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ABSTRACT
In this paper we conduct a priori and a posteriori error analysis of the C0 interior penalty method
for Hamilton–Jacobi–Bellman equations, with coefficients that satisfy the Cordes condition.
These estimates show the quasi-optimality of the method, and provide one with an adaptive
finite element method. In accordance with the proven regularity theory, we only assume that the
solution of the Hamilton–Jacobi–Bellman equation belongs toH2.

1. Introduction
The goal of this paper is to conduct a priori and a posteriori error analysis of the C0 interior penalty finite ele-

ment method (FEM) for the approximation of strong solutions of the following nondivergence form Hamilton–Jacobi–
Bellman Dirichlet boundary-value problem. Find u ∶ Ω→ ℝ such that

sup
�∈Λ

{A� ∶ D2u − f �} = 0 a.e. in Ω, (1.1)
u = g on )Ω, (1.2)

where Ω ⊂ ℝd , d ≥ 2 is convex, and g is the restriction of a givenH2(Ω) function to )Ω. We assume that
Λ is a compact metric space, and A, f ∈ C(Ω × Λ), (1.3)

which in turn define the collection of functions {f �}�∈Λ, {A�}�∈Λ as follows: for each � ∈ Λ, f � ∶ x ↦ f (x, �),
A� ∶ x ↦ A(x, �). We assume that the defined collection of coefficients is uniformly elliptic in the following sense:
there exist constants 0 < �1 ≤ �2 <∞ such that

�1|�|
2 ≤ �TA�� ≤ �2|�|

2 a.e. in Ω, ∀� ∈ ℝd , ∀� ∈ Λ, (1.4)
and satisfies the following Cordes condition [1] uniformly in �: there exists " ∈ (0, 1] such that

|A�|
Tr(A�)

≤ 1
√

d − 1 + "
a.e. in Ω ∀� ∈ Λ. (1.5)

In the case that Λ is a singleton set, we simply assume that A ∈ L∞(Ω) satisfies (1.4)-(1.5), and f ∈ L2(Ω). In this
case (1.1)-(1.2) becomes the following linear nondivergence form elliptic equation

A ∶ D2u = f a.e. in Ω, (1.6)
u = g on )Ω. (1.7)

Remarkably, in two dimensions, uniform ellipticity implies that the the Cordes condition (1.5) (cf. [2]).
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A solution u of (1.1)-(1.2) is called a strong solution if it belongs to H2(Ω), i.e., the weak derivatives of u up to
second order belong to L2(Ω). This means that (1.1) holds a.e. with respect to the Lebesgue measure. The linear
problem (1.6)-(1.7) is of interest, as it arises in the linearisation of (1.1)-(1.2), as well as other fully nonlinear elliptic
partial differential equations, such as the Monge–Ampère (MA) equation. The MA equation, and (1.1) encompass a
variety of modern applications, such as differential geometry, engineering, finance, economics, and stochastic optimal
control problems.

Regularity: Since eachA� ∈ L∞(Ω;ℝd×d
Sym), under the current hypotheses, in general a strong solution u ∈ H2(Ω)

may not belong toHs(Ω) for any s > 2. As such, we shall only assume that the true solution u ∈ H2(Ω).
One should note that under different hypotheses on the behaviour of the dataA, f , and )Ω, the solution of the linear

problem (1.6)-(1.7) may possess higher Sobolev regularity, and integrability, andmay even be classically differentiable.
• Calderon–Zygmund theory of strong solutions [3]: ifA ∈ C0(Ω;ℝd×d), f ∈ Lp(Ω), 1 < p <∞, and )Ω ∈ C1,1,

then u ∈ W 2,p(Ω).
• Classical solutions: if A ∈ C0,�(Ω;ℝd×d), � ∈ (0, 1), f ∈ C0,�(Ω) and )Ω ∈ C2,� , then u ∈ C2,�(Ω).
The fully nonlinear problem (1.1)-(1.2) may also admit classical solutions, again provided that A, f , and )Ω are

sufficiently regular. In particular, if A, f , )Ω ∈ C∞ and Λ is a finite set, then u ∈ C0(Ω) ∩ C2,�(Ω) for some � > 0
(cf. [4], Theorem 1, and note that A is not required to satisfy (1.5)). See also [5]. We seek to avoid such assumptions,
as polytopal domains do not possess such regularity, and in linearising (1.1)-(1.2), we cannot in general hope that the
coefficients will have these properties either. See [6, 7, 8, 9] for finite element methods approximating elliptic equations
on curved domains.

