle is slower for all inlet conditions. This standoff region behavior is

consistent with Figure 9. The behavior observed in Figure 12 is explained by the cold

feeder tube gas mixing with that of the hot annulus. Since the feeder tube is located at

the centerline, the centerline temperature will be equal to that of the feeder tube until

the feeder tube terminates and the cold gas is met by the hot stream of annulus gas,

where mixing begins. As mixing continues, the centerline temperature will continue

to increase until the throat, after which point the temperature decreases in proportion

to the velocity. These centerline temperature profiles indicate that the prechamber

in the present study allows for ample mixing, which agrees with the findings of Tang

et al. [119].

Interestingly, and counter to the results in Wang et al.’s study, Figure 11 shows

that the centerline velocity in the cooled nozzle is faster than the adiabatic nozzle

velocity. This counterintuitive phenomenon is explained by Anderson [5]: when heat is

added to supersonic compressible flow, velocity decreases, and when heat is removed,

velocity increases. Granted, this phenomenon is demonstrated by Anderson for one-

dimensional flow while the present flow is two-dimensional, but the general principle

still holds even if there are other factors at play.

As far as the disagreement with Wang et al. [132], who find the centerline flow

velocity in the adiabatic nozzle to be faster throughout the entire diverging section,

a few explanations are possible. First of all, they used air as their driving gas, while

the present study uses helium. The thermal conductivity of helium is 10 times that of

air, which makes the gas in the present study more susceptible to heat transfer effects
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while the air in Wang et al.’s is more resilient to temperature changes. Furthermore,

because helium is much less dense than air, its Mach number in the nozzle will be

larger air, which renders the helium in this study still more susceptible to Anderson’s

compressible flow effects than air. Another important difference is that this study

used a substantially different nozzle geometry than Wang et al., which directly affects

the flow profiles of the two solutions. Also, the CO2 cooler brings the inner nozzle

wall down to a temperature of 225 K, whereas Wang et al. only brought their nozzle

temperature to around 325 K. It is to be expected that Wang et al. would experience

less cooling effects when they cooled their nozzle less than the nozzle in the present

study. A criticism of Wang et al.’s work is that they assumed constant viscous and

thermal properties for their driving gas, which are less accurate than temperature

dependent-properties. Regardless, there are enough differences between this study

and Wang et al.’s that both answers are plausible. There is good reason to trust

the results in the present work, especially because specific temperature-dependent

viscosity and thermal conductivity equations for helium were incorporated.

There is a peculiar velocity drop inside the cooled nozzle near the exit for the

inlet condition of 3 MPa, 873 K, and a similar (but less aggressive) velocity drop is

found at the 4 MPa, 873 K condition. This cannot be due to shocks or overexpansion,

because the changes would be far more abrupt. The existing studies on the effects of

nozzle cooling in cold spray have incorporated either nitrogen [34] or air [132] as a

driving gas, which may explain why this issue was not identified prior to this study.

Figures 13 and 14 are included to ascertain whether the velocity drop observed

in Figure 11 is caused by the cooling collar leaving the nozzle tip uncooled, or if it

is due to more general cooling phenomena. As Figures 13 and 14 demonstrate, the

cooled short and cooled long cases produce nearly perfectly matching velocity profiles,

including in the standoff region, which indicates the velocity drop is independent of

the span of cooling.
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Figure 13: Centerline Velocity vs Nozzle Length – Experimental Annulus Condition

Figure 14: Centerline Temperature vs Nozzle Length – Experimental Annulus
Condition

If the cooling span were the cause of the velocity drop, the centerline properties

would differ between the cooled short and cooled long cases. Unfortunately, Wang

et al. did not provide their velocity profiles in the standoff region. It would have
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been valuable to compare these results to theirs. Meyer and Lupoi’s CFD work

presented a comparable but appreciably less severe velocity drop in the same region

of the diverging section using nitrogen as the driving gas [78]. Although their inlet

conditions were similar to those in the present study (3 MPa, 350°C), they make no

mention of cooling their nozzle. Meyer and Lupoi did not provide an explanation for

why the gas velocity behaved this way, but the reasons for the velocity drop observed

in the present study are considered in the Bulk Flow Properties section.

Since there is a difference in standoff region velocity profiles between the cooled

and adiabatic cases, it is worth noting that in some studies, an additional force term

was included in the particle equation of motion to account for particle deceleration

due to the adverse pressure gradient caused by the bow shock near the substrate

[102]. A future study could incorporate this term, but it seems unlikely that such a

small loss in velocity would result in a significant particle velocity detriment. Most

cold spray studies do not incorporate this extra pressure gradient surface force term

[147].

1.3.3.4 Bulk Flow Properties

Existing studies on cold spray nozzle cooling have largely determined that the

flow is not significantly compromised by cooling, but have also largely neglected to

properly investigate the bulk flow characteristics. Wang et al. exclusively relied on

centerline flow properties to inform their conclusion that gas flow was unaffected by

cooling [132]. Although the centerline properties are valuable in determining whether

or not cooling impairs the flow field, it is insufficient to make that determination

with centerline characteristics alone. After all, the particles do not adhere to the

nozzle centerline but disperse, being exposed to gas flow characteristics both near

and far from the centerline. The bulk flow properties must be accounted for to fully

comprehend how cooling affects the driving gas, and consequently the particles.
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Fukanuma and Huang, in their nozzle cooling study, did investigate the flow prop-

erties along the inner radius of their cold spray nozzle [34]. They concluded that

because their temperature and velocity profiles were only slightly different along the

radius between their cooled and adiabatic cases, that ultimately “there was no con-

siderable effect on gas velocity [due to cooling]”. The current study presents simi-

lar radial flow data to Fukanuma and Huang. Additionally provided are results of

mass-weighted-averaged velocities and temperatures at various slices in the diverging

section, which are unanticipated and informative. All bulk flow results are from the

cases with inlets of 3 MPa and 873 K, matching the experiments.

a) Velocity vs Distance from Wall b) Temperature vs Distance from Wall

Figure 15: Flow Properties from Nozzle Wall to Nozzle Centerline
at Various Slices of the Diverging Section
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Figure 15 displays how flow properties vary from the nozzle wall to the centerline at

several slices in the diverging section, with velocity in Figure 15a and temperature in

Figure 15b. The effects are most evident in Figure 15b, where the fluid temperature

is highly affected by the temperature of the nozzle wall nearby. As distance from

the wall increases at a given slice in the diverging section, the adiabatic and cooled

temperatures become more similar. From Figure 15b, it is observed that cooling

influences more than just the boundary layer, and also that cooling effects manifest

farther toward the centerline as nozzle length increases.

The difference in velocity profiles in Figure 15a is more subtle, but informative

nonetheless. The velocities at the throat through 3/7 diverging length are fairly

similar. In slices 4/7 to 6/7, cooling causes a velocity drop from the wall to nearly

the centerline, though the velocities at the centerline are still equal. At the nozzle exit,

however, even the centerline velocity is compromised. These velocity differences along

the radius are consistent with the velocity drop in Figure 13, because the centerline

velocity does not drop in Figure 13 until after 6/7 of the diverging length. Leading

up to the nozzle exit, Figure13 depicts the same decrease in velocity that Figure 15b

shows at the nozzle exit.

Using the flow information both along the centerline (Figure 13) and across the

radius (Figure 15), it is observed that the flow is less affected by cooling closer to the

centerline. Farther along the nozzle length, however, the flow velocity is increasingly

affected until the exit, where even the centerline velocity is compromised slightly.

Figures 16 and 17 are the last piece of the puzzle, and they present the mass-

weighted-average of velocity and temperature (respectively) at the same slices in the

diverging section presented in Figure 15. From Figure 16, it is observed that the bulk

fluid loses 200 m/s due to cooling, which is about a 10% loss. The bulk temperature

is even more affected. Figure 17 shows that the bulk temperature drops from 350

K to 225 K, a roughly 35% loss. It seems that the energy loss due to CO2 cooling

34



Figure 16: Mass-Weighted Average Velocity at Several Slices in Diverging Section

Figure 17: Mass-Weighted Average Temperature at Several Slices in Diverging
Section

35



is so significant that it dominates the compressibility effects otherwise responsible

for increased velocity. Even as early as 2/7 diverging length, significant losses are

observed. Figure 15 shows that, at locations closer to the throat, these losses occur

away from the centerline, but farther along the nozzle length the effects extend farther

towards the centerline until the entire cross-section is affected, culminating in a 200

m/s average loss at the nozzle exit.

In light of most literature to date arguing that cooling is not detrimental to the

flow [34, 132], these losses due to cooling are larger than expected. The ultimate

factor to consider, however, is how the particles are affected by these losses in the

driving gas.

1.3.3.5 Particle Behavior

Particle data were collected at the outlet of the nozzle and the substrate so that

predictions could be made about particle temperature and velocity upon exit and

impact. These data were collected for each of the four inlet conditions considered

in the parameter study. The cooled nozzles into which particles were injected were

only cooled on dimension O (cooled short), in accordance with the setup of the ex-

periments. Previous studies, although they did not involve nozzle cooling, agree with

the general trends in Figure 18 regarding both particle velocity [59, 60, 62, 119] and

temperature [62].

It is clear from Figure 18 that the particles coming out of the cooled and adiabatic

nozzles have no significant differences in either their temperature or velocity, which

shows major promise for cooling as a broadly viable method for clogging prevention.

Despite the bulk flow being compromised, the particle data indicate that those flow

losses are inconsequential to the particles.

For the smallest particles (5 microns), the particle temperature is slightly higher

in the cooled case because the gas is hotter in the cooled nozzle’s standoff region
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a) Velocity at Nozzle Exit b) Velocity at Substrate

c) Temperature at Nozzle Exit d) Temperature at Substrate

Figure 18: Particle Velocity and Temperature vs Diameter at Nozzle Exit and
Substrate

(see Figure 14), but the difference is insignificant. Plus, the concern with nozzle

cooling is that particle cooling may occur, but the only particles that are affected

experience heating rather than cooling, which can only serve to facilitate adhesion

at the temperature range these small particles reach the substrate at. The results in

this study indicate that particles are not maligned by nozzle cooling. Experimental

confirmation is necessary to prove these particles’ resilience, but the models show

much promise.
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1.4 Conclusion

The present model predicts that neither particle temperature nor velocity is com-

promised by cooling the nozzle with flashing CO2, despite the bulk driving gas flow

being somewhat compromised. In future work, experiments should be conducted to

validate the claim that particles are unaffected by cooling.

A nozzle cooling collar that extends the entire length of the diverging section

would probably improve the system’s capacity to prevent clogging near the nozzle exit,

especially when spraying powders prone to foul in that area, because the nozzle tip

temperature increases significantly when left uncooled due to viscous heating inside

the boundary layer. It should be noted that the additional span of cooling would

likely compromise the flow slightly more than it already is, but since the particles are

not significantly affected in the present setup, it is unlikely that one additional inch

of cooling at the nozzle tip would cause dramatic changes in particle behavior.

It should also be mentioned that the current cooling device vents the gaseous and

solid CO2 axially, although it would be most advantageous to vent it radially. When

the CO2 is vented axially towards the substrate, the substrate becomes cooled and

particle-substrate bonding is jeopardized. The dry ice can damage the substrate,

too. When vented axially towards the inlets, the nozzle is cooled unnecessarily in the

wrong direction and energy is removed from the hot driving gas at the expense of

gas and particle velocity. When the CO2 is vented radially away from the nozzle and

substrate, none of these problems ensue.
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CHAPTER 2

SIMULATIONS OF PRESSURE OSCILLATIONS IN
FEEDER TUBE

2.1 Motive and Background

This chapter seeks to ascertain a root cause of particle dispersion as a means

to better understand the problem of clogging in cold spray. Particle dispersion has

been studied in several past works. Lupoi and O’Neill found that, upon exiting the

feeder tube, the powder disperses and begins to traverse the entire nozzle volume

[72]. Yin et al. built upon the finding of Lupoi and O’Neill by discovering that

particles disperse more as feeder tube pressure increases, but only when the feeder

tube pressure exceeds that of the applicator [146]. Interestingly, they found when

the feeder tube and applicator pressures are equal, particle dispersion is minimal.

With a transparent nozzle of square cross-section, Meyer et al. provided the first

quantitative measurement of particulate flow inside a cold spray nozzle, and affirmed

that dispersion occurs immediately following the injection point [77]. Contrary to

Yin et al., they found that dispersion occurs even with equal inlet pressures. Meyer

et al. made a distinction between dispersion upstream of the throat and dispersion

downstream of the throat, which neither of the aforementioned studies did. They

determined that, as inlet pressures increase, particles disperse more upstream of the

throat yet focus more downstream of the throat; when inlet pressures decrease, the

opposite trend occurs [77]. This fascinating disharmony between Yin et al. and Meyer

et al. may be due to the major differences between their nozzle geometries or the fact

that Yin et al. conducted their study with high-pressure cold spray while Meyer et

al. conducted theirs with low-pressure cold spray.
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Despite some disunity, overarching themes can be gleaned. First of all, dispersion

begins at the feeder tube exit. Even if it is true that dispersion cannot occur with

inlets of equal pressure, it is practically unlikely that both inlets will have perfectly

equal pressure during an experiment. It has been found that there are pulsations in

the feeder tube during the cold spray process [114], which certainly causes pressure

differences between the inlets. Therefore, it can be safely asserted that dispersion

occurs to some extent in all cold spray operations and that the dispersion begins at

the feeder tube exit.

Second, dispersion is influenced by the magnitude of inlet pressure. Whether it

is exacerbated or reduced by increasing inlet pressure seems to depend on nozzle

geometry, whether the process occurs in the high or low-pressure regime, or a com-

bination of both factors. Since the present study consists of a high-pressure nozzle

with a circular cross-section, it is markedly more similar to the studies of Lupoi and

O’Neill [72] and Yin et al. [146] than that of Meyer et al. [77]. Thus in the present

study, particles will probably disperse as they did in the studies of Lupoi and O’Neill

and Yin et al., with dispersion occurring throughout the whole nozzle [72, 146] and

increasing as feeder tube pressure increases [146].

Besides flow conditions at the inlets, the physical features of the feeder tube af-

fect particle dispersion as well. The farther upstream the feeder tube exit is from

the throat, dispersion increases. Meyer et al. compared the particle tracks resulting

from three injection positions; the injection point farthest from the throat dispersed

particles most, while the injection point closest to the throat dispersed particles least

[77]. Those results are in complete agreement with the discussions and explanations

provided in related studies [72, 112]. Sometimes particles are injected in the super-

sonic region to minimize dispersion even more, but the drawback of that method is

particles are not entrained in the fluid streamline as long, and thus their ability to

reach critical velocity is jeopardized [72, 112]. Another disadvantage to injecting par-
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ticles in the supersonic region is that they do not undergo as much heating since the

particles bypass the hot prechamber, which otherwise would have favorably heated

them. Without particle heating giving rise to particle softening, impingement on the

substrate is further threatened [112]. In general, particles injected in the supersonic

region are slower and colder than those injected upstream [49].

Despite these complications, copper (a clogging-prone material) can be deposited

by means of a diverging section injection [85]. Other clogging-prone powders, how-

ever, like titanium and stainless steel, demand more severe bonding conditions and

consequently cannot be deposited with such a method [112]. In particular, the crit-

ical velocity of copper is considerably lower than those of titanium and steel [104].

Alternative methods are therefore necessary for depositing clogging-prone powders

like titanium and steel.

An excessive feeder tube inner diameter promotes clogging too. Lupoi and O’Neill’s

work strongly suggests that smaller injector tubes produce narrower particle beams

while larger ones facilitate greater dispersion [72]. Ozdemir and Widener confirmed

with their CFD simulations that a large feeder tube provokes particle dispersion and

therefore clogging [87]. This observation can be realized by considering a particle with

(theoretically) zero radial velocity and a large radial position. Since the feeder tube is

large, a particle can have a large radial position, which prepares it to miss the throat

and collide with the converging wall even if its motion is exclusively axial. Upon

colliding, the particle will rebound with significant radial velocity into the supersonic

region, at risk of bonding with the diverging wall since it travels at critical velocity

there. A smaller feeder tube would inhibit a (theoretical) particle with exclusively

axial velocity from dispersing because the particle would not collide with the walls;

it would travel unhindered through the nozzle. Of course, a particle with zero radial

velocity is an idealized condition, and there are more phenomena at play than simply
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feeder tube size, but it is significant that feeder tube inner diameter plays a role in

particle dispersion.

