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ABSTRACT

FILAMENTS, FIBERS, AND FOLIATIONS IN
FRUSTRATED SOFT MATERIALS

SEPTEMBER 2020

DARIA W. ATKINSON

B.A., CARLETON COLLEGE

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professors Gregory M. Grason and Christian D. Santangelo

Assemblies of one-dimensional filaments appear in a wide range of physical sys-

tems: from biopolymer bundles, columnar liquid crystals, and superconductor vortex

arrays; to familiar macroscopic materials, like ropes, cables, and textiles. Interactions

between the constituent filaments in such systems are most sensitive to the distance

of closest approach between the central curves which approximate their configura-

tion, subjecting these distinct assemblies to common geometric constraints. Dual to

strong dependence of inter-filament interactions on changes in the distance of closest

approach is their relative insensitivity to reptations, translations along the filament

backbone. In this dissertation, after briefly reviewing the mechanics and geometry of

frustrated elastic materials relevant for the discussion of fiber geometry and elasticity

in Chapter 1, we examine in detail the geometry associated with constant spacing

between continuous filament fields, and the associated couplings between stretching

of lengths between filaments, symmetries of multi-filament energies, and the shapes

adopted by filament bundles.
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In Chapter 2, we consider two distinct notions of constant spacing in multi-filament

packings in three Euclidean dimensions, E3: equidistance, where the distance of clos-

est approach is constant along the length of filament pairs; and isometry, where the

distances of closest approach between all neighboring filaments are constant and equal.

We show that, although any smooth curve in E3 permits one dimensional families of

collinear equidistant curves belonging to a ruled surface, there are only two families of

tangent fields with mutually equidistant integral curves in E3. The relative shapes and

configurations of curves in these families are highly constrained: they must be either

(isometric) developable domains, which can bend, but not twist; or (non-isometric)

constant-pitch helical bundles, which can twist, but not bend. Thus, filament tex-

tures that are simultaneously bent and twisted, such as twisted toroids of condensed

DNA plasmids or wire ropes, are doubly frustrated: twist frustrates constant neighbor

spacing in the cross-section, while non-equidistance requires additional longitudinal

variations of spacing along the filaments. To illustrate the consequences of the fail-

ure of equidistance, we compare spacing in three “almost equidistant” ansatzes for

twisted toroidal bundles and use our formulation of equidistance to construct upper

bounds on the growth of longitudinal variations of spacing with bundle thickness.

In Chapter 3, we show that because the elastic response of non-equidistant filament

bundles is frustrated, it cannot adequately be described by linearized, two-dimensional

strains. To describe non-equidistant configurations, we derive a geometrically nonlin-

ear, coordinate invariant, gauge-like theory for the elasticity of filamentous materials.

For small strains, we derive the Euler-Lagrange equations for general, non-equidistant

filament bundles, and show that, while force balance is qualitatively similar to that for

2D crystals, there are corrections which account for the non-integrability of twisted

filament fields. Because of these corrections, force balance along the filament tangents

couples to the convective flow tensor, which measures local deviations from equidis-
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tance. Within this framework, we discuss the impact of filament texture on bundle

elasticity, and extend the analysis of helical filament bundles to the large twist limit.

In Chapter 4, we finally turn our attention to longitudinally frustrated, non-

equidistant bundles. Taking twisted toroidal filament bundles, which can be found

in condensates of nucleic acids under confinement (e.g., inside a viral capsid), as a

geometric prototype for the more general class of non-equidistant filament bundles,

we derive the linearized force-balance equations in the limit of small central-filament

curvature. While we make substantial progress towards a qualitative understanding of

the behavior of non-equidistant filaments, the general solution to the Euler-Lagrange

equations remains out of reach due to the presence of singularities at the outer bound-

ary that emerge as a result of our perturbation scheme.

We conclude by discussing the progress made in this dissertation in understanding

the physics of frustrated fibers, and speculating about the ramifications for more

general soft-elastic materials.
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as in 3.6c, which shows the critical radius, at which tr(S) = 0,
plotted against ΩR for the non-linear force-balance equations (red
dots), compared to the constant value in the FvK, rc/R = 1√

2

(black line) [46]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.7 The introduction of filament bending to the columnar elasticity of
helical bundles qualitatively changes their behavior for large
twists. For low twists, as in 3.7a, with ΩR = .2, an increase in the
bend elastic modulus, K33, leads to a gradual decrease in the
critical radius (red dots) from that of the FvK limit (black line).
At large twists, however, as in 3.7b, with ΩR = 1.4, the
introduction of bending leads to qualitatively different behavior,
driven by the elastic non-linearities. Here rc/R increases from the
K33 = 0 value (dashed blue line) to higher than the FvK value
(black line). In all of the above, ν = .49. . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1 A schematic (4.1a) and common household example (4.1b) of twisted
toroidal filament bundles, a common geometric motif. Twisted
toroidal textures are easy to create with common household
materials, occur naturally in viral capsids’ confined coils of nucleic
acids, and are a simple test case for the more general class of
non-equidistant filament bundles, which have important
applications in mechanical systems like cables, ropes, and
yarns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 The pressure profile for a determinant free bundle with ΩR = 1,
κ0R = .02, and K33 = 0. Curvature induced modifications to the
radial displacement field reduce the overall energy, while
frustrated terms arising from twist-curvature coupling generate a
φ̃ dependent stress profile in the cross-section. . . . . . . . . . . . . . . . . . . . 100

xvii



CHAPTER 1

BORN IN THE WRONG GEOMETRY:
GEOMETRICALLY FRUSTRATED ELASTICITY IN

FILAMENTOUS MATERIALS

We were a cabal. . . a flock of higher
theorists

Flying
Kate Millett

1.1 Geometry and elasticity

The mechanical properties of materials are all tangled up with their shape and

structure. From the influence of crystalline symmetries on materials’ independent

elastic moduli [2] and curvature coupling in cusps [3] and cracks [4–6] of thin elastic

sheets to frustrated phases of chiral liquid crystals, [7, 8] the shape of things governs,

and is in turn governed by, their equilibrium elastic properties. Not nearly narrow,

a geometric perspective on materials instead explains both the intuitive and inexpli-

cable, both the marvelous and the seemingly mundane. Across lengthscales—from

the collective interactions of molecules microns or smaller to the mechanics of megas-

tructures many meters large—and contexts—from pasta and pizza and flowers and

fabrics to developing technologies in robotics and sensors—the language of geometry

is essential for descriptions of soft materials. Geometric descriptions of soft materials

are also, fortunately, fairly universal. While there are manifold manifestations of,

for example, elastic sheets, from graphene and other atomically thin sheets to the

more familiar fabrics and paper, all of these can, to a certain extent, be described

with the same simple geometric picture, where stresses are given by changes in length
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and curvature on embedding a surface into Euclidean three dimensional space. In-

deed, this geometric perspective is so powerful that, with only slight modifications

to the original picture, programmable, shape morphing materials, both artificial and

biological, can be described.

The connection between geometry and elasticity is deep. Because changes in

lengths and orientations are often suppressed by interactions between constituent

atoms or molecules, effective descriptions of the reversible deformations of soft mate-

rials are often conveniently described in geometric language, whether discrete, as for

mechanical metamaterials, or continuous and differentiable, as for rods, sheets, and

many liquid crystalline systems. This geometric formulation of continuum elasticity

helps draw immediate connections between geometric quantities, like curvatures, and

the “bread and butter” elastic response of a medium, in terms of stresses and strains.

Also important for the observed behavior of elastic materials is that geometric

features of the world we live in (which, ignoring relativistic contributions, is basically

euclidean three space) can be readily observed in the complex emergent behavior

of materials, governed by simple local rules which are, in some sense, incompatible

with their embedding space [7, 9–12]. We call this geometric frustration of the elastic

minima or ordered phases, and it means the material isn’t really sure what to do, and

so we get to see all sorts of cool new phases and responses, like the blue phases of

chiral nematic liquid crystals and the twist grain boundary phases of chiral smectic

liquid crystals. Geometric frustration can even be used to control material responses,

programming the shape of elastic sheets [13, 14], the emergence of defects [4, 15], and

the shape and size of meso-scale assemblies [11, 16].

Other contributions to the dazzling phenomenology of elastic materials, from buck-

ling or coiling instabilities to pattern formation and the existence of soft deformations,

can be attributed to geometric nonlinearities, which become important when materi-

als undergo large deformations, even when the strain developed is small. Constraints
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on displacement or orientation fields arising from purely geometrical considerations—

like the Gauss-Codazzi-Mainardi equations for surfaces in E3[17], or the unit director

describing uniaxial nematic liquid crystals—add additional complexity to theories

describing the large deformations of materials, and stabilize a variety of non-trivial

configurations.

Geometric non-linearities and geometrical frustration are, of course, related. For

example, out of plane height fluctuations are soft modes of thin-elastic sheets, and so

a linear description would not capture, for example, the shape of draping fabrics, or

the wrinkling of a sheet on a sphere [18]. And, while progress can be made for many

materials by looking only at behavior away from boundaries, or other isolated regions,

in frustrated materials geometric non-linearities are necessary for describing the super-

extensive strains which accumulate in the bulk, and must be considered [12]. Since

frustration is not only commonplace, but can have consequences both convenient [19]

and catastrophic, the description and understanding of the accompanying geometric

non-linearities remains an important and incomplete task in the study of materials in

many disciplines. In this dissertation, we will explore geometric frustration, and the

energetic non-linearities necessary to describe it, in one particular class of materials:

bundles of filaments, fibers, and columnar liquid crystals.

1.2 Columnar and filamentous matter

Ordered arrangements of columns, fibers and filaments are a common geometrical

motif; and such materials are found across a wide range of length-scales, from clumps

of wet hair [20], carbon nanotube yarns [21, 22], biopolymer bundles [23], and discotic

liquid crystals [24] to macroscopic multi-filament wires and cables [25, 26].

Because filament bundles are liquid crystalline, and have two solid-like directions

and one fluid-like, uncorrelated direction, they exhibit characteristics of both 2d solids

and bulk nematic liquid crystals. However, as a result of geometric coupling between
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the elastic and orientational modes, they exhibit novel properties that result from the

coupling of filament textures, which describe the local tangents to the filaments at

each point in space, and inter-filament spacing. In order to facilitate the description

of these couplings, it’s useful to first describe individually the elasticity of thin sheets

and nematic liquid crystals; we will also use this opportunity to introduce the notation

we will use throughout for tensor calculus on Riemannian manifolds.

1.2.1 Thin elastic sheets

The geometric theory of thin elastic sheets dates back to the work of Föppl and von

Kármán in the early 20th century [27, 28], but here we present a more geometrical

framework which has been developed to account for the possibility of curvilinear

coordinates [29] and non-Euclidean target metrics [30, 31]. As a brief note on notation:

we will, in this discussion and throughout, use lower-case latin letters to index over

the material (Lagrangian) coordinates for surfaces in E3, upper case latin letters to

index over the three material coordinates for filament bundles in E3, and lower case

greek letters to index over the space in material coordinates orthogonal to the local

tangent vector. Throughout we adopt Einstein summation notation, so that repeated

indices imply summation. To refer to points in the target (Eulerian) coordinates,

we will throughout use boldface (e.g., r for the deformation map), and additionally

assume that there is an embedding into Euclidean space, E3.

The Green-St. Venant strain tensor, which measures the changes in lengths be-

tween two neighboring points, can be defined here in terms of the metric, g, of an

embedding and a target metric, gtar which is determined by the rest lengths between

constituent molecules, by

εij = 1
2
(gij − gtar

ij ), (1.1)

which corresponds to a linear measure of changes in lengths. The components of

the metric g are related to a deformation field, r, which points to the location in
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Euclidean three space, by

gij = ∂ir · ∂jr. (1.2)

When the strains developed in the material are small, even when the accompanying

deformations are large, we can neglect terms which are higher than quadratic order

in the strain in the elastic energy, so that

Estrain = 1
2

∫
dV Cijklεijεkl

= 1
2

∫
dV Sijεij. (1.3)

The energetic cost for bending of the sheet can be expressed in terms of the shape

operator,

L = −∇N̂ . (1.4)

This tensor, whose action on the tangent vectors defines the curvatures of the surface

at a point, can be used to measure the energetic cost of bending elasticity which

accompany finite sheet thickness. Importantly for us, however, it also plays a role

in the normal-force balance of sheets with vanishing thickness. If we were to work

out the force balance equations from the variation of Eq. (1.3), we would find (see

[30, 32, 33]) that

EL · N̂ = SijLij = 0 (1.5)

ELj = div(S)j = ∂iS
ij + SikΓjik = 0, (1.6)

where here Lij = gjkL
k
i , and Γjik is the Christoffel symbol associated with the usual

covariant derivative of a surface in E3 [17]. The take away here can be summarized

briefly: in-plane force balance is driven by gradients in the stress tensor, Sij, while

normal force balance couples stresses to the curvatures of the surface at the midline,

even in the absence of an energetic contribution from sheet bending.
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1.2.2 Nematic liquid crystals

The elastic energy density of nematic liquid crystals deep in the ordered phase

[34] can be expressed in terms of the averaged molecular orientation, n, as:

f = 1
2
K11[∇·n]2+ 1

2
K22[n·(∇×n)]2+ 1

2
K33[(n·∇)n]2+K24∇·[(n·∇)n−(∇·n)n], (1.7)

where the K are independent elastic moduli, and are typically known as the splay

(K11), twist (K22), bend (K33), and saddle-splay (K24).

The Frank free-energy can be rewritten slightly, in terms of the squares of 4

irreducible representations under rotations of the gradient tensor, ∇n, so that:

f = 1
2
(K11 −K24)S2 + 1

2
(K22 −K24)T 2 + 1

2
K33‖B‖2 +K24tr(Γ2), (1.8)

where S = ∇ · n is the splay, T = n · (∇ × n) is the twist, and B = −(n · ∇)n, as

before, but here we have broken up the saddle splay term, with components which

are independent of splay and twist now written in terms of the symmetric, traceless

biaxial splay tensor [35, 36]

Γij = 1
2

[
∇n + (∇n)T + n⊗ b + b⊗ n− S(I − n⊗ n)

]
, (1.9)

where I is the Euclidean metric 1. Notably, these four quadratic modes allow sys-

tematic investigation of the frustrated geometries of director fields in E3 (and other

geometries). In two dimensions, where only splay and bend are relevant, Niv and

Efrati have derived an explicit connection between the two and the curvature of the

1Machon and Alexander, Selinger, and Virga [35–37] use ∆ to refer to the biaxial splay tensor,
which for us risks confusion with the local distance of closest approach between two filaments; so
here we use Γ for the biaxial splay tensor, and hope that distinct contexts (and different numbers
of indices, when relevant) will help the reader differentiate it from the Christoffel symbols, Γi

jk.
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embedding manifold [12]. In E3, the more general decomposition has been used to

show that the heliconical texture associated with twist bend nematics is the only

uniform configuration, which has S, T , ‖B‖ and Γ constant in space [37].

1.2.3 Frustration in filamentous and columnar materials

Prior to these developments, work by Kléman and Bouligand [38, 39] showed that

columnar liquid-crystalline textures which permit hexagonal packing between columns

can be similarly expressed in terms of these liquid-crystalline modes, describing the

developable domains, for which only the bend b, does not vanish. These isometric

packings of filaments and columns, which have an effective Euclidean metric to the

quotient surface, and are readily observed in discotic liquid crystals [24]. With dis-

tances of closest approach between filaments restricted to the plane normal to their

tangents, these ordered ground states are effectively two dimensional.

Early descriptions of the elasticity of filament bundles and columnar liquid crystals

were inspired principally by the connection between these isometric packings and

the elasticity of 2d crystals. Using a strain tensor which accounts only for in-plane

deformations, so that

εαβ = ∂αuβ + ∂βuα + ∂αu · ∂βu, (1.10)

where u is the in-plane displacement field, accurately accounts for the relatively small

displacements associated with many bulk columnar phases [40, 41].

There are, however, problems with this relatively simple description: the strain

tensor isn’t invariant under global rotations of the filament bundle which fix the planar

section. To see why (following [42]) imagine a bundle of filaments perpendicular to

the x − y plane, which are then uniformly rotated as in Fig. 1.1. The resulting

deformation field is given by:

r = x +
[
x(1− cosα) + z sinα

]
x̂, (1.11)
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Figure 1.1: If a bundle of filaments, initially perpendicular to the x − y plane, is
rotated uniformly through an angle α, the strain tensor described Eq. (1.10) will
develop a non-vanishing strain. To account for the rotation invariance of physical
filament bundles, contributions from the tilt of the filament tangents, as in Eq. (1.13)
are necessary.

and so the strain tensor in Eq. (1.10) is given by:

(ε) =

1− cos (α)− 1
2
(1− cos (α))2 0

0 0

 . (1.12)

This is obviously unphysical, as we’ve done nothing more than change our coordinates.

Minimal corrections to this planar model are necessary to ensure rotation invariance,

and are given by the Selinger-Bruinsma strain tensor:

εij = 1
2

[
∂iuj + ∂jui − ∂iu · ∂ju− ∂iuz∂juz

]
, (1.13)

where i and j indices sum over a planar cross-section of the bundle. By recognizing

that ∂iuz ≈ ti, we see that this strain tensor incorporates changes in distance asso-

ciated with purely textural degrees of freedom. It turns out that this 2d strain can

be made exact for the equidistant filament bundles described in Ch. 2. The Selinger-

Bruinsma strain tensor can shed considerable light on the geometry [43] and elasticity
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[44, 45] of the equidistant helical domains, and in the Föppl-von Kármán limit, where

ΩR < 1 (where R is the bundle radius and Ω is inversely proportional to the helical

pitch) has been used to analyze the defect response and local deformation fields of

twisted filament bundles [5, 46, 47].

The connection between twist and splay, on the one hand, and strain in the colum-

nar order, on the other, gives rise to a wide array of phenomenology, from ordered

arrays of defects in the tilt-grain boundary phase [40, 41, 48], to diverging moduli

on approach to the columnar critical point [49]. For bundles of helices with constant

pitch, Bruss and Grason [43] have shown that the competition between twist and

hexagonal packing can be thought of in terms of an effective curvature, proportional

to the twist squared [1, 43, 50] because the helical bundles are equidistant. This

longitudinal symmetry allows a direct mapping from the bundle of filaments in E3

to a two dimensional Riemannian manifold which has everywhere positive Gaussian

curvature, and by taking the same, (no longer exact) two dimensional metric, some

light can be shed on the coupling between textural and elastic degrees of freedom in

frustrated filament bundles [47, 51].

In Ch. 2, we essentially complete this analysis, and show that all geometric con-

straints on constant spacing in filament bundles and columnar liquid crystals can be

accounted for by a combination of the splay and biaxial-splay modes of the Frank

free energy, which we call the convective flow tensor. By solving for bundles with

vanishing convective flow tensor in a tubular neighborhood of a central curve, we

show that there are only two families of equidistant filament bundles: the isometric

developable domains, which have zero twist, but can bend freely; and the equidistant

helical domains, which have uniform twist, but are constrained to lie along a straight

line.

As a consequence of our proof in Ch. 2, we then show explicitly in Ch. 3 that the

2d Selinger-Bruinsma strain tensor fails to capture the longitudinal frustration associ-
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ated with non-equidistance, for which a more comprehensive geometric description is

needed. In Ch. 3, we derive the fully geometrically non-linear strain tensor necessary

to account for non-equidistance by presenting a simple symmetry argument, inspired

by classical gauge theories. After commenting on the connection between the result-

ing covariant derivative and the geometry of fiber bundles of a Riemannian manifold,

we then use this non-linear theory to revisit the elasticity of helical filament bundles

with large twist (ΩR > 1), incorporating contributions from filament stretching and

bending which are important for experimental systems [52, 53].

In Ch. 4, we finally address the role that longitudinal frustration plays in the elas-

tic response of weakly curved twisted-toroidal filaments. We begin by calculating the

linearized force-balance equations for weakly curved twisted-toroidal filament bundles

by introducing perturbations to the helical bundle fixed point. After showing that

a simple Fourier analysis allows the force balance equations to be decomposed into

orthogonal modes in the Eulerian polar coordinate, φ̃ = φ + Ωs, we show that the

resulting system of inhomogeneous differential equations is singular on both bound-

aries. By analyzing the behavior of a power series ansatz at the boundaries, we also

show that the resultant singular boundary value problem (BVP) cannot be described

by a simple power series ansatz, and discuss several possibilities for working around

the singular behavior.

We conclude in Ch. 5 by summarizing the progress made in this dissertation to

the study of geometrically frustrated elasticity and the physics of filament bundles,

and then outline several possible directions for future work.
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CHAPTER 2

CONSTANT SPACING IN FILAMENT BUNDLES

Besides: there’s nothing so rejuvenating
as a new proof, eloquently laid out in
clear language. It’s better than tea.

The Lady’s Guide to Celestial Mechanics
Olivia Waite

2.1 Introduction

Constant spacing between subunits governs a wide range of self-organized and

manufactured pattern-forming assemblies [54]. At the smallest size scales, such as-

semblies arise generically as the ground states of a large family of interaction poten-

tials. Whether or not inter-element spacing is constant is fundamental to the behavior

of materials, from the underlying processes of their formation, to their defects and

distortions, and, ultimately, to their macroscopic responses1 (e.g. mechanical, opti-

cal).

The geometry of constant spacing and its implications for physical models of

matter have been extensively studied for point-like (e.g. close-packings of spheres [54,

55]) and surface-like (e.g. smectic liquid crystals [56]) subunits in three dimensions.

In comparison, the constant spacing of curve-like, quasi one-dimensional subunits,

remains poorly understood.

Perhaps the best studied regime of filament packings, motivated in part by physical

models of protein and the packing of nucleic acids, arise from the close packing of a

1This chapter adapted from material presented in [1]
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small number (typically, N = 1 or 2) of plied or knotted flexible tubes [57–62]. In

contrast, numerous physical scenarios – from clumps of wet hair [20], carbon nanotube

yarns [21, 22] and biopolymer bundles [23] to macroscopic multi-filament wires and

cables [25, 26] – motivate the consideration of structures composed of an arbitrarily

large number of filaments N � 1. In 2D, the constraints on the constant spacing of

N � 1 curves have been studied in the context of ordered stripe assemblies on variable

shape surfaces [63, 64]. Comparatively, packing N � 1 curves in a finite of volume of

Euclidean three-space, E3, which is most relevant to the structure of molecular fibers

or macroscopic cables, introduces additional complexity due to two interrelated, but

inequivalent notions of constant spacing. In this chapter, we call equidistant families

of curves for which the shortest distance between curves is constant along their length.

We then call isometric those equidistant families that permit uniform spacing between

neighbors in their cross-section (see Figs. 2.1a–c). At a pairwise level, equidistance is

equivalent to constant surface contact between uniform diameter flexible tubes, and

as such, is a natural way to describe optimal packings of cohesive filaments.