The main challenge in designing a numerical method for (1.1)-(1.2) (aside from the nonlinearity) is the nondi-
vergence form structure of the equation. Upon linearising (1.1)-(1.2), one arrives at a sequence of problems of the
form (1.6)-(1.7). However, in general one cannot expressA ∶ D2u = ∇ ⋅ (A∇u)− (∇ ⋅A) ⋅∇u, asA ∈ L∞(Ω), and thus
may not possess sufficient regularity. This means that (1.6)-(1.7) (and resultingly (1.1)-(1.2)) does not possess a weak
formulation, and so, one cannot base a finite element method on that weak formulation. That said, this has not stopped
the development of numerical methods for (1.1)-(1.2) and (1.6)-(1.7), often relying on the existence and uniqueness
theory of the underlying equation, with methods dependent upon the different assumptions upon the coefficients and
data, domain boundary, and resulting solution regularity outlined above. In particular, when A ∈ L∞(Ω;ℝd×d),
f ∈ L2(Ω), and Ω is convex, one has [10, 7, 11], and if A ∈ C0(Ω;ℝd×d), f ∈ Lp(Ω), 1 < p < ∞, and )Ω ∈ C1,1
one has [12, 13].

The papers [7, 14] present and analyse discontinuousGalerkin FEMs that utilise a discrete analogue of theMiranda–
Talenti estimate; the current paper utilises a similar approach. However, the method of this paper does not involve the
inclusion of additional bilinear forms which numerically enforce a discrete Miranda–Talenti estimate (as in [7, 14]),
and thus is simpler to implement.

The approach of [10] is a mixed FEM, also relying on a variant of the Miranda–Talenti estimate, in this paper,
the author was successful in proving a priori and a posteriori error estimates, as well as convergence of the adaptive
method. This approach was further extended to the nonlinear setting of (1.1)-(1.2) in [15].

The papers [12, 13] both employ a numerical analogue of the freezing of coefficients technique utilised in the
Calderon–Zygmund theory of strong solutions to (1.1)-(1.2), however, the method of the present paper allows for more
general coefficients and domains. For FEMs approximating (1.1) with oblique boundary conditions, see [6, 9].

The fully nonlinear setting of (1.1)-(1.2) has seen several advancements in the literature, in the elliptic case [16, 15,
17, 18, 19, 20], as well as the parabolic setting [21]. Themost recent development (to the knowledge of the authors) [20]
relies on a discrete Miranda–Talenti estimate for continuous finite element functions.

The following estimates
‖D2v‖L2(Ω) ≤ ‖Δv‖L2(Ω), ∀v ∈ H2(Ω) ∩H1

0 (Ω) (1.8)
‖v‖H2(Ω) ≤ C‖Δv‖L2(Ω),∀v ∈ H

2(Ω) ∩H1
0 (Ω) (1.9)

are the so called Miranda–Talenti estimates, and hold when the domain Ω is convex. The approaches of [19, 20] rely
upon renormalising the nonlinear problem with the following parameter,


� ∶= A� ∶ I
A� ∶ A�

∈ L∞(Ω), (1.10)
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for each � ∈ Λ.
Theorem 3 of [19] provides the existence and uniqueness of a function u belonging to the space

H ∶= H2(Ω) ∩H1
0 (Ω),

that satisfies (1.1)-(1.2), in the case that g ≡ 0. Treating the case of inhomogeneous boundary data follows in a
manner similar to that of [19], Theorem 3. With the aim of invoking the Browder–Minty Theorem, we first define
F
 ∶ H2(Ω) → L2(Ω) by

F
 [u] ∶= sup
�∈Λ

{
�(A� ∶ D2u − f �)}, (1.11)

and proceed to define ag ∶ H → H ′ (whereH ′ denotes the dual space ofH) by
ag(u; v) ∶= (F
 [u + g],Δv)L2(Ω) u, v ∈ H. (1.12)

