University of Massachusetts Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations

Dissertations and Theses

December 2020

Encapsulation and Stabilization of Biomacromolecules

Whitney Blocher Blocher McTigue University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

Part of the Other Chemical Engineering Commons

Recommended Citation

Blocher McTigue, Whitney Blocher, "Encapsulation and Stabilization of Biomacromolecules" (2020). *Doctoral Dissertations*. 1998. https://doi.org/10.7275/18409683 https://scholarworks.umass.edu/dissertations_2/1998

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

ENCAPSULATION AND STABILIZATION OF BIOMACROMOLECULES

A Dissertation Presented

by

WHITNEY C. BLOCHER MCTIGUE

Submitted to the Graduate School of the

University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2020

Department of Chemical Engineering

© Copyright by Whitney C. Blocher McTigue 2020

All Rights Reserved

ENCAPSULATION AND STABILIZATION OF BIOMACROMOLECULES

A Dissertation Presented

by

WHITNEY C. BLOCHER MCTIGUE

Approved as to style and content by:

Sarah L. Perry, Chair

Cynthia Baldwin

Ashish Kulkarni

Shelly Peyton

Michael Henson, Interim Department Head Department of Chemical Engineering

DEDICATION

To my wonderful husband for being the support to make this a reality and to my mom for being the inspiration to take on this project.

ACKNOWLEDGEMENTS

I would like to thank my advisor, Sarah L. Perry, for her years of amazing support.

I want to thank Kathryn Rahlwes for her friendship and encouragement throughout this journey. You have been an amazing muse and helped me keep the delicate balance of being both a scientist and a person.

I wish to express my appreciation to all my friends and family who have supported my through this. A special thank you to those who have adventured with me: Matt Downing, Kelsey Keenan, Josh Baez Vigo, Seth Frisby, Ray Trammel, and Casey Lee-Trimble.

Finally, but not least, I would like to extend my gratitude to my dad for being a motivation to complete this degree and for being an example that it is possible to achieve such an accomplishment and make a difference. Watching you finish your Ph.D. spurred me to become the second generation of "Doctah Blochah." I would not be the out of the box or creative thinker without you.

ABSTRACT

ENCAPSULATION AND STABILIZATION OF BIOMACROMOLECULES SEPTEMBER 2020

WHITNEY C. BLOCHER MCTIGUE, B.A., CLARKSON UNIVERSITY Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Sarah L. Perry

Recent work in the area of protein encapsulation has turned away from traditional methods of sequestration toward gentler, purely aqueous techniques. Among them, complex coacervation has become a topic of discussion. Complex coacervation is an allaqueous liquid-liquid phase separation phenomenon dominated by electrostatic interactions and entropic gains. The use of coacervates as protein encapsulants has garnered much attention, but there has been little headway in determining a set of design rules. We considered coacervation between two oppositely-charged polypeptides and a biomacromolecule cargo to investigate the effects of changing aspects of the coacervating polymers and/or various solution parameters. We characterized the level of encapsulation and partitioning of three different model proteins as a function of ionic strength, pH, polymer chain length, and polymer charge density. Our results highlighted the importance of electrostatic interactions in driving protein uptake into the coacervate phase. While intuitive effects such as increasing protein charge facilitating uptake and increased salt concentration decreasing uptake due to electrostatic screening effects, we determined that the net charge and the distribution of charges on both the protein and the polymers dominated protein incorporation. For example, the presence of a cluster of cationic residues on the surface of lysozyme resulted in several orders of magnitude

higher protein incorporation than was observed for serum albumin and hemoglobin, which have a more isotropic distribution of charges. We confirmed this trend, comparing the encapsulation of two variants of caspase-6 with the variant with a cationic charge patch yielding a higher encapsulation efficiency than the other.