Relatedly, Ozdemir and Widener studied the effects of feeder tube misalignment

with the centerline and found that it causes particles to disperse in the direction

that the misalignment manifests. Their results confirmed those of a previous study

likewise incorporating a feeder tube misalignment [44]. When particles are directed

by the feeder tube towards the nozzle wall, they are more inclined to collide with it

and maintain radial velocities into the diverging section.

The nozzle’s inner cross-sectional shape also determines how much particles will

disperse. Tabbara et al.’s simulations show that an elliptical internal cross-section

causes particle dispersion, especially along the ellipse’s minor axis [118]. They found

too that circular and square cross-sections produce more focused particle beams than

an elliptical one. Meyer et al. used a nozzle with rectangular cross-section [77], while

Lupoi and O’Neill [72] and Yin et al. [146] both used nozzles with circular cross-

sections. The present study is based on a nozzle with circular cross-section as well,

which is advantageous for minimizing dispersion.

Further related to nozzle geometry are the nozzle dimensions. Lupoi and O’Neill

[72] compared the particle dispersion in four nozzle configurations, two of which in-

corporated the same inlet pressure, injector exit location, and injector inner diame-

ter. The features that varied between those two configurations were throat diameter,

annulus diameter, exit diameter, converging length, diverging length, and standoff

distance. Indeed, the level of dispersion differed between the configurations, but it is

difficult to isolate which of these dimensions played the largest role in dispersing the

particles. At the very least, it must be recognized that some nozzle dimensions (or

combinations of dimensions) provoke particles to disperse more than others.

Examining beyond nozzle geometry, there are still more factors that contribute

to particle dispersion. Particle size and mass play a role, but there is fascinating
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Table 4: References Describing Particle Size/Mass-Dependent Dispersion

Author
Which Particles
Disperse Most?

Particle
Diam (µm)

Feeder Tube
Temp (K)

Wang et al. [132] small 5-50 873
Tabbara et al. [118] small 5-30 N/A
Samareh and Dolatabadi [102] small 5-60 N/A
Zahiri et al. [151] small 8-80 N/A
Meyer et al. [77] lighter 10-60 N/A
Lupoi and O’Neill [72] large 10-32 293

Foelsche (present study)
generally small,
but large outliers

5-100 673

Author
Feeder Tube
Pres (MPa)

Annulus
Temp (K)

Annulus
Pres (MPa)

Wang et al. [132] 2.5 873 2.5
Tabbara et al. [118] N/A 298 2.9-3.0
Samareh and Dolatabadi [102] N/A 773 0.62
Zahiri et al. [151] N/A 823-1073 1.4-3.0
Meyer et al. [77] N/A 293 0.34-0.90
Lupoi and O’Neill [72] 3.4 293 3.0
Foelsche (present study) 4.0 673 4.0

disagreement as to whether smaller particles disperse more than larger ones or vice

versa. Table 4 summarizes the studies which make claims about the topic. Apart

from the present study, Lupoi and O’Neill [72] are the only group concluding that

large particles disperse most. It is highly unlikely that their result is an anomaly

related to nozzle geometry because they obtained the same result for all four of their

geometric configurations. Neither are their results dependent on injection location

because two of their configurations incorporated subsonic injections while their other

two incorporated supersonic injections.

It is challenging to diagnose why such a disagreement is found between these stud-

ies, but there are some plausible explanations. The studies that analyzed dispersion

solely with modeling were Wang et al. [132], Tabbara et al. [118], Samareh and

Dolatabadi [102], Zahiri et al. [151] and Faizan-Ur-Rab et al. [25] (whose respective

works are part of the same study), and the present work. The two studies that com-
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pared their results with experiments were Meyer et al. [77] and Lupoi and O’Neill

[72]. Meyer et al. found from their experiments that lighter materials disperse more

than those that are more dense.

For the purposes of the present study, Meyer et al.’s conclusion should be distin-

guished from the others because they did not comment on which particle sizes disperse

more when all particles are the same material. It is necessary in the present study

to distinguish between particle size and density because if lighter materials disperse

more than heavier ones, it does not necessarily follow that small particles disperse

more than large ones of the same material. Nevertheless, their results are relevant

and included in Table 4.

Meyer and Lupoi did comment explicitly on particle size and compared the pre-

dicted particle footprint from their models to their experimentally deposited track

width on the substrate. Both their models and experiments indicated that, although

their footprint was a certain size, the bulk of the particles were much more focused

within a narrower range.

Understanding that most particles fall within a narrower range may be the key to

understanding the apparent disagreement between the studies provided in Table 4.

The present study finds that when particles are injected with exclusively axial velocity,

the small particles do generally disperse slightly more than the large ones. There are,

however, several outlier particles, all of which are large, located much farther away

from the centerline than the farthest small particles. These highly dispersed large

particles are the minority, but it may reconcile Lupoi and O’Neill’s results to all the

others. Faizan-Ur-Rab et al.’s results contribute to this theory, indicating that large

particles may be most prone to being outliers in terms of having large radial positions.

Faizan-Ur-Rab et al. likewise determine that the bulk of small particles focus more

than that of medium particles, and that the bulk of medium particles focus more

than that of large particles.
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In the present study, when particles are injected from the feeder tube with angled

trajectories, the smallest particles are found to be much more focused than the larger

ones, with dispersion increasing as particle size increases. This is probably due to

large particles colliding at steep angles with the feeder tube and nozzle wall, and the

fluid being incapable of coercing them fully axially due to their large inertia. The

smallest particles are more influenced by the flow and are thus more prone to move

axially rather than radially.

It is noteworthy that four of the studies summarized in Table 4 neglect to incor-

porate and describe a feeder tube wall in their models. Those studies, with “N/A”

under their feeder tube properties, either injected particles via an artificial surface in

the nozzle [118], a projected surface on the nozzle wall [102], a simple injection point

[25, 151], or did not describe and present how the particles were injected and how

they interacted with the feeder tube in their models [77]. It is unclear whether Meyer

et al. [77] incorporated the feeder tube wall in their models.

Including the present study, Table 4 describes three studies that do incorporate a

feeder tube wall in their models. Of those three studies, Wang et al. is the only work

that concludes small particles disperse more than large ones. Since the present study

finds that large highly dispersed particles only make up 0.072% of the total injected

number of particles, it could be that Wang et al. do not inject enough particles in

their simulations to obtain these outliers. They do not mention how many particles

were injected in their simulations. It could be that the incorporation of a feeder

tube wall in CFD models (which is evidently atypical of dispersion studies in cold

spray) allows large particles to collide with that wall far enough upstream that those

few large particles obtain significant radial velocities and maintain them throughout

their trajectories. Ozdemir and Widener fully account for a feeder tube wall in their

particle dispersion study, but they do not comment on which particle sizes are most

prone to disperse [87].
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All the modeling studies that do not fully account for a feeder tube wall determine

that large particles disperse less than small ones. This may be because those large

particles are not colliding with the feeder tube in their models, and therefore never

obtain significant radial velocities. As an attempt to glean common ground, it seems

generally true that small particles disperse more than large ones, but large outlier

particles occasionally disperse more than the small ones. With the information avail-

able though, it is difficult to clearly discern the reason for the disagreement without

overanalyzing.

Nonspherical powder morphologies can cause increased dispersion since the lift

force is greater for irregularly shaped particles than it is for spherical ones [68]. The

fact that irregularly shaped particles are faster is well-attested in cold spray [76, 139].

For that reason, it is especially detrimental to employ nonspherical clogging-prone

powders because they will not only greatly disperse due to high lift forces, but they

will also disperse at unconventionally high velocities, increasing the likelihood that

they will impact the nozzle wall at speeds sufficient for bonding. In numerical studies

on particle tracks in cold spray, the particles are almost always assumed to be spherical

[26, 72, 146], which is the assumption in the present work as well. Otherwise, the

surface forces on the particle become quite complex [20]. Bhattacharya et al. suggest

that typical cold spray particle sizes (5-100 microns) are quite susceptible to lift

forces [9]. Numerical studies may be underpredicting particle dispersion in cases with

irregular powder morphologies by modeling particles as perfect spheres.

Additionally, the driving gas material can facilitate dispersion. Tabbara et al.

found that helium disperses particles more than nitrogen does, which they attributed

to higher levels of turbulence in the helium flow, induced by higher velocity gradients

[118]. This is an unfortunate finding in terms of clogging prevention because helium

is often used with clogging-prone powders instead of nitrogen so that critical velocity

can be reached without making the nozzle and particles too hot. The fact that helium,
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the driving gas often required for spraying clogging-prone powders, tends to disperse

particles more means that helium-driven particles have an increased likelihood of

contacting the nozzle wall. Ideally, clogging-prone powders should avoid contacting

the nozzle wall because of their inclination to bond upon impact. The inconvenience

is worth noting, but nitrogen is incapable of spraying many clogging-prone powders

in the first place, so helium is nonetheless the superior driving gas.

Also related to the driving gas is turbulence, which is often considered a major

reason for dispersion in cold spray. Lupoi and O’Neill [72] and Yin et al. [146] both

found local peaks in turbulence kinetic energy (TKE) at the throat, and concluded

that the turbulence in that region contributes to dispersion as particles enter the

diverging section. Their TKE results are provided in Figure 19.

The TKE from Yin et al.’s nozzle (presented in Figure 19b) is higher than that of

Lupoi and O’Neill’s nozzle (presented in Figure 19a) by roughly a factor of 20. One

explanation for such a significant disagreement is the temperature difference between

the inlets of both studies. Yin et al.’s annulus inlet was set to 873 K while their feeder

a) TKE form Lupoi and O’Neill [72] b) TKE from Yin et al. [146]

Figure 19: Turbulent Kinetic Energy vs. Nozzle Length from Two Sources
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tube inlet was 298 K. Lupoi and O’Neill, on the other hand, modeled both inlets at

room temperature. Because high gas temperatures result in higher flow velocities,

Yin et al. are bound to obtain more TKE because there is a large difference in

flow velocity between their inlets. When the two gas streams merge, their velocity

difference produces increased shear levels and therefore increased turbulence.

Yin et al. pointed out that, in particular, the turbulence inside the prechamber,

converging section, and at the throat has a major impact on particle trajectories

because the particles have yet to build much momentum, and consequently their

trajectories are easily manipulated before their major momentum increase in the su-

personic region. Turbulence in the supersonic region, though it may be high in some

configurations, does not contribute so much to dispersion because the particle tra-

jectories are less thwarted due to their high momentum. Computationally, turbulent

dispersion is accounted for by amending particle tracks via stochastic methods [43].

For comparison, Lupoi and O’Neill conducted a simulation where they did not ac-

count for turbulence in the formulation of their particle tracks, and found that particle

beam width was reduced by 42%. Their comparison indicates that turbulence greatly

influences particle dispersion.

There is, however, some work both in and out of the field of cold spray arguing

that turbulence plays a negligible role in particle dispersion. Meyer et al. claim, in

their cold spray study using metal particles of similar sizes as those aforementioned,

that particles are not primarily affected by turbulent fluctuations due to high inertia

[77]. They cite a more general study on particle motion in turbulent jets (with

glass particles of diameter 37-255 microns) by Hardalupas et al. [36], who concluded

similarly.

It should be acknowledged, however, that those findings by Hardalupas et al.

were general conclusions, and that their smaller particles actually were found to be

influenced non-negligibly by turbulence. It was their larger particles that were un-
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responsive to turbulent fluctuations. Considering the hypothesis that smaller parti-

cles are generally dispersed more than large ones in cold spray, Hardalupas et al.’s

size-specific conclusions seem to align with the discussions found in most cold spray

literature claiming turbulence to have a significant effect on dispersion: the smaller

particles are dispersed more due (partially) to turbulence while the larger ones are

dispersed less because they are less affected by turbulence.

Meyer et al. determine that dispersion occurs largely because of particles rebound-

ing after collisions (among other factors), and that particle inertia is too great for

them to respond to turbulent fluctuations. Their work is a great contribution because

they thoroughly investigate many factors responsible for dispersion, but it seems they

underplay the role of turbulence, especially in light of Lupoi and O’Neill’s CFD results

producing a 42% reduced particle beam width when turbulence was unaccounted for.

Admittedly, there is no way to experimentally validate Lupoi and O’Neill’s com-

parative simulations, because turbulence cannot be withdrawn from a cold spray

nozzle. Even so, turbulence models are regularly validated against experiments [151],

giving them some level of credibility. Of course, it does not follow that because tur-

bulence models are validated experimentally that they perfectly model the effects of

turbulent fluctuations on particle trajectories, but it does follow that the findings

from Lupoi and O’Neill’s turbulence study can be accepted with some generality:

turbulence causes particle dispersion.

Inlet pressures, feeder tube location and size and misalignment, nozzle geometry

and cross-sectional shape, particle size and mass, powder morphology, driving gas

material, and turbulent fluctuations are all known to play a role in dispersing particles.

The present chapter hypothesizes yet another root cause of dispersion and clogging

in cold spray nozzles: flow oscillations in the feeder tube. Pulsations in the particle

jet inside the particle injector have been identified by Sova et al. [114] and were

considered to be the cause of clogging in their experiments. The claim that such
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pulsations lead to clogging was not investigated, but such an investigation is carried

out in this study. This CFD work is based on specific cold spray experiments by

Siopis et al. that report nozzle clogging [109], but the present models could not

predict sufficient dispersion for clogging without imposing flow oscillations in the

feeder tube.

The present study seeks to determine whether flow oscillations in the feeder tube,

if present, can cause clogging. Several CFD simulations were conducted to isolate the

effects of imposed transient pressure fluctuations on particle dispersion and bonding.

Upon cutting open their nozzle, Siopis et al. identified specific clogging regions in

the diverging section, which depended on how much the powders were sieved. Their

clogging regions are illustrated in Figure 20.

Figure 20: Location of Clog Found in Nozzles from Experiments [109]
Top: Clogging Location with Powder as Received.

Bottom: Clogging Location with Powder Classified to Remove Fines.
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2.2 Modeling Methodology

2.2.1 Boundary Conditions

As was the case in the first chapter, a 2-D axisymmetric assumption was used for

these simulations. Only the flow domain was solved in this chapter, the dimensions

of which are presented in Figure 21. All the walls depicted in Figure 21 were given

the no-slip condition. These walls were set to reflect particles in the event of a

particle-wall collision, the only exception being at the substrate wall, which was set

to terminate the particle trajectory in the event of a collision. Particle trajectories

were also terminated upon contacting the outlet, depicted in green in Figure 21. The

inlets, depicted in red, were set to reflect particles so that instances of backflow would

not cause the particles to leave the domain.

Figure 21: Nozzle Geometry (Flow Domain)

To test the hypothesis that transient feeder tube fluctuations are a cause of par-

ticle dispersion, three types of simulations were run. First, a completely steady-state

calculation was performed. Second, a transient calculation was performed, but with

constant inflow boundary conditions. Finally, nine transient calculations were per-

formed with a time-varying pressure at the feeder tube inlet with three different

pressure wave amplitudes and three wave frequencies to isolate the respective effects

that wave amplitude and frequency have on particle dispersion and bonding.

Boundary conditions at the inlets were fixed at a pressure of 4 MPa for the steady-

state simulation along with the transient case with constant inflow conditions. All
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simulations were solved with 673 K inlets. These inlet conditions are consistent

with those of Siopis et al.’s experiments. To simulate the nine different pressure

fluctuations in the feeder tube inlet, the inlet total pressure was changed to a custom

user-defined function (UDF), which imposed a pressure that varied sinusoidally with

time according to the equation 12:

P = Pave + Pamplitudesin(2πωt) (12)

In equation 12, the average pressure Pavg was maintained at 4 MPa. Three values

for Pamplitude were modeled, along with three values for ω. The amplitudes (Pamplitude)

considered were 50 kPa, 25 kPa, and 10 kPa, and the frequencies (ω) considered were

25 Hz, 50 Hz, and 100 Hz. These amplitudes and frequencies were not experimentally

measured, rather, they were selected to give a sufficient range that conclusions could

be made about the respective effects of frequency and amplitude on particle disper-

sion. The pressure outlet, depicted in green in Figure 21, was set to atmospheric

conditions (zero gauge pressure and 300 K).