One can show that ag is strictly monotone, and Lipschitz continuous on H , yielding the existence and uniqueness of
a function u0 ∈ H such that

ag(u0; v) = 0 ∀v ∈ H. (1.13)
Finally, we uniquely define u ∶= u0 + g, which satisfies (1.1)-(1.2). This provides us with the following theorem.
Theorem 1.1 Assume thatΩ ⊂ ℝd is a convex domain, and that the collection {A�}�∈Λ satisfies (1.4)-(1.5). Further-
more, assume that g ∈ H2(Ω). Then, there exists a unique strong solution u ∈ H2(Ω) of the following HJB equation:

sup
�∈Λ

{A� ∶ D2u − f �} = 0 a.e. in Ω,

u = g on )Ω.
(1.14)

Contributions: In this paper we obtain a priori and a posteriori error estimates under the assumption that the true
solution belongs to H2(Ω). We note that the method we present has been considered in [20], in the homogeneous
Dirichlet case, where the authors prove stability, and a priori error estimates for the problem (1.1)-(1.2), as well as the
fully nonlinear Hamilton–Jacobi–Bellman equation. Our approach to the stability analysis is distinct from that of [20],
as we also consider the case of inhomogeneous boundary data. Furthermore, the recent publication [22] provides the
existence of an enrichment operator when p ≥ 2, and d ∈ {2, 3}, which removes the restriction upon the polynomial
degree p ∈ {2, 3}, when d = 3 present in [20] (cf. [20] Remark 4). Furthermore, we also undertake a posteriori error
analysis for this problem, and justify that one may utilise the scheme to approximate solutions to the fully nonlinear
Monge–Ampère equation (see Section 5).

As mentioned, a motivation of this paper is to develop a numerical method for the Monge–Ampère (MA) equation.
The (MA) equation is a prototypical fully nonlinear elliptic equation, arising in differential geometry, optimal transport,
engineering and fluid dynamics: given a nonnegative f ∶ Ω→ ℝ+, and g ∶ )Ω→ ℝ, find u ∶ Ω→ ℝ such that

{

detD2u = f in Ω,
u = g on )Ω. (1.15)

In general solutions of (1.15) may not be unique; a simple example is given in the case d = 2, g ≡ 0, where it is clear
that if u satisfies (1.15), then so does −u. The existence of multiple solutions to (1.15) poses a significant challenge in
the design of numerical methods. In [23] (c.f. [23] Section 1.4), the authors implement a standard nine-point stencil
finite difference method (FDM) for an example of (1.15) that has at most two solutions, with a smooth right-hand side,
and with the choice of domain Ω = (0, 1)2. One would hope that the proposed FDM may have the same uniqueness
property, that is, that there exists at most two solutions to the numerical method. However, upon implementing this
method on a 4 × 4 grid, and solving the resulting nonlinear system by applying Newton’s method, they obtain sixteen
different numerical solutions by varying the initial guess of the Newton’s method.
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As mentioned in [23], one may conjecture that this phenomena extrapolates, causing Newton’s method to poten-
tially converge to 2(N−2)2 different solutions on and N × N grid, by varying the initial guess. When designing a
numerical scheme, it is important that one knows which solution the method is converging to, without needing too
much prior knowledge of the true solution (Newton’s method is well known to be conditionally convergent, often re-
quiring that the initial guess is sufficiently close to the true solution). A variant of the FDM implemented and discussed
in [23] was proposed in [24], with an additional selection criteria, which in essence singles out a particular numerical
solution.

We overcome this difficulty, by using a long standing result due to N. Krylov [25], which allows one to characterise
theMA equation (1.15) as a HJB equation, if and only if u is convex. In the case that u ∈ W 2,∞(Ω) is uniformly convex,
and d = 2, we are able to further show that the resulting HJB equation is equivalent to one with a control set Λ, and
data A, f that satisfy (1.3)-(1.5). Moreover, the resulting numerical scheme is uniquely solvable. For other numerical
methods for the approximation of solutions to the MA problem, see [26, 16, 27, 28].