In this chapter, we present several results concerning the existence of families of

equidistant curves in E3. We begin with a general introduction to ordered filament

packings, outlining the differences between regular arrangements of filaments in two

and three dimensions. We show that, for any sufficiently smooth curve in E3, there

exist families of non-parallel equidistant curves which envelop a ruled surface, a nat-

ural generalization of the planar, parallel result. We then show that, for two such

equidistant curves, it is always possible to place a third curve, which is equidistant

to—but does not lie on the ruled surface spanned by—the first two curves. Then, in

order to understand the generic constraints of equidistance for N � 1 non-collinear

curves, we consider a continuum, vector field description of equidistant filament tex-

tures, which unlike the ruled surface families “occupy” a finite 3D volume. Solving

explicitly for all unit-vector fields with sufficiently differentiable (C3) equidistant in-
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tegral curves, we show that equidistance imposes constraints on the first derivatives

of the curves’ tangents characterized by the vanishing of a two-component symmetric

matrix, H, of directional derivatives perpendicular to the local tangent. Remarkably,

and in stark contrast to the unconstrained equidistant triplets, there exist only two

families of equidistant integral curves: the developable domains, which can be bent,

but not twisted [39, 65], (Fig. 2.1d); and helical domains with constant pitch [43],

which can be uniformly twisted, but not bent (Fig. 2.1e). We summarize the distinct

features of these two families, outlining their compatibility with isometric packing and

the constraints each family imposes on the relative shapes of curves in the packing.

In the remainder of the chapter, we explore the consequences and limitations of

this central result by numerically probing a simple family of “almost equidistant” fil-

ament bundles with both bend and twist: twisted toroidal bundles (Fig. 2.1f). Such

structures, are experimentally realized in systems of biopolymer condensates [66–

68], and have recently gained interest as characterizing of a new class of topological

soliton “hopfion” textures in liquid crystals [69–71] and magnets [72–74]. we show

that twisted toroids are a natural test bed for the structure of non-equidistant bun-

dles, as the textures can continuously approach equidistance in the two asymptotic

limits of either infinite major radius and finite twist (helical domain) or infinite heli-

cal pitch and finite curvature (developable domain). Because we expect the ground

states of even complex, frustrated filament assemblies to minimize their deviations

from uniform spacing, we approach this problem by comparing the growth of non-

equidistance with twist and curvature using three ansatzes: stereographic projections

of the equidistant Seifert fibrations of S3 into E3 [9, 75]; splay-free tori, for which

tr(H) = 0 [76]; and a third class, characterized by det(H) = 0. By constructing

a numerical measure of non-equidistance, we compare asymptotic increases in non-

equidistance with the lateral thickness (minor radius) of the twisted toroidal bundles,
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(e)
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Figure 2.1: Examples of curve arrays that illustrate the distinction between equidis-
tant and isometric configurations. The schematics in 2.1a–2.1c show three local inter-
curve distances: ∆12(s1) and ∆12(s′1), which denote the distance of closest approach
between neighbor curves at arc positions s1 and s′1, respectively; and ∆23(s2), the
distance of closest approach between an alternate pair. In 2.1a, an equidistant and
isometric array (where ∆12(s1) = ∆12(s′1) = ∆23(s2)); in 2.1b, an equidistant but
non-isometric array, (∆12(s1) = ∆12(s′1) 6= ∆23(s2)); and in 2.1c, a non-equidistant
array (where, in general, ∆12(s1) 6= ∆12(s′1) 6= ∆23(s2)). While in two dimensions, ev-
ery equidistant array is compatible with an isometric packing, there are equidistant,
volume-filling curve textures of E3 which are incompatible with isometric packing
[43]. As shown in Section 2.3, there are only two families of equidistant curve fields
in E3. Developable domains, as in 2.1d, are equidistant, and allow isometric filament
packings [38, 39], while helical domains, as in 2.1e, are equidistant, but do not allow
isometric packings due to their effective positive Gaussian curvature [43]. Filament
textures which are both bent and twisted, such as the toroidal bundle in 2.1f, cannot
be equidistant.

showing by construction that longitudinal variations between curves in the optimal

structures will vanish at least as fast as thickness cubed in the limit of narrow bundles.
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These results extend the understanding of geometric frustration in multi-filament

packings well beyond previous studies, which have focused either on the frustration

of filament and column shape in isometric packings [38, 39] or the frustration of the

lateral spacing between filaments in non-isometric (twisted) packings [5, 43, 46, 77].

Specifically, this analysis highlights the nature of longitudinal frustration of constant

spacing as distinct from, and complementary to, the transverse frustration of lateral

spacing between neighbors in a large N packing. As experiments on isometric filament

packings subject to twist have shown [52, 53], the response of bundles to constraints

of non-equidistance imposed by its global geometry will depend on the specifics of

the filament packings. Nevertheless, because the constraints for equidistance in these

large N packings are rather rigid, we anticipate several scenarios where the failure of

equidistance triggers new structural and mechanical responses in physical models of

bundles, including hierarchical packing of wires and cables.

We conclude with a discussion of the bifurcation of equidistant bundles as addi-

tional curves are added, conjecturing that there exists some finite Nc > 3 such that

any equidistant bundle with N ≥ Nc non-collinear curves falls into one of the N � 1

families: either the helical or developable domains.

2.2 Equidistance in multi-filament arrays

In models of multi-filament packings, interactions between neighboring elements

are often approximated by isotropic interactions between one-dimensional central

curves [78–80]. In this context, local close-packing of two constant-diameter neighbor-

ing filaments requires that the distance of closest approach, ∆, between their central

curves is constant along the entire length of the curves. In multi-filament bundles,

uniform close-packing also requires that ∆ is the same for any two nearest neighbors.

For simplicity, we call packings with longitudinally constant ∆, as in Figs. 2.1a and
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2.1b, equidistant, and those with uniform nearest neighbor distances, as in Fig. 2.1a,

isometric.

Although equidistance is a necessary condition for isometric packing, since there

cannot be a single well-defined distance between neighboring filaments unless this

distance is constant, it is useful to consider the implications of equidistance indepen-

dent of isometry. Equidistant packings are particularly valuable as they reduce the

problem of inter-element distances in a three-dimensional bundle to the lower dimen-

sional problem of packing elements on a two-dimensional surface. This perspective

has enabled in-depth explorations of the (non-isometric) ground-state structure of

close-packed, twisted bundles [11, 43]. Beyond this, cohesive interactions naturally

impose a cost for variations in the local spacing between attractive filaments, and it

is therefore natural to anticipate that equidistant geometries (if they are compatible

with topological constraints or mechanical loading) are ground-state configurations of

many models, particularly when inter-filament cohesion dominates over the mechan-

ical costs of intra-filament bend and twist.

At a pairwise level, the conditions for equidistance are found by demanding that

the shortest distance between two curves, r1 and r2, is constant along their arc lengths,

s1 and s2, respectively. This is shown by considering the closest separation from r1

at s1 to r2, which can be defined as ∆12(s1) ≡ mins2
[
|r1(s1) − r2(s2)|

]
. For a given

s1, this requires that the closest arc position, s2 = s2(s1) on r2, satisfies

(
∂s2
∣∣r1(s1)− r2(s2)

∣∣2)
s2=s2(s1)

= −2 T2

[
s2(s1)

]
·∆12(s1) = 0, (2.1)

where T2 = r′2
[
s2(s1)

]
is the tangent to r2 at the distance of closest approach, and

∆12(s1) = r1(s1) − r2

[
s2(s1)

]
is the closest separation vector to r2 from r1(s1) 2.

2In general, there may be multiple extrema of
∣∣r1(s1) − r2(s2)

∣∣2, corresponding to multiple so-
lutions for s2(s1) to Eq. (2.1), for a given pair; in extreme cases, such as the tight Hopf link [81],
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The solution to this condition induces a reparameterization s2(s1) of r2 in terms of

s1, such that we can rewrite this second curve as r2(s1) ≡ r2

[
s2(s1)

]
. Equidistance

between r1 and r2 then requires that ∆12(s1) is constant in s1, so

∂s1
∣∣∆12(s1)

∣∣2 = 2
[
T1(s1)− ∂s2(s1)

∂s1

T2(s1)
]
·∆12(s1) = 0. (2.2)

While Eq. (2.2) is generically quite difficult to solve explicitly, when s2(s1) is invert-

ible (∂s2/∂s1 6= 0), it has a straightforward geometric interpretation. In particular,

∆12(s1) has constant magnitude, and remains perpendicular to the tangents of both

r1 and r2 at the points of closest approach, s1 and s2(s1), respectively. In the language

of, e.g., Ref. [81], equidistant curves pairs are doubly-critical at all points.

2.2.1 Equidistance in the Plane

For plane curves, as shown in Figs. 2.1a–c, a pair of curves r1 and r2 can be written

in terms of the local distance between the two curves, ∆12, the arc length s1 of r1,

r1, and its normal, N1, as

r2(s1) = r1(s1) + ∆12(s1)N1(s1). (2.3)

If the two filaments are equidistant (i.e. ∂s1∆12 = 0), then the curves must be

parallel (i.e. T1 = T2) at the points of closest approach. It is then straightforward to

embed a field of curves rn that are all parallel to r1, using a similar parameterization

rn(s1) = r1(s1) + ∆nN1(s1), where ∆n is the distance between the nth curve and

r1. Note that ∆n can be extended only up to the global radius of curvature of r1, at

which point rn becomes singular and its distance map from r1 becomes noninvertible

[82]. If ∆n+1−∆n is constant for all n, then the equidistant curves are also isometric.

every point on the curve r1 is a minima. Our analysis assumes the minimal distance for solutions
s2(s1) for a given s1.
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Hence, any planar curve r1(s1) can be extended to an equidistant family on the

plane (at least in a neighborhood of r1(s1) smaller than its global radius of curvature),

and every equidistant family is compatible with isometric packing. As there are no

constraints imposed by constant spacing on the shape of r1(s1) (beyond smoothness),

we say that packings of planar curves are unfrustrated.

2.2.2 Equidistant pairs and ruled surfaces in E3

In contrast, the geometry of equidistant pairs of curves in E3 is much more flexible

than that of planar curves. For a curve r1 in three dimensions, there are two linearly

independent directions locally perpendicular to T1. Notably, this means that there are

curves r1 and r2 that are equidistant but not parallel, so that T1 6= T2 at the points

of closest approach (i.e. points separated by ∆12(s1) = −∆21(s2)). Furthermore, as

we show in Appendix 2.A, for any sufficiently differentiable curve r1 and distance ∆12

less than the global radius of curvature, there exist multiple curves r2 such that r1 and

r2 are equidistant but not parallel. Heuristically, one can understand this flexibility

in terms of the “tubular” construction illustrated in Fig. 2.2a, where a circular tube

of fixed radius ∆12 encloses r1. Any curve, r2, on this tubular surface for which

T1 ·T2 = cos θ12 has a constant sign is equidistant to r1.

Given any two equidistant curves r1 and r2, there is an infinite family of equidistant

curves that lie along a ruled surface spanned by the vectors, ∆12(s) = r2(s)− r1(s),

which we call the separating surface 3. To see this, let ρ̂12(s) ≡ (r2(s) − r1(s))/∆12.

Then, we define a family of curves, parameterized by the distance ρ from r1 towards

r2,

rρ(s) = r1(s) + ρ ρ̂12(s). (2.4)

3We again adopt the reparameterization of r2 in terms of the arc length of r1, which we call s
for simplicity of notation.
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(a)
(b) (c)

Figure 2.2: A simple heuristic argument suggests that for any sufficiently smooth
space curve r1 in E3 there are at least two additional curves, r2 and r3 such that
r1, r2, and r3 are all equidistant. To see this, imagine extending a tube of constant
radius ρ12 around r1, as in 2.2a. A curve r2 that lives on this tube is equidistant to
r1. This construction can be extended to a one-dimensional family of equidistant and
isometric curves, as in 2.2b, where the curves mark lines of constant ρ on the ruled
separating surface generated by r1 and r2. These filaments are equidistant, as shown
in Eq. (2.6), and isometric, as the distance of closest approach between neighboring
curves is equivalent for any pair of neighbors. Extending a tube of radius ρ23 (not
necessarily equal to ρ12) around r2, as in 2.2c, we see that the curve r3, which traces
out the intersection of the tubes, is equidistant to both r1 and r2, but in contrast to
the separating surface in 2.2b, the three curves are not collinear.
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It is straightforward to verify the equidistance of two curves at ρ1 and ρ2 by verifying

that their tangents are perpendicular to their separation vector. Specifically,

∂srρ1(s) ·
[
rρ1(s)− rρ2(s

′)
]

=
(
T1(s) +

ρ1

∆12

[∂s2

∂s
T2(s)−T1(s)

])
·
[
rρ1(s)− rρ2(s

′)
]
,

(2.5)

which is zero when s′ = s because curves r1 and r2 are equidistant with distance of

closest approach at s. The equivalent necessary condition for rρ2 also holds. This

family of equidistant curves forms a ruled surface, the separating surface of r1 and

r2,

x12(s, ρ) = r1(s) + ρ ρ̂12(s), (2.6)

ruled by the vectors ρ̂12(s) (as shown by Fig. 2.2b).

The regular spacing of curves on one such surface, the helicoid, has been suggested

by Archad, et. al. [83] as an explanation for the structure of the B7∗ phase of bent core

liquid crystals [84]. These ruled separating surfaces are also a natural generalization

of the equidistant plane curves discussed in Subsection 2.2.1 to three dimensions,

showing that the torsion of one or both curves allows for equidistant curves to be

non-parallel. Any sufficiently smooth curve in E3 permits such ruled surface families,

and, as in the planar case, a subset of the equidistant curves on a separating surface

can always be chosen such that the curves are isometric.

2.2.3 Non-collinear equidistant triplets

The families of equidistant and isometric curve packings described above are

strictly two-dimensional, as they lie on the ruled, separating surface that is uniquely

defined for any equidistant pair in E3. Before continuing on to the problem of three-

dimensional fields of equidistant curves, we first give a simple construction to show

that it is generically possible, for a given equidistant pair, r1 and r2, to find at least

one additional curve, r3, which is mutually equidistant to the first two, but that does

not lie on their separating surface.
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As shown in Fig. 2.2c, we can illustrate the constraints of equidistance by sur-

rounding the curves with tubes of fixed radii perpendicular to their local tangents.

This guarantees that the separation vector between the curves has constant length

(say, ∆12), is along the radial direction, and is, by construction, perpendicular to

the central curve (say, r1) and the curve defined on its surface (say, r2). Likewise,

it is straightforward to construct tubes around the two equidistant curves r1 and r2.

The radii for these tubes can be chosen rather arbitrarily (up to the limits placed by

the global radius of curvature) to be ∆13 and ∆23. These tubes intersect along two

curves that do not lie on the ruled surface spanning r1 and r2, but are, by construc-

tion, equidistant to both of those curves. Either one these curves can be taken as r3,

forming an equidistant triplet.

We note that while the geometry of three equidistant, non-collinear curves con-

structed sequentially, as described above, is relatively flexible, it is far from clear

how the addition of more curves alters the constraints on their shapes and relative

arrangement. For example, adding a fourth equidistant curve to the triplet in Fig.

2.2c, requires the intersection of three tubular surfaces surrounding those curves along

a single 1D curve, a condition that can only be satisfied for a subset of equidistant

triplets. One might reasonably expect that, for N sufficiently large, this becomes a

very restrictive constraint, a point we return to in the discussion.

2.3 Fields of Equidistant Curves

Thus motivated to find families of multi-curve packings corresponding to bundles

of N � 1 non-collinear filaments in E3, we adopt a continuum description based

on the integral curves of unit vector fields. In many physical examples of bundles,

like DNA condensates or carbon nanotube ropes, a combination of dense-packing and

intra-filament stiffness keeps filaments in quasi-parallel orientation. In such a dense,

multi-filament bundle (in the absence of filament ends in the array), the geometry of a
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Figure 2.3: The distance of closest approach ∆ from a curve r1 to a curve r2 is
perpendicular to the tangent t̂ of r2. Given a tangent field t, the distance of closest
approach between r1 at x and r2 at x+dx can be found by projecting out the tangent
field t, giving an infinitesimal distance of closest approach d∆ = dx− t(t · dx).

finite set of backbone curves indexed by m, {rm(s)}, can be analyzed by a unit vector

field t(x) that smoothly interpolates between their tangents, so that t
[
rm(s)

]
= t̂m(s).

In this section, we derive the conditions under which the integral curves of a

given unit tangent field t(x) are all mutually equidistant in a region of E3. These

families of fields of equidistant curves are particularly valuable for physical models of

multi-filament bundles, in that they permit the embedding of an arbitrary number of

equidistant curves in a finite volume of three-dimensional space, in contrast to the 2D

submanifolds of E3 spanned by ruled separating surfaces. In the following section,

we show that conditions imposed by equidistance lead to strong constraints on the

relative shapes and orientations of the integral curves in the set.

2.3.1 Local metric and convective flow tensor

Given a unit tangent field t : E3 7→ S2, we can find the distance of closest approach

between two integral curves that pass through infinitesimally close points x and x+dx

by projecting out the component of dx along t, as shown in Figure 2.3. The resulting

22



local distance of closest approach is given by

d∆2 = (δij − titj)dxidxj. (2.7)

We note that this projection can be written as a 2D metric

gij(x) = δij − ti(x)tj(x) (2.8)

by considering dx in a planar section of E3 whose normal N satisfies N · t(x) > 0 in

some region (e.g. a plane which is perpendicular to t(x) at some x) [43, 51].

In this local formulation, the distance between two curves is constant along their

length when ∂sd∆2 = 0, where ∂s = t · ∇ is the directional derivative along t.

Differentiating, and using the convective flow of the separation between integral curves

∂sdx = dx · ∇t(x), we find that

∂sd∆2 = [∂itj + ∂jti − tk∂k(titj + tjti)]dx
idxj = hijdx

idxj. (2.9)

Because t is a unit vector, and hence ti∂kti = 0, hij is zero for all components along

t. The remaining terms belong to a 2D block whose components can be associated

with locally orthonormal directions ê1(x) and ê2(x) that span the plane perpendicular

to t(x) (i.e., ê1(x) × ê2(x) = t(x)). Projecting hij onto this two-dimensional basis

defines

Hαβ ≡ (êα)ihij(êβ)j (2.10)

where α, β = 1, 2. H = (Hαβ) is a symmetric 2-tensor, which we call the convective

flow tensor, that measures the longitudinal deviations from equidistance. Hence,
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equidistance requires Hαβ = 0. We can gain some geometrical intuition for this

condition by noting that

Hαβ = 2Γαβ + (∇ · t)δαβ, (2.11)

where Γ = (Γαβ) is the “biaxial splay” tensor, Γij = 1
2
(∂itj + ∂jti − (tk∂kti)tj −

ti(t
k∂ktj) − ∂kt

k(δij − titj), in its nonzero 2D block, following Refs. [35, 36]. The

modes of zero H, then, have both locally isotropic gradients of t (vanishing biaxial

splay), and constant cross-sectional area per filament (vanishing splay).

These conditions can be recast in terms of the directional derivatives of the tangent

field perpendicular to t(x),

(∇t)
(2D)
αβ ≡ (êα)i∂itj(êα)j (2.12)

from which we have Hαβ = (∇t)
(2D)
αβ + (∇t)

(2D)
βα . Therefore, a field t is equidistant

only when these transverse directional derivatives are skew symmetric, with

(∇t)
(2D)
αβ = f(x)εαβ for Hαβ = 0, (2.13)

where f is any function and εαβ is the totally antisymmetric Levi-Civita symbol.

This skew-symmetric structure is closely related to the double-twist texture of the blue

phases of chiral liquid crystals [8]. In the context of the blue phases, it is well appreci-

ated that the geometry of E3 is incompatible with uniformly double-twisted textures

[7], leading to the formation of defect-ordered phases of finite-diameter double-twist

tubes. In the context of the present problem, however, the condition of Eq. (2.13) is

slightly weaker, and the rate of double-twist, as parameterized by the function f(x),

may vary spatially without disrupting the equidistance of the field lines.

Before moving on to solve for the equidistant curve fields, we note that the equidis-

tance of integral curve fields promotes the metric description of Eq. (2.8) from one
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that measures local distances between infinitesimally spaced curves, to one in which

the metric gij(x) relates the true Euclidean distances of closest approach of finitely-

separated curves to their coordinate separations in some reference plane (e.g. in a

given 2D plane cutting through t(x)). When Hαβ(x) = 0 everywhere within some

volume, distances of closest approach between finitely separated curves can be found

as geodesic arc lengths computed according to the induced metric. In the language of

differential geometry, equidistance is the necessary and sufficient condition for a Rie-

mannian foliation, where the metric properties of the leaves (curves) inherited from

the embedding space (the distance of closest approach in E3) are encoded by the

Riemannian metric of a lower dimensional base manifold (in this case, a 2D surface)

[85]. In the following section, we classify the isometry of equidistant curve fields in

terms of the Gaussian curvature of these foliations.

2.3.2 Equidistant solutions

The skew symmetry of (∇t)(2D) in Eq. (2.13) gives three independent differential

equations for t, which can be solved to find every equidistant tangent field. We begin

by choosing coordinates {s, ρ, φ} adapted to some integral curve r0 of the tangent

field, where s is an arc length parameterization of r0, ρ is a polar distance in the

plane perpendicular to t̂0 at some s, and φ the polar angle in the same plane (see

Appendix 2.B for details), such that

x(s, ρ, φ) = r0(s) + ρ ρ̂(s, φ), (2.14)

as shown schematically in Fig 2.4. In these coordinates, any field t whose integral

curves are equidistant to r0 will be perpendicular to the separation vector ρ ρ̂(s, φ)

and hence can be written

t(s, ρ, φ) = cos
[
θ(s, ρ, φ)

]
t̂0(s) + sin

[
θ(s, ρ, φ)

]
φ̂(s, φ), (2.15)
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‘

Figure 2.4: A schematic diagram of the coordinates described in Eq. (2.14), showing
the radial distance ρ from a central curve, r0; φ, the polar angle in the plane normal
to r0 measured with respect to the principle normal, N̂ ; and s, the position along r0

in terms of its arc length.

where t̂0 ≡ ∂sr0, φ̂ ≡ ∂φρ̂ and θ is a scalar field which characterizes the tilt of integral

curves with respect to t̂0.