2.2.2 Mesh Description

A mesh dependence study was conducted by solving a steady-state solution with

several meshes ranging from 2,500 to 135,000 cells and comparing the differences in

flow properties. It was found that the meshes containing 51,000 cells or more did

Table 5: Mesh Specifications Based on Zone
Name for Pressure Oscillation Simulations

Zone Cell Size (mm)
inlets 0.2
prechamber 0.2
converging 0.2
diverging 0.1
standoff 0.4
atmosphere 0.4
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not produce substantially different results, so the mesh of 51,000 cells was used. Five

layers of relatively thin elements were incorporated near the wall, with most wall

yplus values falling inside the range of 5 to 70, the maximum occurring at the throat.

The specific details of the mesh based on zone name are provided in Table 5.

2.2.3 Gas Phase Modeling

The density-based implicit solver was used with the first-order upwind spatial dis-

cretization scheme because the flow is supersonic, and a sufficient level of convergence

was desired. As was the case in Siopis et al.’s experiments [109], the fluid used in

these simulations was helium, and its density varied with the ideal gas law. The

helium viscosity and thermal conductivity were kept constant in this study.

Several turbulence models were tried and considered with the present mesh by

solving a steady-state solution with them. After comparison, the k-ε realizable tur-

bulence model with standard wall functions was deemed most appropriate because it

provided the most physically likely results for axial TKE with a peak in the throat,

similar to Lupoi and O’Neill [72] and Yin et al. [146].

2.2.4 Discrete Phase Modeling

As was the case in the previous chapter, the Discrete Phase Model with Lagrangian

one-way coupling was used to track the particles and the Discrete Random Walk

model was incorporated to stochastically account for turbulent fluctuations. The

particles were one-way coupled to the fluid such that particle motion was affected by

the fluid motion, but not vice versa.

There is disagreement amongst cold spray studies as to whether particles interact

with the fluid or each other in such a way that their trajectories and velocities are

affected. Though not unanimously, it is widely assumed in cold spray studies that,

if the volume fraction of particles to driving gas is less than 10%, two-way coupling

effects are negligible [106]. Taylor et al. argued that, when high powder feed rates
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are used, the reason for poor deposits is not because of flow saturation with particles,

but rather from excessive particle bombardment on the substrate [120].

Alternatively, Samareh et al. concluded that two-way coupling effects significantly

influence particle motion [103], even at the same powder feed rates as Taylor et

al. Lupoi [71] and Meyer et al.’s [79] results suggest that two-way coupling effects

caused noteworthy differences in particle behavior, which motivated another study

by Meyer et al. [77] in which they argue that both fluid-particle and particle-particle

interactions affect the velocities of both the driving gas and the particles. They also

asserted that particle dispersion is aggravated by particle-particle collisions.

It can be complicated to determine when two-way and four-way coupling ought to

be accounted for [126], and even if Meyer et al. [77] are correct in claiming that both

fluid-particle and particle-particle collisions influence flow velocity, particle velocity,

and particle dispersion, it would be unreasonable to incorporate such effects in the

present study. Since the experiments by Siopis et al. [109] used a powder feed

rate of 14 g/min, in order to properly model the number of particles per pass of

the feed holes in the metering wheel, roughly 600 particles should be injected per

injection (see section 3.2.4 for the rationale behind this claim). Because particle-wall

bonding is such a low-probability event, it is insufficient to only model 600 particles

per injection because it gives too small a sample size to collect meaningful particle

behavior data unless the simulation wall time is impractically long. In each of the

nine oscillatory simulations in the present study, ten injections spanned across 0.04

seconds, consisting of 50,000 particles each, providing 500,000 total particles injected

per simulation. If the particles and fluid were two-way coupled in the present models,

the effect of particles on the fluid would be dramatically overpredicted because there

are 83 times more particles in each injection than there were in the experiments.

It is vain to simultaneously account for two-way coupling and a large sample size

of particles because the two-way coupling effects will be exaggerated beyond what
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is realistic. The steady-state model incorporated only one injection with 500,000

particles so that clear comparisons based on equal total sample size could be made

between the particles of all simulations in this chapter. The governing equations for

particle motion and heat transfer are the same in this chapter as they were in the

previous one, those being equations 7 - 10.

To predict clogging with these CFD models, bonding must be predicted. An

approximation for critical velocity is provided by Schmidt et al. [104] and simplified

by Siopis et al. [109], which is implemented in this study for the sake of predicting

particle-wall bonding in the nozzle. If a particle impacts the wall at a velocity greater

than or equal to its critical velocity, it will adhere, but if it collides at a subcritical

velocity, it will reflect and continue on its trajectory. The critical velocity equation

is provided in equation 13:

vcrit =

√√√√√4F1σTS

(
1− Ti

Tm

)
ρ

+ F2cp

(
Tm − Ti

)
(13)

where F1 and F2 are emperical factors (1.2 and 0.3, respectively).

The critical velocity ratio is defined in Schmidt et al.’s work as the particle impact

velocity divided by the particle critical velocity:

CV R =
vimpact

vcrit
(14)

A CVR ≥ 1 means that the particle impact velocity is greater than or equal to

the critical velocity required for bonding, and indicates that the particle bonds to

the wall. In theory, the vimpact term in equation 14 should be the component of

velocity normal to the wall, which is assumed to be smooth in these models. When

the normal component of vimpact was used in the present models, however, no bonding

was predicted. Bonding was successfully predicted when the magnitude of vimpact was

used for the bonding criteria.
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Realistically, on the length scale of one particle diameter, the nozzle wall is prob-

ably rough, which may justify using the impact velocity magnitude rather than its

unit normal. Because of wall roughness, it seems likely that most collisions are not

occurring at shallow angles, but rather at angles closer to 90°. It was therefore as-

sumed in this study that any collision with the wall was a head-on collision regardless

of trajectory, and therefore the velocity magnitude was used for the vimpact term.

Even if the impact angle is significantly shallower than 90°, Nardi et al. [82] point

out that such impact angles can produce higher bond strength deposits than those

produced at 90°, so using the magnitude of velocity rather than the normal component

may more accurately model a bond occurring at a steep angle. If a particle collided

with the nozzle wall at subcritical velocity, the normal and tangential coefficients of

restitution used to calculate its rebound velocity were 0.8 and 0.7, respectively.

It should be noted that the numerous phenomena at play during particle-wall

interactions (bonding and rebounding) inside the nozzle are not fully known, and

the employment of several simplifying assumptions is inevitable when modeling such

interactions. Future work should be dedicated to studying impact phenomena, wet-

tability, and tribochemistry between the particles and the nozzle wall.

To gather information about the particle-wall collisions inside the nozzle, a UDF

was implemented as a custom boundary condition on all nozzle walls except the

feeder tube, namely, the prechamber wall, the “step” between the prechamber and

converging wall, the converging wall, and the diverging wall. This UDF recorded the

axial position, particle diameter, and bonding CVR of each particle-wall collision. The

data from this UDF were used to determine which particles bonded or rebounded,

with what diameter, and at what location in the nozzle. Particles that collided with

a CVR ≥ 1 were terminated and no longer tracked.

In their experiments, Siopis et al. sprayed a copper-nickel alloy (38% wt Ni + 62%

wt Cu) with diameters that ranged between roughly 5-45 microns [109]. The powder
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material was modeled with a density of 8940 kg/m3 and a specific heat capacity of 380

J/kg-K. In each injection in this chapter, particles were generated uniformly randomly

with diameters between 5 and 50 microns so that conclusions could be made about

bonding based on diameter, rather than to be realistic.

Like in chapter one, each injection was modeled by generating particles randomly

to fill the whole feeder tube volume. This was achieved by increasing the likelihood for

particles to generate away from the centerline by a factor of the square root of radial

position. Since the 2-D axisymmetric assumption was used, the particle location

density needed to be uniform as if the particles occupied a 3-D space. Particles were

injected at room temperature (300 K) with zero initial velocity in the feeder tube.

2.3 Results

2.3.1 Steady-State Model

Contours of the helium gas flow were obtained from the steady-state model to

comprehend the flow characteristics inside the nozzle, which are presented in Fig-

ure 22. As expected, the velocity near the inlet is low while the temperature and

pressure are high. The velocity increases towards the throat and continues to in-

crease supersonically until the outlet, after which point the flow decelerates to zero

at the substrate. Small Mach diamonds are observed just outside of the nozzle exit,

and a bow shock is observed just upstream of the substrate because the supersonic

compressible flow is decelerating to subsonic velocity. Once the fluid contacts the

substrate, it disperses radially into the atmosphere at low velocity. In the diverging

section within the boundary layer, a lower velocity is observed which is due to the

no-slip condition on the nozzle wall.

Not surprisingly, the pressure starts high and smoothly decreases as the flow

moves from the inlets to the outlet, while the temperature decreases in proportion
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Figure 22: Steady-State Contours

to the increase in velocity. The temperature in the boundary layer is relatively high

compared to that of the bulk fluid because of viscous heating in that region.

The particle pathlines for the steady-state solution are provided in Figure 23,

where particles are observed to start at a low velocity and build momentum through-

out the length of the nozzle. The particle beam width increases in the prechamber

until some particles collide with the converging wall and begin their supersonic jour-

ney down the diverging section. The beam width narrows at the throat because all

the particles must squeeze through that small orifice, and continues to be narrow in

the diverging section until the particles reach the substrate.

Figure 23: Steady-State Particle Pathlines - Low to High Velocity (Blue to Red).
Range from 0 to 1700 m/s.

The particle-wall collisions from this steady-state solution are presented in Figure

24, where it is observed that all collisions in the nozzle occur prior to the throat and
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at CVRs below one (indicative of no bonding). The particles have been grouped by

size in this figure to show the consistent behavior that smaller particles attain higher

velocities. This phenomenon occurs because, as the particles build momentum down

the nozzle, their velocities increase according to their mass. Since it is known that the

present configuration clogs in the diverging section (see Figure 20), it is determined

that the steady-state model does not properly account for all the physics responsible

for particle dispersion in the diverging section because it predicts no clogging while

the experiments do result in clogging.

Figure 24: Steady-State Particle-Wall Collisions

Figure 25a shows the axial TKE in the nozzle modeled in this study, where a peak

at the throat similar to the results in Figure 19 is observed. Figure 25b shows how the

TKE varies radially in the nozzle and confirms a maximum value at the throat. There

is much more turbulence near the wall than on the centerline, and several orders of

magnitude more in the throat at the wall than in the throat on the centerline. This

means that, when particles collide with the wall in the converging section near the

throat, in situations like Figure 24 describes, they experience extreme turbulence that
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can send them towards the wall in the diverging section, where clogging occurs. It

also means that as particles begin to disperse radially, they enter areas with more and

more turbulence, continually giving them a greater chance of being pushed toward

the wall.

The high values of turbulence in the steady-state solution both at the throat and

near the walls, however, do not seem to be the primary cause of particle dispersion

because, as Figure 24 demonstrates, there are zero particle-wall collisions downstream

of the throat in this model. Although large values of turbulence at the throat con-

tribute to dispersion, there is apparently more physics to be accounted for than the

steady-state model provides if the full effect of dispersion is to be observed.

The peak in Figure 25a is smaller than both TKE peaks in Figure 19. Because

this study incorporates inlets of equal temperature and pressure, the peak is much

lower in this study than it is for Yin et al. (see Figure 19b), who modeled different

temperature inlets. Since both the present study and that of Lupoi and O’Neill

incorporated inlets of equal temperatures, the TKE values are similar (see Figure

19a). A possible explanation for the TKE peak in the present study being slightly

lower than that of Lupoi and O’Neill could be that the nozzle geometry in the present

a) Turbulent Kinetic Energy vs Nozzle Length b) Radial TKE at Four Locations

Figure 25: Turbulent Kinetic Energy in Nozzle - Axial and Radial
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study has a long prechamber, whereas the geometry in Lupoi and O’Neill’s study does

not have a prechamber at all. Their injection takes place in the converging section. A

long prechamber may minimize turbulence near the throat because the flow has more

time to stabilize after the mixing of the two inlet gas streams. Without a prechamber,

the two gas streams are still not fully mixed by the time they arrive at the throat,

which may cause higher levels of turbulence.

Turbulence being accounted for, there are several other features in the present

configuration that are also known factors for dispersion and clogging. The injection

point is relatively far upstream from the throat, giving the particles ample time to

spread apart. Furthermore, as seen in Figure 21, the injector tube is wider than

the throat, which sets particles up to collide with the converging wall. Concerning

particle size, regardless of whether small or large particles tend to disperse more,

the present study injects a wide range of particle sizes, so the dispersing-prone sizes

are certainly employed, whatever they are. Helium is the driving gas in the present

study, and although it disperses particles more than nitrogen does, helium is required

to spray many clogging-prone powder materials, so using helium is unavoidable.

One characteristic of the present model that may have contributed to underpre-

dicting dispersion is the assumption of spherical particles. The powder morphology

was not photographed, so it is uncertain if the experiments employed irregular parti-

cle shapes that would be particularly prone to disperse into the nozzle wall. Even if

the powder morphology was nonspherical though, it is unlikely that this assumption

alone would cause such a major underprediction of dispersion, because other numer-

ical studies employ the same assumption and do predict dispersion and clogging [87].

There are also features in the present configuration that favorably minimize dis-

persion. Particles are less prone to disperse when the feeder tube and annulus employ

equal pressures, which is the case in this study. This may explain why the steady-

state model underpredicts dispersion compared to experiments, because it incorpo-
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rates perfectly equal inlet pressures, whereas an experiment would have pulsations in

the feeder tube [114]. Regarding nozzle geometry, the feeder tube is properly aligned

in the present model, and there is no reason to believe that it was situated otherwise

in the experiments. The circular cross-section of the present nozzle is favorable for

minimizing dispersion compared to other shapes, too. Although these features dis-

courage dispersion, according to Siopis et al.’s experiments, clogging still occurs in the

present configuration. All features of the present configuration considered, dispersion

is insufficiently predicted with the steady-state model.

2.3.2 Transient Model with Constant Pressure in Feeder Tube

In this second simulation, the first-order implicit transient formulation was used

with constant pressure inlets set to 4 MPa. This simulation was conducted to deter-

mine whether the physics responsible for particle dispersion is present in a transient

model while maintaining constant inflow conditions.

Figure 26: Transient Particle-Wall Collisions at Constant Inflow

Once the solution progressed sufficiently that the initial transient noise subsided

and the inlet pressure settled to 4 MPa, the 500,000 particles were injected incremen-
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tally in groups of 50,000 to simulate a stream of particles entering the injector tube.

Figure 26 shows the resulting particle-wall collisions, and the results are similar to

those of the steady-state simulation – collisions exclusively occur prior to the nozzle

throat and at CVRs less than one. It is thus concluded that a transient simulation

with constant inlet pressures cannot predict the realistic particle dispersion that leads

to clogging in the diverging section, and that transient simulations with fluctuating

inlet pressures should be investigated.

2.3.3 Transient Model with Pressure Fluctuations in Feeder Tube

Pressure fluctuations were simulated by applying the pressure UDF to the feeder

tube inlet boundary. In the nine transient simulations with pressure oscillations,

500,000 particles were injected into the domain incrementally in ten groups of 50,000.

These ten injections were evenly spread out in time across the pressure wave, as

shown in Figure 27. In each simulation, two injections occurred at the lowest point

on the pressure wave while two injections occurred at the highest point. This was

done so that the results would be representative of particles traveling on all parts of

the pressure wave. The injection points were adjusted depending on the frequency of

the oscillations so that all injections were conducted in like fashion according to the

frequency of the pressure oscillation in the feeder tube.

Although the total pressure in the nozzle was governed by the UDF that generated

a sine curve (see equation 12), it is observed that the sections of the curve below

Pavg have kinks once per period, which is contrary to a perfect sine curve. This

inconsistency is due to backflow in the feeder tube during the time that the feeder

tube pressure drops below that of the annulus. The annulus inlet is held at a constant

4 MPa during these simulations, so when the feeder tube pressure drops below that of

the annulus, the flow is directed into the feeder tube from the annulus. This backflow

imposes on the sinusoidal boundary and manifests in a suppressed sine curve during
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Figure 27: Feeder Tube Inlet Total Pressure vs Flow Time with Injection Locations

the times that pressure drops below 4 MPa. Even though there is a kink in the curve,

the pressure still oscillates clearly and sufficiently to determine the effect that the

oscillations have on particle dispersion.