In addition to facilitating aqueous encapsulation of proteins, we hypothesize that complex coacervation can help to enhance the thermal stability of protein cargo through a combination of physical crowding and "soft" chemical interactions that mimic the naturally crowded environment of the cytosol. We tested this hypothesis using two model viruses, porcine parvovirus (PPV), a non-enveloped virus, and bovine viral diarrhea virus (BVDV), an envelope-virus. Accelerated aging studies at 60°C over the course of seven days demonstrated that coacervate encapsulation allowed PPV to retain more than three log higher levels of activity as compared to free virus in solution. For BVDV we did not observe significant stabilization, although we posit that this may be due to the presence of the envelope, which might already provide such protection. Overall, these preliminary results, obtained without considering the chemistry of the polymers, indicate the potential for using complex coacervation to enhance the shelf life of vaccines and biologics. This work sets the stage for future efforts geared towards understanding the specific ways in which the coacervate environment can affect protein and/or virus activity, including the potential for solvent removal.

These results for PPV indicate the potential uses of complex coacervates in applications such as drug delivery and therapeutics. However, the applicability of complex coacervates is not limited to the liquid phase. We explored the ability to electrospin solid fibers of a two-protein heteroprotein coacervate. These results give

vii

useful insight as to how therapeutic protein-containing complex coacervates might be formulated and then processed for applications such as advanced wound dressings.

Beyond protein encapsulation, we explored the kinetics of binary complex coacervation utilizing a liquid handling robot. We were able to monitor the complexation of two peptides over time through turbidity measurements. These data described how factors such as system asymmetry and the addition of buffer or salt play critical roles in the complexation of two peptides. We also examined the phase behavior of more complex systems of two industrial polymers and a mixture of surfactants. Together, we garnered a broader understanding of the phase space of complexation with an emphasis on high throughput formulation.

TABLE OF CONTENTS

ACKNOW	LEDGEMENTS	V
ABSTRAC	Т	vi
LIST OF T	ABLES	XV
LIST OF F	IGURES	xvi
CHAPTER		
1. INTRO	DDUCTION	1
1.1 Mc	otivation	2
2. COMP	LEX COACERVATION	4
2.1 Ab	stract	4
2.2 Int	roduction	4
2.3 Co	acervation-Based Mimicry of the Intracellular Environment	6
2.4 Co	mplex Coacervate Phase Behavior	7
2.4.1	Characterization	8
2.4.2	Stoichiometry	8
2.4.3	Effect of pH	10
2.4.4	Effect of Salt	12
2.4.5	Effect of Temperature	14
2.4.6	Thermodynamic Phase Diagrams	15
2.4.7	Kinetically Trapped Materials and Precipitation	
2.5 Mc	plecular Design	17
2.5.1	Chirality	17
2.5.2	Branching and Molecular Topology	
2.5.3	Hierarchical Structure	
2.6 Ap	plications	
2.6.1	Encapsulation	
2.6.2	Delivery Platforms	
2.6.3	Bioinspired Adhesives	
2.6.4	Protocells and Membraneless Organelles	
2.6.5	Nano / Bioreactors	
2.6.6	Sensing	
2.6.7	Layer-by-Layer Films	

2.6.8	Solid Polyelectrolyte Complexes	
2.7 Co	nclusion	
3. LEAR	NING FROM NATURE: ENCAPSULATING PROTEINS	40
3.1 Ab 3.2 Int	ostract roduction	40 41
3.2.1	The Challenge of Protein Encapsulation	43
3.3 Co	mplex Coacervation, Phase Behavior, and Biomimicry	46
3.3.1	The Effect of Charge Stoichiometry and Ionic Strength	48
3.3.2	Charge Patterning Hierarchical Structure	51 53
3.4 Co	omplex Coacervates Incorporating Proteins	
3/1	Flectrostatics: The Role of Protein Charge	55
3 4 2	Protein Encapsulation and Release	
3.4.3	Measuring Protein Concentration	
3.4.4	Encapsulation Efficiency, Partitioning, and Loading	68
3.5 De	fining Protein Stability	69
3.5.1	Measuring Protein Stability	70
3.5.2	Differential Scanning Calorimetry (DSC)	72
3.5.3	Circular Dichroism (CD) Spectroscopy	74
3.5.4	Determining Kinetic Stability	76
3.6 Le	arning from Nature	77
3.6.1	Tuning the Environment for Protein Uptake	77
3.7 Su	mmary and Outlook	80
3.8 Ac	knowledgements	81
4. ENC. COACER	APSULATION OF BIOLOGICAL MOIETIES IN TERNARY VATES	COMPLEX
41 AF	ostract	82
4.2 Ex	amination of the Effects of the Environment on the Ability	of Complex
Coacerv	ates to Encapsulate Cargo	
4.3 Ma	aterials and Methods	86
4.3.1	Materials	86
4.3.2	Peptide Synthesis	86
4.3.3	Preparation of Stock Solutions	87