We can analyze the components of (∇t)
(2D)
αβ in the two orthonormal directions, ρ̂

and b̂ = t× ρ̂, in the plane normal to t at x. All t(x) of this form satisfy (∇t)
(2D)
ρρ = 0

explicitly. Using the coordinate transformations given in Appendix 2.B, the other

components of ∇t can be found exactly:

(∇t)(2D) =

 0 ∂ρθ

− sin θ cos θ
ρ(1−ρκ0 cosφ)

1
ρ
∂φθ
(

sin θτ0ρ
1−ρκ0 cosφ

+ cos θ
)

+ sin θ(κ0 sinφ−∂sθ)
1−ρκ0 cosφ

 . (2.16)

The skew symmetry of (∇t)(2D) required for equidistance gives us the differential

equations:

(Hρb = 0) ∂ρθ =
sin θ cos θ

ρ(1− ρκ0 cosφ)
(2.17)

(Hbb = 0) sin θ∂sθ = [(1
ρ
− κ0 cosφ) cos θ + τ0 sin θ]∂φθ + κ0 sinφ sin θ. (2.18)
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The first of these differential equations, Eq. (2.17), can be integrated directly, giving

us

tan θ = Ω(s, φ)
ρ

1− ρκ0 cosφ
, (2.19)

where Ω(s, φ) is a constant of ρ. Substituting into Eq. (2.18) and rearranging, we

find that:

Hbb = 0 = −
[
(1−ρκ0 cosφ)2+(ρΩ)2

]−3/2
{[
ρ2τ0Ω(1−ρκ0 cosφ)+(1−ρκ0 cosφ)3

]
∂φΩ

− ρ3Ω2∂sκ0 cosφ+
[
ρκ0Ω cosφ− Ω

]
ρ2∂sΩ + ρ3κ0Ω2(τ0 − Ω) sinφ

}
, (2.20)

where ∂st0 = κ0n0 and ∂s(t0 × n0) = −τ0n0 give, respectively, the curvature (κ0)

and torsion (τ0) of the reference curve r0. The numerator of Eq. (2.20) is a cubic

polynomial of ρ, so, grouping by powers of ρ and recognizing that solutions to Hbb = 0

require the coefficients of these linearly independent terms to vanish, we find only two

possible solutions for equidistant fields. In the first case we have

Ω = 0, (2.21)

which gives us solutions that are locally parallel in the plane normal to t0 (i.e., θ = 0).

The second family of solutions require

∂φΩ = 0

∂sΩ = 0

κ′0 cosφ = κ0(Ω− τ0) sinφ, (2.22)

so that every twisted equidistant field has constant pitch Ω, and includes an integral

curve with constant curvature and torsion. Because any curve with constant curvature

and torsion is a helix, the torsion is fixed by the pitch Ω, and the curvature is fixed
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by the torsion and its distance from some straight line, this second family of solutions

is the one parameter family of bundles of constant pitch circular helices.

2.4 The Equidistant Packings

In the previous section, we find that the conditions for equidistance are only

satisfied by two restrictive families of curve fields, corresponding to the respective

conditions in Eqs. (2.21) and (2.22). In this section, we describe in turn the geometric

properties of these two families and the physical scenarios in which they have been

invoked. We focus on the distinguishing features of inter-filament texture, intra-

filament shape, inter-filament spacing (or metric geometry), and constraints on the

lateral thickness of bundles of smoothly embeddable curves.

Motivated by applications of multi-filament packing in liquid crystals and soft

matter [76, 86–88], it is natural to analyze the inter-filament texture in terms of

the Frank elastic gradients of the tangent field, in particular, first derivatives of t

that constitute generalized “orientational strains” in the Frank-Oseen free energy

[89]. Because (∇ · t) = 1
2
tr(H), all equidistant curve fields are splay-free. The twist,

t · (∇× t), provides a measure the neighbor-average inter-filament skew angle in the

packing, that is, the local rate of mutual rotation of neighbors [45]. The final first-

order Frank term is associated with bending of the tangent field, that is, it is a measure

of intra-filament curvature κ, which is computed from the convective derivative of t

itself, namely (t · ∇)t = κn where again, n(x) is the local normal to the integral

curve at x. In addition to the curvature, intra-filament shape is characterized by the

torsion τ which is given by the rotation of the binormal b = t×n around the tangent,

(t · ∇)b = −τn .

In addition to these measures of intra- and inter-filament gradients we analyze the

metric properties of the equidistant packings in terms of the Gaussian curvature K of

the 2D metric gij(x) induced on a planar section through the bundle, as in Eq. (2.8),
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Equidistant family Twist Curvature Torsion KG Thickness

Developable domains 0 κ0
1−κ0ρ cosφ

τ0
1−κ0ρ cosφ

0 mins[1/κ0]

Helical domains 2Ω
1+(Ωρ)2

Ω2ρ
1+(Ωρ)2

Ω
1+(Ωρ)2

3Ω2

[1+(Ωρ)2]2
∞

Table 2.1: Summary of geometric properties of the distinct families of equidistant
curves. Inter-filament twist is defined by t · (∇× t). Curvature, κ, of filaments at x is
derived from (t ·∇)t = κn, while torsion, τ , is derived from (t ·∇)b = −τn, where n
and b = t×n are the normal and binormal, respectively. The metric curvature, KG,
is the Riemannian curvature of the inter-filament metric gij(x), and the max thickness
describes the largest lateral diameter of the domain that is embeddable without self
intersection. For developable domains, generalized cylindrical coordinates are given
with respect to a reference curved of respective curvature and torsion, κ0 and τ0, and
for helical domains, coordinates are defined with respect to a straight central curve.

which may be directly derived via standard formulas [17]. Finally, we define the

maximum thickness as the diameter of a bundle of filaments that can be smoothly

extended normal to a given central curve in the packing. That is, beyond this maxi-

mum thickness, continuing the equidistant field introduces shape singularities in the

integral curves, features which we exclude from our analysis due to the prohibitive

costs of kinks in physical realization of multi-filament packings. Table 2.1 summarizes

the geometric comparisons between the two families of equidistant curve fields. we

describe each family in turn.

2.4.1 (Ω = 0): Developable Domains

The first equidistant family, described by Eq. (2.21), corresponds to what have

been called developable domains (see example in Fig. 2.1d). These textures were

originally described by Bouligand [38] and Kléman [39] in the context of columnar

liquid crystals. Developable domains have neither twist (i.e. t · (∇ × t) = 0) nor

splay (∇·t = 0), and thus the filament tangents are all parallel at the point of closest

approach, their tangents are normal to a common set of planes (i.e. θ = 0), and the

closest separations between curves lie in these 2D planes. Hence, it is straightforward
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(a) (b)

(c) (d)

Figure 2.5: The quotient surfaces to the equidistant filament packings, showing the
flat metric of the developable domains in 2.5a and the curved metric of the helical do-
mains in 2.5b. These surfaces represent the true distance of closest approach between
filaments, which are represented by colored disks of constant geodesic radius. The col-
ors in the disk packings correspond to filaments in planar sections of the developable
domains, in 2.5c, and helical domains, in 2.5d.
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to see that their metric geometry is Euclidean, as in Fig 2.5a. Indeed, the developable

domains are the only isometric family of N � 1 curves dense in E3.

Because the curves are normal to a common set of planes and they do not twist

around one another, they also share the same Frenet frames at points of closest

contact, giving closely related shapes. Constructing a developable domain around a

given curve with curvature κ0 and torsion τ0, the shape of all other curves in the

domain are fully determined [65], such that

κ(x) =
κ0

1− κ0ρ cosφ
; τ(x) =

τ0

1− κ0ρ cosφ
, (2.23)

where ρ is the closest distance to the central curve and φ is the angle between the

separation to the reference curve and its normal (see Fig. 2.4). Hence, for non-zero

bending, these normal planes intersect along the cuspidal edge of the developable

surface generated by the locus of all the centers of curvature of the filaments in the

bundle [38]. Bouligand and Kléman argued that such curvature singularities mani-

fest as characteristic topological defects in columnar phases. Here, we argue further

that this same geometry places constraints on the maximum size of isometric filament

packings with finite bending. While the developable domains permit isometric fila-

ment packings and can be embedded around reference curves of any (smooth) shape,

embeddings of finite curvature filaments are spatially limited to a thickness around

the central curve less than its global curvature radius [82] as they become singular

along this developable surface.

2.4.2 (Ω 6= 0): Constant-Pitch, Helical Domains

We first discuss the second equidistant family, described by Eq. (2.22), in terms

of a straight central curve (i.e. κ0 = 0) that threads through its center along an axis

ρ = 0 (see example in Fig. 2.1e). Relative to this axis, these curves are easily seen to

be helices with a tilt angle, θ = arctan(Ωρ), with respect to the center which increases
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with radius ρ, but has constant pitch 2π/Ω (the corresponding curvature and torsion

are given in Table 2.1). Indeed, the geometry of these equidistant helical domains

closely corresponds to the “double-twist tube” that is the fundamental building block

of the liquid crystal blue phases [8]. Unlike the developable domains, which do not

permit twist, this second family is twisted, with t ·(∇×t) = 2Ω/[1+(Ωρ)2]. As inter-

filament twist is generically favored in chiral filamentous materials such as biopolymer

assemblies [45, 90, 91], helical domains are important structural models of the com-

promise between the preference for chiral inter-filament packing and the cohesive

preference for equidistance. Recent experiments show further that the constant-pitch

helical texture emerges in mechanically twisted filament packings [52, 53].

While helical domains are the only twisted family of equidistant curves in E3,

twist is incompatible with isometric packing in the cross section [43, 51]. This can

be seen from the metric in polar coordinates (as defined in Fig. 2.4) centered on the

straight curve:

g =

1 0

0 ρ2 cos2 θ.

 (2.24)

Because cos θ = 1/
√

1 + (Ωρ)2 decreases with ρ, hoops of constant distance from

the center are effectively shortened relative to the Euclidean plane, as in Fig. 2.5b,

consistent with positive Gaussian curvature [85],

K =
3Ω2

(1 + Ω2ρ2)2
. (2.25)

This is a special case of O’Neill’s formula [50], which gives the curvature of any Rie-

mannian fibration in terms of the curvature of the fibered space and the twist of the

fibration; specifically, the curvature above can be written K = 3
4
(t · (∇ × t)2. The

effect of this positive Gaussian curvature is to frustrate constant lateral spacing of

filaments (e.g. equi-triangular packing). Physical models of twisted cohesive bun-

dles have shown that this metric frustration promotes accumulation of inter-filament
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stresses [92] or else stabilize topological defects [43] in the cross sectional order of

twisted cohesive bundles. Notably, the Gaussian curvature of helical domains is con-

centrated in the core, as the metric flattens in the limit Ωρ → ∞. Hence, the

disruption of uniform lateral spacing at the core of helical domains notwithstanding,

this equidistant family can be extended smoothly to fill all of E3, in contrast to the

spatially limited, developable domains.

While the above description assumes a straight central curve, the choice of the

central curve is arbitrary, provided that it satisfies Eqs. (2.22), such that it is a helix

whose torsion is equal to Ω. It is straightforward to show that choosing one such

helix simply gives a reparameterization of the same family of helical domains. For

example, in terms of generalized cylindrical coordinates (ρ′, φ′) around a reference

curve with curvature κ0 we have the Gaussian curvature distribution,

K =
3Ω2[

(1− ρ′κ0 cosφ′)2 + (Ωρ′)2
]2 . (2.26)

It can be shown that this metric derives from considering a planar slice through the

helical bundle that is normal to a curve at finite radius, κ/(κ2 + Ω2).

Thus, up to the orientation and position of a central axis of rotation, every equidis-

tant helical domain is parameterized by a single real number, Ω, which can be viewed

as a simple rescaling of the same structure.

2.5 Almost Equidistant Bundles

In the previous section, we showed that equidistant curve packings fall into two

strict families. These two families are either strictly untwisted but arbitrarily bent,

or uniformly twisted around a straight axis. In this section, we illustrate the conse-

quences of falling outside these strict geometrical constraints for inter-filament spac-

ing in multi-filament bundles (e.g. a bundle that is simultaneously bent and twisted).
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Such generic geometric conditions are encountered in widely varying rope-like struc-

tures, from hierarchical strands of wire-ropes [25], to twisted, curved bundles of con-

densed biopolymers [66–68].

Here, we study arguably the simplest possible non-equidistant geometry, the

twisted toroidal bundles, a family of architectures that conveniently spans both equidis-

tant families (see example, Fig. 2.1f). Notably, several previous models of close-packed

toroidal bundles have been developed to describe the structure and thermodynamics

of biopolymer toroids. A primary focus of many of these model has been the relation-

ship between their geometry and their orientational order [76, 93] without regard to

their metric geometry. Work of Sadoc, Charvolin and others have considered idealized

metric geometries possible in S3, but to date, the limits to the uniformity of filament

spacing in toroids embedded in E3 have not been explored.

Below we consider three ansatzes for non-equidistant, twisted-toroidal bundles.

Two are related to previous models of either “splay-free” bundles or projections of

ideal fibrations of S3 to Euclidean space. In the context of the present study, we can

contrast all three ansatzes in terms of the structure of the convective flow tensor H. As

described in Sec. 2.3.1, H describes the first-derivative of the local separation between

integral curves and equidistance requires all three independent components of Hαβ

to vanish. Forcing a bundle to be simultaneously bent and twisted hence requires at

least one of the components to be non-zero. Below, we compare the variable filament

spacing in three toroidal ansatzes: stereographic projection of the Seifert fibrations

of S3 to E3, for which Hαβ = H(x)δαβ and the biaxial splay, Γ, vanishes; splay-free

toroidal bundles, for which tr(H) = 2∇ · t = 0; and twisted toroidal bundles, for

which det(H) = 2(∇ · t)2 − 2tr(Γ2) = 0.

To compare the inter-filament spacing within these toroidal ansatzes quantita-

tively, we construct bundles from integral curves of each construction. The cross

section of each bundle has 1+6+12 filaments, whose initial centers are chosen from
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three concentric layers of a hexagonal packing of unit spacing. Each filament is then

discretized in to N = 10000 arc positions, from which the distance matrix between

all positions on each neighboring filament pair is calculated. Minimizing over the set

of distances between a point si on curve ri and all the positions sj in rj, gives the

distance of closest approach from ri(si) to rj, ∆ij(si), from which we can compute a

pointwise measure of non-equidistance, δr, and the total non-equidistance, 〈δr2〉, as

defined in Appendix 2.C. The Supplemental Video shows an example of the varia-

tion of δri(si) throughout a bent and twisted packing (generated via the det(H) = 0

ansatz described below).

We analyze filament bundles from tangent fields that are constructed to twist

around a planar, circular central curve of radius κ−1
0 , the major radius of the torus,

with a minor radius R, which is defined by the outer filament in the bundle. As

detailed below, for a general non-equidistant family of tangent fields, the winding rate

of filaments around the minor cycle of the torus is non-uniform. we therefore impose

an additional constraint that all curves in the cross section have the same average

circulation rate around the minor cycle of the torus. In terms of the dependence of

the angular position φ of a given curve (parameterized by the arc position s along

the central curve), this takes the form of constant pitch

P = 2π/Ω ≡
∫ 2π

0

dφ
(∂φ
∂s

)−1

. (2.27)

Using this definition of Ω, we compare the uniformity of spacing in each ansatz as a

function of reduced curvature κ0R and reduced twist ΩR. When computing length

averages, we average over the pitch length, or a half-circumference of the central circle

L = π/κ0 when L/P < 1.

Comparing the scaling of the convective flow tensor, H, with bundle radius to the

numerically calculated non-equidistance, 〈δr2〉1/2, for each of the toroidal ansatzes,

we show that nonequidistance in the Seifert fibrations scale linearly with the radius,
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while the splay-free and determinant-free structures scale as the radius cubed. The

agreement between the analytic scaling arguments and numerical calculations suggests

the convective flow tensor accurately captures the growth of nonequidistance for each

of the three ansatzes.

2.5.1 S3 fibrations projected to Euclidean space

While there are no equidistant filament textures in E3 which are both twisted and

bent, the same is not true of more general curved spaces. In particular, S3, the unit

sphere in E4, permits a family of twisted, equidistant curves called Clifford parallels

[10]. These uniformly double-twisted curves, which generate the Hopf fibration, are

equidistant in S3, but when stereographically projected into E3 induce a twisted,

toroidal structure of interlinking circles. Stereographic projections of the Hopf fibra-

tion to E3 generate twisted toroidal bundles with a particular linking number, or

ratio of bend to twist, |Ω|/κ0 = 1. Projection of a more general class of fibrations,

the Seifert fibrations, which are also equidistant in S3, permit a variable ratio of bend

to twist [51, 75] . Because stereographic projection preserves metric properties at

the pole of the projection, which is chosen to be the major cycle at the center of

the bundle, these projections of Seifert fibrations of S3 have been proposed as physi-

cal models of cyclized, chiral polymer condensates that compromise between uniform

packing and twist, [9, 94, 95].

Here, we construct projections of Seifert fibrations following the toroidal coordi-

nates of Sadoc and Charvolin [75]. With coordinates for the sphere in E4 of radius

κ−1
0 given by
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x1 = κ−1
0 cosϕ sin Θ

x2 = κ−1
0 sinϕ sin Θ

x3 = κ−1
0 cosψ cos Θ (2.28)

x4 = κ−1
0 sinψ cos Θ,

the fibers of a Seifert fibration are defined by ϕ(ψ) = ϕ0 +αψ, where ψ is a parameter

that travels along the fibers and α parameterizes the ratio of turns per minor cycle of

the torus to the turns per major cycle 4. The coordinate Θ parameterizes different tori,

each of which is foliated by curves of distinct values of ϕ0 ∈ [0, 2π]. Stereographically

projecting a fiber to E3 through a pole of S3 (where Θ = 0 corresponds to the major

cycle of radius κ−1
0 in E3) a fiber at Θ and φ0 parameterized by ψ is given in Cartesian

coordinates by

x(ψ) = κ−1
0

cosψ cos Θ

1− cos (ϕ0 + αψ) sin Θ

y(ψ) = κ−1
0

sinψ cos Θ

1− cos (ϕ0 + αψ) sin Θ

z(ψ) = κ−1
0

sin (ϕ0 + αψ) sin Θ

1− cos (ϕ0 + αψ) sin Θ
. (2.29)

This projection is composed of curves defined on nested tori of increasing minor radius,

κ−1
0 tan Θ. However, the tori are not concentrically nested around a fixed major circle,

and instead, are centered around major circles of increasing radius κ−1
0 sec Θ. Because

the arc distance along the central curve is simply (∆ψ)κ−1
0 , it is straightforward to

see that the twist, as defined in Eq. (2.27), is Ω = ακ0.

Due to the non-concentric nature of toroidal stacking in this projection, it is conve-

nient to analyze the tangent field in terms of orthonormal directions t̂0 = κ0∂ψx
∣∣
Θ=0

,

4Strictly, α is a rational number such that the (a, b) Seifert fibration of S3 has α = a
b .
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ϕ̂ = ∂ϕx/|∂ϕx| and Θ̂ = t̂0 × ϕ̂. The tangent vector field of the texture induced by

the Seifert fibers can now be found by differentiating Eq. (2.29), with respect to ψ:

t =
cos Θ t̂0 + α sin Θ ϕ̂√

cos2 Θ + α2 sin2 Θ
. (2.30)

From this, the components of Hαβ along Θ̂ and b̂ = t× Θ̂ can be found explicitly:

HΘΘ = Hbb = −2
√

2Ω
sin Θ sinϕ√

cos2 Θ + α2 sin2 Θ

HΘb = HbΘ = 0.

This diagonal structure of the convective flow of separation follows from the stere-

ographic projection: relative to the equidistant fibrations in S3, the local distances

between curves is locally stretched by the projection to E3 by equal amounts in both

directions normal to t. Qualitatively, the spatial variation of non-equidistance follows

that illustrated for the det(H) = 0 structure in the Supplemental Video, with respec-

tive bunching and of filaments on the inner and outer sides of the torus. While similar

topology and spatial distribution of non-equidistance, we find that the magnitude of

spacing variation differs considerably among the ansatzes.

We note that in the limit of narrow bundles (Θ→ 0), we can estimate the growth

of non-equidistance from H ∼ Ωκ0ρ. When Ω � κ0 we average this over one P (a

minor cycle of the torus) to estimate δr ∼ κ0ρ. Alternatively, for small twist when

Ω � κ0 this should be averaged over the bundle length 2π/κ0, leading to δr ∼ Ωρ.

From these two regimes, we estimate the scaling of non-equidistance with bundle

thickness

lim
R→0
〈δr2〉Seifert ∝ min[Ω2, κ2

0]×R2. (2.31)

We compare this estimate to numerical calculations of 〈δr2〉 in the κ0R and ΩR plane

for projections of Seifert fibrations in Fig. 2.6a.
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2.5.2 Splay-free toroids

The non-equidistance of stereographic projections of fibrations of S3 derives from

the locally isotropic (conformal) dilation of inter-filament spacing. An alternative

ansatz, and one which is typically invoked in models of polymeric liquid crystal tex-

tures, is the assumption of zero splay, which corresponds to constant area per filament

transverse to its normal [96]. Hence, in the plane transverse to each filament, the

polygonal region bounded by the neighboring filaments maintains constant area, and

exhibits only area-preserving (shear) deformations as it flows along its contour.

A splay-free tangent field requires that ∇· t = 1
2
tr(H) vanishes. Since Hρρ = 0 by

construction in the generalized cylindrical coordinates of Sec. 2.3.2, this imposes the

additional condition that Hbb = 0, or Eq. (2.18). For a circular central curve, which

has constant curvature and zero torsion, this equation can be solved by the method

of characteristics, giving:

sin θ =
f(ρ)

1− ρκ0 cosφ
, (2.32)

where f(ρ) is any function of ρ. Previous studies for splay-free liquid crystalline

toroids have assumed the simple linear ansatz, e.g. f(ρ) = Ωρ. Notably, a splay-

free toroidal texture is spatially limited to f(ρ) + ρκ0 < 1, beyond which it becomes

singular. The additional constraint that all curves wind around the minor cycle of

the toroid at the same pitch, Eq. (2.27), constrains the specific radial dependence of

f(ρ) and κ0ρ. The rate of angular circulation of a filament’s position relative to the

inward pointing normal of the major circle is

∂φ

∂s
=

f(ρ)

ρ
√

1− f(ρ)2

(1−ρκ0 cosφ)2

. (2.33)

Inserting this into Eq. (2.27), we have the additional condition that

κ0P =

∫ +π

−π
dφ κ0ρ

√
1

f(ρ)2
− 1

(1− ρκ0 cosφ)2
(2.34)
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is independent of ρ. From this condition, we derive the relationship between f(ρ)

and κ0ρ for general values of κ0P in splay-free bundles with mean winding which is

notably more complex than the linear ansatz assumed in refs. [76, 93]. Notably, in

the slender bundle limit (as Ωρ, κ0ρ→ 0). Eq. (2.34) satisfies

f(ρ) ' Ωρ√
1 + Ω2ρ2

[
1− 18Ω2κ2

0ρ
4 +O(ρ6)

]
, (2.35)

which, as κ0ρ → 0, recovers the equidistant helical domains, for which f(ρ) =

Ωρ/
√

1 + Ω2ρ2.