Particles were injected only once the transient noise subsided and the pressure

stabilized to its intended condition. Small oscillations can be seen on the lower part

of the curve at 0.015 seconds, which is why injections did not begin until 0.035 seconds

when the pressure became settled.

The resulting particle-wall collisions from the nine transient simulations with os-

cillating pressures are summarized in Figures 28 and 29. In all these models, bonding

is successfully predicted in the diverging section, which suggests that the physics re-

sponsible for dispersion in the diverging section is accounted for when transient flow

fluctuations are imposed. Like the prior two models (steady-state and transient with

constant inflow), the smaller particles collide with faster velocities than the larger

ones, but these transient models predict more collisions in the converging section

than the prior two. A clear trend observed from Figures 28 and 29 is that as pres-

64



sure wave amplitude increases, the number of particles that bond increases. More

particles are dispersed in the diverging section when the pressure wave amplitude is

larger. There is no clear trend between pressure wave frequency and bonding.

The result of higher pressure amplitudes promoting dispersion agrees with Yin et

al.’s finding that, when feeder tube pressures exceed those of the annulus, particle

dispersion is increased [146]. A possibly related trend was found by Fukumoto et

al. [29], who determined that larger inlet pressures resulted in higher deposition

efficiencies – in the case of the present study, the deposition efficiency refers to that

of the particles on the nozzle wall.

Although particles of all sizes are shown to bond in this study, Figure 28 demon-

strates that the largest particles, with diameters ranging from 35 to 50 microns, all

have CVRs close to one. This indicates that those particles are on the cusp of bonding,

and that copper-nickel alloy particles with diameters slightly larger than 50 microns

would not bond to the nozzle wall at all in a repeat experiment. The disadvantage

to using such larger particles, however, is that although they would not bond to the

nozzle, they also may not bond to the substrate if they cannot reach critical velocity.

It should be noted that the largest pressure wave amplitude (50 kPa) is only about

1% of the operating inlet pressure (4 MPa) and that a fluctuation of such a small

magnitude still caused a significant amount of clogging. The results in Figure 28 show

that very small oscillations in the feeder tube can cause a severe amount of clogging.

The oscillatory models successfully predict clogging, but the inlet boundary con-

ditions are inconsistent between Siopis et al.’s experiments and the models in this

work. In cold spray experiments, the feeder tube is set to a certain volumetric flow

rate while the annulus is set to a certain temperature and pressure. The tempera-

ture difference between the feeder tube and the annulus is known to cause mixing

and turbulence because high levels of shear arise from the two flows with different
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Figure 29: Bonded Particles from Nine Oscillatory Simulations

velocities merging. The resulting turbulence can cause increased dispersion among

the particles.

The reason the inlet temperatures were both set to 673 K in this work is because

it was already known that the mixing of the hot and cold gases causes dispersion.

If the inlets were simulated at their realistic temperature conditions, the particle

dispersion data would be the result of both mixing and feeder tube oscillations. The

primary goal of this work is to determine the effect that feeder tube oscillations alone

have on particle dispersion, and thus it was desirable to set both inlets to the same

temperature to isolate oscillation effects.

Since the feeder tube is set to a certain flow rate in experiments, the oscillations

that manifest are actually flow rate oscillations, not pressure oscillations. Although

the total pressure oscillates with the flow rate, it is the oscillating flow rate which

causes the pressure to oscillate, not the other way around. As was previously men-

tioned, the oscillatory pressure in this work results in backflow, which is not realistic

in cold spray. An oscillatory flow rate does not result in backflow because, even when
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the flow rate is at a minimum, the flow still moves forward, just slower. The assump-

tion of equal inlet temperatures was a necessary means of confirming the hypothesis

that flow oscillations alone, if present, can cause dispersion sufficient for clogging in

a cold spray nozzle.

The inconsistency between boundary conditions in the experiments and these

models may be the reason for the models overpredicting the expanse of clogging. In

the results from Siopis et al., clogging was found in a narrow region of the diverging

section (see Figure 20). The present simulations, however, predict collisions that lead

to clogging along nearly the whole length of the diverging section (see Figure 28). It

could be that the overprediction is due to the imposed oscillations being too large -

after all, these fluctuations were not measured but rather were arbitrarily employed

for the general purpose of determining how pressure wave amplitude and frequency

affect dispersion. The selected values may too large to be realistic. Chapter three

is dedicated to incorporating more realistic and specific flow rate fluctuations along

with a realistic temperature difference between the inlets.

Another factor that may be responsible for the overprediction in the clogging

expanse is the lack of local temperature effects included in calculating the critical

velocity. As was previously discussed, increasing substrate temperature increases

deposition efficiency [29, 99, 134, 148]. The higher wall temperature increases the

energy available for bonding and thus reduces the required particle kinetic energy for

bonding. Conversely, lower surface temperatures are detrimental to bonding, which

means that in areas where the nozzle is cooler, particles are less likely to bond. This

is the motivation behind nozzle cooling, which has proven to successfully prevent

clogging in many otherwise clogging-prone situations [81, 132].

Since the tungsten-carbide nozzle inner wall gets slightly cooler down the length of

the nozzle (see the adiabatic curve in Figure 10), it may be that the particles cannot

bond as effectively farther downstream in the diverging section. If a parameter like
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that of the critical velocity in Schmidt et al.’s work [104] were used that accounted for

substrate temperature, the simulations may yield results that better align with those

of experiments. It is unknown to what extent the results would change if the wall

temperature were accounted for, but that is one possible reason for the overprediction.

Unless the numerous phenomena at play during particle-wall interactions are further

studied in future works, it will be difficult to predict clogging more accurately.

Figure 20 shows that the clogging location is greatly influenced by particle size in

experiments. It is clear from Figure 28 that smaller particles reach critical velocity

before larger ones, which means smaller particles bond before larger ones. When

the small particles begin accumulating early in the nozzle, particles of all sizes begin

accumulating onto those. The simulations in this work do not account for particle

accumulation effects in the nozzle, but this may have a significant impact during

experiments, which may be another reason for the overprediction in the modeled

clogging expanse. This hypothesis is reinforced by comparing the difference between

Figures 20a and 20b. When the fine particles are injected along with large ones, the

fines drive the location of clogging closer to the throat, but when the fines are sieved

out and only larger particles are injected, the clogging location is driven farther down

the nozzle. Figure 28 also indicates that larger particles cause clogging farther down

the nozzle while smaller ones begin to clog closer to the throat. To harmonize the

results of Figures 20 and 28, the location of clogging seems to depend on where the

smallest particles begin to bond. Small particles do not necessarily bond more than

others (see Figure 29), but because they bond first, they drive the clogging upstream.

It is worth mentioning that although this was not the case in the experiments

by Siopis et al. [109], some materials foul throughout the entire diverging section,

not only in a small expanse [70]. If a cold spray scenario with nozzle and feedstock

materials known to clog throughout the entire diverging section were modeled with
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the methods of the present study, the model may predict the clogging expanse more

accurately.

Discrepancies aside, the transient simulations with pressure oscillations success-

fully predict particle-wall collisions and bonding in the diverging section of the nozzle

whereas the simulations with constant inflow conditions did not. With this finding, a

possible root cause of particle dispersion and therefore clogging has been identified,

which satisfies the primary goal of this work. Despite flow fluctuations being capable

of causing clogging, it does not follow that all clogging scenarios are caused by such

oscillations. These oscillations may not even exist in all cold spray processes. The

chief conclusion of this chapter is that, if flow fluctuations in the feeder tube exist,

they can promote dispersion such that clogging is provoked.

2.4 Conclusion

CFD simulations were performed to identify a potential root cause of particle dis-

persion and therefore nozzle clogging in cold spray. The models were based on specific

experiments [109]. A steady-state model was initially investigated, which failed to

predict the particle-wall collisions that those experiments reported downstream of

the throat. This motivated a transient investigation of particle behavior with inlet

conditions held at constant temperature and pressure, which also failed to predict

collisions in the diverging section. Finally, nine transient simulations were conducted

with pressure oscillations in the feeder tube at three wave amplitudes and three wave

frequencies, all of which successfully predicted bonding in the diverging section. It is

therefore concluded that pressure oscillations in the feeder tube, if present, can cause

particle dispersion sufficient for clogging.

The pressure waves disperse the particles in proportion to the wave amplitude;

larger wave amplitudes result in larger amounts of bonding in the diverging section.
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There does not seem to be any correlation between the pressure oscillation frequency

and the degree of clogging.

The maximum pressure oscillation amplitude was only 1% greater than the average

pressure, and the models still predicted substantial amounts of clogging. To extend

these conclusions, oscillations in the feeder tube can be due to vibrations, fluid-

structure interactions, or other factors still not identified – oscillations are not just

limited to pulsations in the feeder gas flow. In whatever form, oscillations in the feeder

tube region, even if they are very small, are detrimental in that they can promote

the onset of clogging aggressively. Future work could be dedicated to identifying and

limiting such oscillations in the feeder tube region to alleviate nozzle clogging in cold

spray.
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CHAPTER 3

SIMULATIONS OF MASS FLOW OSCILLATIONS IN
FEEDER TUBE

3.1 Motive and Background

Since chapter two has established that flow oscillations, if present, can cause par-

ticle dispersion and clogging, this study seeks to determine whether the rotating

metering wheel that feeds powder into the injector tube causes flow fluctuations large

enough to cause dispersion and clogging in cold spray nozzles. As was previously

mentioned, clogging was identified by Sova et al. and attributed to observed pulsa-

tions in the feeder tube [114]. They determined: “Even the minimal possible powder

feeding rates ∼0.05 cm3/min were too high, leading to pulsations of the particle jet

and being provoked a rapid mechanical clogging of the nozzle by the particles.”

There are several potential causes for oscillations in the feeder tube, but the

phenomenon investigated in the present study has particular relevance. The rotating

metering wheel, to some extent, necessarily produces pulsations in the particle-laden

gas stream as the feed holes pass by and the rotating plate cyclically obstructs and

releases the flow into the feeder tube. Whether those cyclic oscillations from the

rotating perforated plate are sufficiently large to cause dispersion and clogging is the

subject of the present study.

Several CFD simulations based on Siopis et al.’s experiments [109] were conducted

in the present work to model the transient effects of the rotating perforated plate on

the powder stream characteristics. For context, a CAD drawing of the metering wheel

used in Siopis et al.’s experiments [109] is provided in Figure 30.
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Figure 30: CAD Drawing of Metering Wheel

3.2 Modeling Methodology

3.2.1 Boundary Conditions

The feeder tube length is the only difference between the modeled geometry in the

present study and that of chapter two. The entire length of the tube from the powder

feeder to the injection point was ten feet in the experiments [109], and although there

were some curves in the tube, the last four inches were kept perfectly straight. The

four-inch straight section was accounted for in the model. Figure 31 provides the

nozzle geometry used in this chapter.

Figure 31: Nozzle Geometry - Long Feeder Tube (Flow Domain)
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Certain nozzle wall boundaries were furnished with the same UDF from chap-

ter two that recorded particle impact CVR and the location at which the collision

occurred; in particular, they were those of the annulus, the prechamber, the “step”

between the prechamber and converging section, the converging section, and the di-

verging section. The governing equations in that UDF are provided in equations 13

and 14. The particle rebound velocity was computed using normal and tangential

coefficients of restitution of unity.

The boundary conditions in the present model are consistent with those of Siopis

et al.’s experiments. The annulus temperature and pressure were 673 K and 4 MPa

while the atmospheric outlet conditions were set to zero gauge pressure and 293 K.

The feeder tube inlet was set to 120 SLPM in the experiments, so using equations 1

- 3, the volumetric flow rate was converted to a mass flow rate boundary condition of

0.33296 g/s. Fluent does not accept a volumetric flow rate as a boundary condition,

but it does accept a mass flow rate. The feeder tube gas was experimentally measured

at roughly room temperature, which was incorporated in the model as well (293 K).

Equations 15 - 24 were used to compute both the timing of the rotating perforated

plate and the helium mass flow rate during the period the feeder tube is aligned with

the feed holes. Firstly, the linear velocity of the metering wheel is described by

equation 15:

vmw = ωmw × rmw (15)

where ωmw is the metering wheel rotational velocity and rmw is its radius measured

from the center of the plate to the center of a feed hole (not to the outer edge of the

metering wheel). The measurement to the center of a feed hole is relevant because it

represents the position of the feeder tube with respect to the disk’s center.

In this study, a cycle is defined as the time it takes for the perforated plate to

first allow gas to pass through the feed hole and then prevent the gas from passing as
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the feed hole proceeds beyond the injector. The cycle ends just before the next feed

hole arrives at the injector. There are 80 cycles per revolution of the metering wheel

because there are 80 feed holes in it. Equation 16 provides the arclength of one cycle:

Lcyc =
C

nfh

(16)

where nfh represents the number of feed holes in the metering wheel and C is the

circumference of the circle passing through the center of each feed hole. The circum-

ference C is given by:

C = 2πrmw (17)

With the arclength of one cycle obtained, the elapsed time of one cycle is given

by equation 18:

tcyc =
Lcyc

vmw

(18)

To find the portion of Lcyc falling inside the diameter of one feed hole, which rep-

resents the distance the feed hole travels while allowing gas to flow through, equation

19 is employed:

Lopen =
θ

360
C (19)

where the angle θ (measured from the metering wheel center in degrees) represents

the angle proportional to the arclength Lopen. The angle θ is calculated with equation

20. The variables in equation 20 are displayed in Figure 32 for context.

θ = 2arctan

(
Dfh

2rmw

)
(20)

where Dfh is the feed hole diameter (74 thousandths of an inch).
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Figure 32: Variables Related to Computing θ
For conceptual visualization only.

Drawing not to scale and displays unrealistically low number of feed holes.

The amount of time that passes when the gas flow can pass through the feed hole

is given by equation 21:

topen =
Lopen

vmw

(21)

and the duration of time that the flow is obstructed by the plate is given by equation

22:

tclosed = tcyc − topen (22)

The terms topen and tclosed were used in the present simulations to model at what times

in the cycle the helium gas was allowed to flow and at what times it was prevented.

As calculated in equations 1 - 3, the average mass flow rate (ṁave) is 0.33296 g/s,

but because the mass flow rate fluctuates, the instantaneous mass flow rate is not
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constant with respect to time. During tclosed the mass flow rate is zero (modeled at

0.0001 g/s), but during topen the mass flow rate is larger than ṁave. During tclosed

the gas builds up while being blocked by the plate, and the accumulated gas is then

released during topen. The total mass of helium that passes through the feed hole

during one cycle is given by equation 23:

mhelium,cyc = ṁave × tcyc (23)

Since all the helium mass passes through the feed hole only during topen, the mass

flow rate during topen can be described by equation 24:

ṁopen =
mhelium,cyc

topen
(24)

and the ratio of ṁopen to ṁave (which is also the ratio of tcyc to topen) is given by

equation 25:

Ropen/closed =
ṁopen

ṁave

=
tcyc
topen

(25)

Since the distance from the center of the metering wheel to the center of the feed

holes (rmw) is 1003 thousandths of an inch, Ropen/closed is 2.08967. The rotational

velocity of the metering wheel was set to 4 RPM in the experiments (in RPM, the

rotational velocity of the metering wheel is given by ωmw,rpm), but in this numerical

study three different rotational velocities were considered (2, 4, and 8 RPM) to eval-

uate the effects that varying ωmw,rpm has on particle dispersion and clogging. These

three angular velocities constitute the typical range of ωmw,rpm used in cold spray.

The different rotational velocities of the metering wheel do not affect Ropen/closed,

but they do affect the values of tcyc and topen. The time durations tcyc and topen

decrease as ωmw,rpm increases. Table 6 provides the values of tcyc and topen at the

three rotational velocities considered in this study.
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Table 6: Feed Hole Timing Parameters at Three Rotational Velocities

ωmw,rpm (RPM) 2 4 8
tcyc (sec) 0.03927 0.01963 0.00982
topen (sec) 0.01879 0.00940 0.00470

3.2.2 Mesh Description

After creating several meshes of various sizes and running steady-state simulations

with them, the meshes with 75,398 cells or greater did not produce significantly

different results from one another. The mesh with 75,398 cells was therefore selected

for this study to obtain accurate results and conserve computation time. Three

layers of thin cells were applied near the wall boundaries to resolve the boundary

layer effects. The wall yplus values ranged from 0.25 to 4.5, the maximum being at

the throat. The specific details of the mesh based on zone name are provided in Table

7.