4.3.4 Coacervate Formation	88
4.3.5 Turbidimetry and Optical Microscopy	88
4.3.6 Quantifying Protein Encapsulation and Partitioning	89
4.3.7 Determination of Net Charge and Isoelectric Point	91
4.3.8 Calculation of the Radial Distribution Function for Charged Residues.	91
4.3.9 Statistical Analysis	92
4.4 Tuning the Microenvironment	92
4.4.1 Protein Encapsulation as a Function of Coacervate Charge Stoichiomet	try93
4.4.2 Effect of pH	96
4.4.3 Effect of Salt	100
4.4.4 Effect of Peptide Chain Length	105
4.4.5 Protein Charge Patchiness	110
4.4.6 Effect of Charge Patterning	112
4.4.7 Correlating Physical Properties and Protein Encapsulation	117
4.5 Conclusions	120
4.6 Acknowledgements	121
5 ENCAPSULATION ACTIVITY AND THERMAL STABILITY	OF
ENCAPSULATED CASPASE-6 IN TERNARY COMPLEX COACERVATES	122
5.1 Motivation for Protein Encansulation	122
5.1 Workedon for Protein Encapsulation	122
5.1.1 Target of Interest	123
5.1.2 Quantifying Encapsulation	124
5.1.3 Assaying Casp6 Activity	125
5.1.4 SDS-PAGE	126
5.2 Results and Discussion	126
5.2.1 Encapsulating Caspase-6	126
5.2.2 Activity of Free and Encapsulated Caspase-6	129
5.2.3 Free and Encapsulated Casp6 SDS-PAGE	132
5.3 Conclusions	134
5.4 Acknowledgements	134
6. THERMAL STABILITY AND ACTIVITY OF ENCAPSULATED VIRUS	ES IN
TERNARY COMPLEX COACERVATES	135
6.1 Abstract	135
6.2 Introduction	136
6.3 Materials and Methods	140
6.3.1 Materials	140
6.3.2 Virus Production, Purification, and Titration	141

6.3.3 Formation of Virus Complex Coacervates	142
6.3.4 Virus Complex Coacervates Characterization and Quantification	143
6.3.5 Virus Thermal Stability Study	144
6.4 Results and Discussion	145
6.4.1 Virus Encapsulation	
6.4.2 Thermal Stability of Encapsulated Virus versus Free Virus	154
6.5 Conclusions	159
6.6 Acknowledgements	159
7. ELECTROSPINNING HETEROPROTEIN COMPLEX COACERVATES	161
7.1 Electrospinning Complex Coacervates	161
7.2 Materials and Methods	162
7.3 Results of Electrospinning Heteroprotein Coacervates	165
7.4 Conclusions	166
7.5 Acknowledgements	168
8. KINETICS OF BINARY COMPLEXATION BETWEEN OPPOSITELY C	HARGED
POLYPEPTIDES	169
8.1 Abstract	169
8.2 Introduction	170
8.3 Materials and Methods	172
8.3.1 Materials	172
8.3.2 Peptide Synthesis	173
8.3.3 Coacervate Preparation	175
8.3.4 Turbidity Analysis	177
8.3.5 Data Analysis	178
8.4 Results and Discussion	179
8.4.1 Coacervation by Hand and by Machine	179
8.4.2 Exploring the Effect of Sequence in the Presence of Buffer	188
8.4.3 Is This Just Diffusion? Chain Length of Polypeptides	193
8.4.4 Effect of Salt	197
8.5 Conclusions	
8.6 Acknowledgements	204
9. TERNARY SYSTEMS BETWEEN TWO OPPOSITELY CHARGES PC AND AN ANIONIC SURFACTANT	DLYMERS 205
9.1 Introduction	205
9.7 Materials	203 206
<i>7.2</i> Iviauciiais	200