We can estimate the magnitude of this variable spacing by considering the off-

diagonal, non-vanishing component of H for Eq. (2.32),

Hbρ = Hρb = ∂ρθ −
sin θ cos θ

ρ(1− ρκ0 cosφ)

= tan θ
(∂ρf
f

+
κ0 cosφ

f
sin θ

)
− sin θ cos θ

ρ(1− ρκ0 cosφ)
. (2.36)

In the limit of narrow splay-free bundles, we have Hbρ ≈ Ω3κ0ρ
3 +O(ρ4). Integrating

this over the shorter of lengths P and L = πκ−1
0 , we find that this separation averages

to δr ∼ min[Ω, κ0]Ω2ρ3, from which we estimate,

lim
R→0
〈δr2〉splay−free ∝ min[Ω2, κ2

0]× Ω4R6. (2.37)

The suppression of splay notwithstanding, we find that the growth of spacing variation

(shears) in narrow splay-free bundles grows as ρ3, as opposed to the linear scaling

with thickness of the stereographically projected fibrations of S3 5. Fig. 2.6b shows

the numerical calculation of 〈δr2〉 in the κ0R and ΩR plane for splay-free bundles.

5It can be shown that neglect of the constant circulation constraint of Eq. (2.34) in the linear
ansatz f(ρ) = Ωρ studied in refs. [76, 93] leads to less equidistanct splay-free textures, with δr ∼
min[Ω, κ0]Ωρ2

40



Notably, due to the condition f(R) ≤ κ0R, the continuous class of solutions extend

only up to a critical thickness Rmax < κ0, whose value decreases with ΩR.

2.5.3 det(H) = 0 toroids

Finally, we consider a nearly-equidistant ansatz that satisfies det(H) = 0, as

opposed to vanishing trace. In particular, we adopt the solution to Hρρ = Hρb =

Hbρ = 0 of Eq. (2.19), and further take Ω to be a constant, such that the tangent

field (in the coordinates of Eq. (2.14)) is

tan θ =
Ωρ

1− κ0 cosφ
, (2.38)

which can be extended continuously up to thicknesses equal to the major radius of

the torus. Using the fact that τ0 and κ0 are also constant, we find from Eq. (2.20)

that the non-vanishing component of H is

Hbb = − 2ρ3κ0Ω3 sinφ

[(1− ρκ0 cosφ)2 + (ρΩ)2]3/2
, (2.39)

which notably grows as ∼ ρ3 for small thicknesses. Integrating over the shorter of P

or κ0, we estimate the growth of non-equidistance for this class of toroids to be

lim
R→0
〈δr2〉det(H)=0 ∝ min[Ω2, κ2

0]× Ω4R6. (2.40)

Thus, like the splay-free toroids, the det(H) = 0 ansatz remains more equidistant

than S3 fibrations (i.e. 〈δr2〉1/2 ∼ R3 as opposed to ∼ R). In Fig. 2.6d we compare

the numerical calculations for 〈δr2〉1/2 for the three ansatz with Ω = κ0 for increasing

twist. For increasing thickness ΩR . 1, we see that 〈δr2〉 ultimately grows larger for

splay-free structures than for the det(H) = 0 ansatz, indicating that the incorporation

of a small amount of splay leads to more equidistant structures. How close the

det(H) = 0 structure comes to the true minimizer of 〈δr2〉 remains an open question.
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(a) (b)

(c) (d)

Figure 2.6: Numerically calculated deviations from equidistance for the Seifert fi-
brations 2.6a, splay-free (tr(H) = 0) 2.6b, and det(H) = 0 2.6c textures, varying
Rκ0 and RΩ, where R is the bundle radius. RΩ = Rκ0 slices for Seifert, splay-
free, and determinant-free structures, in 2.6d show, respectively, the R scaling of the
Seifert fibrations (Eq. (2.31)) and the R3 scaling of the splay-free (Eq. (2.37)), and
determinant-free (Eq. (2.40)) textures.
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2.6 Discussion

In this chapter, we have presented several results on packings of multiple curves

in E3 constrained by mutual equidistance. First, we showed that any two mutually

equidistant curves r1 and r2 in E3 are spanned by the ruled surface generated by

the vector distance of closest approach between the curves, and the one parameter

family of curves perpendicular to these rulings is itself equidistant. We call this the

separating surface defined by the equidistant pair, and between two equidistant curves,

it is possible to fill in an arbitrary number of mutually equidistant curves embedded

in the separating surface. Although such families of curves are clearly unlimited in

number, they are strictly two-dimensional in the sense that the family is collinear:

the 1D line separating any two curves perpendicularly intersects all the curves in the

set.

In contrast, we find that non-collinear, volume filling, curve fields of E3 fall into

two strictly distinct families, and in comparison to the collinear families, the geome-

tries of curves that these permit are highly constrained. Crudely speaking, bundles

of curves can be twisted (uniformly) but not bent, or bent but not twisted. However,

like the collinear family, these equidistant curve fields have the property that they

allow for embedding an arbitrary number of equidistant curves (N → ∞) within a

finite tubular neighborhood of some central curve in E3.

The relatively restrictive geometry of equidistant fields raises interesting questions

about the relationship between the problem of packing finite vs. infinite equidistant

curves. The existence of only two distinct equidistant fields, along with the tube

argument in Fig. 2.2 suggests that the structure of finite N equidistant bundles may

be much less constrained than equidistant fields. Discrete equidistant bundles of this

sort have ready applications to physical systems, from collagen triple helices [97] and

other dense packed biological systems, to the (conventional) seven strands that make

up most wire rope [25]. A particularly relevant restriction of this problem is that of
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locally isometric packings, where each filament is only constrained to lie equidistant to

its nearest neighbors at some characteristic distance a, as in typical physical systems,

where filaments packings are governed by an interfilament spacing set by an effective

size.

We also expect the constraint satisfaction problem for N equidistant filaments

to yield novel and complex geometries, since, as shown in Subsection 2.2.3, twisted

equidistant triplets can be constructed around any smooth curve in E3, but only

constant twist helical bundles have a continuous field realization. We conjecture that

there exists Nc > 3 such that the only bundles of N ≥ Nc regular, equidistant, non-

collinear curves in E3 are either parallel (developable domain) or helical (constant

twist), i.e. they are integral curves of equidistant fields.

For relatively small numbers of filaments, (N ≤ 3), these and related close packing

problems have been studied in the context of ideal (or tight) knots and tangles [98].

Ideal knots, which are embeddings in E3 that minimize the ratio of knot length

to filament-width [99], demand a fully global treatment that considers self-contact

phenomena. To this end, the principle object of study for single stranded knots

becomes not the distance of closest approach, but the global radius of curvature

[82]. Interestingly, ideal knot embeddings are not equidistant in general, even when

equidistant embeddings exist. For example, the ideal trefoil is known to make close

(self-)contact over only a subset of its length [100]. The existence of geometrically

rigid families of equidistant curve packings suggest that knot optimization problems

that account for the energetic penalty of broken cohesive contacts are likely to yield

new classes of minimizers [101]. For example, one may consider a generalization of

the “Möbius energy” [102], that incorporates a pair-wise potential between different

arc-elements of a knotted curve, parameterized by some V (x) that diverges as x→ 0,

E[γ] =

∫
ds

∫
dσV (|γ(σ)− γ(s)|), (2.41)
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where s and σ are arc length parameterizations of curve γ. When V (x) is a strictly

hard-core repulsive potential, we recover the ideal knot problem, while if V (x) has an

attractive minimum at finite x = δ, we might expect solutions which favor equidis-

tance. In particular, in the limit that the cohesive attraction becomes infinitely strong

in depth but infinitely narrow in range (relative to the repulsive core thickness), we

anticipate a new class of minimizers that maximize the length and number of cohesive

contacts. In light of the conjectured rigidification of the constraints on equidistance

with increasing numbers of curves (or, here, curve segments) in equidistant contact,

we further anticipate that such minimizers will be strongly dependent on the knot

topology. For example, because torus knots are necessarily simultaneously bent and

twisted, we expect uniformly equidistant cohesive contact to be possible only when

the number of strands arrayed around the minor cycle of the knot is less than Nc.

Beyond possible applications to problems in knot theory, the geometric constraints

of equidistance would seem to have important and heretofore unexplored mechanical

and structural consequences for a range of multi-filament structures. Recent ex-

perimental studies, for example, have shown that 2D packings of initially straight

filaments tend to adopt constant-pitch, helical shapes when subjected to mechanical

twist at their ends [52]. The emergence of this texture, even in the absence of cohesion

between filaments, suggests that equidistance may be favored due to generic mechan-

ical arguments (e.g. due to inward pressures generated by flexed or stretched outer

strands). This observation, in combination with the restrictive constraints imposed by

equidistance in large N packings, as described herein, raises further questions about

the additional mechanical responses of filament packings associated with driving the

structure to a non-equidistant geometry, such as when one simultaneously bends and

twists a packing. Bent and twisted assemblies of filaments, twisted toroids, are ob-

served in condensates of collagen [68] and DNA [67], and physical models constructed
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to date have yet to account for necessary energetic costs of non-equidistance required

by this geometry.

Beyond even structures of physical filament, twisted toroidal structures appear as

topological solitons in range of classical field theories, for example, the extended non-

linear σ model [103, 104], which supports knotted solutions whose topology is closely

connected to the Hopf fibration of S3. In these “hopfion” structures, 1D preimages of

constant order parameter orientation (corresponding to a point on S2) correspond to

“virtual filaments” that are twisted into closed toroidal bundles. Above, we showed

that the simultaneously twisted and bent structure of hopfions is incompatible with

equidistance between preimages. Recent studies show that hopfions emerge in models

with preferred chiral pitch, such as models of chiral liquid crystals [69–71], and chiral

[73, 74], or frustrated ferromagnets [72]. In such models, a preferred rotation rate

corresponds to a favored constant local spacing between preimage “filaments” of the

field configuration. Hence, we expect that equidistant (but not necessarily isometric)

textures of constant-preimage filaments are energetically favored. Thus, at least in

models with a preferred twist wavelength, the incompatibility between twist, bend and

equidistance in curve fields in E3 represents an intrinsic, and previously unrecognized,

source of frustration in the formation of hopfionic structures.

Addressing questions about the structural and mechanical consequences for com-

plex, non-equidistant bundle geometries requires new theoretical descriptions, since

canonical approaches, such as the generalized elasticity theory of columnar liquid

crystals [89], account for only small deviations around an unstrained reference. The

relevant physics for twisted and bent filament bundles (e.g. twisted toroids) requires

a fully geometrically non-linear theory that couples the metric properties of the cross-

sectional filament packing to the flow generated by the filament texture, a framework

which will be addressed in future work.
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Of particular interest is the coupling of metric (2D solid) to textural (1D fluid) de-

grees of freedom in geometrically frustrated materials. In the simplest case of helical

filament bundles, the increase in twist leads to an effective positively curved metric

and the stability of excess 5-fold disclinations in an otherwise hexagonally-coordinated

bundle [43]. The total integrated Gaussian curvature of a straight twisted bundle is

2π, implying a maximum number of six excess 5-fold defects [43]. For combined

twisted and bent geometries, such as a twisted toroid, a naive analysis of the “local

metric” induced in a planar cut of the bundle suggests that the effective integrated

curvature of the section exceeds the value for the straight bundle, presumably im-

plying that simultaneously twisting and bending a bundle increases the total number

of defects in the ground state order. It remains to be understood whether, and to

what extent, this “local” perspective on the metric structure in a give planar cut of a

non-equidistant bundle truly underlies even a heuristic understanding of the coupling

between defects and the 3D geometry of bundles beyond the equidistant cases studied

so far.

For straight filament bundles, similar work has shown that the introduction of

packing defects can generate highly non-trivial textures in cohesive filament bundles,

through their ability to reshape the “target metric” of a filament packing from planar

to non-Euclidean [47]. This effect neatly demonstrates one important repercussion of

our result in Section 2.3: that the response of positive and negative topological defects

(5- and 7-fold disclinations in hexagonal packings) is highly asymmetric because there

is an equidistant field with positive effective curvature, while there are no equidistant

fields with negative effective curvature. The consequences of the restrictive nature

of equidistance in bundles with negative curvature are therefore even more severe,

as evidenced by the non-trivial elastic instabilities observed in simulated bundles

with trapped negative disclinations. A theoretical approach to predict equilibrium

configurations of bundles whose target metrics (controlled by either distributions of
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defects or by patterns of inhomogeneous filament diameter) are incompatibile with

equidistance remains an open challenge.

2.A Existence of Equidistant Pairs

Let r1 be a curve embedded in E3 with Darboux frame {T̂ , ê1, ê2}, arc length s,

and frame curvatures and torsion κ1, κ2, and τg. Then any curve r2 parameterized

by

r2(s) = r1(s) + ρ

{
cos
[
φ(s)

]
ê1(s) + sin

[
φ(s)

]
ê2(s)

}
, (2.42)

is equidistant to r1. To see why, note that for any such r2, the point of closest approach

to r2(s) on r1 is the corresponding point r1(s). Then r1 and r2 are equidistant when

∂sr2 · (r2 − r1) = 0, as in Eq. (2.2). Since

r2 − r1 = ρ

{
cos
[
φ(s)

]
ê1(s) + sin

[
φ(s)

]
ê2(s)

}
, (2.43)

all that remains is to show that ∂sr2 is perpendicular to cos
[
φ(s)

]
ê1(s)+sin

[
φ(s)

]
ê2(s).

Since

∂sr2 = (1− ρκ1 cosφ− ρκ2 sinφ)T̂ + ρ(∂sφ+ τg)(− sinφê1 + cosφê2), (2.44)

the two vectors are always orthogonal, so we have that r2 and r1 are equidistant

whenever (1− ρκ1 cosφ− ρκ2 sinφ) and ρ(∂sφ+ τg) are finite and nonzero.

2.B Quasi-cylindrical coordinates for filament bundles

We can write down any generic position ~x in coordinates centered around some

curve r0 as follows:

x = r0 + ρρ̂. (2.45)
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An infinitesimal displacement d~x can then be found by

dx =
∂x

∂s
ds+

∂x

∂ρ
dρ+

∂x

∂φ
dφ, (2.46)

where the partial derivatives are:

∂x

∂s
= t̂0 + ρ

∂ρ̂

∂s
(2.47)

∂x

∂ρ
= ρ̂ (2.48)

∂x

∂φ
= ρφ̂, (2.49)

and

∂ρ̂

∂s
= −κ0 cosφt̂0 + τ0φ̂. (2.50)

So, we find the Jacobian for this coordinate transformation:

J =


1− ρκ0 cosφ 0 0

0 1 0

ρτ0 0 ρ

 (2.51)

with its inverse

J−1 =


1

1−ρκ0 cosφ
0 0

0 1 0

− τ0
1−ρκ0 cosφ

0 1
ρ
.

 (2.52)

Note that this inverse does not exist for ρκ0 cosφ = 1 or ρ = 0, for which we can’t

take these derivatives.
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We can now write down the tensor ∇t in these coordinates, represented in the

basis {t, ρ̂, b̂}, where b̂ = t× ρ̂. The ρρ component of this matrix, ρ̂ · ∇ = ∂
∂ρ

doesn’t

do much, but ê · ∇ is slightly more exciting:

ê · ∇ = (J−1ê) · ∇ (2.53)

=

(
1

1−ρκ0 cosφ
0 0

0 1 0

− τ0
1−ρκ0 cosφ

0 1
ρ

 ·

− sin θ

0

cos θ


)
· ∇ (2.54)

= [− sin θ
1

1− ρκ0 cosφ
t̂0 + (sin θ

τ0

1− ρκ0 cosφ
+ cos θ

1

ρ
)φ̂] · ∇ (2.55)

= − sin θ
1

1− ρκ0 cosφ

∂

∂s
+ (sin θ

τ0

1− ρκ0 cosφ
+ cos θ

1

ρ
)
∂

∂φ
. (2.56)

We can now find these derivatives acting on the tangent field, noting that to find

derivatives on φ̂, we can write it explicitly in the Frenet-Serret frame φ̂ = − sinφN̂0 +

cosφB̂0, with

∂sN̂0 = −κ0t̂0 + τ0B̂0 (2.57)

∂sB0 = −τ0N̂0 (2.58)

=⇒ ∂sφ̂ = κ0 sinφt̂0 − τ0ρ̂. (2.59)

This gives us derivatives as follows:

∂φt̂ = ∂φ(cos θt̂0) + ∂φ(sin θφ̂ (2.60)

= − sin θ∂φθt̂0 + cos θ∂φθ − sin θρ̂ (2.61)

∂st̂ = cos θκ0(cosφρ̂− sinφφ̂) + sin θ(κ0t̂0 − τ0ρ̂)− sin θ∂sθt̂0 + cos θ∂sθφ̂ (2.62)

∂ρt̂ = − sin θ∂ρθt̂0 + cos θ∂ρθφ̂ (2.63)

These now let us write down explicitly the components of ∇t, and give us Eq. (2.16).

50



2.C Measuring non-equidistance numerically

Averaging the distance of closest approach between filaments i and j at all po-

sitions si gives the average separation from i to j, 〈∆ij〉. To compare longitudinal

uniformity of inter-filament spacing in these distinct textures, we define the following

measure of local deviation from equidistance:

δri(si) =
1

ni

∑
〈ij〉

∆ij(si)− 〈∆ij〉
〈∆ij〉

, (2.64)

where
∑
〈ij〉 denotes the sum over the ni neighbors of the ith filament in the initial

hexagonal packing.

This quantity measures the extent to which a point si on ri is relatively closer or

further than its average separation from other filaments in the bundle. we define a

measure of the total variability of spacing in the bundle 〈δr2〉 as the average of the

square of this local measure over the lengths of all filaments,

〈δr2〉 =
1

Nf

Nf∑
i=1

∫
dsi

δr2
i (si)

`i
. (2.65)

where Nf = 17 is the number of filaments in the bundle and `i is the arc length used

in the averaging of the ith filament. we note that both quantities are insensitive to

variations in spacing from pair to pair throughout the cross section (i.e. whether a

packing is isometric or not), and only measure longitudinal variations.

51



CHAPTER 3

WHEN YOUR FIBERS ARE FILAMENTS: A GAUGE
THEORY OF ELASTICITY FOR COLUMNAR LIQUID

CRYSTALS

She flung herself on her bed and drew a
line with a pencil on a piece of paper.
And another line, carefully, and
another. A world was born around her,
like a bright forest with a million
shimmering leaves

The Price of Salt
Patricia Highsmith

3.1 Introduction

It is a truth universally acknowledged, that a physicist in possession of an inter-

esting problem, must be in want of an energy. However well or poorly understood

the phenomena may be on first coming to her attention, this truth is so well fixed in

the minds of her colleagues that it is considered the rightful content of some or other

chapter of her dissertation [105].

Soft elasticity—where certain deformations are necessarily zero modes of the elas-

tic energy—is a ubiquitous feature of soft materials, from mechanical metamaterials

[106? , 107], in which the presence of continuous zero modes of rigid networks can

tune bulk elastic properties; to smectic and columnar liquid crystals, and liquid crys-

tal elastomers [108]; and in biological systems as diverse as DNA condensates [67]

and cell monolayers. Because soft-elastic materials can undergo large deformations

with minimal strain, effective continuum descriptions depend heavily on strain tensors

which capture the materials’ geometric nonlinearities.
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Since soft-elastic materials are often described by their zero modes 1, we can try to

build a modified elasticity theory based on these continuous symmetries. This gauge

theoretic view of soft elasticity has the advantages of accounting explicitly for the

large deformations associated with elastic zero modes. Moreover, the elastic response

of a more general class of materials with soft modes, which, while not true elastic zero

modes, cost much lest energy than other deformations, can often be well modeled by

an “ideal” soft-elastic theory.

Soft-elastic liquid crystals, like the smectic-A and columnar phases [89, 109], are

both prototypical soft-elastic materials, and important geometric templates for di-

verse materials across a wide range of lengthscales, from nucleic acid condensates

[23, 66] like those in viral capsids [67, 110, 111], biopolymer bundles [11, 60, 68, 112],

and lamellar phases of surfactants [109] and solid sheets [113] to wire ropes [25],

yarns [21, 22, 114], bundles of elastomer filaments [52, 53], and stacks of paper [115].

While there are well established models which capture the geometrical nonlinearities

in smectic-A liquid crystals [116], longitudinal frustration in columnar liquid crystals

and filamentous materials associated with strict geometric constraints on equidistance

[1] means that prior two dimensional descriptions [40–42] cannot adequately describe

the elastic response of many columnar textures.

In the absence of a validated energetic description for the geometric non-linearities

which dominate the response of twisted-toroidal filament bundles, theoretical models

to date have focused on a variety of geometric ansatzes[1, 9, 75, 76, 93, 95], which

draw on the coupling between the nematic and crystalline degrees of freedom for

these materials [96]. Because non-vanishing splay necessarily corresponds to areal

dilation or expansion of the columns, and because typical shear moduli for columnar

mesophases are lower than the bulk modulus [109], splay-free textures, in which each

1After all, the difference between a columnar liquid crystal and a smectic liquid crystal is that
columnar phases have one uncorrelated, fluid like direction, while smectics have two
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column experiences purely local shear, without bulk dilation, are preferred to textures

with splay [1, 76, 93]. However, recent developments [1], which we reproduce in Ch. 2,

have shown that some of these geometric templates fair quite poorly on measures of

their longitudinal geometric frustration, and, while these ansatzes have the advantage

of a clear geometrical motivation, it remains unclear whether any are actually elastic

equilibria.

In this chapter, we develop a geometrically non-linear, gauge-theoretic description

for the elasticity of soft-elastic liquid crystals. We first present a brief introductory ex-

ample, which shows that the minimally non-linear two-dimensional theory introduced

by J. Selinger and R. Bruinsma [42] is inadequate for descriptions of non-equidistant

filament bundles [1]. Then, to capture the geometric non-linearities inherent in non-

equidistant, longitudinally frustrated filament bundles, we introduce a modified defor-

mation gradient, as in classical gauge theories [117], so that any continuous symmetry

of the material is a zero of this covariant derivative. Unlike classical gauge theories,

however, for soft-elastic materials, all physical degrees of freedom are determined by

a particular deformation of the material. What follows provides a generic procedure

for deriving elasticity theories of fibered materials, like smectic and columnar liquid

crystals, in which the embedding space is ‘nicely’ divided into submanifolds called

fibers 2 [1, 85].

Unlike gauge-theory inspired treatments of the nematic to smectic-A transition

[120, 121] and it’s columnar analog [40, 41, 48, 122], in which the gauge symmetry of a

density-wave model is explicitly broken by, e.g., the splay elasticity of the underlying

2For smectics, the layers corresponding to density level sets; for columnar liquid crystals, the
constituent columns. For an introduction to the mathematical literature on the topology and geom-
etry of smooth fiber bundles, see, for example [118, 119]. The connection between a metric on the
embedding space and on the fiber bundle is fundamental to the study of Riemannian fibrations, see
[50, 85], with the additional constraint of equidistance between the fibers.
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nematic order, here the elastic energy in the ideal case will be invariant under the

embedded gauge transformations 3.