Table 7: Mesh Specifications Based on Zone
Name for Oscillatory Mass Flow Simulations

Zone Cell Size (mm)
inlets 0.2
prechamber 0.2
converging 0.2
diverging 0.08
standoff 0.08
atmosphere 0.4

3.2.3 Gas Phase Modeling

As was the case in the previous chapters, the density-based implicit solver was

used to converge these solutions to first-order accuracy. The helium density varied

according to the ideal gas law while the thermal conductivity and viscosity varied

with respect to temperature according to equations 4 and 5.
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The k-ε realizable turbulence model with standard wall functions was used to

predict the turbulent fluctuations in the flow. Since this chapter is a continuation of

the previous one and the k-ε realizable model was deemed most appropriate for that

chapter, it seemed appropriate to use that model for this chapter as well.

3.2.4 Discrete Phase Modeling

Although it may be desirable to account for two-way coupling between the fluid

and the particles to capture realistic particle dispersion effects, a realistic number

of particles needs to be injected in the model so that realistic effects ensue. There-

fore, the sample size of particles passing through a single feed hole (representing one

injection, or one cycle) must be obtained.

Equation 26 provides the method of calculating the particulate mass passing

through the feed hole in one cycle:

mp,cyc = ṁp
1

ωmw,rpm

1

nfh

= 0.0437 g/cyc (26)

where ṁp is the powder feed rate (14 g/min) used in the experiments.

The volume of an individual particle is given by equation 27:

Vp,i =
4

3
π

(
Dp

2

)3

(27)

while the total volume of a sample size of particles is provided in equation 28:

Vnp =

i=np∑
i=1

Vp,i (28)

where np is the particle sample size.

An assumption made in equations 28 - 32 is that all particle diameters are perfectly

evenly spaced apart between 5 and 100 microns. In Siopis et al.’s experiments, the
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particle size distribution was roughly Gaussian. In the present models, the particles

were randomly distributed with equal likelihood between 5 and 100 microns so that

conclusions could be made about particle behavior based on diameter, rather than

to be realistic. The assumption made in equations 28 - 32 of perfectly evenly spaced

diameters is similar to the size distribution in the models and was applied to simplify

the calculations.

Equation 29 gives the total mass of a particle sample size:

mnp = ρp × Vnp (29)

Figure 33 serves to determine the number of particles in each injection. The known

particulate mass passing through the metering wheel per cycle (mp,cyc) is represented

by the solid blue line. The dotted red line is a plot of equation 29 showing how the

total particulate mass of a sample (mnp) increases with sample size (np). As sample

size increases, so does the total mass of the sample. Since the volume of a sample (Vnp)

increases as sample size increases (see equation 28), the sample mass must likewise

increase (see equation 29).

A simple numerical method was employed to find at what sample size the calcu-

lated mass (mnp) is closest to the known mass (mp,cyc). The residual between mnp

and mp,cyc was computed for each sample size with equation 30:

rnp = |mp,cyc −mnp | (30)

As equation 31 indicates, the smallest residual occurs at a sample size of 591 particles:

min(rnp) = rnp=591 = 4.5892e -11 (31)

In summary, the calculated particulate mass based on sample size (mnp) for one

cycle is nearly equal to the known particulate mass in one cycle (mp,cyc) when the
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Figure 33: Particulate Mass Flow per Cycle

particle sample size is 591:

mnp=591 ≈ mp,cyc = 0.0437 g/cyc (32)

It is therefore concluded that each injection ought to consist of roughly 600 par-

ticles if two-way coupling is to be realistically accounted for. Because particle-wall

bonding is such a low-probability event in these models, 600 particles per injection are

too few to obtain particle-wall collision results in a practical amount of wall-time. In

order to predict significant bonding, the models in chapter two required ten injections

of 50,000 particles each, providing a total sample size of 500,000. A similar sample

size is required for the present chapter, as well. Incorporating two-way coupling with

50,000 particles per injection is a futile effort because the sample size in the mod-

els would be 83 times that of the experiments (roughly 600 particles). If two-way

coupling were computed with 83 times the realistic number of particles present, the

effects would be dramatically exaggerated. For this reason, one-way coupling between
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the particles and the fluid was employed in the models. Besides, the ratio of particle

mass flow rate to fluid mass flow rate is 0.049 while the ratio of particle volumetric

flow rate to fluid volumetric flow rate is 6.87e-6. The mass and volume ratios of parti-

cles to fluid are both low, which further justifies the assumption of one-way coupling.

The same governing equations for particle motion and heat transfer used in chapters

one and two were also implemented in this chapter (equations 7 - 10).

The first injection occurred at flow time equal to tcyc to give the flow enough

time to become established and to allow the initial transient noise to subside before

injecting. Each subsequent injection occurred at an increment of tcyc until the last

injection, which occurred at 10tcyc.

The same copper-nickel alloy particle material from chapter two was employed in

this study to replicate the experiments of Siopis et al., with a density of 8940 kg/m3

and a specific heat capacity of 380 J/kg-K. To compensate for the two-dimensional

nature of the model, particles were generated with greater likelihood away from the

centerline by a factor of the square root of radial position. This compensation spawns

particles in a 2-D space as if they were occupying a 3-D space with uniform position

density. Several sets of simulations were run in this study, some employing particles

with zero initial velocity, some incorporating an initial velocity of 25 m/s (which is

the feeder tube flow velocity), and some with initial trajectory angles. All particles

were injected at room temperature (293 K).

3.3 Results

3.3.1 Steady-State Model

Three different injections were simulated with a steady-state model. The first

injection consisted of particles with zero initial velocity, the second incorporated an

axial initial particle velocity of 25 m/s, and the third employed particles with a 25

m/s initial velocity and randomly assigned initial trajectory angles (αp,0, measured
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from the centerline) between zero and 10°. Ten degrees was selected as the maximum

initial trajectory angle because it seemed unlikely that particles could obtain a much

steeper angle during their journey through the feeder tube. Comparing the steady-

state results of these three injections helps ascertain how the initial conditions of

the particles affect dispersion without transient pulsations in the feeder tube. The

steady-state results also provide a base case to compare with the transient results.

Since chapter two demonstrated that transient models with constant inflow conditions

produce similar particle collision results as steady-state models, any differences in

particle behavior between the steady-state and transient models in this chapter can

be attributed to the feeder tube oscillations in the transient models.

Figure 34 presents the steady-state particle-wall collision data for the three dif-

ferent injections. The first two injections, with αp,0 = 0°, resulted in zero collisions

with CVRs greater than one, indicative of no bonding (Figure 34a and 34b). Fur-

thermore, there are zero collisions predicted in the diverging section with the first

two injections. The injection with initial particle trajectory angles ranging between 0

and 10°, however, resulted in many collisions in the diverging section, some of which

resulted in bonding (Figure 34c). Figure 34 shows that the initial trajectory angle

plays a greater role in clogging than particle initial velocity.

These initial trajectory angles cannot be the entire cause of clogging though,

because in the experiments, the smallest particles determined the location of clogging

(see Figure 20), whereas in Figure 34c, the smallest particles are not predicted to

bond at all. The steady-state solution with initial particle trajectory angles may

successfully predict some clogging, but it does not predict all the bonding known to

occur in experiments, particularly with the smallest particles.

When employing initial trajectory angles, large particles will disperse more be-

cause of their high inertia. They will not be easily coerced by the axial flow direction

and thus will continue traveling radially as well as axially, in contrast to the small
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Figure 34: CVR vs Nozzle Length - Steady-State
(a) vp,0 = 0 m/s, αp,0 = 0°
(b) vp,0 = 25 m/s, αp,0 = 0°

(c) vp,0 = 25 m/s, αp,0 = 0-10°

particles (with low inertia) which are heavily influenced by the flow momentum and

thus travel more axially.

Despite the steady-state model predicting some clogging with angled initial tra-

jectories, there is still more physics responsible for clogging than what this model

provides because it does not predict the experimentally proven phenomenon of clog-

ging with small particles.

3.3.2 Transient Models

Several transient simulations were solved to isolate the effects of helium mass flow

rate pulsations in the feeder tube due to the rotating metering wheel. First, the
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injection with vp,0 = 0 m/s and αp,0 = 0° was used with the three different values of

ωmw,rpm (2, 4, and 8 RPM), the results of which are provided in Figure 35.

The collisions presented in Figure 35 all occur in the converging section and below

the bonding criteria (CVR = 1), which indicates that the transient model with vp,0

= 0 m/s and αp,0 = 0° does not capture all the physics responsible for particle dis-

persion and bonding in experiments. It is unclear why seemingly few medium-sized

particles collide in the case with ωmw,rpm = 4 RPM compared to the other two angular

velocities.

Figure 35: CVR vs Nozzle Length
vp,0 = 0 m/s, αp,0 = 0°
(a) ωmw,rpm = 2 RPM
(b) ωmw,rpm = 4 RPM
(c) ωmw,rpm = 8 RPM

The next set of simulations conducted in this chapter incorporated the injection

with vp,0 = 25 m/s and αp,0 = 0° at the same three values of ωmw,rpm. The ensuing
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results are presented in Figure 36 and are similar to those displayed in Figure 35,

which indicates that the physics responsible for dispersion and clogging are not fully

accounted for in the oscillatory model with vp,0 = 25 m/s and αp,0, either.

Figure 36: CVR vs Nozzle Length
vp,0 = 25 m/s, αp,0 = 0°
(a) ωmw,rpm = 2 RPM
(b) ωmw,rpm = 4 RPM
(c) ωmw,rpm = 8 RPM

It seems most realistic to model particles with an initial velocity close to the feeder

tube flow velocity, as was done in Lupoi and O’Neill’s dispersion study [72], rather

than injecting them at rest. Similar results ensue with both injection methods though,

which shows that the present models are not sensitive to particle initial velocity.

The results of the injection employing vp,0 = 25 m/s and αp,0 = 0-10° with all

three metering wheel rotational velocities are presented in Figure 37. The collisions

are similar to those observed in Figure 34c, which shows the steady-state collisions
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with vp,0 = 25 m/s and αp,0 = 0-10°. All three metering wheel velocities produce

similar collisions with vp,0 = 25 m/s and αp,0 = 0-10°.

Figure 37: CVR vs Nozzle Length
vp,0 = 25 m/s, αp,0 = 0-10°

(a) ωmw,rpm = 2 RPM
(b) ωmw,rpm = 4 RPM
(c) ωmw,rpm = 8 RPM

The smallest particles are not predicted to bond, which was also the case with the

steady-state model using the same injection. Although the transient models exhibited

in Figure 37 are an improvement over the steady-state model in that they predict

bonding for particles in the 24-43 micron range, they still do not predict bonding for

the smallest particles, which are in the 5-24 micron range. Siopis et al.’s experiments

[109] found that, in particular, the 5-15 micron particles determined the location of

clogging. Like the aforementioned models, even the transient models with αp,0 =

0-10° do not predict clogging for small particles, indicating that the clogging found
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in Siopis et al.’s experiments is not entirely due to flow pulsations from the metering

wheel.

Figures 37 and Figure 34c show that clogging is highly sensitive to the particle

initial trajectory angle inside the feeder tube. Even with angles as shallow as 10°,

clogging was provoked significantly. Although such a study would be challenging, a

valuable future work could investigate the trajectory angles of particles inside the

feeder tube as a means to better predict clogging.

For flow pulsations to cause dispersion adequate for clogging, they need to redirect

the particle trajectories enough for the particles to collide with the diverging wall,

which was not the case in this study with the smallest particles. Even shallow initial

particle trajectory angles caused more clogging than the flow oscillations did. There

is very little difference between the particle-wall collisions occurring in the steady-

state compared to those occurring with the transient effects of the rotating metering

wheel, which implies that the metering wheel effects are inconsequential to clogging.

Furthermore, there is not a significant difference between the number of collisions

transpiring at any of the three metering wheel angular velocities, which agrees with

the finding from chapter two that pressure wave frequency does not affect clogging.

Even when the value of ṁopen was increased unrealistically to four times its actual

value (with the timing tcyc and topen remaining at their realistic values), the models

still did not predict clogging for the smallest particles. Other phenomena must be

responsible for particle dispersion, which should be investigated in future work. Vi-

brations or fluid-structure interactions between the feeder tube wall and the powder

feed gas may be responsible for particle dispersion and clogging [66], which could be

the subject of a valuable future study.
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3.4 Conclusion

The present chapter is based on specific nozzle clogging experiments by Siopis et

al. [109], and is a continuation of chapter two. It has been hypothesized in a certain

cold spray study [114] that pulsations in the particle jet provoke nozzle clogging. In

light of chapter two demonstrating that flow oscillations can indeed cause clogging, the

present chapter serves to determine whether the flow oscillations produced specifically

by the rotating metering wheel are large enough to cause clogging. As the metering

wheel rotates, it cyclicly permits and blocks the driving gas from flowing through it,

causing pulsations in the driving gas mass flow rate.

Several CFD models were developed to study the effects of these transient mass

flow rate pulsations on particle dispersion and clogging. Starting with a steady-state

flow solution, three different particle injections were evaluated. The two injections

with zero particle initial velocity and axial initial velocities of 25 m/s (equal to feeder

tube gas velocity) performed similarly, producing collisions only in the converging

section and well below critical velocity. The third injection, which incorporated par-

ticle initial velocities of 25 m/s and initial particle trajectory angles between zero and

ten degrees (measured from the centerline), resulted in a prediction of clogging. Con-

trary to the experimental results, however, the smallest particles were not predicted

to bond at all. In the experiments, the smallest particles played the greatest role in

clogging. The discrepancy between the experimental and modeling results indicates

that the physics responsible for particle dispersion and clogging of small particles is

not present in the steady-state model.

Nine transient models were subsequently investigated, incorporating the three

injections previously mentioned and three metering wheel angular velocities of 2,

4, and 8 RPM. The transient effects of the metering wheel were not found to be

significant, as the transient models produced similar results to those solved in the

steady-state. Even when unrealistically large mass flow pulsations of four times the
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actual value were employed, the smallest particles were still not predicted to clog. It

was additionally determined that varying the metering wheel’s angular velocity had

little effect on particle behavior, which agrees with the finding from chapter two that

flow oscillation frequency does not significantly affect clogging.

On the other hand, the particle trajectory angle inside the feeder tube was found

to affect clogging tremendously. Angles as low as 10° proved to provoke clogging

significantly. In light of clogging being so sensitive to it, a difficult but valuable

future study could investigate the trajectory angle of particles inside the feeder tube.

Because the flow fluctuations from the metering wheel are too small to substan-

tially alter particle trajectories, they are found not to be a root cause of clogging in

cold spray. The physics responsible for clogging must stem from phenomena other

than pulsations due to the rotating metering wheel. Future studies could investigate

the effects of vibrations and fluid-structure interactions between the feeder tube wall

and the powder feed gas to consider other possible root causes of clogging.
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CHAPTER 4

PROPENSITY FOR CLOGGING OF NOVEL NOZZLE
GEOMETRIES

4.1 Motive and Background

Although nozzle cooling mitigates clogging in many otherwise clogging-prone sce-

narios, it cannot prevent clogging in all cases. As was discovered in chapter one, the

cooling method is not effective for fine (small) particles. Furthermore, nozzle erosion

may still occur with cooling because even though bonding is prevented, particle-wall

collisions can still result in erosion of the nozzle wall. The empirical relation for ero-

sion by Moridi et al. does not depend on nozzle wall temperature [80], which would

indicate that erosion still occurs at the same rate independent of cooling. As was

mentioned previously, however, the empirical relation for critical velocity by Schmidt

et al. [104] does not contain a term for substrate temperature despite it being known

that substrate temperature affects bonding [29, 99, 134, 148]. It could be that the

erosion equation by Moridi et al. similarly neglects to account for substrate temper-

ature. It seems likely that erosion occurs to some extent even amidst cooling, but

further study should be dedicated to this topic.

Erosion is preferable to fouling (particle accumulation on the nozzle wall) because

at least the particles get deposited on the substrate despite the nozzle being somewhat

compromised. Polybenzimidazole (PBI) nozzles are often used with clogging-prone

materials to allow the particles to erode the nozzle rather than adhere to it [133].