9.3 Turbidity Analysis	206
9.4 Experimental Results and Discussion	207
9.4.1 Ternary Systems with PSS and PDADMAC	207
9.4.2 Order of Addition	
9.4.3 Effect of Salt	214
9.4.4 Adding in a Neutral Surfactant	216
9.4.5 Effect of Temperature	217
9.5 Conclusions	217
9.6 Acknowledgements	217
10. CONCLUSIONS AND FUTURE WORK	219
10.1 Conclusions	219
10.2 Future Work	222
10.2.1 Changing the Charge Block and Charge Fraction of Selected Peptides	222
10.2.2 Phase Space with a Ternary System	224
10.2.3 Explore the Activity and Stability of Biologics in Complex Coacer	vates
using Freeze-Drying	227
10.3 Summary	227
APPENDICES	
A. SUPPLEMENT PROTEIN ENCAPSULATION DATA	229
A.1 Background Subtraction	233
A.2 MATLAB Code for pI Calculations	234
A.3 MATLAB Script for Pair-Wise Interaction Calculations	240
B. MATHEMATICS AND CODE FOR THE MODELING AND FITTING	OF
BINARY COACERVATE SYSTEMS WITH CALCULATED HALF TIMES	247
B 1 Gaussian Fits	249
B.2 Plotting and Determining Kinetics.	250
B.3 Reynolds and Péclet Number Calculations	251
B 3.1 Calculating the Reynolds Number	251
B.3.2 Calculating the Péclet Number	252
B.3.3 Characteristic Time for Diffusive Mixing	253
B.4 MATLAB Script	254
C. PROTOCOLS	263
C1 Prodford Assay	762
U.1 Diautotu Assay	203

C.1.1	Safety	
C.1.2	Materials	
C.1.3	Standard Curve	
C.1.4	Making Samples for the Standard Curve	
C.1.5	Encapsulating BSA (Protein) and Running the Bradford Assay	
С.2 МЛ	T Assay	
C.2.1	Safety	
C.2.2	Set-Up	
C.2.3	Stocks	
C.2.4	Running Experiments.	
C.2.5	Clean-Up	270
C.3 Cas	spase-6 Assay	270
C.3.1	Safety	
C.3.2	Materials	
C 3 3	Caspase-6 Activity Buffer pH 7 5	271
C 3 4	Preparation of Samples	271
C.3.5	Assay	
C.4 SD	S-PAGE Gel	271
C.4.1	Safety	271
C.4.2	Materials	
C.4.3	Sample Prep	
C.4.4	Running Gel	272
D. PROT	EIN AND ENZYME SEQUENCES	274
D 1 Int	roduction	274
D.1 Ind D.2 Pro	teins	
D 2 1	Povine Serum Albumin	274
D.2.1	Hon Egg White Lysograme	274 275
D.2.2 D.2.3	Human Hemoglobin	
$\mathbf{D} \in \mathbf{V}$	Drotoing	276
D.3 VII	us Proteins	276
D.3.1	PPV Virus Protein 1	
D.3.2	PPV Virus Protein 2	
D.3.3	BVDV Envelope Protein	277
D.4 Enz	zymes	
D.4.1	Full Caspase-6	
D.4.2	ΔN D179 CT	