The resultant Lagrangian elasticity theory has a simple geometric interpretation

in terms of the local distance of closest approach between the fibers, providing a cor-

respondence between the global symmetries under reptations and the local geometric

structure of these materials. In contrast to density wave models of nonlinear elasticity

(such as [2, 122, 123]), the theory we describe here neither depends on the presence of

a well defined planar reference crystal, nor presupposes the possibility of regular 2d

lattice packings, allowing us both to accommodate the effective curvature of bundles

of constant pitch helices [43], and providing for a natural generalization to arbitrary

target metrics.

We next derive the conditions of force balance for filamentous materials by finding

the Euler-Lagrange equations of the Hookean elastic energy. As in thin sheets, force

balance perpendicular to the filament tangents is given by gradients of the stress

tensor (with corrections to account for non-integrability due to inter-filament twist).

Unlike the case of thin sheets, however, force balance along the filaments is controlled

not by the curvature tensor, but by the convective flow tensor, as introduced in Ch. 2,

which measure the local deviations from equidistance [1].

3.2 Non-equidistance and non-linearities

Having shown in Ch. 2 that non-equidistance is an all but generic feature of

twisted filament bundles, it becomes quite important to consider whether current

continuum descriptions of filament bundles and columnar liquid crystals account for

these longitudinal variations in length. The minimally rotationally-invariant strain

tensor, introduced by Selinger and Bruinsma [42], is given by

3So the symmetries of the material are a subgroup of the diffeomorphism group [119], rather than
a symmetry of the density wave-vector.
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εαβ = ∂αuβ + ∂βuα − ∂αu · ∂βu− tαtβ, (3.1)

where tα ≈ ∂αuz. We can hexplicitly calculate the strains by assuming that the initial

configuration is given by a developable domain around a central curve ~r0 with tangent

vector t̂0. We then take the tangent vector field of the deformed filament bundle to

be

t = cos θt̂0 + sin θφ̂, (3.2)

with θ = Ωρ for two different central curves: one a straight line, as in Fig. 3.1a, and

one a circle with curvature κ0, as in Fig. 3.1b. If we then calculate the Selinger-

Bruinsma strain tensor, we find that

εij =

0 0

0 − Ω2ρ2

1+Ω2ρ2

 (3.3)

for both bundles; clearly in contradiction of our proof in Ch. 2 that the twisted

toroid must be non-equidistant. While this may seem like a small failing, it makes

it difficult to distinguish between different candidate textures for twisted-toroidal

bundles. For example, Kulić, et al. [76] have suggested that splay-free textures

(which has tr(h) = 0, and is defined in Eq. 2.32) are likely candidate solutions based

on the observation that zero splay implies constant area per filament; however, in

Ch. 2 we have shown that this splay-free solution is strictly less equidistant than

a det(h) = 0 ansatz, which incorporates a little splay [1]. Without the ability to

determine the importance of longitudinal length variations in the elastic energy, the

equilibrium states of non-equidistant filament bundles, which are both common and

important in real materials, are beyond our reach.
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(a) (b)

Figure 3.1: We can make the shortfalls of two dimensional models explicitly by con-
structing two filament bundles with the same projection of the filament tangents
into the plane perpendicular to the central curve. For 3.1a, reproduced from [1], the
central curve is a straight line, whereas in 3.1b, it’s a circle with curvature κ0, but
both have the same cross-sectional profile, given by Eq. (3.2) with θ = Ωρ. The
two-dimensional strain tensor in [42] doesn’t distinguish between the two, whereas
we have shown in Ch. 2 that there must be longitudinal fluctuations in the distance
of closest approach for the torodial bundle in 3.1b.
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3.3 Gauge theory elasticity for soft-elastic liquid crystals

In order to address this problem in the continuum elasticity for filament bundles,

we turn to an approach inspired both by classical gauge theories and the geometry of

fiber bundles. We first note that soft-elastic liquid crystals, like the columnar phase,

are naturally described by their fluid-like directions, with crystalline order between

columns, but not between molecules within the same column.

As with gauge theories for fields with a continuous field, like electrodynamics [117],

we work at the level of the derivative, demanding that a modified deformation gradi-

ent, or covariant derivative of a deformation, remains invariant under symmetries.

To avoid the introduction of unphysical auxiliary fields, and in contrast to typical

gauge field theories, we here insist that all modifications to the deformation gradient

depend solely on the deformation, r of the material. More formally, we are looking

for a modified gradient DI , so that if r and r̃ are related by a continuous symmetry,

then DIr = D̃I r̃, and so that DIr is entirely determined by r.

3.3.1 Elasticity of filament fields

We can apply the basic concepts of gauge theories to filament bundles and colum-

nar liquid crystals by noting that they have a family of continuous zero modes corre-

sponding to reptations, in which filaments slither along their length. Unlike classical

gauge theories, however, the symmetries of soft-elastic materials are embedded, and

correspond to a subset of its possible deformations, and so we demand that the co-

variant derivative also be solely determined by the current material configuration.

Given any energy functional for columnar materialsW 4, and a coordinate system on

a manifold so that ∂sr(s,v) ‖ t, then for a deformation

r′(s,v) = r(s+ σ(s,v),v), (3.4)

4so this is a statement about a quasi-static, elastic deformation
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Figure 3.2: A displacement field u, as shown above, which slides an initial material
configuration (faded stars) to points all along the same filaments (stars) without
changing the conformation, t, is a gauge transformation or reptation.

as shown in Fig. 3.2, we should have that W [r] = W [r′]. We also want to note here

that any good elasticity theory should be local and determined solely by the defor-

mation, so this will depend only on the deformation gradient ∂Ir. Unfortunately, the

deformation gradient here is not invariant under σ, the reptation or gauge transfor-

mation:

∂Ir
′ = ∂Ir + ∂Iσ∂sr. (3.5)

Inspired by gauge theories such as classical electrodynamics, we want to work at

the level of the deformation gradient, and see if we can find a covariant derivative

DI so that DIr = D′Ir
′. So, first, we’ll break up this covariant derivative so that

DIr = ∂Ir−AI . Then, in order for DIr to be gauge invariant, we have that D′Ir
′ −

DIr = −A′I+AI = ∂Iσ∂sr, and so −A′I+AI = −(t·∂Ir′)t+(t·∂Ir)t, where t = ∂sr
|∂sr| .

AI has a gauge degree of freedom associated with reptations, but if we impose

the additional constraint that Dsx = 0, which is to say that the s component of the
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Figure 3.3: The covariant derivate DIr has a natural geometric interpretation as the
linearized distance of closest approach d∆ = dx−(t·dx)t between two integral curves
of the tangent field t separated by an infintessimal coordinate distance dx [1].

identity deformation vanishes 5, we have that

DIr = ∂Ir− (t · ∂Ir)t. (3.6)

Notably, we can derive this covariant derivative from just the local geometry of our

filament bundle, as the local distance of closest approach between nearby filaments,

as shown in Fig. 3.3, where d∆ = DIrdx
I . This profound connection between the

local geometry and continuous symmetries of fiber-elastic materials underlies much of

the power of this description of their elastic behavior.

3.3.2 Elasticity of smectic stacks

We can implement a similar program for smectic liquid crystals by projecting onto

the nematic director, n, rather than the space perpendicular to it, to account for arbi-

5This is the equivalent of absorbing the s component of the target metric into the deformation
gradient
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trary material deformations within the smectic layers. For smectics, our symmetries

are given by

r(s,v) 7→ r(s,v + w(s,v)), (3.7)

and so our covariant derivative becomes

DIr = NIn, (3.8)

where NI ≡ n · ∂Ir. So, the strain tensor for a smectic liquid crystal (with r = x + u

becomes

εIJ = [n · ∂I(x + u)][n · ∂J(x + u)]− gtar
IJ , (3.9)

where a Euclidean gtar
IJ here is just gtar

IJ = (n · ∂Ix)(n · ∂Jx), the thing that’s one

along the director directions and zero everywhere else. So, we can work out the strain

tensor in terms of the displacement field, and we find:

εIJ = (n · ∂Ix)(n · ∂Ju) + (n · ∂Iu)(n · ∂Jx) + (n · ∂Iu)(n · ∂Ju). (3.10)

Taking the trace, and noting that (n · ∂Ix)(n · ∂Iu) = n · (n · ∇)u, we find that

εII = 2n · (nI∂I)u + (n · ∂Iu)(n · ∂Iu). (3.11)

When n ≈ ẑ, we see that this reduces to

tr(ε) = 2∂zu+ (∇u)2, (3.12)

which is just twice the usual non-linear smectic strain contribution (up to a sign,

which is just the difference between the Eulerian and Lagrangian forms) [116, 124].

Additionally, noting that (ε) as defined above is zero except on the 1× 1 block along

N, we see that this is the only contribution we get to the strain energy (no other

scalar invariants).
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3.4 Geometry and elasticity for filament bundles

Now that we have a gauge covariant deformation gradient for filament bundles, we

construct a rotationally invariant effective metric, geff
IJ = DIr ·DJr and strain tensor,

εIJ = DIr ·DJr− gtar
IJ , (3.13)

in the usual way [30, 31]. We can also write this in a form that will be a little

more familiar, by breaking our deformation into an identity component x and a

displacement field u, so r = x+u. Then, in euclidean space, and with a 2-dimensional

euclidean target metric, we have that

εαβ = ∂αuβ + ∂βuα + ∂αu · ∂βu− (t · ∂αr)(t · ∂βr), (3.14)

for α, β ∈ {1, 2}, and with εsI = 0 otherwise. If we restrict ourself to a plane

perpendicular to t and drop higher-than-quadratic terms in u, this reduces to the

less non-linear, rotationally invariant description for filament assemblies, with again

a sign difference due to the Lagrangian, rather than Eulerian form of the elasticity

[42, 123],

Uαβ = ∂αuβ + ∂βuα + ∂αu · ∂βu− ∂suα∂suβ, (3.15)

which has been used with great success to describe the elastic properties of equidistant

filament configurations.

Since our covariant derivative, and thus our strain tensor, are all gauge invariant,

as long as the elastic energy is a scalar in target space, this will be a gauge-invariant

description of the elasticity of filamentous materials. In order to get a tractable model,

we can make the usual assumptions that the strain tensor is relatively small, even
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if the deformations of the material are large, we can write down a Hookean elastic

energy, so that

Estrain = 1
2

∫
dV SIJεIJ , (3.16)

where SIJ = ∂E
∂εIJ

= CIJKLεKL is the nominal stress tensor, and CIJKL, is a tensor of

elastic constants which behaves in the usual way, and will in general depend on both

the crystalline symmetries of the underlying columnar order and the target metric,

gtar
IJ .

3.5 Force balance for frustrated filaments

While there are other terms which are higher order in some microscopic lengthscale

which are also gauge invariant (like the terms of the Frank-Oseen free energy), for

simplicity and clarity, we first derive the Euler-Lagrange equations for just the strain

elastic energy, and return to the bending Euler-Lagrange equations, which stabilize

against arbitrary filament writhing, for a later subsection. Taking as our variational

principle that, in the absence of body forces (we can always add them back in later),

δE =

∫
dV SIJδεIJ = 0. (3.17)

What remains then is to work out δεIJ , and apply the divergence theorem to derive

the conditions of force balance. First, recall that εIJ = DIr ·DJr− gtar
IJ . Then, taking

δεIJ , and defining δr as the variation of our deformation, we find:

δεIJ = 2DJr
[
∂Iδr− t · ∂Ir

∂sδr

‖∂sr‖
]
, (3.18)

where in all the above we have used that DJr · t = 0. Plugging this back into our

integral, we find:

δE = 2

∫
dV SIJDJr ·

[
∂Iδr− t · ∂Ir

∂sδr

|∂sr|
]
. (3.19)
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Now we just apply the divergence theorem, finding that:

0 = −2

∫
∂I
[
dV SIJDJr

]
· δr

+ 2

∫
∂s
[
dV SIJDJr

t · ∂Ir
‖∂sr‖

]
· δr = 0 (3.20)

0 = 2

∫
dAN̂I

[
dV SIJDJr

]
· δr

− 2

∫
dAN̂K T̂

K
[
dV SIJDJr

t · ∂Ir
‖∂sr‖

]
· δr, (3.21)

where N̂ here is the vector normal to the boundary ∂V of the material and T̂ is the

tangent field in the material frame.

Projecting out and onto t, and noting that t ·∂IDJr = −∂It ·DJr and t ·∂sDJr =

−∂st · DJr, we recognize that the parallel component of bulk force balance can be

written in terms of the convective flow tensor of the bundle,

hIJ = ∂It · ∂Jr + ∂Jt · ∂Ir

− t · ∂Ir
|∂sr|

∂st · ∂Jr−
t · ∂Jr
|∂sr|

∂st · ∂Ir, (3.22)

which measures the local deviations from equidistance of a deformation [1], as

SIJhIJ = 0 (3.23)

The convective flow tensor measures the symmetric changes in the tangent vector as

you move orthogonal (as shown in Fig. 3.4), similar to how the second fundamental

form for a surface measures the local change in the normal vector.

The remaining bulk components of the Euler-Lagrange equations can then be

formulated as

0 = DI

[
SIJDJr

]
−Ds

[
SIJ

t · ∂Ir
‖∂sr‖

DJr
]
, (3.24)
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Figure 3.4: The convective flow tensor, hIJ , which governs tangent force balance
in filament bundles, is a symmetric combination of perpendicular gradients of t, as
shown above [1]. The related second fundamental form for a surface in E3 measures
the tilt of the normal vector to the surface, n̂, as you move tangent to the surface.

where DI is again the gauge-covariant derivative on vectors in the target space, mod-

ified so that it acts covariantly on tensors in the material space.

The physical meaning of the Euler-Lagrange equations for filament bundles is

now more straightforward: tangent force balance couples non-equidistance, as mea-

sured by the convective flow tensor, to the stress tensor in a way reminiscent of the

Young-Laplace law [125]. It’s also useful, for interpreting the force balance equations

perpendicular to t, to note that these reduce to the usual force-balance equations

for thin sheets in the absence of inter-filament twist. To see why, remember that

t · (∇ × t) = 0 is the necessary condition for a family of surfaces to be orthogonal

to t. Put another way, this means that, for zero twist, there are coordinates xi such

that ∂sr · ∂xir = 0. Choosing these, we see that

SIJ
t · ∂Ir
|∂sr|

= 0, (3.25)

and so the force balance equations perpendicular to t reduce to those for thin sheets.

Similarly, when the twist is zero, the convective flow tensor reduces to the second

fundamental form on the surface normal to t, and so the force balance conditions
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are exactly those for these orthogonal surfaces. These observations help clarify the

meaning of this t·∂Ir
‖∂sr‖ contribution in the force balance equations, which also arises

in the Selinger-Bruinsma model [46]. We can now see that this term corrects for

the global non-integrability of twisted filament bundles, and serves to cancel out the

components of ∂Ir which lie along the filament tangent.

3.5.1 Bending contributions to force balance

While splay, twist, and biaxial splay of filaments are penalized by their cross-

sectional elasticity, the bending contributions which are important to the phenomenol-

ogy of columnar liquid crystals, are not. Energetic contributions from Bending elas-

ticity which penalize, for example, the writhing of developable domains, must then

be included explicitly. The bending energy of a liquid crystal mesophase is:

1
2
K33

[
(n · ∇)n

]2
(3.26)

In Lagrangian coordinates, we can rewrite the bend vector, b:

b = − ∂st

|∂sr|
. (3.27)

So we can make the bending term in the Frank free energy as:

fbend = 1
2
K33

∂st · ∂st
|∂sr|2

. (3.28)

So the bending contributions to the Euler-Lagrange equations are:

δfbend = K33
∂st

|∂sr|
·
[ 1

|∂sr|
∂s(

∂sδr− t · ∂sδrt
|∂sr|

)− ∂st

|∂sr|2
t · ∂sδr

]
. (3.29)

Simplifying and distributing the derivative, we have:

δfbend = K33
∂st

|∂sr|
·
[ ∂2

sδr

|∂sr|2
− ∂sδr

|∂sr|3
∂2
sr · t− 2

∂st

|∂sr|2
t · ∂sδr

]
(3.30)
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Integrating by parts, we find that

ELbend = K33

[
∂2
s

∂st

|∂sr|3
+ ∂s

∂st∂
2
sr · t

|∂sr|4
+ 2∂s

∂st · ∂st
|∂sr|3

t), (3.31)

with appropriate boundary contributions. Breaking this up into components along

and perpendicular to t, we have,

EL
‖
bend = K33

[∂2
st · t(∂2

sr · t)

|∂sr|4
− ∂2

st · ∂st
|∂sr|3

]
(3.32)

= −K33
1

2|∂sr|
∂s
∂st · ∂st
|∂sr|2

. (3.33)

This is pretty straightforward, and is just the derivative of the squared curvature, and

so tells us that there are forces along the tangent direction whenever the curvature is

both varying and nonzero. Then, the perpendicular components are:

EL⊥Ibend = K33

[
∂st·DIr(2

∂st · ∂st
|∂sr|3

−2∂s
∂2
sr · t
|∂sr|4

)−5∂2
st·DIr

∂2
sr · t
|∂sr|4

+
∂3
st ·DIr

|∂sr|3
]
. (3.34)

3.6 To finite twist. . . and beyond! the Föppl-von Kármán

limit for helical filament bundles

While helical bundles have been examined in depth in the limit of small twist, our

new geometrically non-linear elastic energy provides us with the opportunity to both

validate calculations done in the Föppl-von Kármán (FvK) limit, and investigate

behavior at large twists, and incorporating elastic costs for filament bending and

stretching. To start, recall that all together, the force balance equations for filament

bundles are given by:
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0 = SIJhIJ −K33
1

2|∂sr|
∂s
∂st · ∂st
|∂sr|2

(3.35)

0 = DI

[
SIJDJr

]
−Ds

[
SIJ

t · ∂Ir
|∂sr|

DJr
]

(3.36)

−K33

[
∂st ·DIr(2

∂st · ∂st
|∂sr|3

− 2∂s
∂2
sr · t
|∂sr|4

)− 5∂2
st ·DIr

∂2
sr · t
|∂sr|4

+
∂3
st ·DIr

|∂sr|3
]
.

Stable configurations of helical bundles with constant pitch, 2π
Ω

, can be described by

the deformation

r(s, ρ, φ) = sẑ + f(ρ)ρ̂(φ+ Ωs), (3.37)

where s is the arclength along the central straight curve, ρ̂ the typical radial unit

vector in cylindrical coordinates, and the radial deformation field f(ρ) is determined

by the boundary value problem above. If we assume that our helical bundles are

isotropic or hexagonal in the cross-section, then the linear relationship between the

stress and strain tensor is given by:

SIJ = λgIJtartr(ε) + 2µεIJ , (3.38)

where gIJtar is the inverse target metric (which we have also used in taking the trace

and raising the indices of the strain tensor), and λ and µ are the Lamé parameters

[2], which can be written in terms of the Young’s modulus, E, and the 2d Poisson

ratio ν as:

λ =
E

2(1 + ν)

µ =
νE

(1 + ν)(1− 2ν)
. (3.39)

If we put all of this together with force-free boundary conditions on the sides, we find

that f(ρ) must satisfy
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0 = −∂ρ
[
ρf ′(ρ){(λ+ 2µ)

2
(f ′(ρ)2 − 1) + λ

2
(

f(ρ)2

ρ2(1 + Ω2f(ρ)2)
− 1)}

]
− ρf(ρ)

ρ2(1 + Ω2f(ρ)2)2

[
λ
2
(f ′(ρ)2 − 1) +

(λ+ 2µ)

2
(

f(ρ)2

ρ2(1 + Ω2f(ρ)2)
− 1)

]
+K33ρΩ4f(ρ)

1− Ω2f(ρ)2

f ′(ρ)(1 + Ω2f(ρ)2)3
(3.40)

0 = f(0) (3.41)

0 =
(λ+ 2µ)

2
(f ′(R)2 − 1) + λ

2
(

f(R)2

R2(1 + Ω2f(R)2)
− 1),

where R is the bundle radius. Generically, our solutions to these are just going to be

numerical, but we can find series solutions for the first several terms. Because the

cylindrical symmetry of the problem, even terms in the power series expansion for

f(ρ) vanish, so, taking

f(ρ) = a1ρ+ a3Ω2ρ3 + a5Ω4ρ5 + · · · , (3.42)

we find (with a1 the slope at ρ = 0, which is fixed by the outer boundary condition),

that

a3 =
2a1K33Ω2 + 2a3

1λ− a5
1λ+ 2a3

1µ− 3a5
1µ

8(−λ+ 2a2
1λ− µ+ 3a2

1µ)
(3.43)

a5 =
a1

384(−λ+ 2a2
1λ− µ+ 3a2

1µ)3

{
K2

33

[
− 8Ω4λ− 60a2

1Ω4λ− 8Ω4µ− 108a2
1Ω4µ

]
+K33

[
− 160a2

1Ω2λ2 − 160a2
1Ω2µ2 + 424a2

1Ω2λ2 + 672a4
1Ω2µ2 (3.44)

− 436a6
1Ω2λ2 − 972a6

1Ω2µ2 − 320a2
1Ω2λµ+ 1096a4

1Ω2λµ− 1320a6
1Ω2λµ

]
+
[
− 72a4

1λ
3 − 72a4

1µ
3 + 204a6

1λ
3 + 420a6

1µ
3 − 258a8

1λ
3 − 990a8

1µ
3 + 105a10

1 λ
3 + 837a10

1 µ
3

− 216a4
1λ

2µ2 − 216a4
1λµ

2 + 828a6
1λ

2µ+ 1044a6
1λµ

2 − 129− a8
1λ

2µ− 2022a8
1λµ

2

+ 663a10
1 λ

2µ+ 1323a10
1 λµ

2
]}
.

While most of the results we present in this chapter will rely instead on on numer-

ical solutions to the BVP in Eq. (3.40) and (3.41), series analysis of force-balance
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Figure 3.5: The power series solution (dashed blue) to f(ρ) to O(ρ7) plotted against
the numerical solution (solid red) to Eq. (3.40) for ΩR = 1.45, ν = .49, and K33 = 0,
demonstrating excellent agreement. Even at higher ΩR, this stays in qualitative
agreement for small ρ (less than ≈ .5R) until about ΩR = 4.

equations for twisted-toroidal filament bundles in Ch. 4 will rely in part on the series

solutions in Eq. (3.44). We can also solve the BVP numerically by shooting from

ρ = 0, and compare to the series solution, as in Fig. 3.5. When using the series so-

lution to evaluate filament behavior, we’ll calculate a1
6 from the slope of numerical

value of f ′(ρ) at ρ/R = 10(−6).