Erosion is still problematic though because once the nozzle geometry is compromised

the flow velocity decreases, which then maligns the particle velocity. When particle

velocity decreases, the particles’ ability to reach critical velocity is jeopardized.
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Several studies have investigated bonding-resistant nozzle materials to avoid clog-

ging [28, 31, 47], but these methods are either unproven or still have significant

limitations. Tungsten carbide is typically used as the nozzle material when spraying

clogging-prone powders because it is extremely hard and bond-resistant, but clogging

still occurs with it.

There are several difficulties associated with modeling the fouling phenomenon.

First of all, the wettabilitiy of powder materials on tungsten carbide is currently not

well understood, nor are the effects of nozzle wall roughness. Single-particle impact

experiments can help ascertain bonding and rebound properties, but these studies

are often conducted under perpendicular impact conditions rather than shallow an-

gles [46]. Because bonding occurs at especially shallow angles relative to the nozzle

wall during fouling, it is necessary to account for such angles. Besides, there is even

debate in the cold spray community regarding perpendicular particle-substrate bond-

ing; whether it depends on the formation of an adiabatic shear instability [7] or not

[37]. In light of such debate, it is unsurprising that the phenomena responsible for

bonding in more complicated conditions (with steep angles and unknown roughness)

are not fully known.

There is also difficulty in ascertaining the phenomena related to collisions which

rebound off the wall, specifically regarding the coefficient of restitution. It is known

that the coefficient of restitution depends on the particle material strength and density

[155] along with its regime of plastic deformation during impact [143]. In particular,

aluminum 6061 particles have been measured to have a coefficient of restitution on the

order of 0.1 when traveling within the range of 50-1000 m/s, but these measurements

are for 90° impacts rather than shallow angles [17, 141]. These measured values are

therefore not applicable to the present models, as there are still more complexities

that are not understood [74].
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Kleis and Hussainova studied the coefficient of restitution for steel spheres at im-

pact angles between 15° and 90° [48], but their spheres were 700 microns in diameter,

which are much larger than cold spray particles. Also, the impact speed only went

up to 150 m/s, which is far below the impact speed of cold spray particles. Although

methods of modeling particle rebound effects on rough surfaces exist [111], an addi-

tional challenge is that they require a thorough comprehension of the inner nozzle

surface topography, which is lacking to date.

A wide range of coefficient of restitution values have been employed in cold spray

and similar studies. In their study on particle-wall interactions in two-phase flow,

Nguyen and Fletcher assumed a coefficient of restitution of unity [84]. Faizan-Ur-

Rab et al. did likewise in their numerical study on particle behavior inside their

cold spray nozzle [25]. Karimi et al. modeled the cold spray process with an angled

substrate and their tangential and normal coefficients of restitution were 5/7 and

between 0.07 and 0.1, respectively [44]. It should be noted that Karimi et al.’s values

were used at the substrate where velocities are close to critical, which explains why

their values are relatively small. Ozdemir and Widener found that changing both the

normal and tangential coefficients of restitution inside their cold spray nozzle did not

change the difference between the average particle velocity of their CFD model and

that of their experiments [87].

Although Ozdemir and Widener’s results show that average particle exit velocity

is fairly unaffected by the coefficient of restitution, particle dispersion is certainly

affected. If the normal coefficient of restitution is very small, the particles will be

prevented from moving radially after their first collision with the nozzle wall, which

necessarily prevents dispersion. Predicting particle dispersion inside a cold spray

nozzle is a challenge for many reasons, one being insufficient research to date regarding

the normal coefficient of restitution inside the nozzle. In this study, the normal
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coefficient of restitution inside the nozzle is varied to observe how it affects particle

dispersion.

In their study on nozzle clogging, Wang et al. [132] make an important obser-

vation. Their experiments revealed that, while spraying aluminum powder, clogging

occurred just downstream of the throat. Their models, however, showed that par-

ticles colliding in that region were traveling well below critical velocity. According

to the models, the particle velocity magnitude in that region was about 300 m/s,

which is roughly half the critical velocity of aluminum for 25 micron particles [104].

It is known that the smaller particles have the greatest influence on clogging and

also travel the fastest, but even Wang et al.’s smallest particles of 5 microns did not

reach a velocity magnitude of 600 m/s until farther down the diverging section. The

particles bonded to the inner nozzle wall at subcritical velocity, which led them to

conclude: “there must be additional factors inducing nozzle clogging”. Wang et al.

make no mention of sieving the powder to a specified size range in their experiments,

so it may be that particles smaller than 5 microns, which travel faster, were present

in the experiments but were unaccounted for in the models. Regardless, it is certain

that if particles do not collide with the diverging wall, they cannot bond. Altering

the nozzle internal geometry may achieve the goal of preventing nozzle clogging by

causing the particles to altogether avoid contacting the diverging wall.

Nozzle geometry design optimization has been studied in cold spray since 1998 [23].

Most work dedicated to optimizing nozzle geometry has revolved around maximally

facilitating bonding at the substrate. Some geometry optimization techniques seek to

maximize particle impact temperature to soften the particles [62], but the majority

revolve around achieving the greatest possible impact velocity.

Sakaki and Shimizu found that as the converging section length increases, the

deposition efficiency and the coating hardness increase while the particle velocity

slightly decreases [101]. The increased deposition efficiency and coating hardness
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can be attributed to more mixing inside the long converging section and therefore

increased particle heating and ultimately a better deposit [119]. Their conclusion

about reduced velocity, however, is rather misleading. As the converging section

increased in length, Sakaki and Shimizu held their total nozzle length constant, so by

however much the converging section length increased, the diverging section length

accordingly decreased. Since most of the particle acceleration occurs in the diverging

section, it is no surprise that the shorter that section is, the slower the particles will

be. Li and Li conducted a separate study in which the convergent length was varied

independently of the other nozzle dimensions and found that convergent length has

little effect on particle velocity [64].

The diverging section length has a tremendous influence on particle velocity be-

cause it is in this section that the flow is supersonic and that the particles accelerate

most [6, 149]. The expansion ratio of the nozzle plays a major role as well because

it determines how the flow will expand [59, 64]. If the flow is under-expanded or

over-expanded, strong shockwaves will be produced and will majorly disperse parti-

cles [79, 90]. For this reason, it is necessary to employ an optimal expansion ratio so

that the flow is optimally expanded.

In terms of nozzle dimensions, the diverging section length and expansion ratio

have the greatest impact on particle velocity. A cold spray dimension unrelated to

nozzle geometry that strongly influences both particle velocity and dispersion is the

standoff distance [129]. In the present work, however, the diverging length, expansion

ratio, and standoff distance are all maintained constant. The present study seeks to

alter the prechamber and converging section shapes and lengths to prevent particle-

wall collisions in the diverging section. All novel nozzle geometries presented in this

chapter employ a conical diverging section rather than a wall with curvature. It could

be that a curved diverging wall would better prevent particle-wall collisions, but this

study isolates the effects of prechamber and convergent section shape and length.
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Plus, it would complicate the simulations since the curved wall in the supersonic

region would require certain corrections for boundary layer growth [110, 121]. Perhaps

a future study could investigate the possibility of a curved diverging wall for clogging

prevention.

It should be noted that although it is desirable in this study to minimize collisions

in the diverging section, there is also cold spray work dedicated to enhancing particle

dispersion in the nozzle to achieve a uniform deposit on the substrate [118, 142]. These

motives conflict because particle dispersion leads to clogging. As is often the case,

when one problem is solved, another ensues. Hopefully, the geometries presented in

this chapter successfully prevent collisions and meanwhile allow for a uniform particle

footprint, but it should be acknowledged that the primary purpose of this study is to

prevent particle-wall collisions in the diverging section regardless of how uniform the

particle footprint is.

Simulations have been instrumental in optimizing the cold spray process in pre-

vious works. In the same way that Li et al. used an optimized nozzle geometry to

achieve a dense 316L stainless steel coating with high microhardness using air as an

accelerating gas [61], the present study aims to find an optimal nozzle geometry for

the purpose of preventing particle-wall collisions in the diverging section to ultimately

prevent clogging. If such a geometry can be produced, the limitations of nozzle cool-

ing would be resolved because fine particles would cease to clog and erosion would be

completely prevented.

4.2 A Brief Note on Aerodynamic Lenses

Aerodynamic lenses are a technology designed to focus a particle beam in a

converging-diverging nozzle. An aerodynamic lens is a thin-plate orifice which particle-

laden gas passes through prior to nozzle expansion. The gas contacts the plate, is

squeezed through the orifice at the center, and afterward expands back to its original
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state. The particles are pulled by the fluid toward the centerline from some radial dis-

tance away, but their inertia prevents them from rebounding perfectly to their initial

radial positions after passing through the lens. Instead, the particles find themselves

closer to the centerline (if certain parameter requirements are met), thus becoming

more focused [68]. Moreover, as more lenses are added in series and properly spaced

apart, particle beam widths are reduced asymptotically [69]. Figure 38 illustrates the

principle of aerodynamic lens focusing.

Figure 38: Axisymmetric Schematic of an Aerodynamic Lens [68]

The capability of aerodynamic lenses to focus a beam of nanoparticles has been

validated both theoretically and experimentally [68, 69, 153, 154]. Since the process

of designing an aerodynamic lens system for a given nozzle geometry and particle

size distribution is often frustratingly long and iterative, there has even been made a

design tool to help minimize the iterative process [130] that comes with an instruction

manual [131]. For a set of given process parameters, this tool quickly provides a

reasonably accurate lens design and evaluation.

Several studies have specifically demonstrated the ability of aerodynamic lenses

to deposit a focused particle beam onto a nearby substrate [30, 96], which has im-

plications on the viability of aerodynamic lenses in cold spray. In fact, Alhulaifi
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successfully focused and deposited copper nanoparticles by implementing three aero-

dynamic lenses in his novel cold spray nozzle geometry [3].

Despite their ability to minimize dispersion with nanoparticles, there are obsta-

cles to using aerodynamic lenses with typical cold spray particle sizes (5-100 mi-

crons). Since typical cold spray particles are much larger, they have more inertia

than nanoparticles, which makes them prone to collide and adhere to the lens rather

than move around it. Spraying into a vacuum outlet, the largest particles Zhang et

al. managed to focus with their aerodynamic lens system were 2.5 microns, and only

with a transmission efficiency of 40% (the rest were lost on the lens) [154]. Most

aerodynamic lens systems operate with a nozzle outlet in vacuum [38] because there

are complications associated with using them with an atmospheric outlet, rendering

them difficult to use in the cold spray process [8]. Despite these complications, Lee et

al. [56] successfully focused particles of up to 10 microns into an atmospheric pressure

environment, which is at least inside the range of typical cold spray particle sizes, but

only at Reynolds numbers up to 700, which is insufficient to compare to the higher

Reynolds numbers found in the nozzle of this present study. Deng et al. [21] likewise

managed to focus particles of up to 10 microns in the atmospheric pressure range at

Reynolds numbers of about 1800, but with the same discouraging 40% transmission

efficiency as Zeng et al. The Reynolds number inside the prechamber of the present

nozzle (which is where the lenses would be employed) is 26,500 - almost 15 times

larger than that of Deng et al.

The parameter that describes how closely a particle will adhere to the fluid stream-

line is the so-called Stokes number. Conceptually, the Stokes number is the ratio

between the characteristic reaction times of the particle and fluid [77]:

St =
τp
τf

(33)
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A Stokes number of zero describes a particle which follows the fluid streamline

perfectly, while a larger Stokes number describes a particle whose inertial effects

dominate its motion. Specifically, the Stokes number of a particle passing through an

aerodynamic lens is [38]:

St =
ρpd

2
puf

18dfµf

(34)

where df is the lens orifice diameter, as seen in Figure 38.

The optimum Stokes number for particle focusing with aerodynamic lenses is

St = 1, because while the particles are affected enough by the fluid to be pushed

toward the centerline, they still have enough inertia so that when the fluid expands

back to its original state after the lens, the particles do not rebound perfectly with it,

thus becoming focused closer to the centerline [56, 68, 153]. A particle with Stokes

number greater than one will not be effectively focused and instead will collide with

the lens, often resulting in particle loss [68].

Considering the nozzle prechamber in the present study, the particle Stokes num-

bers range from 1 to 413, the smallest particles (5 microns) having the smallest Stokes

numbers and the largest particles (100 microns) having the greatest. These Stokes

numbers assume the df term in equation 34 is equal to the prechamber inner diameter;

if lenses were incorporated in that region, df would be even smaller and would drive

the Stokes numbers even higher. For the present study, the prechamber is the only

relevant nozzle zone to consider when evaluating Stokes number for particle focus-

ing because that is the only region where lenses would be implemented. The Stokes

numbers in the present nozzle prechamber are not ideal for particle focusing because

they are quite high.

It is challenging to focus larger particles because the Stokes number increases as

particle diameter increases (see equation 34), which means that larger particles are less

prone to adhere to fluid streamlines and be focused. Granted, all the aforementioned
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studies except [3] use a lens (or lenses) with 90° angles from the axis, effectively

launching particles into a flat wall. As Fernandez de la Mora et al. point out [42],

as the angle between the centerline and the lens decreases, higher Stokes numbers

can be tolerated without causing particles to cross the centerline too early (and thus

disperse). Even if particles have such high Stokes numbers that they collide with such

an angled lens, perhaps they will at least rebound toward the nozzle centerline and

not adhere to the lens, like in Alhulaifi’s nozzle [3]. Alhulaifi incorporated several

angled converging-diverging lenses in his cold spray prechamber to successfully focus

copper nanoparticles with it [3]. A similar method is suggested by Hoey et al. to

focus an aerosol beam [38]. A schematic of Alhulaifi’s innovative nozzle is presented

in Figure 39.

Figure 39: Axisymmetric Schematic of Alhulaifi’s Aerodynamic Focusing Nozzle [3]

It is possible to focus wide ranges of particles with aerodynamic lenses by using

many lenses, with large lens orifices towards the beginning of the nozzle, and smaller

lens orifices towards the end so that large particles can be focused gradually through-

out the nozzle [68]. If the large particles approached smaller orifices first, they would

simply collide with the lens without being coerced around it. The smaller particles

are mostly unaffected by the earliest lenses, but eventually become focused farther

downstream by the lenses with small orifices.
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The high Stokes numbers of typical cold spray particles make it extremely doubtful

that aerodynamic lenses could successfully focus them, but even if they could, there is

still another inconvenience to address. With 90° lenses, the jet flow from the first lens

requires some distance to adjust back into a fully developed duct flow before reach-

ing the next lens [69]. Although a design like Alhulaifi’s with converging-diverging

lenses makes for more gradual changes at the wall and therefore less distance required

between lenses, particles still need to travel a certain axial distance to be effectively

focused. For each additional lens placed in the prechamber, more prechamber length

becomes necessary too. If a converging-diverging many-lens system with decreasing

lens orifice sizes were created to focus a broad range of particle sizes (diameters 5-100

microns), it would need to be vexingly long. Plus, because there is a total pressure

drop across each lens, many lenses would cause a catastrophic total pressure drop in

the nozzle.

In short, typical cold spray particles are so large and the driving gas is so fast that

the Stokes number is made too large to allow for any meaningful particle focusing

inside a cold spray nozzle.

It should be mentioned that Brockmann et al. present results in their patent [11]

of achieving a narrow particle beam by using aerodynamic lenses downstream of a

cold spray nozzle exit with 15 micron aluminum particles. Since the Stokes numbers

of particles at the nozzle exit are generally high due to high particle velocities, the

success of this patented device initially appears at odds with the conclusions of the

present work, because the present work concludes that aerodynamic lenses are not

an effective method of focusing (or minimizing dispersion for) the broad particle

sizes relevant to cold spray. Notwithstanding, the apparent disagreement can be

harmonized.