D.4.3	ΔN D179 CT R42-44A	
BIBLIOGR	APHY	

LIST OF TABLES

Table Page
3.1. List of encapsulated proteins, the polyelectrolyte(s) used, the reported encapsulation efficiency (EE), and citation
5.1. Accelerated aging temperature chart
6.1. Model virus properties including size, isoelectric point (pI), and related human viruses.
6.2. Accelerated aging study chart
8.1. Molecular sequence for poly(lysine-co-glycine) or poly(glutamate-co-glycine), denoting lysine or glutamate with an X, peptides with degree of polymerization $N = 50$
A.1. Table of counter-ions, molecular weights and polydispersity index (PDI) of polypeptides. PDI was found using gel permeation chromatography (GPC). Polypeptides of chain length 50 were made in house, while $N = 100$, 400, and 800 were purchased from Alamanda Polymers. 229
A.2. Table of calculated net charge for the various proteins and peptides used in this study as a function of pH
A.3. Table of the calculated number of positive and negative charges for the various proteins used in this study as a function of pH
A.4. Table of physical parameters for the model proteins bovine serum albumin (BSA), human hemoglobin (Hb), and hen egg white lysozyme (HEWL) used in this study. These results match closely to those calculated using other computational tools such as ProtParam.
B.1. Average half times of 10 mM salt concentrations with (EG) ₂₅ /(KG) ₂₅ 248
B.2. Polycation, polyanion, order of addition, type of salt, salt concentration, half time, its standard deviation and elapsed time with its standard deviation for systems with no added buffer
B.3. Table of counter-ions, molecular weights with (M_{wc}) and without (M_w) the counter- ions, and polydispersity index (PDI) of polypeptides. PDI was found using gel permeation chromatography (GPC). Polypeptides of chain length 50 were made in house, while N = 100, 400, and 800 were purchased from Alamanda Polymers
D.1. Amino acids and their corresponding 1-letter symbols

Figure

2.2. Turbidity plot as a function of mole fraction poly(allylamine hydrochloride) p(AH) at pH 6.5 were both (pAH) and poly(acrylic acid sodium chloride) (pAA) are fully charged (black circles) and pH 8.5 where pAH is only half charged (blue squares). Data are shown for no salt conditions (open symbols) and 100 mM NaCl (closed symbols). All samples were prepared at 1 mM total monomer concentration and complexes were prepared by adding pAA to solution containing pAH and the desired salt concentration. Figure adapted with permission from Ref. [13] (Perry *et al.*, *Polymers*, (2014), *6*, 1756-1772.).

2.2. (a) Bright-field optical micrographs showing the liquid coacervates or solid precipitates resulting from the stoichiometric electrostatic complexation of *L*, *D*, or racemic (*D*,*L*) poly(lysine) (single letter abbreviation K) with *L*, *D* or racemic (*D*,*L*) poly(glutamate) (single letter abbreviation E) at a total residue concentration of 6 and 100 mM NaCl, pH 7.0. Complexes are formed from pLK + pLE, pDK + pLE, p(D,L)K + pLE,

2.7. (a) Plot of changes in turbidity as a function of the ratio of negative-to-positive residues on the protein. The grey shaded region corresponds to proteins that do not undergo phase separation. Figure adapted with permission from Ref. [25] (Obermeyer *et al., Soft Matter*, (2016), *12*, 3570-3581). (b) Encapsulation of bovine serum albumin (BSA) into a coacervate. Positively-charged poly(*L*-lysine) (PLys) is added to the negatively-charged protein to form an intermediate complex. Negatively-charged poly(*D*,*L*-glutamate) (PGlu) is then added to form the complex coacervate. Figure adapted with permission from Ref. [16] (Black *et al., ACS Macro Lett*, (2014), *3*, 1088-1091).