Numerical evaluation of the deformation field for helical bundles allows us to ex-

amine their behavior beyond the small twist limit, including evaluating contributions

from filament bending and stretching elasticity. Figures 3.6a and 3.6b shows cross-

sectional pressure, P = −tr(S) in a helical bundle with ΩR = 1.45. A convenient

measure for the difference in the non-linear behavior from the low twist behavior is

the dimensionless critical radius, rc/R, at which the pressure inside the bundle van-

ishes, so that P |rc = 0. In the low twist limit and in the absence of longitudinal

elasticity, this critical radius is constant, at rc = R√
2

[46]. In comparison, we can

6generically, a function of ΩR due to contributions from the outer boundary conditions
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see in Fig 3.6c, that for larger twists, the critical radius decreases, concentrating the

compressive regime at the center of the bundle.

Similarly, by incorporating a non-zero modulus for filament bending, K33, as in

Fig. 3.7, we can push bundles away from the small twist behavior. Nonlinearities

in the force-balance equations produce qualitatively different responses to varying

bending moduli at low (Fig. 3.7a) and high (Fig. 3.7b) twist. And, while the deeper

understanding of this behavior necessary for comparison with relevant experimental

systems (such as [52, 53]), this once again serves to emphasize the importance of

geometric non-linearities in the phenomenology of even equidistant filament packings.

3.7 Discussion

In this chapter, we have introduced at general procedure for deriving geometri-

cally nonlinear strain tensors for soft-elastic liquid crystals, drawing on their geo-

metric structure as fiber bundles embedded in Euclidean space. In columnar liquid

crystals and filament bundles, the geometric nonlinearities introduced by this gauge

theoretic description are of fundamental importance, because two-dimensional models

fail to capture the longitudinal variations in length characteristic of non-equidistant

geometries.

The force balance equations for filament bundles derived from this geometrically

non-linear theory reinforce the conceptual importance of constant spacing for under-

standing the behavior of soft-elastic liquid crystals [1]. For filament bundles, while the

conditions for equilibrium are qualitatively similar to those for thin sheets, normal

force balance couples transverse strains to the longitudinal fluctuations in spacing

described by the convective flow tensor, while in-plane force balance incorporates

corrections for the tortured coordinates of twisted configurations. In a sense, the

force balance equations derived above are the natural generalization of the classi-

cal Euler-Lagrange equations for thin sheets to the more general setting of filament
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(a) (b)

(c)

Figure 3.6: By solving for the radial deformation field, f(ρ), for the fully non-linear
force balance equations for helical filament bundles, we can extract information like
the position of filaments at varying radii, as in 3.6a, and the pressure distribution
in the cross-section, as in 3.6b with ΩR > 1 (shown here with ν = .49, ΩR = 1.45,
and K33 = 0.) The ability to move to large ΩR allows us to examine deviations
from behavior in the Föppl-von Kármán (FvK) limit, as in 3.6c, which shows the
critical radius, at which tr(S) = 0, plotted against ΩR for the non-linear force-balance
equations (red dots), compared to the constant value in the FvK, rc/R = 1√

2
(black

line) [46].
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(a) (b)

Figure 3.7: The introduction of filament bending to the columnar elasticity of helical
bundles qualitatively changes their behavior for large twists. For low twists, as in 3.7a,
with ΩR = .2, an increase in the bend elastic modulus, K33, leads to a gradual
decrease in the critical radius (red dots) from that of the FvK limit (black line). At
large twists, however, as in 3.7b, with ΩR = 1.4, the introduction of bending leads
to qualitatively different behavior, driven by the elastic non-linearities. Here rc/R
increases from the K33 = 0 value (dashed blue line) to higher than the FvK value
(black line). In all of the above, ν = .49.

elasticity, where we are asked to measure changes in lengths of vectors in the plane

perpendicular to any unit vector field, as opposed to one normal to a surface.

In Ch. 1, we briefly introduced the concept of transverse frustration in twisted

filament bundles, where twist and splay in the field of local tangent vectors to the

filaments in a bundle couple to strains in the bundle cross section. Our geometrically

non-linear strain tensor allows us to further explore longitudinal frustration, where

filaments are forced, either by boundary conditions or topological constraints, into

necessarily non-equidistant configurations, as described in Ch. 2 [1]. As shown in

Eq. 3.23, these longitudinal variations in lengths couple to stresses orthogonal to the

filament tangents, much as curvatures in thin sheets must be met by in plane forces. It

is worth noting that, in contrast to the surfaces, filament bundles can develop metric

curvature in the cross-section without concomitant non-zero terms in the convective

flow tensor, by twisting without splay or biaxial splay [1].
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Because this geometric approach to the elasticity of soft-elastic liquid crystals

is both incredibly general and nearly algorithmic, we speculate that it may have

applications beyond liquid-crystalline systems. The general mathematical principles

are the same for all soft-elastic materials: by considering the metric inherited from the

embedding space (E3 for us) by the space orthogonal to the continuous zero modes, we

can “project out” the zero energy deformations of the material, leaving us with a strain

that cares only about the “shortest distance” to the nearest zero-energy state. And

while the applications of these techniques to, for example, conformal metamaterials

[107], are for now put off for another day, we anticipate that the powerful theoretical

framework developed in this chapter for the study of columnar liquid crystals will

have broad applications across soft matter physics and materials science.
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CHAPTER 4

GET IT TWISTED: THE LINEAR STABILITY OF
TWISTED TOROIDAL FILAMENT BUNDLES

People—well, men, really—talk about
art and science as though they are so
noble. And they are! They’re important
and worthy and vital to the process of
mankind! But. . . aside from all the talk,
they look like quite a lot of work.
Tedious, never-ending, unforgiving,
excruciatingly demanding work.

The Lady’s Guide to Celestial Mechanics
Olivia Waite

4.1 Introduction

Many mechanical [25, 126] and biological [67, 68, 110, 111, 127] filaments include

stable twisted and bent configurations. Whether because of confinement, linking be-

tween neighboring filaments, mechanical loading, or entropic effects, buckling in chiral

filament bundles is so ubiquitous as to be universal. Soft matter physicists, applied

mathematicians, and materials scientists of all stripes have generally considered this

inconvenient, at best, because of the difficulties presented by longitudinally varying

geometries. When the number of strands is small, as for some varieties of wire rope,

plies, tangled telephone cables, and supercoiled DNA, progress has been made by

considering the interactions and elasticity of each strand [25, 59, 126, 128, 129]. As

the number of filaments grows, however, and approaches a bulk, continuum colum-

nar liquid crystalline state, frustration arising from geometric constraints on constant

spacing muddles the matter. Past work on the continuum elastic response of filament
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assemblies has considered the elastic response of twisted helical bundles [46, 47], this

has, with the exception of our work in Ch. 3, been done in a less non-linear, Föppl-von

Kármán (FvK) limit, and does not account for the longitudinal frustration which is

characteristic of non-helical twisted filament bundles. Even working beyond the FvK

limit, the geometrical nonlinearities associated with longitudinal variations in inter-

filament spacing become important, as a consequence of the mutual incompatibility

of twist, central filament curvature, and equidistance we explored in Ch. 2, and so

prior treatments, which have depended on two-dimensional, minimally rotationally

invariant models of columnar liquid crystals [42], are not up to the task.

While previous work has attempted to capture the consequences of frustration in

these models with either geometric templates, based on fibrations of S3 [9, 94, 95]

or liquid crystalline models [76, 93] which look for zero splay solutions by enforcing

the dual constraints of volume filling and no filament ends [96], there has as of yet

been no succesful description of the elastic equilibria for continuum twisted-toroidal

filament bundles.

Fortunately, we have just now developed a general method of accounting for the

geometric non-linearities inherent in longitudinally frustrated filament bundles. Start-

ing from the force-balance equations presented in Ch. 3, we can find the conditions

for stability of twisted-tori by treating both the curvature of the center-line, κ0, and

the corrections to the deformation of the helical conformation as perturbations to

the curvature-free solution, proportional to a formal parameter, ε in which we will

expand. Starting with our numerical and power series solutions to the helical bundle

solutions from Ch. 3, in Section 4.2 we then find the O(ε) correction to the force-

balance equation, giving us the linear response of a stable bundle of constant pitch

helices to a small curvature. By Fouriér transforming in polar and arclength coordi-

nates, φ and s, in Section 4.3, the resulting linear partial differential equations can

be reduced to three coupled, linear ordinary differential equations, which on a good
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(a) (b)

Figure 4.1: A schematic (4.1a) and common household example (4.1b) of twisted
toroidal filament bundles, a common geometric motif. Twisted toroidal textures are
easy to create with common household materials, occur naturally in viral capsids’
confined coils of nucleic acids, and are a simple test case for the more general class of
non-equidistant filament bundles, which have important applications in mechanical
systems like cables, ropes, and yarns.

day, could be integrated numerically and analyzed with power series techniques to

find solutions to the boundary value problem (BVP). In the process of deriving the

force balance equations for twisted tori, we also delve a little deeper into the under-

lying geometry of these filament assemblies, as introduced in Ch. 3, and speculate

about the nature of life and parallel transport on a nowhere integrable distribution

of 2-planes equipped with a metric.

Unfortunately, as we will show in Section 4.4, force-free boundary conditions com-

bine with the soft modes associated with reptations of the helical state and the cou-

pling of non-equidistance to in-plane strains to render this BVP singular at both

boundaries. For Ωρ small, we can find a series expansion at the inner boundary,

giving us intuition for the way that curvature couples to the resulting deformations.

However, while the ρ = 0 solution can be well analyzed by a generalized, matrix

Frobenius method [130], and thus made amenable to series and numerical solutions,

the boundary at ρ = R proves much more troublesome. Because, with force free
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boundary conditions to the zero curvature case, the radial components of the stress

tensor vanish at O(ε0), if any of the terms they multiply at O(ε) (like the convective

flow tensor in Eq. (3.23)) contain the highest order derivative in the perturbative

functionals, the resulting BVP will be singular. In fact our lot is much worse than

this, and we conclude Section 4.4 by showing that, in contrast to the inner boundary,

there are no regular series solutions around ρ = R.

The great difficulty posed by the singularities in these differential equations leaves

us in need of a slight change in course. We first briefly discuss possible palliatives,

including including surface stresses [131] at O(ε0), which would appropriately modify

the singular behavior at the outer boundary. Since solutions to even this modified

problem are fairly difficult to obtain, however, and because we do not yet understand

the cause of the singular behavior discussed above, we turn instead to a problem

mentioned several times previously in the dissertation.

While we may not yet be able to solve generically for stable states of toroidal

bundles, we can still answer some questions. The technology developed in the vain

pursuit of a general solution, for example, allows us to shed some light on the ques-

tions raised in Ch. 2, about whether the splay-free or determinant-free textures are

energetically favorable [1]. By substituing into the force balance equations, we can

show that neither are in elastic equilibrium in the bulk, but that the boundary tends

towards a splay-free solution as the bending modulus goes to zero.

4.2 Linearized Euler-Lagrange equations for twisted toroidal

filament bundles

The force balance equations for filament bundles are given by:
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0 = SIJhIJ −K33
1

2|∂sr|
∂s
∂st · ∂st
|∂sr|2

(4.1)

0 = DI

[
SIJDJr

]
−Ds

[
SIJ

t · ∂Ir
|∂sr|

DJr
]

(4.2)

−K33

[
∂st ·DIr(2

∂st · ∂st
|∂sr|3

− 2∂s
∂2
sr · t
|∂sr|4

)− 5∂2
st ·DIr

∂2
sr · t
|∂sr|4

+
∂3
st ·DIr

|∂sr|3
]
,

In Ch. 3 we showed that a bundle of helices with constant pitch, 2π
Ω

, can be described

by the deformation

r(s, ρ, φ) = sẑ + f(ρ)ρ̂(φ+ Ωs), (4.3)

where s is the arclength along the central straight curve, ρ̂ the typical radial unit

vector in cylindrical coordinates, and the radial deformation field f(ρ) satisfies the

boundary value problem

0 = −∂ρ
[
ρf ′(ρ){(λ+ 2µ)

2
(f ′(ρ)2 − 1) + λ

2
(

f(ρ)2

ρ2(1 + Ω2f(ρ)2)
− 1)}

]
− ρf(ρ)

ρ2(1 + Ω2f(ρ)2)2

[
λ
2
(f ′(ρ)2 − 1) +

(λ+ 2µ)

2
(

f(ρ)2

ρ2(1 + Ω2f(ρ)2)
− 1)

]
+K33ρΩ4f(ρ)

1− Ω2f(ρ)2

f ′(ρ)(1 + Ω2f(ρ)2)3
(4.4)

0 = f(0) (4.5)

0 =
(λ+ 2µ)

2
(f ′(R)2 − 1) +

λ

2
(

f(R)2

R2(1 + Ω2f(R)2)
− 1),

where R is the bundle radius. To describe twisted toroidal bundles, we instead take

as the deformation field:

r(s, ρ, φ) = r0(s+ εδs̃) + (f(ρ) + εδρ̃)ρ̂(φ+ εδφ̃+ Ωs+ εΩδs̃), (4.6)

where δs̃, δρ̃, and δφ̃ are generically independent functions of the coordinates s, ρ,

and φ, and the central curve [1, 78–80] r0 is a circle with arclength parameter s, so
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that ∂2
sr0(s) = εκ0 cos φ̃ρ̂ − εκ0 sin φ̃φ̂, where φ̃ = φ + Ωs. So, if we break up the

deformation by orders, we have

r = r(0) + ε
[
δs̃(t̂0 + Ωf(ρ)φ̂) + δρ̃ρ̂+ f(ρ)δφ̃φ̂

]
, (4.7)

with additional contributions of O(ε) to the deformation gradient (and thus the force

balance equations) arising from derivatives of the frame vectors: t̂0, ρ̂, and φ̂, with

∂st̂0 = εκ0 cos (φ̃)ρ̂− εκ0 sin (φ̃)φ̂. (4.8)

Considering contributions from both columnar elasticity and filament bending, our

task is then to calculate the stress tensor, convective flow tensor, covariant derivative,

and bending forces to linear order in ε.

4.2.1 Index form of the Euler-Lagrange equations

We begin by rearranging the Euler-Lagrange equations into a form slightly more

convenient for calculation than was presented in Ch. 3. To avoid the proliferation of

spaces that can result from dangling DIrs, we’ll instead introduce a more intrinsic

description, which will naturally result in Christoffel symbols modified to fit our 2-

planes in E3 context.

Recall that the orthogonal to t components of the elastic contributions to the

Euler-Lagrange equations are given by:

0 = DI

[
SIJDJr

]
−Ds

[
SIJ

t · ∂Ir
‖∂sr‖

DJr
]
. (4.9)

Since DIr should be invertible when I 6= s, and we’ve already selected out the per-

pendicular components, we can project onto these coordinate basis vectors:

0 = ∂I
[
SIJDJr

]
·DKr− ∂s

[
SIJ

t · ∂Ir
‖∂sr‖

DJr
]
·DKr. (4.10)
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Distributing the partial derivatives, we then have:

0 = ∂IS
IJgeff

JK − ∂s(SIJ
t · ∂Ir
‖∂sr‖

)geff
JK + SIJ

[
DKr · ∂IDJr−

t · ∂Ir
‖∂sr‖

DKr · ∂sDJr
]
, (4.11)

where geff
IJ = Dr ·DJr. Then, multiplying by an inverse effective metric and renaming

the floating index, we have:

0 = ∂IS
IJ − ∂s(SIJ

t · ∂Ir
‖∂sr‖

) + SILgKJeff
[
DKr · ∂IDLr− t · ∂Ir

‖∂sr‖
DKr · ∂sDLr

]
. (4.12)

By analogy with the geometry of embeddings of sub-manifolds in Euclidean space,

which inherit a connection given by the Christoffel symbol Γlij = gklxk ·xij, we define

ΓJIL ≡ gKJeffDKr · ∂IDLr, (4.13)

however, it turns out to be more convenient to instead combine both terms above

into one modified Christoffel symbol

ΓJmod
IL = gKJeffDKr · ∂IDLr− gKJeff t · ∂Ir

‖∂sr‖
DKr · ∂sDLr. (4.14)

Putting this all together, we have that

0 = (∂I − ∂s
t · ∂Ir
‖∂sr‖

)SIJ + SILΓJmod
IL . (4.15)

It’s useful to note here that, for a generic vector V I ,

V I
;K ≡ (∂K − ∂s

t · ∂Kr

‖∂sr‖
)V I + ΓImod

KL V L (4.16)

81



is zero whenever K = s, and when s and u are orthogonal coordinates, so that

∂ur · t = 0 1:

V I
;u ≡ (∂u − ∂s

t · ∂ur
‖∂sr‖

)V I + ΓImod
uL V L = ∂uV

I + ΓIuLV
I . (4.17)

In this sense, the “extra” terms with s derivatives are, again, corrections for the

possible non-integrability of the tangent field, t.

We can address the bending elasticity similarly. By rewriting ∂st = −bKDKr, we

can rewrite Eq. (3.34) as:

EL⊥Ibend = K33

[
− bKgIK(2

∂st · ∂st
|∂sr|3

− 2∂s
∂2
sr · t
|∂sr|4

) + 5(gIK∂sb
K + bKΓIsK)

∂2
sr · t
|∂sr|4

− (gIK∂
2
sb
K + 2∂sb

KΓIsK + bK∂sΓIsK)
1

|∂sr|3
]
. (4.18)

Multiplying by an inverse metric (for comparison to columnar elastic bits) gives us:

ELJ⊥bend = K33

[
− bJ(2

∂st · ∂st
‖∂sr‖3

− 2∂s
∂2
sr · t
‖∂sr‖4

) + 5(∂sb
J + bKΓJsK)

∂2
sr · t
‖∂sr‖4

− (∂2
sb
J + 2∂sb

KΓJsK + bKgIJ∂sΓIsK − bKΓLsKΓL J
s )

1

‖∂sr‖3

]
. (4.19)

4.2.2 Linear components of the Euler-Lagrange equations

Taking as our displacement field Eq. (4.6), we now proceed to find, up to linear

order, the various components of the Euler-Lagrange equations. We’ll suppress the

formal parameter ε in what follows in the interest of clarity, and instead indicate the

1We can find coordinates s, u, and v, such that this is true when t · (∇× t) = 0, which is exactly
the condition that there be a family of surfaces with t as the normal vector, so this makes a certain
amount of sense.
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order of the terms by a parenthetical superscript, so that M = M (0) + εM (1) + · · · ,

etc. Of principle interest is the strain tensor, given by:

ε(0) = 1
2

f ′(ρ)2 − 1 0

0 f(ρ)2

1+Ω2f(ρ)2
− ρ2

 , (4.20)

and

ε(1)
ρρ = f ′(ρ)∂ρδρ̃ (4.21)

ε
(1)
ρφ = 1

2
f ′(ρ)∂φδρ̃+ 1

2

f(ρ)2∂ρδφ̃− f ′(ρ)Ωf(ρ)2∂sδρ̃

1 + Ω2f(ρ)2

ε
(1)
φφ = f(ρ)

[δρ̃− Ω2κ0f(ρ)4 cos (φ̃) + (1 + Ω2f(ρ)2)f(ρ)∂φδφ̃− Ωf(ρ)3∂sδφ̃

1 + Ω2f(ρ)2

]
.

The stress tensor is then just linearly related to the strain tensor:

S =

(λ+ 2µ)ερρ + λ
ρ2
εφφ 2 µ

ρ2
ερφ

2 µ
ρ2
ερφ

λ
ρ2
ερρ + (λ+2µ)

ρ2
εφφ.

 (4.22)

From here, the other contributions to the Euler-Lagrange equations we need are

just the convective flow tensor, h, the modified Christoffel symbols, Γmod, and the

corrections for integrability, tI = t · ∂Ir
‖∂sr‖ . The convective flow tensor vanishes as

ε→ 0, so at linear order here we have:

h(1)
ρρ = 2

f ′(ρ)∂s∂ρδρ̃√
1 + Ω2f(ρ)2

(4.23)

h
(1)
ρφ =

f(ρ)2∂s∂ρδφ̃+ f ′(ρ)(1 + Ω2f(ρ)2)∂s∂φδρ̃− Ωf(ρ)2f ′(ρ)∂2
sδρ̃

(1 + Ω2f(ρ)2)3/2
(4.24)

h
(1)
φφ = 2

Ω3κ0f(ρ)5 + f(ρ)∂sδρ̃+ f(ρ)2(1 + Ω2f(ρ)2)∂s∂φδφ̃− Ωf(ρ)3∂2
sδφ̃

(1 + Ω2f(ρ)2)5/2
(4.25)
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For tI , without further ado, we have:

t
(0)
I =


1

0

Ωf(ρ)2

1+Ω2f(ρ)2

 , (4.26)

and

t(1)
s = 0, (4.27)

t(1)
ρ = ∂ρδs̃+

Ωf(ρ)2∂ρδφ̃+ f ′(ρ)∂sδρ̃

1 + Ω2f(ρ)2

t
(1)
φ = ∂φδs̃+

Ωf(ρ)2∂φδφ̃− Ωf(ρ)2∂sδs̃

1 + Ω2f(ρ)2

+
2Ωf(ρ)δρ̃+ f(ρ)2(1− Ω2f(ρ)2)∂sδφ̃+ 2Ωκ0f(ρ)3 cos (φ̃)

(1 + Ω2f(ρ)2)2
. (4.28)

The last to be calculated are the modified Christoffel symbols, which are a bit of a

pain, so it’ll pay to think some more about which we need: We’ll want all of these

as ε→ 0, but at O(ε), we can use that Sρφ(0) = 0, so we only need ΓJmod
ρρ and ΓImod

φφ .