The 15 micron particles described in Brockmann et al.’s patent are quite similar

in size to the 10 micron particles used in the studies by Deng et al. [21] and Lee et
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al. [56] on aerodynamic lenses used under atmospheric outlet conditions. The results

in Brockmann et al.’s patent further demonstrate an ability for aerodynamic lenses

to focus particles on the order of 10 microns, but do not demonstrate an ability to

focus the entire broad range of particle diameters relevant to cold spray, particularly

larger particles. Brockmann et al. give no recommendations for gas velocity values

to use with their device, but if their device were used with the gas conditions in the

present study, their 15 micron aluminum particles would have Stokes numbers ranging

from 712 to 1219 depending on which lens was considered, since Brockmann et al.’s

invention has three lenses with different orifice diameters. It is clear that Brockmann

et al.’s device is not compatible with the gas conditions in the present study, but

perhaps the invention is better suited to low-pressure cold spray, which has lower exit

velocities [50] and therefore will produce particles with lower Stokes numbers. Even

still, Brockmann et al. make no mention of any particle transmission efficiency, and

it seems likely that with fairly high Stokes numbers just outside the nozzle exit, some

particles would collide with the lens like they did in Deng et al.’s study with high

Reynolds numbers and atmospheric outlet conditions [21].

In no way do these comments diminish the accomplishment of Brockmann et al.

to focus relatively small (15 microns) particles in cold spray with aerodynamic lenses;

the aim of these present comments is simply to point out the impracticality of using

aerodynamic lenses to focus a wide range of particle diameters (5-100 microns) inside

a cold spray nozzle.

Meyer et al. [77] make an observation in line with the conclusions of this section. In

their cold spray study, they determine: “Confinement of the particle stream towards

the centreline takes place solely due to the interactions with the nozzle wall, thus

hardly due to the co-flow fluid entraining the jet and flowing towards the centreline.”

Fortunately, this chapter presents several nozzle designs which deliberately facilitate

collisions in the converging section and prechamber that incline the particles to avoid
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the diverging wall downstream. If collisions in the supersonic region can be prevented

without aerodynamic lenses, nozzle clogging can be prevented without them as well.

4.3 Modeling Methodology

4.3.1 Boundary Conditions

4.3.1.1 Original Geometry

Figure 21: Original Nozzle Geometry (Flow Domain)

The first nozzle geometry considered in this chapter is the original nozzle from the

three previous chapters which, for convenience, will be referred to as the original ge-

ometry. The dimensions are provided in Figure 21, which is reproduced from chapter

two. The nozzle geometries described hereafter are alterations of the original.

4.3.1.2 Long Throat Geometry

Figure 40: Nozzle Geometry - Long Throat (Flow Domain)

The long throat geometry has a throat which is not simply one point on the

axis, but rather is a constant-diameter half-inch region. The motivation behind this
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geometry is to minimize turbulence near the throat by avoiding a sharp and immediate

change at the wall.

4.3.1.3 Flush Geometry

Figure 41: Nozzle Geometry - Flush (Flow Domain)

The flush geometry has a converging wall that is flush with the prechamber,

in contrast to the original geometry which has a vertical “step” wall between the

prechamber and converging section. This geometry seeks to prevent particles from

rebounding backward upon impact with the “step” wall. Instead, they will be directed

downstream and towards the centerline. It should be noted that Huang and Fukanuma

used a flush geometry similar to the present one and still required nozzle cooling to

avoid clogging [39].

4.3.1.4 Converging Honeycomb Geometry

Figure 42: Nozzle Geometry - Converging Honeycomb (Flow Domain)
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The converging honeycomb configuration is identical to the original geometry, but

it has three walls added in the prechamber region. These walls serve to axisymmet-

rically model the effects of a converging honeycomb particle-focusing device. The

design is inspired by a honeycomb flow straightener, a device that has been incorpo-

rated in cold spray processes before. When such flow straighteners are used in cold

spray studies, however, they are often mentioned only briefly in-text [19, 40] or sim-

ply depicted in figures with no in-text description [33, 107]. In one cold spray study,

Dupuis does include the dimensions of his honeycomb flow straightener and explains

that its purpose is to minimize turbulence [22], but he does not include any analysis

on the honeycomb flow straightener’s performance.

It should be noted that not all honeycomb flow straighteners are effective at re-

ducing turbulence. In fact, it is possible for honeycomb flow straighteners with non-

optimal length-to-diameter ratios to increase turbulence rather than reduce it [54].

Because honeycomb flow straighteners are seldom (if ever) evaluated for their ef-

fectiveness in cold spray, it is possible that some honeycomb flow straighteners in

cold spray are actually promoting dispersion via increased turbulence, rather than

preventing it.

Furthermore, honeycomb flow straighteners as described in the aforementioned

studies cannot prevent clogging. Assuming they do reduce turbulence, such flow

straighteners will indeed produce straight particle tracks, but those tracks will be

a) Particle Tracks Due to Conventional
Honeycomb Flow Straightener

b) Focused Particle Tracks

Figure 43: Comparison of Widely Spread and Focused Particle Tracks
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aimed directly at the converging wall, which prepares them to collide with the di-

verging wall farther downstream. Figure 43 illustrates the difference between particle

tracks due to a conventional honeycomb flow straightener and particle tracks that are

focused.

The honeycomb device in the converging honeycomb geometry employs a converg-

ing angle to focus the particle tracks towards the centerline and away from the nozzle

wall. The outermost honeycomb wall is aimed at the top of the throat, the next wall

is aimed at 2/3 the throat height, and the bottom wall is aimed at 1/3 the throat

height. The converging honeycomb geometry seeks to produce focused particle tracks

as seen in Figure 43b for the sake of avoiding contact with the diverging wall.

4.3.1.5 Long Converging Geometry

Figure 44: Nozzle Geometry - Long Converging (Flow Domain)

The intention of the long converging geometry is to provide a shallow converg-

ing angle so that when particles collide with it they rebound with similarly shallow

angles. Shallow rebound angles are advantageous because particles are less likely to

be directed into the diverging wall, but rather may be able to miss the diverging

wall altogether if their trajectory aligns them towards the nozzle exit instead. The

convergent length in the long converging geometry is equal to the combined length of

the prechamber and converging section in the original geometry.
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Figure 45: Nozzle Geometry - Smooth (Flow Domain)

4.3.1.6 Smooth Geometry

The smooth geometry warrants its name as there are no sharp corners in the

prechamber or converging walls - all transitions are “smooth”. There are two primary

benefits of the smooth geometry. First, there will be less turbulence in this nozzle

because the smooth transitions facilitate lower levels of flow acceleration in the radial

direction. Second, and similar to the long converging nozzle, the smooth section is as

long as the original prechamber and converging section combined, which facilitates

shallow rebound angles and therefore a lower likelihood of diverging section collisions.

The smooth wall was produced by a cosine curve connecting the annulus and

diverging walls. Equation 35 provides the radial cordinate of the wall (rwall) as a

function of nozzle length (x):

rwall(x) =
I −K

2
cos(0.65x) +

I +K

2
(35)

where I and K are the nozzle dimensions provided in Figure 45 and 0.65 is a constant

that depends on the desired length of the wall curve. In the present study, 68 line

segments were connected to 69 points so that each change in wall angle was small

and the wall was sufficiently “smooth”.
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Figure 46: Nozzle Geometry - 1⁄2 Long Converging (Flow Domain)

4.3.1.7 1⁄2 Long Converging Geometry

The 1 ⁄2 long converging geometry is a modification of the long converging geometry,

with the convergent length being shortened by a factor of two. This geometry was

investigated to determine how the converging angle and length influence the amount

of particle-wall collisions by comparing the results of the 1 ⁄2 long converging and long

converging geometries.

4.3.1.8 1⁄2 Smooth Geometry

Figure 47: Nozzle Geometry - 1⁄2 Smooth (Flow Domain)

The 1 ⁄2 smooth geometry was modeled to compare the results to the full-length

smooth geometry. This comparison helps in comprehending how the length and angle

of the smooth section affects particle collisions downstream. The radial coordinate of
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the smoothly converging wall in the 1 ⁄2 smooth geometry was determined according

to equation 36:

rwall(x) =
I −K

2
cos(1.3x) +

I +K

2
(36)

where I and K are the dimensions provided in Figure 47 and the constant 1.3 sets

the converging section length properly. Shortening the convergent length by a factor

of two requires the constant 1.3 to be double that which was used for the smooth

geometry (0.65) in equation 35.

4.3.1.9 Boundary Conditions for All Geometries

The boundary conditions for all the geometries investigated in this chapter were

similar. Both inlets were set to 673 K and 4 MPa, and the outlet was set to zero

gauge pressure and 293 K (atmospheric conditions). Particles were modeled to escape

the domain upon contacting the substrate wall or the atmospheric outlet.

The internal walls (except those of the feeder tube) in the geometries of this chap-

ter were equipped with the UDF described in chapter two, which records the axial

location, particle size, and CVR of each particle-wall collision. The coefficient of resti-

tution was varied from unity to 0.2 to comprehend how the rebound characteristics

affect dispersion and the prediction of clogging in each unique geometry.

4.3.2 Mesh Descriptions

Because each geometry is different, the mesh requirements were different for each

geometry. All configurations were meshed with a variety of cell sizes in each zone

to find how fine of a mesh was required for each zone of each geometry. A mesh-

independent solution was achieved with the meshes described in Tables 8 and 9.

Table 8 provides the cell size for each zone of each geometry, while Table 9 provides

the total cell count of each mesh along with the relevant yplus values. Three layers

of thin cells were applied to the nozzle walls in all geometries to capture boundary
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Table 8: Mesh Specifications Based on Zone Name for Each Geometry

Cell Size (mm) for Each Geometry

Zone Original
Long

Throat
Flush

Converging
Honeycomb

inlets 0.2 0.2 0.2 0.2
prechamber 0.2 0.2 0.2 0.1
converging 0.2 0.2 0.2 0.15
throat ∼ 0.07 ∼ ∼
diverging 0.08 0.07 0.08 0.08
standoff 0.08 0.07 0.08 0.08
atmosphere 0.4 0.4 0.4 0.4

Zone
Long

Converging
Smooth

1/2 Long
Converging

1/2 Smooth

inlets 0.2 0.2 0.2 0.2
prechamber ∼ ∼ ∼ ∼
converging 0.09 0.09 0.09 0.09
throat ∼ ∼ ∼ ∼
diverging 0.08 0.08 0.06 0.06
standoff 0.08 0.08 0.06 0.06
atmosphere 0.4 0.4 0.4 0.4

Table 9: Mesh Cell Count and Yplus Values for Each Geometry

Geometry Cells
Yplus

Minimum
Yplus
Throat

Original 75,404 0.2 4.25
Long Throat 91,757 0.15 4.0
Flush 76,800 0.15 4.25
Converging Honeycomb 109,815 0.05 3.5
Long Converging 108,385 0.075 2.1
Smooth 108,271 0.1 1.9
1/2 Long Converging 119,886 0.125 3.25
1/2 Smooth 120,411 0.06 2.0

layer effects. In all but the converging honeycomb configuration, the maximum yplus

occurred at the throat. The converging honeycomb geometry resulted in a maximum

yplus value of 13 at the honeycomb wall boundaries, which were not treated with

thin cell layers. It should be noted that the original configuration in this chapter was

110



meshed differently than it was in chapters two and three, specifically in the diverging

and standoff regions.

4.3.3 Gas Phase Modeling

The same solver and discretization schemes used in the three previous chapters

were employed in this chapter as well. The density-based implicit solver was required

to capture the compressible nature of the flow, while the first-order upwind spatial

discretization scheme was used to bring the solutions to a sufficient level of conver-

gence. The k-ε realizable turbulence model was used to predict turbulent effects, as

was the case in the previous chapters.

Helium was used as the driving gas, and its density varied according to the ideal

gas law. The thermal conductivity and viscosity of the gaseous helium varied with

respect to temperature according to equations 4 and 5.

4.3.4 Discrete Phase Modeling

Similar to the previous chapters, Lagrangian one-way coupling was used to track

the particles. The Discrete Random Walk model stochastically amended the particle

trajectories due to turbulent fluctuations.

The same copper-nickel alloy particle material from chapters two and three was

used for the discrete phase in this chapter, with a density of 8940 kg/m3 and a

specific heat capacity of 380 J/kg-K. Particle diameters were assigned uniformly and

randomly between five and 100 microns so that conclusions about particle bonding

could be made based on diameter.

Unless otherwise specified, ten injections of 50,000 particles each were employed

per simulation, totaling to 500,000 particles being injected per simulation. Some

geometries prevented collisions so effectively that they required more particles to

obtain collision data. In similar fashion to chapter two, total pressure oscillations at

the feeder tube inlet were imposed to promote particle dispersion. The pressure waves
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consisted of 50 kPa amplitudes and 50 Hz frequencies, and the injections occurred

during the time interval from 0.035 sec to 0.065 sec in accordance with the timing

displayed in Figure 27.

To model an injection, particles were generated in the 2-D axisymmetric domain as

if they were occupying a 3-D space with uniform position density. This was achieved

by generating particles with increased likelihood away from the centerline by a factor

of the square root of radial position in the axisymmetric model.

A significant difference between the injections in the present chapter and those

described previously is a rather extreme particle initial trajectory angle. When a

particle initial velocity of zero was employed in this work, some geometries were

predicted by the models to result in zero clogging. Such a prediction is encouraging

because it not only shows an improvement over the original configuration, which is

the same geometry from chapters two and three that predicted clogging, but it also

might indicate that clogging is preventable simply with the proper geometry. As a

means to determine which geometry performs best at minimizing diverging section

collisions, it was necessary to inject particles with large enough initial trajectory

angles to force collisions in the diverging section. Thus with the exception of the first

set of simulations, which employ particle initial velocities of zero, each injection in

this chapter consisted of particles with initial velocity magnitudes of 25 m/s (equal

to the feeder tube flow velocity) and initial trajectory angles ranging between zero

and 60°.

4.4 Results

4.4.1 Steady-State Models

The steady-state centerline flow velocities of each geometry are compared in Figure

48. Because the diverging length is the same for all geometries, all the nozzles result

in similar exit velocities, with the profiles of the 1 ⁄2 smooth and 1 ⁄2 long converging
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Figure 48: Centerline Flow Velocity vs Nozzle Length of Each Geometry

Figure 49: Centerline TKE vs Nozzle Length of Each Geometry

geometries being shorter due to those nozzles being shorter. Because the gas velocities

are similar for each geometry, the particle velocities should likewise be similar at the

substrate and produce comparable coating characteristics.
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The smooth and long converging geometries produce higher velocities prior to the

throat than the others because the cross-sectional area reduces in those geometries

prior to the others. The long throat geometry fosters a velocity that increases after

the others because of the constant-diameter throat which facilitates a later increase in

velocity. The Mach diamonds and bow shock occur later in the long throat geometry

because of the additional length in the throat.

Because turbulence is known to be a significant factor in particle dispersion, Figure

49 compares the axial TKE in each geometry. All configurations produce a maximum

TKE value near the throat. The flush geometry has the largest peak, while the long

converging and smooth geometries produce the smallest amount of turbulence.

4.4.2 Transient Models

The simulations with injections consisting of zero initial particle velocity (vp,0)

and normal (en) and tangential (et) coefficients of restitution of unity resulted in

the particle-wall collisions displayed in Figure 50. It is observed that the first four

geometries produce major clogging, while the other four produce less.

The long converging and smooth geometries were initially injected with 500,000

total particles each (which was the case for all other simulations), but because neither

configuration predicted clogging with 500,000 particles, another simulation was run

with 5,000,000 particles for both geometries. The results from the 5,000,000 particle

injection are presented in Figure 50. The long converging configuration still did not

produce particles that clogged, while the smooth geometry produced exactly seven

clogging particles out of 5,000,000.

Table 10 ranks the geometries according to how well they prevented particle-wall

reflections and bonding, respectively, with the injection employing zero initial particle

velocity and a coefficient of restitution of unity. Each geometry is ranked by percent
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Figure 50: CVR vs Nozzle Length of Each Geometry
vp,0 = 0, en = 1.0

because not all geometries were injected with the same number of particles (the long

converging and smooth configurations received more).

