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ABSTRACT 

ENCAPSULATION AND STABILIZATION OF BIOMACROMOLECULES 

SEPTEMBER 2020 

WHITNEY C. BLOCHER MCTIGUE, B.A., CLARKSON UNIVERSITY 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Sarah L. Perry 

 Recent work in the area of protein encapsulation has turned away from traditional 

methods of sequestration toward gentler, purely aqueous techniques. Among them, 

complex coacervation has become a topic of discussion. Complex coacervation is an all-

aqueous liquid-liquid phase separation phenomenon dominated by electrostatic 

interactions and entropic gains. The use of coacervates as protein encapsulants has 

garnered much attention, but there has been little headway in determining a set of design 

rules. We considered coacervation between two oppositely-charged polypeptides and a 

biomacromolecule cargo to investigate the effects of changing aspects of the coacervating 

polymers and/or various solution parameters. We characterized the level of encapsulation 

and partitioning of three different model proteins as a function of ionic strength, pH, 

polymer chain length, and polymer charge density. Our results highlighted the 

importance of electrostatic interactions in driving protein uptake into the coacervate 

phase. While intuitive effects such as increasing protein charge facilitating uptake and 

increased salt concentration decreasing uptake due to electrostatic screening effects, we 

determined that the net charge and the distribution of charges on both the protein and the 

polymers dominated protein incorporation. For example, the presence of a cluster of 

cationic residues on the surface of lysozyme resulted in several orders of magnitude 
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higher protein incorporation than was observed for serum albumin and hemoglobin, 

which have a more isotropic distribution of charges. We confirmed this trend, comparing 

the encapsulation of two variants of caspase-6 with the variant with a cationic charge 

patch yielding a higher encapsulation efficiency than the other. 

In addition to facilitating aqueous encapsulation of proteins, we hypothesize that 

complex coacervation can help to enhance the thermal stability of protein cargo through a 

combination of physical crowding and “soft” chemical interactions that mimic the 

naturally crowded environment of the cytosol. We tested this hypothesis using two model 

viruses, porcine parvovirus (PPV), a non-enveloped virus, and bovine viral diarrhea virus 

(BVDV), an envelope-virus. Accelerated aging studies at 60°C over the course of seven 

days demonstrated that coacervate encapsulation allowed PPV to retain more than three 

log higher levels of activity as compared to free virus in solution. For BVDV we did not 

observe significant stabilization, although we posit that this may be due to the presence of 

the envelope, which might already provide such protection. Overall, these preliminary 

results, obtained without considering the chemistry of the polymers, indicate the potential 

for using complex coacervation to enhance the shelf life of vaccines and biologics. This 

work sets the stage for future efforts geared towards understanding the specific ways in 

which the coacervate environment can affect protein and/or virus activity, including the 

potential for solvent removal.  

These results for PPV indicate the potential uses of complex coacervates in 

applications such as drug delivery and therapeutics. However, the applicability of 

complex coacervates is not limited to the liquid phase. We explored the ability to 

electrospin solid fibers of a two-protein heteroprotein coacervate. These results give 
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useful insight as to how therapeutic protein-containing complex coacervates might be 

formulated and then processed for applications such as advanced wound dressings. 

Beyond protein encapsulation, we explored the kinetics of binary complex 

coacervation utilizing a liquid handling robot. We were able to monitor the complexation 

of two peptides over time through turbidity measurements. These data described how 

factors such as system asymmetry and the addition of buffer or salt play critical roles in 

the complexation of two peptides. We also examined the phase behavior of more 

complex systems of two industrial polymers and a mixture of surfactants. Together, we 

garnered a broader understanding of the phase space of complexation with an emphasis 

on high throughput formulation. 
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