With ε = 0, we find:

Γρmod(0)
ρρ =

f ′′(ρ)

f ′(ρ)

Γ
ρmod(0)
φφ = − f(ρ)

(1 + Ω2f(ρ)2)2f ′(ρ)
(4.29)

Γ
φmod(0)
φρ =

f ′(ρ)

f(ρ)(1 + Ω2f(ρ)2)

Γ
φmod(0)
ρφ =

f ′(ρ)

f(ρ)(1 + Ω2f(ρ)2)
,

and all others vanishing. Then, at linear order in ε, (which we’re going to suppress

here) we find that
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Γρmod(1)
ρρ =

−f ′′(ρ)∂ρδρ̃+ f ′(ρ)∂2
ρδρ̃

f ′(ρ)2

Γ
ρmod(1)
φφ =

∂2
φδρ̃

f ′(ρ)
− 2Ωf(ρ)2∂s∂φδρ̃

f ′(ρ)(1 + Ω2f(ρ)2)
+
f(ρ)∂ρδρ̃− 2f(ρ)f ′(ρ)∂φδφ̃

f ′(ρ)2(1 + Ω2f(ρ)2)2
(4.30)

+
(−1 + 3Ω2f(ρ)2)δρ̃+ 4Ωf(ρ)3∂sδφ̃+ Ω2κ0f(ρ)4 cos (φ̃)(5 + Ω2f(ρ)2)

(1 + Ω2f(ρ)2)3f ′(ρ)

and

Γφmod(1)
ρρ = ∂2

ρδφ̃−
f ′′(ρ)∂ρδφ̃

f ′(ρ)
+

2f ′(ρ)∂ρδφ̃

f(ρ)(1 + Ω2f(ρ)2)
− 2Ωf ′(ρ)2∂sδρ̃

f(ρ)(1 + Ω2f(ρ)2)
(4.31)

Γ
φmod(1)
φφ = ∂2

φδφ̃− 2
Ωf(ρ)3∂s∂φδφ̃− ∂φδρ̃
f(ρ)(1 + Ω2f(ρ)2)

+
f(ρ)∂ρδφ̃− f ′(ρ)Ωf(ρ)∂sδρ̃+ Ω2κ0f(ρ)3f ′(ρ) sin (φ̃)

f ′(ρ)(1 + Ω2f(ρ)2)2
. (4.32)

While it can be difficult to appreciate from down in the weeds, we can see some

remarkable features of the preceding linear terms. Notably, we have here a linear

force proportional to the curvature, κ0, of the central curve, even in the absence of

bending elasticity for the filaments themselves. This is in contrast to the developable

domains, which can bend freely without penalty from the cross-sectional elasticity.

We expect that this effective contribution to the bending stiffness becomes especially

important for hierarchical, macroscopic assemblies of much smaller fibers, like yarns,

ropes, and cables, where the thickness of the bundle is much larger than thickness of

the constituent filaments.

We can now proceed to find the column bending contributions to the Euler-

Lagrange equations. The only term which survives as ε→ 0 is the radial component:

EL
ρ(0)
bend = K33Ω4ρf(ρ)

1− Ω2f(ρ)2

f ′(ρ)(1 + Ω2f(ρ)2)3
. (4.33)

At linear order, we get more exciting contributions. Parallel to t, we have:
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EL
‖(1)
bend = − K33Ω2f(ρ)

(1 + Ω2f(ρ)2)7/2

[
(1 + Ω2f(ρ)2)∂3

sδρ̃ (4.34)

− (1− Ω2f(ρ)2)(Ωκ0 sin (̃φ)− Ω2∂sδρ̃)− 2Ωf(ρ)∂2
sδφ̃
]
,

While perpendicular to t, we have

EL
ρ(1)
bend =

K33ρf(ρ)

(1 + Ω2f(ρ)2)4f ′(ρ)2

[
(1 + Ω2f(ρ)2)2f ′(ρ)∂4

sδρ̃ (4.35)

− Ω2(6 + Ω2f(ρ)2 − 5Ω4f(ρ)4)f ′(ρ)∂2
sδρ̃+ Ω4(1− 8Ω2f(ρ)2 + 3Ω4f(ρ)4)f ′(ρ)δρ̃

− Ω4f(ρ)(1− Ω4f(ρ)4)∂ρδρ̃− Ωf(ρ)(4 + 3Ω2f(ρ)2 − Ω4f(ρ)4)f ′(ρ)∂3
sδφ̃

+ 4Ω3f(ρ)(1− 2Ω2f(ρ)2)f ′(ρ)∂sδφ̃+ Ω2f(ρ)(1 + Ω2f(ρ)2)2f ′(ρ)∂3
sδs̃

+ 3Ω4κ0f(ρ)2(5 + Ω2f(ρ)2)f ′(ρ) cos (φ̃)
]

and

EL
φ(1)
bend =

K33ρ

f(ρ)f ′(ρ)(1 + Ω2f(ρ)2)3

[
f(ρ)f ′(ρ)(1 + Ω2f(ρ)2)∂4

sδφ̃ (4.36)

− 2Ω2f(ρ)f ′(ρ)(3− 2Ω2f(ρ)2)∂2
sδφ̃− Ω4f(ρ)2(1− Ω2f(ρ)2)∂ρδφ̃

+ 4Ωf ′(ρ)(1 + Ω2f(ρ)2)∂3
sδρ̃− 4Ω3f ′(ρ)(1− 2Ω2f(ρ)2)∂sδρ̃

+ 2Ω3f(ρ)f ′(ρ)(1 + Ω2f(ρ)2)∂2
sδs̃+ 10Ω4κ0f(ρ)2f ′(ρ) sin (φ̃)

]
.

4.2.3 Boundary conditions

The same linearization procedure also provides boundary conditions for the O(ε)

force balance equations. Recall from Ch. 3 that force balance on the boundary is

given by

N̂I

[
dV SIJ

]
DJr− N̂K T̂

K
[
dV SIJ

t · ∂Ir
|∂sr|

]
DJr = 0. (4.37)

Thinking for a half second, choosing N̂ = ρ and noting that ρ and s are orthogonal

in the reference coordinates, we have:

SρJDJr = 0. (4.38)
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Doing our usual trick, and adding in the possibility of a pressure P I acting normal

to the boundary here gives us:

P I = SρJDJr ·DIr

P I = SρJgeff
IJg

IJeff = SρI . (4.39)

which is nice and straightforward. At linear order, this is then just the condition that

P J(1) = SρJ(1), and so when P J(1) = 0, Sρρ(1) = Sρφ(1) = 0. In terms of our δxi, this

is then

(λ+ 2µ)f ′(ρ)∂ρδρ̃ = − λ
ρ2
f(ρ)

[δρ̃− Ω2κ0f(ρ)4 cos (φ̃) + (1 + Ω2f(ρ)2)f(ρ)∂φδφ̃− Ωf(ρ)3∂sδφ̃

1 + Ω2f(ρ)2

]
(4.40)

µ

ρ2

f(ρ)2∂ρδφ̃

1 + Ω2f(ρ)2
= − µ

ρ2

[
f ′(ρ)∂φδρ̃+

f ′(ρ)Ωf(ρ)2∂sδρ̃

1 + Ω2f(ρ)2

]
(4.41)

At the inner boundary, ρ = 0, we have also assumed that the central curve is param-

eterized by r0, and so we have that

δρ̃|ρ=0 = 0 (4.42)

δφ̃|ρ=0 = 0 (4.43)

δs̃|ρ=0 = 0. (4.44)

4.3 Fourier expansion for perturbative fields

If we look a little more carefully about the structure of these differential equations,

we notice that there’s some nice groupings of terms here, if we collect the components

of the Euler-Lagrange equations: since

ELρ(1) =
[
(∂I − ∂stI)SIρ + SIJΓρmod

IJ

](1)
(4.45)

ELφ(1) =
[
(∂I − ∂stI)SIφ + SIJΓφmod

IJ

](1)
, (4.46)
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and so ELρ(1) contains only even derivatives of s and φ of δρ̃, and odd derivatives

of s and φ of δφ̃ and δs̃, and a source term, proportional to κ0 cos (φ̃), where ELφ(1)

contains only odd derivatives of s and φ of δρ̃, and even derivatives of s and φ of

δφ̃ and δs̃, and a source term, proportional to κ0 sin (φ̃). This inspires us to make

a simplifying assumption: that the lowest energy solutions in δρ̃, δφ̃, and δs̃ include

only the first Fourier mode in φ̃.

We can then find solutions of the form

δρ̃ = δρ̃(ρ) cos (φ̃)

δφ̃ = δφ̃(ρ) sin (φ̃) (4.47)

δs̃ = δs̃(ρ) sin (φ̃),

so that what were initially partial differential equations are now a system of ordinary

differential equations. While we fail to make much progress in using these to find

direct solutions in the rest of this chapter, it’s worth noting that this already tells us

a great deal about the linear response of twisted-toroidal bundles. Since it is implicit,

as defined in Eq. (4.8), that φ = 0 points along the normal vector, N̂0 to the central

curve, we see that ‖δρ̃‖ is largest in the plane of the central curve, while ‖δφ̃‖ and

‖δs̃‖, which move transversely to the radial coordinate, are largest along the top and

bottom of the torus, suggesting a deformation field which points principally in the

normal direction.

Substituting this ansatz into our Euler-Lagrange equations, we find the elastic

contributions are:
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EL‖(1) = −2Ωf ′(ρ) sin (φ̃)√
1 + Ω2f(ρ)2

Sρρ(0)δρ̃′ (4.48)

+
2Ωf(ρ) sin (φ̃)

(1 + Ω2f(ρ)2)5/2
Sφφ(0)

[
Ω2κ0f(ρ)4 − δρ̃− f(ρ)δφ̃

]
ELρ(1) = − cos (φ̃)

{
A(ρ)δρ̃′′ +B(ρ)δρ̃′ + C(ρ)δρ̃ (4.49)

+D(ρ)δφ̃′ + E(ρ)δφ̃+ F (ρ)δs̃′ + (ρ)κ0

}
ELφ(1) = − sin (φ̃)

{
A(ρ)δρ̃′ + B(ρ)δρ̃ (4.50)

+ C(ρ)δφ̃′′ +D(ρ)δφ̃′ + E(ρ)δφ̃+ F(ρ)δs̃+ (ρ)κ0

}
,

where we can calculate all of these coefficients explicitly in terms of theO(ε0) solution.

First, we find

A(ρ) = (λ+ 2µ)ρf ′(ρ) + Sρρ(0) ρ

f ′(ρ)
(4.51)

B(ρ) = λ
f(ρ)

ρ(1 + Ω2f(ρ)2)2
+ (λ+ 2µ)(f ′(ρ) + ρf ′′(ρ)) + (λ+ 2µ)ρf ′′(ρ) (4.52)

− λf(ρ)

ρ(1 + Ω2f(ρ)2)2
− Sρρ(0)ρf

′′(ρ)

f ′(ρ)2
+ Sφφ(0) ρf(ρ)

f ′(ρ)2(1 + Ω2f(ρ)2)2

C(ρ) = −λf(ρ)(1 + Ω2f(ρ)2) + ρ(µ− λ)f ′(ρ) + Ω2ρf(ρ)f ′(ρ)(3λ+ µ)

ρ2(1 + Ω2f(ρ)2)3

+
λf(ρ)f ′′(ρ)

ρf ′(ρ)(1 + Ω2f(ρ)2)2
− (λ+ 2µ)f(ρ)2

ρ3f ′(ρ)(1 + Ω2f(ρ)2)4
(4.53)

− Sρρ(0) ρΩ2f ′(ρ)

1 + Ω2f(ρ)2
− Sφφ(0) 2ρ(1− Ω2f(ρ)2)

f ′(ρ)(1 + Ω2f(ρ)2)3
,

D(ρ) =
(λ+ µ)f(ρ)2

ρ(1 + Ω2f(ρ)2)2
+ Sρρ(0) Ω2ρf(ρ)2

1 + Ω2f(ρ)2
(4.54)

E(ρ) = −λf(ρ)(f(ρ)(1 + Ω2f(ρ)2)− 2ρf ′(ρ)(1− Ω2f(ρ)2))

ρ2(1 + Ω2f(ρ)2)3
+

λf(ρ)2f ′′(ρ)

ρf ′(ρ)(1 + Ω2f(ρ)2)2

− (λ+ 2µ)f(ρ)3

ρ3f ′(ρ)(1 + Ω2f(ρ)2)4
− Sφφ(0) 2ρf(ρ)(1− Ω2f(ρ)2)

f ′(ρ)(1 + Ω2f(ρ)2)3
(4.55)

F (ρ) = ΩρSρρ(0) (4.56)
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(ρ) =
λΩ2f(ρ)4[f(ρ)(1 + Ω2f(ρ)2)− ρf ′(ρ)(5 + Ω2f(ρ)2)]

ρ2(1 + Ω2f(ρ)2)3
(4.57)

− λΩ2f(ρ)5f ′′(ρ)

ρf ′(ρ)(1 + Ω2f(ρ)2)2
+

(λ+ 2µ)Ω2f(ρ)6

ρ3f ′(ρ)(1 + Ω2f(ρ)2)4
+ ρSφφ(0) Ω2f(ρ)4(5 + Ω2f(ρ)2)

f ′(ρ)(1 + Ω2f(ρ)2)3

A(ρ) = − (λ+ µ)f ′(ρ)

ρ(1 + Ω2f(ρ)2)
(4.58)

B(ρ) = −f(ρ)(λ+ 2µ)− 2µΩ2ρ2f(ρ)f ′(ρ)2(1 + Ω2f(ρ)2)

ρ3(1 + Ω2f(ρ)2)3
(4.59)

− µ[−f ′(ρ) + ρf ′′(ρ)]

ρ2(1 + Ω2f(ρ)2
− µf ′(ρ)2

ρf(ρ)(1 + Ω2f(ρ)2)2
+ 2Sρρ(0) Ω2ρf ′(ρ)

f(ρ)(1 + Ω2f(ρ)2)

− 2Sφφ(0) ρ

f(ρ)(1 + Ω2f(ρ)2)2
− 2Sφφ(0) Ω2ρf(ρ)

(1 + Ω2f(ρ)2)2

C(ρ) =
µf(ρ)2

ρ(1 + Ω2f(ρ)2)
+ ρSρρ(0) (4.60)

D(ρ) = −µf(ρ)[f(ρ)(1 + Ω2f(ρ)2)− 2ρf ′(ρ)]

ρ(1 + Ω2f(ρ)2)2
+ 2

µf ′(ρ)f(ρ)

ρ(1 + Ω2f(ρ)2)2

+ ρSρρ(0)
[ 2f ′(ρ)

f(ρ)(1 + Ω2f(ρ)2)
− f ′′(ρ)

f ′(ρ)

]
+ ρSφφ(0) f(ρ)

f ′(ρ)(1 + Ω2f(ρ)2)2
(4.61)

E(ρ) = − (λ+ 2µ)f(ρ)2

ρ3(1 + Ω2f(ρ)2)3
− Sφφ(0) ρ

(1 + Ω2f(ρ)2)2
− Sφφ(0) 2Ω2ρf(ρ)2

(1 + Ω2f(ρ)2)2
(4.62)

F(ρ) = −Sφφ(0) Ωρ

1 + Ω2f(ρ)2
(4.63)

(ρ) =
(λ+ 2µ)Ω2f(ρ)5

ρ3(1 + Ω2f(ρ)2)3
+ ρSφφ(0) Ω2f(ρ)3

(1 + Ω2f(ρ)2)2
(4.64)

− 2ρSφφ(0) Ω2f(ρ)3

(1 + Ω2f(ρ)2)2
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and the bending contributions are

EL
‖(1)
bend = −K33Ω3f(ρ) sin (φ̃)

(1 + Ω2f(ρ)2)7/2

[
(−1 + Ω2f(ρ)2)κ0 + 2Ω2δρ̃+ 2Ω2f(ρ)δφ̃

]
(4.65)

EL
ρ(1)
bend = − K33Ω4ρ cos (φ̃)

(1 + Ω2f(ρ)2)4f ′(ρ)2

[
f(ρ)(1− Ω4f(ρ)4)δρ̃′ (4.66)

− f ′(ρ)(8− 5Ω2f(ρ)2 − Ω4f(ρ)4)(δρ̃+ f(ρ)δφ̃)

+ Ωf(ρ)f ′(ρ)(1 + Ω2f(ρ)2)2δs̃− f(ρ)2f ′(ρ)(15 + 3Ω2f(ρ)2)κ0

]
EL

φ(1)
bend = − K33Ω4ρ sin (φ̃)

f(ρ)f ′(ρ)(1 + Ω2f(ρ)2)3

[
(f(ρ)2 − Ω2f(ρ)4)δφ̃′ (4.67)

− f(ρ)f ′(ρ)(7− 3Ω2f(ρ)2)δφ̃− 4f ′(ρ)(2− Ω2f(ρ)2)δρ̃

+ 2Ωf(ρ)f ′(ρ)(1 + Ω2f(ρ)2)δs̃− 10f(ρ)2f ′(ρ)κ0.

It’s worth noting that the bending contributions don’t meaningfully change the struc-

ture of the resulting ordinary differential equation (ODE), as they all contain lower

order derivatives than accompanying columnar-elasticity driven contributions.

Now that we’ve worked out explicitly the linear force-balance equations for twisted-

toroidal filament bundles, we can start to look at the structure of the resulting ODEs,

and try to find solutions, either numerically, or in a series expansion around either

boundary. First, however, we have some roadblocks which must be addressed.

4.4 Singular boundaries and bulk behavior

Now that we have reduced this problem to a system of linear ODEs, we would

ideally try to take advantage of the numerous robust numerical algorithms for solving

linear boundary value problems. Very quickly along the way, however, we run into

some issues with singularities on the boundaries, and divergent behavior in the so-

lutions. So, in order to find solutions with bounded and differentiable displacement

fields, which we both expect and need in order to have a hope of describing experi-

91



mental systems, we have to pay pretty close attention to the behavior of the solutions

of our differential equations at the singular boundaries.

If our bundles have force free boundary conditions and are (roughly) cylindrically

symmetric, we can go ahead and learn some things about the behavior of our pertur-

bative solutions on the outer boundary. Force free boundary conditions here are, as

above, that SρJ = 0, with the additional condition that δx̃i|ρ=0 = 0. There’s nothing

particularly unusual here, and this is basically identical to the sheet elasticity case.

4.4.1 Inner boundary

At the inner boundary, we have a singularity that arises because we dared to work

in cylindrical coordinates. It’s not really a problem if we’re trying to solve an initial

value problem starting at ρ = 0, but we run into some issues with the stability of

shooting methods if we don’t address it directly. In order to examine the behavior of

the perturbative fields (δs̃, δρ̃, and δφ̃) near ρ = 0, both as an input into a possible

numerical solution and to gain some intuition for the way that curvature couples to

the various elastic modes.

Inspection of the ρ → 0 behavior of the ODEs presented in Section 4.3 suggests

that the singularities can be removed when δρ̃ ∼ Ωk−1ρk, δφ̃, Ωδs̃ ∼ Ωk−1ρk−1,

basically because δφ̃ and δs̃ pick up a power of ρ from f(ρ) in the displacement field

(see Eq. (4.7)). Looking for solutions to the homogeneous (κ0 terms vanish) case then

demands that the resultant matrix of coefficients has a non-trivial kernel, and so the

determinant of


kA + B C D

k(k − 1)A+ kB + C (k − 1)D + E (k − 1)F +G

kA+ B (k − 1)(k − 2)C + (k − 1)D + E F

 |ρ=0

(4.68)
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should vanish, where A is the coefficient of δρ̃′, B the coefficient of δρ̃, C the coefficient

of δφ̃, and D the coefficient of δs̃ in the sum of Eqs. (4.49) and (4.66). Mathematica,

thankfully, can do this for us, and we find here that there are three solutions: k = 0,

with multiplicity 2, and k = ±2. Since the boundary conditions tell us that δx̃i|ρ=0,

this means that we expect a scaling like δρ̃ ∼ Ωρ2, δφ̃, Ωδs̃ ∼ Ωρ. We can see

why this is the case by looking at just the tangent component of the Euler-Lagrange

equations2. As ρ → 0, we can take δρ̃, δφ̃, and δs̃ → 0, by the inner boundary

condition, and the κ0 term goes to zero of its own accord. What’s left is:

− 2Ωf ′(ρ) sin (φ̃)√
1 + Ω2f(ρ)2

Sρρ(0)δρ̃′, (4.69)

but neither f ′(ρ) nor Sρρ(0) vanish as ρ→ 0, so we’re forced to take δρ̃′|ρ=0 = 0.

We can push this power series solution to higher order, using the series solution

to the helical case in Eq. (3.44) and with

δρ̃ = b2Ωρ2 + b3Ω2ρ3 + b4Ω3ρ4 + · · ·

δφ̃ = c1Ωρ+ c2Ω2ρ2 + c3Ω3ρ3 + · · · (4.70)

δs̃ = d1ρ+ d2Ωρ2 + d3Ω2ρ3 + · · · .

Doing so, we find at lowest order that:

c1 = c1 (4.71)

d1 = −8c1(a2
1λ− λ+ 2a2

1µ)

3(a2
1 − 1)(λ+ µ)

+
K33Ωκ0(7a2

1µ− 2µ+ 5a2
1λ− 2λ

12(λ+ µ)(a2
1 − 1)

b2 = −a1c1

3
+

K33Ωκ0

12(λ+ µ)(a2
1 − 1)

,

2This will become something of a theme in this chapter, for reasons that I do not quite understand
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where a1 = f ′(0). Notably, the lowest order coupling between the curvature and twist

is mediated by the bending elasticity. We then find that:

c2 = 0 (4.72)

d2 = 0

b3 = 0,

which is nice and straightforward. As including bending-driven terms at higher orders

is not particularly informative, and at the next highest order in ρ, things begin to get

a bit hairy, we’ll reproduce here just the K33 → 0 contributions, for which this is the

lowest order contribution:

c3 =
1

288(a2
1 − 1)

[
(a2

1 − 1)λ+ (2a2
1 − 1)µ

][
(2a2

1 − 1)λ+ (3a2
1 − 1)µ

]{
c1

[
60λ2 + 120λµ+ 60µ2

]
a2

1 + κ0
Ω

[
117λ2 + 234λµ+ 117µ2

]
a3

1 (4.73)

− c1

[
234λ2 + 448λµ+ 214µ2

]
a4

1 − κ0
Ω

[
468λ2 + 1125λµ+ 657µ2

]
a5

1

+ c1

[
228λ2 + 702λµ+ 334µ2

]
a6

1 + κ0
Ω

[
585λ2 + 1620λµ+ 1107µ2

]
a7

1

+ c1

[
114λ2 + 374λµ+ 312µ2

]
a8

1 + κ0
Ω

[
234λ2 + 729λµ+ 567µ2

]
a9

1

}
, (4.74)

and

d3 =
1

12(a2
1 − 1)2(λ+ µ)

[
(2a2

1 − 1)λ+ (3a2
1 − 1)µ

]{
− c1

[
28λ2 + 56λµ+ 28µ2

]
a2

1 − κ0
Ω

[
39λ2 + 78λµ+ 39µ2

]
a3

1 (4.75)

+ c1

[
130λ2 + 344λµ+ 214µ2

]
a4

1 + κ0
Ω

[
156λ2 + 387λµ+ 231µ2

]
a5

1

− c1

[
176λ2 + 570λµ+ 450µ2

]
a6

1 − κ0
Ω

[
195λ2 + 576λµ+ 417µ2

]
a7

1

+ c1

[
74λ2 + 294λµ+ 288µ2

]
a8

1 + κ0
Ω

[
78λ2 + 267λµ+ 225µ2

]
a9

1

}
,
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and

b4 =
1

288(a2
1 − 1)

[
(a2

1 − 1)λ+ (2a2
1 − 1)µ

][
(2a2

1 − 1)λ+ (3a2
1 − 1)µ

]{
− c1

[
84λ2 + 168λµ84µ2

]
a3

1 − κ0
Ω

[
81λ2 + 162λµ+ 81µ2

]
a4

1 (4.76)

+ c1

[
342λ2 + 824λµ+ 482µ2

]
a5

1 + κ0
Ω

[
324λ2 + 801λµ+ 477µ2

]
a6

1

− c1

[
432λ2 + 1314λµ+ 938µ2

]
a7

1 − κ0
Ω

[
405λ2 + 1188λµ+ 855µ2

]
a8

1

+ c1

[
174λ2 + 658λµ+ 624µ2

]
a9

1 + κ0
Ω

[
162λ2 + 549λµ+ 459µ2

]
a10

1

}
.