Domain assumptions: In the current section, we have assumed that Ω ⊂ ℝd , d ≥ 2, is convex, as this is a
sufficient assumption of Theorem 1.1. However, in Section 2 we provide the numerical scheme, and from this point
on, we further assume that d ∈ {2, 3} and that Ω is polytopal.

This paper is laid out as follows. In Section 2, we introduce the discrete problem, and prove the stability of the
associated bilinear form. Section 3 is devoted to convergence analysis; we prove quasi-optimal apriori error estimates
and a posteriori error estimates in a H2-type norm. In Section 4, we propose the linearisation scheme and adaptive
scheme. Section 5 is devoted to applications to the Monge–Ampère problem. In Section 6 we implement the proposed
finite element method (as well as the adaptive version) in FEniCS [29], confirming the theoretical results of the paper.
Finally, in Section 7, we provide concluding remarks on what has been achieved in this paper.

2. The Discrete Problem
As mentioned in the introduction, from this point on, we shall further assume that Ω ⊂ ℝd , d ∈ {2, 3} is convex

and polytopal. Let Tℎ be a simplicial triangulation of Ω and Vℎ ⊂ H1(Ω) be the continuous Lagrange finite element
space of order p ≥ 2 associated with Tℎ, and denote Vℎ,0 ∶= Vℎ ∩H1

0 (Ω). We denote by D2ℎ and Δℎ, the piecewiseHessian and Laplacian, respectively. Furthermore, we shall make use of the following mesh dependent (semi)norm
for u ∈ H2(Ω;Tℎ) ∶= {v ∈ L2(Ω) ∶ v|K ∈ H2(K) ∀K ∈ Tℎ}

‖u‖2ℎ ∶= ∫Ω
|D2ℎu|

2 +
∑

e∈E i
ℎ

�
ℎe

‖[[)u∕)n]]e‖2L2(e), (2.1)

and we note that ‖ ⋅ ‖ℎ is indeed a norm on Vℎ,0.The discrete problem is posed as follows: we seek uℎ ∈ Vℎ satisfying
aℎ(uℎ; v) ∶= ∫Ω

F
 [uℎ] Δℎv +
∑

e∈E i
ℎ

�
ℎe ∫e

[[)uℎ∕)n]]e[[)v∕)n]]e = 0 ∀v ∈ Vℎ,0,

uℎ|)Ω ∶= gℎ,

(2.2)

where gℎ ∈ Vℎ is a suitable approximation of g (the derivatives in F
 defined by (1.11) are considered piecewise), E i
ℎis the set of internal edges of Tℎ, [[⋅]]e denotes the jump across an edge e, and � is a positive constant.

We remark that if g ≡ 0, and we instead seek uℎ ∈ Vℎ,0, then (2.2) coincides with the method presented in [20].
We also note that the scheme is consistent in the following sense: if u ∈ H2(Ω) satisfies (1.1)-(1.2), then

aℎ(u; v) = 0 ∀v ∈ Vℎ,0. (2.3)
The above holds, since u satisfies (1.1)-(1.2), and u ∈ H2(Ω) so [[)u∕)n]]e = 0 for e ∈ E i

ℎ. The following theorem and
corollary are from [20]. As mentioned in the introduction, the results that follow, as presented in [20] hold for d = 2,
for any p ≥ 2, and for d = 3 if p ∈ {2, 3}. However, this occurs because the proofs rely on the existence of an operator
Eℎ ∶ Vℎ,0 → H2(Ω) ∩H1

0 (Ω) (called an enrichment operator), that in particular satisfies the following estimate:

‖Eℎv − v‖ℎ ≤ C∗
∑

e∈E i
ℎ

1
ℎe

‖[[)v∕)n]]e‖2L2(e), ∀v ∈ Vℎ,0 (2.4)
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where the constant C∗ is (in principle) a computable, positive constant dependant only on the shape regularity of Tℎ.A particular construction of such an operator is provided in [20] and uses the C1 family of Clough–Tocher spaces,
which leads to the aforementioned restriction when d = 3 (cf. [20], Remark 4). However, in the recent paper [22], the
existence of an operator that satisfies (2.4) has been proven, only assuming p ≥ 2, for d ∈ {2, 3}. Thus, the proceeding
results hold for d ∈ {2, 3} and p ≥ 2.
Theorem 2.1 One has that for any vℎ ∈ Vℎ,0,

‖D2ℎvℎ‖L2(Ω) ≤ ‖Δℎvℎ‖L2(Ω) + CMT

⎛

⎜

⎜

⎝

∑

e∈E i
ℎ

1
ℎe

‖[[)vℎ∕)n]]‖2L2(e)

⎞

⎟

⎟

⎠

1∕2

, (2.5)

where the constant CMT is independent of ℎ.