The long converging geometry outperformed the others both in terms of reflecting

and bonding particles. Minimizing the number of reflections is not the primary goal

of this work, but the reflection data are provided because it is still valuable to know

how much the particles bounce inside the nozzle. The long converging and smooth

geometries, along with their shortened versions, far outperformed the others in terms

of preventing bonding inside the nozzle.
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Table 10: Ranked Particle-Wall Collisions for Each Geometry
vp,0 = 0 m/s, en = 1.0

Rank Geometry
% Particles
Reflecting

(1) Long Converging 3
(2) 1/2 Smooth 8
(3) 1/2 Long Converging 18
(4) Smooth 20
(5) Original 43
(6) Flush 75
(7) Long Throat 77
(8) Converging Honeycomb 243

Rank Geometry
% Particles

Bonding
(1) Long Converging 0
(2) 1/2 Long Converging 0
(3) Smooth 0.00014
(4) 1/2 Smooth 0.0224
(5) Original 3
(6) Long Throat 9
(7) Converging Honeycomb 9
(8) Flush 13

It should be noted from Table 10 that the converging honeycomb geometry causes,

on average, each particle to reflect off the nozzle wall 2.4 times. The converging

honeycomb geometry facilitates far more reflecting collisions than the other geometries

because that geometry deliberately facilitates many collisions to tightly focus the

particles, which could result in rapid wear of the honeycomb component.

Because the models with vp,0 = 0 did not produce clogging for all geometries and

only a small amount for the smooth geometry, it was desirable to investigate how

each geometry would handle a steeper particle initial trajectory angle with an initial

particle velocity. Therefore in the next injection, the initial velocity magnitude of

each particle was set to the feeder tube flow velocity (25 m/s) and the particle initial

trajectory angles (αp,0) were assigned randomly and uniformly between zero and 60°.

With each geometry, transient simulations were conducted with en ranging from 1.0
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to 0.2 while the tangential coefficient of restitution (et) was maintained at unity for

all simulations. Since the coefficient of restitution inside the cold spray nozzle is not

well-known, it is necessary to obtain results for a wide range of en so that the present

results are relevant for future studies when more progress is made on ascertaining the

coefficients of restitution.

The resulting particle-wall collisions for each geometry from the transient models

with vp,0 = 25 m/s, αp,0 = 0-60°, and en = 1.0 are provided in Figure 51. It is observed

that all configurations produce collisions that result in bonding.

Figure 51: CVR vs Nozzle Length of Each Geometry
vp,0 = 25 m/s, αp,0 = 0-60°, en = 1.0
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As en decreases, fewer collisions and adhesions occur with each geometry. Tables

11 and 12 summarize the results of all the simulations with vp,0 = 25 m/s, αp,0 =

0-60°, and various coefficients of restitution. For each value of en, each geometry is

“scored” according to how effectively it prevented collisions. A score of 1 is earned

by successfully preventing collisions better than the other geometries, while a higher

score is merited by performing worse than others (allowing more collisions to occur).

If the same number of collisions occurred between two geometries for a certain en,

those geometries earned the same score. The “score sums” are the sum of the scores

for all values of en for each respective geometry. The “overall rank” compares the

“score sums” and ranks them according to which geometries performed best, the

best geometries having the lowest score, and the worst geometries having the largest.

If geometries received the same “score sum”, they both received the same “overall

rank”. The geometries with the lowest “overall rank” performed best across all values

of en at preventing collisions. The “total” collisions column was not used to compute

the overall rank.

As Table 11 shows, the two nozzles that facilitated the least particle-wall reflec-

tions were the 1 ⁄2 long converging and 1 ⁄2 smooth geometries, but this is likely because

they are shorter and therefore the particles have less nozzle length to bounce off. The

converging honeycomb geometry facilitated the most collisions because the honeycomb

section captures nearly all the particles and directs them via reflecting collisions.

Table 12 presents the number of bonding particles in each geometry at each co-

efficient of restitution. The long converging and original geometries tied for best

overall rank at preventing bonding inside the nozzle. It is surprising that the original

geometry performed so well with vp,0 = 25 m/s and αp,0 = 0-60° because it per-

formed comparably poorly with vp,0 = 0 m/s (receiving a rank of five in Table 10).

The second-best overall rank for preventing bonding was earned by the converging

honeycomb and smooth configurations.
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Table 11: Reflecting Particle-Wall Collisions and Score for Each Geometry
vp,0 = 25, αp,0 = 0-60°
Low score represents good performance, high score represents poor performance

en=1.0 en=0.8 en=0.6 en=0.4 en=0.2
Geometry Reflecting Collisions Total
Original. 2.95M 1.64M 1.2M .96M .81M 7.56M
Long
Throat.

3.3M 1.75M 1.29M 1.01M .83M 8.17M

Flush. 3.58M 1.61M 1.17M .9M .75M 8.01M
Converging
Honeycomb.

6.28M 4.08M 2.3M 1.52M 1.09M 15.28M

Long
Converging.

4.M 1.83M 1.18M .85M .64M 8.5M

Smooth. 4.4M 1.9M 1.25M .86M .57M 8.98M
1/2 Long
Converging.

3.41M 1.57M 1.11M .75M .56M 7.4M

1/2 Smooth. 3.82M 1.68M 1.17M .83M .55M 8.05M

Geometry Scores
Score
Sums

Overall
Rank

Original. 1 3 5 6 6 21 4
Long
Throat.

2 5 7 7 7 28 7

Flush. 4 2 3 5 5 19 3
Converging
Honeycomb.

8 8 8 8 8 40 8

Long
Converging.

6 6 4 3 4 23 5

Smooth. 7 7 6 4 3 27 6
1/2 Long
Converging.

3 1 1 1 2 8 1

1/2 Smooth. 5 4 2 2 1 14 2

The results in Tables 11 and 12 should be qualified because they are relevant to

particle initial trajectory angles up to 60°, which is unrealistically high. The bonding

data in Table 12 still demonstrate how the coefficient of restitution affects clogging

and how each geometry performs when particles are highly dispersed. The scores

vary fairly significantly between the different values of en, which indicates that the
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Table 12: Bonding Particle-Wall Collisions and Score for Each Geometry
vp,0 = 25 m/s, αp,0 = 0-60°
Low score represents good performance, high score represents poor performance

en=1.0 en=0.8 en=0.6 en=0.4 en=0.2
Geometry Bonding Collisions Total
Original. 79,285 22,087 15,872 876 0 118,120
Long
Throat.

84,997 28,420 16,046 7,661 129 137,253

Flush. 136,782 51,351 40,557 29,863 2,786 261,339
Converging
Honeycomb.

47,745 60,371 1,281 0 0 109,397

Long
Converging.

121,723 32,549 850 0 0 155,122

Smooth. 130,049 27,955 3,479 5 0 161,488
1/2 Long
Converging.

148,902 34,445 40,861 4,512 7 228,727

1/2 Smooth. 156,812 42,415 31,426 16,104 4,400 251,157

Geometry Scores
Score
Sums

Overall
Rank

Original. 2 1 4 3 1 11 1
Long
Throat.

3 3 5 5 3 19 3

Flush. 6 7 7 7 4 31 5
Converging
Honeycomb.

1 8 2 1 1 13 2

Long
Converging.

4 4 1 1 1 11 1

Smooth. 5 2 3 2 1 13 2
1/2 Long
Converging.

7 5 8 4 2 26 4

1/2 Smooth. 8 6 6 6 5 31 5

amount of clogging in each geometry depends strongly on the value of en (whatever

it is).

When comparing the results of Table 10 with those of Table 12, it is also evident

that the degree of clogging in each geometry is highly dependent on the particle initial

trajectory angle, especially in the original geometry, which performed best (tied with

long converging) with a steep angle and fifth with no angle.
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With neither the particle initial trajectory angle nor the internal coefficient of

restitution being thoroughly studied topics in cold spray, it is challenging to make

a confident claim that one geometry performs better than another for all cold spray

scenarios. The results in the present work, however, indicate compellingly that the

long converging geometry is most effective at preventing clogging in most (if not all)

cold spray scenarios. The long converging geometry was most successful at prevent-

ing bonding with both injection methods with zero initial velocity (Table 10) and

a nonzero velocity with a steep trajectory angle (Table 12). The smooth geometry

performed well for the various injection methods and values of en too, but still slightly

worse than the long converging configuration did.

Conveniently, the long converging geometry is also one of the easiest to manufac-

ture of the geometries considered because it incorporates a flat wall in all the nozzle

zones. Although at low coefficients of restitution the converging honeycomb geometry

performs extremely well, it is by far the hardest to manufacture of those considered in

this study. Plus, since it facilitates an extremely high number of collisions, the hon-

eycomb component could get worn out over time, making it potentially impractical

for use in an experiment.

Although clogging was predicted to occur in the long converging geometry for some

values of en with a steep particle initial trajectory angle, it should be pointed out that

a 60° angle is unrealistically high and that the actual trajectories are probably mostly

axial. The initial trajectory angle only describes the particle’s initial trajectory inside

the feeder tube. Once the particle leaves the feeder tube and enters the nozzle domain,

the trajectory changes due to a myriad of factors, but the particle initial trajectory

angle only refers to its initial trajectory inside the feeder tube. When an axial initial

particle trajectory was employed, which is likely a more realistic conjecture, absolutely

no clogging was predicted in the long converging geometry (see Table 10).
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It may be that, in experiments, the long converging geometry would completely

prevent clogging, even with fines. In light its promising ability to prevent bonding

inside the nozzle, the long converging geometry is recommended for preventing nozzle

clogging in cold spray. Experiments should be conducted to evaluate this recommen-

dation since it is based entirely on computational models. The experiments should

not shorten the converging section length, because the 1 ⁄2 long converging geometry

performed significantly worse than the full-length long converging geometry.

4.5 Conclusion

Because nozzle cooling cannot entirely mitigate clogging with small particles, alter-

native methods are necessary. An altered internal nozzle geometry can intentionally

facilitate collisions upstream of the throat which direct the particles away from the

diverging wall as a means to prevent collisions where clogging typically occurs. If no

collisions occur in the diverging section, clogging cannot transpire either.

In this study, several novel nozzle geometries were considered and evaluated for

their effectiveness at preventing bonding inside the nozzle. The geometry with a long

conical converging section (termed the long converging geometry) was deemed most

effective at preventing bonding for all considered particle initial trajectory angles and

across all considered values of the normal coefficient of restitution. The original ge-

ometry, which the long converging geometry is an alteration of, was found to produce

clogging in experiments [109] and in the models of the present study. In contrast

to the original geometry, when particles were injected with perfectly axial trajecto-

ries inside the feeder tube, the long converging geometry was predicted to produce

absolutely zero clogging.

The particular process parameters will determine the particle initial trajectory

angles in the feeder tube, which will (in part) determine how much the particles will

disperse and therefore potentially clog. Although the particles probably do not travel
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perfectly axially in the feeder tube, they likely have shallow trajectory angles because

the straight feeder tube does not facilitate much radial motion. Because it is hard to

predict the particle trajectory angle inside the feeder tube, it is difficult to make a

precise and confident claim regarding the effectiveness of the long converging nozzle

geometry based on modeling alone. Experiments are necessary to determine whether

the long converging geometry fully prevents clogging, but the modeling results from

this study show promise for its success. When these experiments are conducted, it

is important that the converging length is not shortened, because another similar ge-

ometry with half the convergent length was also modeled and performed considerably

worse at preventing clogging than the full-length long converging geometry.
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CHAPTER 5

OVERARCHING CONCLUSIONS

5.1 Conclusions

The present work consists of four individual computational studies, separated

by chapter, which cumulatively aim to mitigate and analyze the problem of nozzle

clogging in cold spray. The first study investigated supercritical CO2 as a means to

cool the nozzle. Nozzle cooling with water is common practice in the field of cold

spray because it prevents clogging in many otherwise clogging-prone scenarios. There

are, however, certain combinations of materials and process parameters that still

clog with water cooling. Using supercritical CO2 instead of water may provide the

additional cooling required to spray highly clogging-prone materials without bonding

to the nozzle wall.

The primary thrust of the first chapter was to determine whether the particles

are maligned by cooling. Although the bulk gas flow velocity and temperature were

found to decrease, the particles remained almost totally unaffected. Experiments

are required to confirm this model prediction, but the CFD shows promise for the

ability to maintain high particle velocity and temperature while cooling the nozzle

considerably with CO2.

The experiments in this study demonstrate that small particles (fines) cannot be

reliably prevented from clogging even with CO2 cooling. When stainless steel powder

was not sieved to remove fines, clogging occurred while cooling, but when the powder

was sieved, the clogging ceased. Because nozzle cooling cannot prevent clogging with

fines, other methods of clogging prevention must be employed to prevent clogging for
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all process parameters. Nonetheless, CO2 provides a greater cooling capacity than

water, which makes it a worthwhile method of clogging prevention.

The second chapter was dedicated to determining how pressure oscillations in the

feeder tube, if present, would affect clogging. This numerical study was motivated by

an inability to otherwise predict the clogging observed in experiments. The amplitude

of these pressure oscillations greatly influences the degree of clogging - the larger the

pressure wave amplitude, the greater the degree of clogging. The frequency of these

pressure waves has seemingly little effect on clogging.

Because pressure oscillations were found to have such a significant effect on clog-

ging, it was hypothesized in chapter three that the mass flow pulsations from the

rotating metering wheel cyclically blocking and releasing the driving gas might cause

enough particle dispersion to produce clogging. This hypothesis was negatively

proven, as it was found that the flow is not sufficiently disturbed so as to disperse

particles significantly.

On the other hand, particles with as small as a 10° initial trajectory angle in

the feeder tube resulted in substantial clogging downstream. This study highlights

how sensitive clogging is to the particle initial trajectory angle; when particles travel

perfectly axially, absolutely zero clogging is predicted, but when an angle of only 10°

is employed, major clogging is predicted.

Since the cooling method cannot prevent clogging with fines, it is desirable to

explore methods that might be able to. In chapter four, several novel nozzle internal

geometries were investigated for their effectiveness at preventing particle-wall colli-

sions with the diverging wall. Nozzle clogging only occurs in the diverging section, so

if collisions can be entirely prevented there, clogging will not occur.

Of the geometries considered, the nozzle with a long conical converging section

was deemed most effective at preventing clogging. This long converging geometry

performed best with both shallow and steep particle initial trajectory angles, and
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across all considered values of coefficient of restitution. The long converging geome-

try might completely prevent clogging. Based exclusively on CFD models, however, it

is challenging to make a confident claim as to whether the long converging geometry

will entirely prevent clogging. As the results of chapter three demonstrate, clog-

ging is acutely exacerbated by the particle initial trajectory angle, which is probably

dependent on both the process configuration and the process parameters.

5.2 Future Work

Experiments should be conducted to determine what new process parameters can

be reached with clogging-prone powder materials using CO2 cooling rather than water

cooling. It would be valuable to learn the maximum allowable applicator temperature

for each clogging-prone powder, along with the minimum particle diameter that can

be successfully prevented from clogging with CO2 cooling. Experiments would also be

valuable in determining whether CO2 cooling allows for the switch from helium to ni-

trogen driving gas for certain process parameters and powder materials. The coatings

produced while using CO2 cooling should be evaluated to ensure the deposit is not

compromised. In future design iterations, the cooling collar should cover the entire

span of the diverging section rather than leaving an inch uncooled. The uncooled re-

gion becomes relatively warm due to viscous heating which may facilitate bonding in

that region. Additionally, the next collar design should exhaust the gaseous and solid

CO2 radially rather than axially to avoid affecting the substrate either by cooling it

or bombarding it with dry ice, and to avoid cooling the nozzle near the inlets and

thus lowering the gas velocity unnecessarily.

Although this would be a challenging experiment to conduct, if measurements

of feeder tube motion during the spray process could be taken, it would illuminate

whether feeder tube oscillations are present, which would be valuable because it was

found in chapter two that, if present, such oscillations can cause clogging. Feeder tube
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oscillations could be caused by vibrations in the cold spray system or fluid-structure

interactions.

To predict clogging more accurately, future models should account for the nozzle

wall temperature in their bonding criteria. The wettability of powder materials on

the inside of a tungsten carbide nozzle should be further studied so that clogging

predictions can be developed. Relatedly, the coefficient of restitution (and impact

phenomena in general) between a cold spray particle and the inner nozzle wall should

be investigated.

Another challenging but valuable study would be an experimental measurement

of particle trajectory angles inside the feeder tube. Because clogging was found to be

so sensitive to this angle in chapter three, such a study would help to comprehend

the reasons for nozzle clogging.

It is of chief importance that experiments be conducted with the long converging

geometry described in chapter four because that nozzle geometry might completely

prevent clogging. It is crucial that the converging length is not shortened during

these experiments because a shorter version of the long converging geometry was also

modeled and was found to be comparably ineffective at preventing clogging.
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