Principally, this serves to illustrate that coupling between curvature κ0 and the elas-

ticity, in the form of the Lamé parameters λ and µ, quickly begins to play an oversized

role in the behavior of twisted-toroidal bundles at larger radii.

4.4.2 Outer boundary

It turns out that there is also some singular behavior on the outer boundary.

Notably, our Euler-Lagrange equations we have:

0 = SIJhIJ (4.77)

0 = DIdV S
IJ −DsdV S

IJtI . (4.78)

So, at the free boundary, we have:

0 = SIJhIJ (4.79)

0 = ∂IS
IJ − ∂stISIJ + SIKΓmodJ

IK , (4.80)

all of which can be broken up into ρ and φ components, if we so please. The problem

here comes when the leading order derivative for any of our displacements has a SρJ

coefficient out front. And, since the δs̃ terms only show up in the tIs and Christoffel
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symbols, this is basically guaranteed for them, as well as the δρ̃ contribution from

hIJ , which has:

Sρρ(0)f ′(ρ)δρ̃′(ρ) = Sφφ(0) Ωf(ρ)

(1 + Ω2f(ρ)2)2

[
Ω2κ0f(ρ)4 − δρ̃− f(ρ)δφ̃

]
. (4.81)

So if we try and put this in normal form, we wind up dividing by Sρρ(0), which is zero

at the outer boundary, and so we have ourselves a Singularity. This is thankfully a

removable singularity, cause it goes to zero like (ρ/R − 1), which we can confirm by

doing a right quick series expansion in Mathematica which I’m not going to reproduce

here, but it does mean that we pretty quickly develop problems when we try to

integrate numerically. A quick sketch of a matrix analysis of the ODEs tells us that,

when all’s said and done, we have:

∂ρδs̃ ∝
1

(Sρρ(0))2

[
Aκ0 +B∂ρδρ̃+ C∂ρδφ̃+Dδρ̃+ Eδφ̃

]
(4.82)

as our scaling as ρ 7→ 1. This is fairly singular, and it should probably worry us that

it doesn’t change based on the power of the ρ derivative here.

On the inner boundary, we have another removable singularity at ρ = 0, but

this (after fixing some mistakes), is basically just the usual removable singularity in

cylindrical coordinates, and the Frobenius method gives us either a 1/ρ2 divergence

or going to zero as ρ2 for δρ̃, with δs̃ ∼ δφ̃ ∼ δρ̃/ρ near zero. Notably, this agrees

pretty well with what we see numerically (citation needed).

We can also give the Frobenius method a shot on the outer boundary, but, for

δρ̃ ∼ ρk, k ≥ 0, this fails to satisfy the boundary conditions. For k > 0, this is

basically because the differential equation is inhomogeneous, and for the t component

of the ODE, with δρ̃ ∼ a0x
k, and δφ̃ ∼ b0x

k and x = (ρ−R), we have that

[
Sρρ(0)f ′(ρ)

]′
R
ka0x

k = Sφφ(0)|R
Ωf(R)

(1 + Ω2f(R)2)2

[
Ω2κ0f(R)4−a0x

k−f(R)b0x
k
]
. (4.83)
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And, since limx→0 x
k = 0, this would give us Sφφ(0)|R Ωf(R)

(1+Ω2f(R)2)2
Ω2κ0f(R)4 = 0, which

is not true.

For k = 0, we have a little more work to do to show that this can’t satisfy our

boundary value problem. The leading (x0) term of a series expansion gives that:

Aδρ̃|x=0 +Bδφ̃|x=0 + Cκ0 = 0, (4.84)

providing a relationship between δρ̃|x=0 and δφ̃|x=0:

δρ̃|x=0 =
−8f(R)3(Ω2 − 1)µ(λ+ µ) + 2f(R)(−4µ(λ+ µ) +K33Ω4(λ+ 2µ))

8(1 + f(R)2(Ω2 − 1))µ(λ+ µ)− 2K33Ω4(λ+ 2µ)
δφ̃|x=0

+
8f(R)4Ω2µ(λ+ µ) + 8f(R)6Ω2(Ω2 − 1)µ(λ+ µ)

8(1 + f(R)2(Ω2 − 1))µ(λ+ µ)− 2K33Ω4(λ+ 2µ)
κ0

+
−K33Ω2(λ+ 2µ) + f(R)2K33Ω4(λ+ 2µ)

8(1 + f(R)2(Ω2 − 1))µ(λ+ µ)− 2K33Ω4(λ+ 2µ)
κ0, (4.85)

where here we’ve de-dimensionalized lengths by R for convenience, but can basically

put it back in by matching units. If we then plug this into the second order equation

along the t direction, and impose the boundary conditions on δρ̃′ and δφ̃′, we find

that we’re left with a non-zero term proportional to κ0.

For k < 0, we again run into problems with the boundary conditions, which have:

δφ̃′|R =
δρ(R)f ′(R)

f(R)2
(4.86)

δρ̃′|R =
λ(Ω2κ0f(R)5 − f(R)δρ̃(R)− f(R)2δφ̃(R))

R2(λ+ 2µ)(1 + Ω2f(R)2)2f ′(R)
. (4.87)

All of these coefficients are just numbers, so we wind up with two conditions that

are basically xk−1 = Axk, and since this should still be true multiplying through by

x−k, we get that 0 = A, which is not true, and so there are no removably singular

solutions to the boundary value problem.
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This is, fundamentally, a problem introduced by the inhomogeneous nature of

the differential equations, and is relieved by taking κ0 to zero. Unfortunately, this

fails to address exactly the problem we are interested in, which is the coupling of

the perturbative displacements to the bending of the central curve through the non-

equidistance of the filament packing.

4.5 Discussion and future directions

The singularities in the linear force-balance equations described in the section

above, unfortunately, make it difficult to present any concrete results about the struc-

ture of twisted toroidal bundles, which is ultimately the goal of this chapter. To try

and get around this problem, we could instead introduce a pressure at the boundary

in the helical bundle case, so that Sρρ(0)|ρ=R = P . While there are possible physical

sources for such a pressure, including the possibility of surface energies and surface

stresses [131], both implementing such approaches in the differential equations above

and understanding the impact they may have on the helical bundles discussed in Ch. 3

remain works in progress.

4.5.1 Almost equidistant ansatzes, revisited

Barring a general solution to the linear force-balance equations, however, perhaps

it’s possible to at least find a stable configuration in one of the “almost equidistant”

families introduced in Ch.. 2. It is easy to see that, in the general case, this impossible

by considering again the tangent component of the Euler-Lagrange equations. Since

(in the absence of bending, which covers a multitude of sins), SIJhIJ = 0, and, since

non-equidistant configurations like twisted-tori are neither equidistant (hIJ = 0) nor

isometric (SIJ = 0), in the absence of specific symmetries, in general we expect a mix

of both splay and biaxial splay in the bulk, in proportion determined by the Poisson

ratio.

98



In the low curvature limit, we can see explicitly that neither are in mechanical

equilibrium. First, note that both the trace free and determinant free ansatzes fall

into the broader class of perturbative fields described in Section 4.3, with δρ̃ = 0 for

both, and

δφ̃ = −Ω2κ0f(ρ)3 sin (φ̃) (4.88)

for the splay-free case, and

δφ̃ = 0 (4.89)

for the determinant-free case. It is now easy to see that force balance fails in the

determinant free bundle by considering the tangent component of the Euler-Lagrange

equations, which is now equal to:

2Ωf(ρ) sin (φ̃)

(1 + Ω2f(ρ)2)5/2
Sφφ(0)Ω2κ0f(ρ)4, (4.90)

which fails to be zero. For splay free bundles, the situation is a little less obvious, but

no less damning. Tangent force balance is satisfied, but substituting for δφ̃ in the ρ

and φ components of the Euler-Lagrange equations yields two incompatible equations

for δs̃.

Since neither texture is in elastic equilibrium, we can in principle compare the

two by evaluating their elastic energy directly. Taking exactly the form for the tan-

gent field given in Ch. 2, we have left to solve for a radial deformation field, f(ρ),

as in the helical bundle case. Substituting this whole-cloth into a Hookean energy

density functional, we once again expand in powers of the central curve’s curvature,

κ0. Integrating over φ̃, the Eulerian angular coordinate, provides a relatively simple

variational problem in f(ρ), with corrections to the helical field at O(ε2). Integrating

over the energy functional for both the det(h) = 0 and tr(h) = 0 ansatzes then allows

us to compare them directly for a range of twists and curvatures. Preliminary results
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Figure 4.2: The pressure profile for a determinant free bundle with ΩR = 1, κ0R =
.02, and K33 = 0. Curvature induced modifications to the radial displacement field
reduce the overall energy, while frustrated terms arising from twist-curvature coupling
generate a φ̃ dependent stress profile in the cross-section.

in this direction are shown in Fig. 4.2, which shows a pressure profile derived from

the determinant free ansatz.

While we have shown here that the boundary value problem develops nasty sin-

gularities in the small curvature expansion around the helical bundles, we remain

haunted by the prospect that these singularities may be phantoms, like many other

specters which arise in Frenet-Serret frames with vanishing curvatures. To further

explore this possibility, we can consider several slightly different perturbations, in-

cluding expansion in twist around the isometric developable domain centered on a

circle, and overtwisting an off-center helical bundle. Because twist appears only at

second order in the developable domain case, however, and off-center helical domains

lack the radial symmetry that makes solutions to the centered ones readily accessible,

this too remains in its infancy.

There are also interesting questions raised by the non-manifold metric geometry

we introduced in Ch. 3, and used in this chapter to describe the geometry of non-

equidistant filament bundles. In this chapter, we derived one possible route to the

force balance equations for twisted-toroidal filament bundles, based on linear pertur-
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bations of the coordinates in the helical bundle case outlined above. In thin sheets,

however, another, perhaps more common, approach would be to explicitly impose the

geometric constraints on curvatures encoded in the Gauss-Codazzi-Mainardi equa-

tions as Lagrange multipliers in the variational problem [30]. While we hint in this

following chapter at some possible generalizations for the non-integrable case, the

constrained optimization problem solved by the writing of this dissertation has not

yet allowed a complete exploration of the fundamental relationships between the “ex-

trinsic” geometry encoded by the convective flow tensor, and the “intrinsic” geometry

encoded by the derivatives in Eq. (4.16). We again note that, unlike surfaces, filament

bundles can develop Gaussian curvature in the cross-section while remaining equidis-

tant, by twisting without splay or biaxial splay [1]. We therefore anticipate that these

geometric identities can be expressed in terms of twist-dependent corrections to the

Gauss-Codazzi-Mainardi equations.
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CHAPTER 5

OUTLOOK AND CONCLUSIONS

And for the first time in my life I think
that happiness may not be having all
the answers. . . it may be having time and
space to wonder.

EMILIE: La Marquise Du Châtelet
Defends Her Life Tonight

Lauren Gunderson

Frustrated filaments continue to fascinate and flummox, but we hope that the

perspective presented above, focusing on the connections between stretching, sym-

metries, and shape, clarifies more than it confuses. A better understanding of the

geometry of filament bundles, including recognition of the important role played by

constant spacing in frustrating filament, follows from Ch. 2. While the role of geomet-

ric frustration in shaping materials’ responses has long been recognized, we have now

shown the importance of the previously unrecognized longitudinal frustration, which,

notably, does not obviously fit into existing paradigms dependent on curvature [10],

local misfit [19], and global topological constraints [132].

These geometric constraints on constant spacing also expose the weaknesses of

prior two-dimensional treatments of the elasticity of columnar liquid-crystals. In

Ch. 3, we explore this breakdown, and consider the geometric nonlinearities necessary

to account for non-equidistant behavior. Perhaps most importantly, we have made

substantial progress towards understanding the role of geometric nonlinearities in

non-equidistant filament bundles by introducing a gauge-theoretic perspective on the

elasticity theory for frustrated filament bundles in Ch. 3. With a tool fit for the
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task, we then revisit the behavior of helical filament bundles, extending our analysis

beyond the small twist limit, and incorporating the impact of bending elasticity.

We then once again turn our attention to non-equidistant configurations, in Ch. 4,

deriving the force balance equations for twisted-toroidal filament bundles by perturb-

ing around the helical state. While emergent singularities in the Euler-Lagrange

equations interrupt our search for solutions, we gain important intuition about the

behavior of small-curvature deformations. Not to be defeated, we also propose several

possible workarounds to the problem of these singularities, and note some remark-

able features of the non-manifold metric geometry which become apparent in the

force-balance equations.

The theory of filament bundles looks very different than it did when we started,

and we leave the field in possession of the elastic energy and geometrical framework

necessary to study arbitrary fields of fibers. Unfortunately, non-linear partial differ-

ential equations will always be difficult to solve, but our hope is that we’ve made

it so that the first step in future problems, from the specific shapes of slender bun-

dles under loading to the instabilities that arise from untwisting—write down the

energy—is now evident. The prospect of finding computational methods adapted to

the elasticity of filament bundles also remains a challenge. While mesh-based partial

differential equation solvers such as finite element methods, can be implemented for

surfaces and volumes, there is not, to our knowledge, an obvious way to generalize

the language of discrete differential geometry to the “continuous family of planes”

setting of filament elasticity.

There are specific technical questions to be answered here as well. Beyond the

obvious “find an equilibrium, twisted, non-equidistant configuration,” it remains in-

teresting to consider strictly minimally non-equidistant configurations under given

constraints. Analogous to the relationship of fluid membranes to thin sheets, the

minimizers of this “filament Willmore functional” (or, rather, of the Frank-Oseen
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free energy when K22 − K24 = K33 = 0), may not have obvious, direct material

relevance, but could provide insight into close packings of slender filaments of very

stiff materials. We also encourage further consideration of filament assemblies with

programmed uniform negative metric curvature, as yet another opportunity to probe

the difference between the (relatively symmetric) response of thin-elastic sheets and

the (highly asymmetric) response of filaments [47]. Further questions are raised by ef-

fective renormalization of the bending elasticity by internal twist degrees of freedom,

which suggests that a suitable slender-bundle limit could provide a generic corre-

spondence between the microscopic twist of a hierarchical filament assembly and its

macroscopic elastic moduli.

Of course, there are applications beyond filaments as well. The gauge-theoretic

perspective on filament elasticity presented in Ch. 3 generalizes naturally to other

soft-elastic liquid crystals, but there is reason to believe it can be extended to other

materials with continuous zero modes, like conformal mechanical metamaterials [107].

Here, the relevant symmetries are conformal maps, rather than reptations, but the

idea is the same: by projecting out the zero modes from the deformation gradient

in a way compatible with the metric of the embedding space, we hope that we can

derive a strain measure which accounts explicitly for the non-linear behavior of large

deformations.
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of Chiral Polymer Crystals. Physical Review Letters, 74(13):2499–2502, March
1995. doi: 10.1103/PhysRevLett.74.2499. URL https://link.aps.org/doi/

10.1103/PhysRevLett.74.2499.

[41] Randall D. Kamien and David R. Nelson. Defects in chiral columnar phases:
tilt-grain boundaries and iterated moiré maps. Physical Review E, 53(1):650,
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[56] Maurice Kléman. Points, lines, and walls: in liquid crystals, magnetic systems,
and various ordered media. J. Wiley, Chichester; New York, 1983. ISBN 978-
0-471-10194-9.

[57] Jayanth R. Banavar and Amos Maritan. Colloquium: Geometrical approach
to protein folding: a tube picture. Reviews of Modern Physics, 75(1):23–34,
January 2003. doi: 10.1103/RevModPhys.75.23. URL https://link.aps.

org/doi/10.1103/RevModPhys.75.23.

[58] Jayanth R. Banavar, Oscar Gonzalez, John H. Maddocks, and Amos Maritan.
Self-Interactions of Strands and Sheets. Journal of Statistical Physics, 110(1):
35–50, January 2003. ISSN 1572-9613. doi: 10.1023/A:1021010526495. URL
https://doi.org/10.1023/A:1021010526495.

[59] S. Neukirch and G.H.M. van der Heijden. Geometry and Mechanics of Uniform
n-Plies: from Engineering Ropes to Biological Filaments. Journal of Elasticity,
69(1):41–72, November 2002. ISSN 1573-2681. doi: 10.1023/A:1027390700610.
URL https://doi.org/10.1023/A:1027390700610.

[60] Laurent Bozec, Gert van der Heijden, and Michael Horton. Collagen Fibrils:
Nanoscale Ropes. Biophysical Journal, 92(1):70–75, January 2007. ISSN 0006-
3495. doi: 10.1529/biophysj.106.085704. URL http://www.sciencedirect.

com/science/article/pii/S0006349507708056.

110

https://link.aps.org/doi/10.1103/RevModPhys.87.401
https://link.aps.org/doi/10.1103/RevModPhys.87.401
http://link.aps.org/doi/10.1103/PhysRevE.95.052503
https://link.aps.org/doi/10.1103/PhysRevLett.120.248002
http://www.crcnetbase.com/isbn/9781420068184
https://link.aps.org/doi/10.1103/RevModPhys.75.23
https://link.aps.org/doi/10.1103/RevModPhys.75.23
https://doi.org/10.1023/A:1021010526495
https://doi.org/10.1023/A:1027390700610
http://www.sciencedirect.com/science/article/pii/S0006349507708056
http://www.sciencedirect.com/science/article/pii/S0006349507708056


[61] Jakob Bohr and Kasper Olsen. The close-packed triple helix as a possible new
structural motif for collagen. Theoretical Chemistry Accounts, 130(4):1095–
1103, December 2011. ISSN 1432-2234. doi: 10.1007/s00214-010-0761-3. URL
https://doi.org/10.1007/s00214-010-0761-3.

[62] Yehuda Snir and Randall D. Kamien. Entropically Driven Helix Formation.
Science, 307(5712):1067–1067, February 2005. ISSN 0036-8075, 1095-9203.
doi: 10.1126/science.1106243. URL http://science.sciencemag.org.silk.

library.umass.edu/content/307/5712/1067.

[63] Christian D. Santangelo, Vincenzo Vitelli, Randall D. Kamien, and David R.
Nelson. Geometric Theory of Columnar Phases on Curved Substrates. Phys-
ical Review Letters, 99(1), July 2007. ISSN 0031-9007, 1079-7114. doi:
10.1103/PhysRevLett.99.017801. URL https://link.aps.org/doi/10.1103/

PhysRevLett.99.017801.
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[67] Amélie Leforestier and Françoise Livolant. Structure of toroidal DNA collapsed
inside the phage capsid. Proceedings of the National Academy of Sciences, 106
(23):9157–9162, June 2009. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.
0901240106. URL http://www.pnas.org/content/106/23/9157.

[68] Alan Cooper. The precipitation of toroidal collagen fibrils. Biochemical Journal,
112(4):515–519, May 1969. ISSN 0264-6021. URL https://www.ncbi.nlm.

nih.gov/pmc/articles/PMC1187741/.

[69] Bryan Gin-ge Chen, Paul J. Ackerman, Gareth P. Alexander, Randall D.
Kamien, and Ivan I. Smalyukh. Generating the Hopf Fibration Experimentally
in Nematic Liquid Crystals. Physical Review Letters, 110(23):237801, June
2013. doi: 10.1103/PhysRevLett.110.237801. URL https://link.aps.org/

doi/10.1103/PhysRevLett.110.237801.

[70] Paul J. Ackerman and Ivan I. Smalyukh. Diversity of Knot Solitons in Liquid
Crystals Manifested by Linking of Preimages in Torons and Hopfions. Physical
Review X, 7(1):011006, January 2017. doi: 10.1103/PhysRevX.7.011006. URL
https://link.aps.org/doi/10.1103/PhysRevX.7.011006.

111

https://doi.org/10.1007/s00214-010-0761-3
http://science.sciencemag.org.silk.library.umass.edu/content/307/5712/1067
http://science.sciencemag.org.silk.library.umass.edu/content/307/5712/1067
https://link.aps.org/doi/10.1103/PhysRevLett.99.017801
https://link.aps.org/doi/10.1103/PhysRevLett.99.017801
http://doi.acm.org/10.1145/2767000
http://stacks.iop.org/0953-8984/18/i=14/a=S04?key=crossref.50f3869b7f0c190bef52a888387c16b0
http://stacks.iop.org/0953-8984/18/i=14/a=S04?key=crossref.50f3869b7f0c190bef52a888387c16b0
http://www.pnas.org/content/106/23/9157
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1187741/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1187741/
https://link.aps.org/doi/10.1103/PhysRevLett.110.237801
https://link.aps.org/doi/10.1103/PhysRevLett.110.237801
https://link.aps.org/doi/10.1103/PhysRevX.7.011006


[71] Paul J. Ackerman and Ivan I. Smalyukh. Static three-dimensional topological
solitons in fluid chiral ferromagnets and colloids. Nature Materials, 16(4):426–
432, April 2017. ISSN 1476-1122, 1476-4660. doi: 10.1038/nmat4826. URL
http://www.nature.com/articles/nmat4826.

[72] Paul Sutcliffe. Skyrmion Knots in Frustrated Magnets. Physical Review Letters,
118(24), June 2017. ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.
118.247203. URL http://link.aps.org/doi/10.1103/PhysRevLett.118.

247203.

[73] Paul Sutcliffe. Hopfions in chiral magnets. Journal of Physics A: Mathematical
and Theoretical, 51(37):375401, September 2018. ISSN 1751-8113, 1751-8121.
doi: 10.1088/1751-8121/aad521. URL http://stacks.iop.org/1751-8121/

51/i=37/a=375401?key=crossref.81dd37b5db435cd0f1e6fc069fa140bd.

[74] Yizhou Liu, Roger K. Lake, and Jiadong Zang. Binding a hopfion in a chiral
magnet nanodisk. Physical Review B, 98(17), November 2018. ISSN 2469-9950,
2469-9969. doi: 10.1103/PhysRevB.98.174437. URL https://link.aps.org/

doi/10.1103/PhysRevB.98.174437.

[75] J F Sadoc and J Charvolin. 3-sphere fibrations: a tool for analyzing twisted ma-
terials in condensed matter. Journal of Physics A: Mathematical and Theoreti-
cal, 42(46):465209, November 2009. ISSN 1751-8113, 1751-8121. doi: 10.1088/
1751-8113/42/46/465209. URL http://stacks.iop.org/1751-8121/42/i=

46/a=465209?
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