Corollary 2.2 One has that for any v ∈ Vℎ,0, and all t ∈ (0, 1),

‖Δℎv‖2L2(Ω) ≥ (1 − t)‖D
2
ℎvℎ‖

2
L2(Ω) −

C2MT
t

⎛

⎜

⎜

⎝

∑

e∈E i
ℎ

1
ℎe

‖[[)v∕)n]]‖2L2(e)

⎞

⎟

⎟

⎠

. (2.6)

We now prove a strict monotonicity result for aℎ (a variant of [20], Lemma 7), provided that � is sufficiently large.
Lemma 2.3 One has that for any u, v ∈ Vℎ, such that u − v ∈ Vℎ,0

aℎ(u; u − v) − aℎ(v; u − v) ≥ �(1 −
√

1 − ")‖u − v‖2ℎ,

for any � ∈ (0, 1), independent of ℎ, u and v, provided � is sufficiently large (dependent on �).

Proof: Take u, v, as in the hypotheses of the lemma, and denotew ∶= u−v ∈ Vℎ,0. Denoting I to be the d×d identity
matrix, by (1.5), we have that

|
�A� − I|2 = (
�A� − I) ∶ (
�A� − I) = (
�)2(A� ∶ A�) − 2
�(A� ∶ I) + I ∶ I

= −
(A� ∶ I)2

(A� ∶ A�)
+ d

≤ −(d − 1 + ") + d = 1 − " a.e. in Ω, ∀� ∈ Λ.

(2.7)

Inequality (2.7), Theorem 2.1, and Corollary 2.2 imply that for any t ∈ (0, 1)

∫Ω
(F
 [u] − F
 [v]) Δℎw ≥ ‖Δℎw‖2L2(Ω) − ∫Ω

sup
�∈Λ

{|(
�A� − I) ∶ D2ℎw|}|Δℎw|

≥ ‖Δℎw‖2L2(Ω) −
√

1 − "‖D2ℎw‖L2(Ω)‖Δℎw‖L2(Ω)

≥ (1 −
√

1 − "∕2)‖Δℎw‖2L2(Ω) − (
√

1 − "∕2)‖D2ℎw‖
2
L2(Ω)

≥
[

(1 − t)(1 −
√

1 − "∕2) −
√

1 − "∕2
]

‖D2ℎw‖
2
L2(Ω) −

C2MT
t

∑

e∈E i
ℎ

1
ℎe

‖[[)w∕)n]]‖2L2(e).

Now, for a given � ∈ (0, 1), we set t = t(�, ") ∶= (1 − �)(1 −√

1 − ")∕(1 −
√

1 − "∕2) ∈ (0, 1). This gives us
aℎ(u; u − v) − aℎ(v; u − v) ≥ �(1 −

√

1 − ")‖w‖2ℎ

+

(

�(1 − �(1 −
√

1 − ")) − C2MT
(1 −

√

1 − "∕2)2

(1 − �)(1 −
√

1 − ")

)

∑

e∈E i
ℎ

1
ℎe

‖[[)w∕)n]]‖2L2(e)
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≥ �(1 −
√

1 − ")‖w‖2ℎ

provided that � satisfies

� ≥
C2MT(1 −

√

1 − "∕2)2

(1 − �)(1 −
√

1 − ")(1 − �(1 −
√

1 − "))
=∶ C(�, "). □ (2.8)

Remark 2.4 (Dependence of � on ") From (2.8), for a fixed value of � ∈ (0, 1), we can see that the monotonicity of
aℎ requires that � is sufficiently large, dependent on ". From the identity 1 −

√

1 − " = "∕(1 +
√

1 − "), we find that
"∕2 ≤ 1 −

√

1 − " ≤ ". We also have that 1 − � ≤ 1 − �(1 −
√

1 − ") ≤ 1 and 1∕4 ≤ (1 −
√

1 − "∕2)2 ≤ 1. It follows
that

C2MT
4(1 − �)

"−1 ≤ C(�, ") ≤
2C2MT
(1 − �)2

"−1.