2.9. (a) Differential interface contrast (DIC) and fluorescence micrographs of a HeLa cell expressing $Ddx4^{YFP}$. $Ddx4^{YFP}$ forms dense, spherical organelles in the nucleus. Cells were stained with antibodies to visualize nucleoli, PML bodies, nuclear speckles, and Cajal bodies. Figure adapted with permission from Ref. [9]. (Nott *et al.*, *Mol. Cell*, (2015), *57*, 936-947.) (b) Time-lapse imaging of a nuclear body assembly in transiently transfected HeLa cells expressing Nephrin intracellular domain (NCID). Scale bar represents 5 µm. Figure adapted with permission from Ref. [10]. (Pak *et al.*, *Mol. Cell*,

(2016), *63*, 72-85.) (c) Representative images of the morphological changes in *in vitro* droplets of wild-type (WT) and G156E FUS during an "aging" experiment over 8 hr. Figure adapted with permission from Ref. [113]. (Patel *et al.*, *Cell*, (2015), *162*, 1066-1077).

2.10. (a) Schematic illustration of enzyme activities during the reversible reaction using lambda protein phosphate (LPP) enzyme and protein kinase A (PKA) with adenosine diphosphate (ADP), adenosine triphosphate (ATP) and EDTA resulting in the formation and dissolution of a coacervate phase. Figure adapted with permission from Ref. [91]. (Aumiller and Keating, Nat. Chem., (2015), 8, 129-137.) (b) UV-vis spectra demonstrating the encapsulation of CMDex-Fe₃O₄ (left), CMDex-Co₃O₄ (middle) and gold (right) nanoparticles in poly(lysine)-adenosine triphosphate (PLys-ATP) droplets with accompanying optical images of the magnetic CMDex-Fe₃O₄ nanoparticle system and a TEM micrograph of encapsulated gold nanoparticles. (c) Plots of the change in concentration of (top) 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and b-NADPH (bottom) as a function of time in both the presence (closed circles) and absence (open circles) of catalytic coacervate droplets. Figures adapted with permission from Ref. [40]. (Koga, Nat. Chem., (2011), 3, 720-724.) (d) UV-vis spectra (top) and plot of the time-dependent changes in the normalized peak intensities (bottom) for the selective catalytic degradation of methylene blue compared with rhodamine B dye as a result of selective uptake into coacervate microdroplets formed from titania nanosheets. poly(diallyldimethylammonium) chloride, and ATP. Figure adapted with permission

3.6. (a) Plot of salt resistance versus charge fraction using poly(glutamate) with patterned cationic poly(lysine-co-glycine), as described in (b). (Reprinted with permission from Ref [331]. Copyright 2019 Open Access from ACS Central Science.) (c) Entropic gains as a function of charged block size determined using isothermal titration calorimetry. Schematic depiction of the differences in counterion localization for different patterns of charge for (d) polyelectrolytes (Reprinted with permission from Ref. [330]. Copyright 2017 Open Access from Nature Communications.) and (e) polyampholytes. (Madinya, *et al.*, Sequence-dependent self-coacervation in high charge-density polyampholytes. *Mol. Syst. Des. Eng.* 2020. – Reproduced by permission of The Royal Society of Chemistry. Science.

3.13. Theoretical charge calculations for two isoforms of β -lactoglobulin, (a) BLG-A and (b) BLG-B. The calculated value of the pI for BLG-A and BLG-B was 4.6 and 4.7, respectively (filled circles). Experimental values of the pI from the literature reported 5.1 and 5.2, respectively (open diamonds). (c) Proportion of BLG-A (red) and BLG-B (blue) into the coacervte phase mixing lactoferrin and BLG-A + B at pH 5.50 and 5.75. (Reprinted from Tavares, *et al.*, Selective coacervation between lactoferrin and the two

4.5. Plots of concentration vs. cationic charge fraction for both the supernatant (open circles) and the coacervate phases (colored squares) at pH 6.0 (a, c, e) and pH 8.0 (b, d, f) for BSA (a, b), Hb (c, d), and HEWL (e, f). We observed a decrease in the amount of protein taken up into the coacervate phase going from pH 6.0 to 8.0 for Hb and HEWL,

4.9. Plots of the concentration of Hb for both the supernatant (open circles) and the coacervate phases (colored squares) as a function of the cationic charge fraction at (a) 50 mM, (b) 100 mM, (c) 150 mM, and (d) 200 mM NaCl. We observed very little protein uptake into the coacervate phase in the presence of added salt, resulting in the appearance of significant error due to propagation of uncertainty through our calculations. Lines connecting data points are a guide to the eye. Error bars are the standard deviation of the reported average. Quantification of the maximum partitioning and encapsulation efficiency is shown in Figure 4.6.