Therefore, (2.8) holds if and only if � ≥ C�C2MT"
−1, for some positive constant C� dependent only on �.

The following lemma is a simple consequence of the Lipschitz continuity of F
 (with Lipschitz constant√d + 1,
see (3.8) below), and the definition of the norm ‖ ⋅ ‖ℎ.
Lemma 2.5 One has that for any u, v,w ∈ Vℎ,

|aℎ(u;w) − aℎ(v;w)| ≤ (
√

d + 1)‖u − v‖ℎ‖w‖ℎ.

The following proof is motivated by the proof of Theorem 1.1.
Theorem 2.6 Under the hypotheses of Lemma 2.3, there exists a unique uℎ ∈ Vℎ satisfying (2.2).

Proof: Let us define agℎ ∶ Vℎ,0 × Vℎ,0 → ℝ, by agℎ (uℎ; v) ∶= aℎ(u + gℎ; v) for all uℎ, v ∈ Vℎ,0. Lemmas 2.3 and 2.5
then imply that for all uℎ, v, w ∈ Vℎ,0, and for any � ∈ (0, 1) (so long as � is sufficiently large, dependent on �)

agℎ (uℎ; uℎ − v) − agℎ (v; uℎ − v) ≥ �(1 −
√

1 − ")‖uℎ − v‖2ℎ,

|agℎ (uℎ;w) − agℎ (v;w)| ≤ C‖uℎ − v‖ℎ‖w‖ℎ,

where the constant C is independent of uℎ, v, w. Thus agℎ is strongly monotone and Lipschitz continuous, and so the
Browder–Minty Theorem implies the existence and uniqueness of uℎ,0 ∈ Vℎ,0 such that

agℎ (uℎ,0, v) = aℎ(uℎ,0 + gℎ; v) = 0 ∀v ∈ Vℎ,0.

Thus, we may uniquely define uℎ ∶= uℎ,0 + gℎ, which satisfies (2.2). □

3. Convergence Analysis
3.1. A Priori Error Analysis

For the remainder of the paper, we assume that the parameter � is chosen such that that exists a unique uℎ ∈ Vℎsatisfying (2.2).
Remark 3.1 (Choice of gℎ) In practice, one may use a variety of numerical approximations gℎ of g, for example, the
L2 projection, or some suitable interpolant. However, for the density argument of Remark 3.3 it is useful to define gℎ
to be the unique element of Vℎ that satisfies

∫Ω
D2ℎgℎ ∶ D

2
ℎv + ∫)Ω

gℎv +
∑

e∈E i
ℎ

�
ℎe ∫e

[[)gℎ∕)n]]e[[)v∕)n]]e = ∫Ω
D2ℎg ∶ D

2
ℎv + ∫)Ω

gv ∀v ∈ Vℎ. (3.1)
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We first prove a quasi-optimal error estimate for the error ‖u − uℎ‖ℎ, where u ∈ H2(Ω) satisfies (1.1)-(1.2). Let
v ∈ Vℎ satisfy v|)Ω = gℎ, where gℎ satisfies (3.1). The triangle inequality gives us

‖u − uℎ‖ℎ ≤ ‖u − v‖ℎ + ‖v − uℎ‖ℎ. (3.2)
Lemma 2.3, (2.3), and Lemma 2.5 imply that for any � ∈ (0, 1) (denoting c�," ∶= �(1 −

√

1 − "))
c�,"‖v − uℎ‖2ℎ ≤ aℎ(uℎ; uℎ − v) − aℎ(v; uℎ − v)

= aℎ(u; uℎ − v) − aℎ(v; uℎ − v)

≤ (
√

d + 1)‖u − v‖ℎ‖uℎ − v‖ℎ.