4.11. Plots of maximum encapsulation efficiency (a-c) and maximum partition coefficient (d-f) as a function of the degree of polymerization of the complexing polymers for BSA (red), Hb (light blue), and HEWL (dark blue), respectively. Coacervates were prepared

4.18. Plots of turbidity as a function of increasing polypeptide charge content for (a) BSA, (b) Hb, and (c) HEWL. The polypeptide systems are denoted: K_{50}/E_{50} as ++/--,

5.2. Concentration of (a) Casp6 and (b) Casp6mut as a function of charge fraction of K_{50}/E_{50} at pH 7.0 in 10mM HEPES. Error bars represent the propagated error.....128

6.5. Partition coefficient. (a-c) Encapsulated PPV, and (d,e) encapsulated BVDV. (a,d) 4 $\log_{10} (MTT_{50}/mL)$, (b,e) 5 $\log_{10} (MTT_{50}/mL)$, and (c) 6 $\log_{10} (MTT_{50}/mL)$. All data points are the average of three separate tests and error bars represent the standard deviation...152

8.5. Plots of turbidity versus charge fraction dependence of symmetry between patterned peptides showing the positive peptide added first with (a) $(EG)_{25}/(KG)_{25}$, (b) $(E_2G_2)_{12}/(K_2G_2)_{12}$, (c) $(E_4G_4)_6/(K_4G_4)_6$, and (d) $(E_8G_8)_3/(K_8G_8)_3$. Elapsed time was (a) 80 min, (b) 60 min, (c) 80 min, and (d) 55 min. Error bars represent the standard deviation of N = 27.

8.6. Plots of turbidity versus charge fraction dependence of symmetry between patterned peptides showing the negative peptide added first with (a) $(EG)_{25}/(KG)_{25}$, (b) $(E_2G_2)_{12}/(K_2G_2)_{12}$, (c) $(E_4G_4)_6/(K_4G_4)_6$, and (d) $(E_8G_8)_3/(K_8G_8)_3$. Elapsed time was (a) 85 min, (b) 40 min, (c) 80 min, and (d) 55 min. Error bars represent the standard deviation of N = 27.

8.15. Plots of turbidity versus charge fraction of lysine showing the effect of different salts on the $(EG)_{25}/(KG)_{25}$ system. Shown is the negative peptide added first with 10 mM of (a) KBr, (b) KCl, (c) NaBr, and (d) NaCl. Elapsed time was (a) 5 min, (b) 90 min, (c) 65 min, and (d) 75 min. Error bars represent the standard deviation of N = 27......200

9.2. (a) Turbidity of Texapon-PSS-PDADMAC in the absence of salt. (b) Turbidity of the same system with 1.6 M KBr.....210

9.3. Optical micrographs of (a) Texapon in KBr and (b) NaCl......211

9.4. Lutensit-PSS-PDADMAC system with no added salt (a) and 1.6 M KBr (b)......212

9.5. Lutensit-PSS-PDADMAC turbidity with no added salt (a) and 1.6 M KBr (b).213

B.1. Turbidity comparison of complexation of $(KG)_{25}/(EG)_{25}$ with (black) and without (blue) 10 mM HEPES. (a) Complexation of $(KG)_{25}/(EG)_{25}$ varying the cationic mole fraction of $(KG)_{25}$ and (b) 50/50 mole ratio of $(KG)_{25}/(EG)_{25}$ as a function of increasing NaCl concentration. The salt resistance for the no buffer sample was determined to be 42 mM NaCl, while the sample with 10 mM HEPES had a salt resistance of 36 mM NaCl. Experiments were done in triplicate with three aliquots of each sample read three times each to calculate the standard deviation at each point. Error bars represent the standard deviation of N = 27.