Thus,
‖v − uℎ‖ℎ ≤ c−1�,"(

√

d + 1)‖u − v‖ℎ. (3.3)
Combining (3.2) with (3.3), we arrive at the following quasi-optimal error estimate.
Theorem 3.2 If uℎ ∈ Vℎ satisfies (2.2), then

‖u − uℎ‖ℎ ≤ C♯( inf
v∈Vℎ∶v|)Ω=gℎ

‖u − v‖ℎ), (3.4)

where C♯ ∶= 1 + �−1(1 −
√

1 − ")−1(
√

d + 1).

Remark 3.3 Estimate (3.4) in combination with a density argument shows that

lim
ℎ→0

‖u − uℎ‖ℎ = 0.

Moreover, the Poincaré–Friedrichs inequality for piecewise H2 functions (cf. [30, 31]), implies that exists a positive
constant C independent of ℎ such that

‖u − uℎ‖H1(Ω) + ‖u − uℎ‖L∞(Ω) ≤ C‖u − uℎ‖ℎ, (3.5)
and so

lim
ℎ→0

(‖u − uℎ‖H1(Ω) + ‖u − uℎ‖L∞(Ω)) = 0.

3.2. A Posteriori Error Analysis
The a posteriori error analysis is based on an enriching operator Eℎ ∶ Vℎ,0 → H2(Ω) ∩H1

0 (Ω) that satisfies (2.4).We first consider the homogeneous case, g ≡ 0. In this case, we have that
‖u − uℎ‖ℎ ≤ ‖u − Eℎuℎ‖ℎ + ‖uℎ − Eℎuℎ‖ℎ, (3.6)

and note that the monotonicity of ag onH implies that

‖u − Eℎuℎ‖2ℎ = ‖D2(u − Eℎuℎ)‖2L2(Ω) ≤
ag(u; u − Eℎuℎ) − ag(Eℎuℎ; u − Eℎuℎ)

1 − (1 − ")
1
2

. (3.7)

Furthermore, it follows from (1.8), (1.12), and (1.13), that
ag(u; u − Eℎuℎ) − ag(Eℎuℎ; u − Eℎuℎ)

= −(F
 [Eℎuℎ],Δ(u − Eℎuℎ))L2(Ω)
= (−F
 [uℎ] + (F
 [uℎ] − F
 [Eℎuℎ]),Δ(u − Eℎuℎ))L2(Ω)

≤ (‖F
 [uℎ]‖L2(Ω) + (
√

d + 1)‖uℎ − Euℎ‖ℎ)‖u − Euℎ‖ℎ,

(3.8)
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where we used the inequality
sup
�∈Λ

|
�A�| ≤ sup
�∈Λ

|
�A� − I| + |I| ≤
√

1 − " +
√

d <
√

d + 1 (3.9)

that follows from (2.7). Combining (3.7) and (3.8), we find

‖u − Eℎuℎ‖ℎ ≤ 1

1 − (1 − ")
1
2

(

‖F
 [uℎ]‖L2(Ω) + (
√

d + 1)‖uℎ − Eℎuℎ‖ℎ
)

, (3.10)

which, together with (3.6) implies

‖u − uℎ‖ℎ ≤ 1

1 − (1 − ")
1
2

(

‖F
 [uℎ]‖L2(Ω) + (
√

d + 2)‖uℎ − Eℎuℎ‖ℎ
)

. (3.11)

In view of (2.4) and (3.11), we arrive at the following a posteriori error estimate.
Theorem 3.4 If g ≡ 0, then we have that

‖u − uℎ‖ℎ ≤ 1

1 − (1 − ")
1
2

⎛

⎜

⎜

⎜

⎝

‖F
 [uℎ]‖L2(Ω) + (
√

d + 2)
√

C∗
⎛

⎜

⎜

⎝

∑

e∈E i
ℎ

1
ℎe ∫e

[[)uℎ∕)n]]2e ds
⎞

⎟

⎟

⎠

1
2 ⎞
⎟

⎟

⎟

⎠

. (3.12)

We utilise Theorem 3.4 to prove the analogous result in the inhomogeneous setting.
Theorem 3.5 We have that

‖u − uℎ‖ℎ ≤
‖F
 [uℎ]‖L2(Ω) + (

√

d + 2)(1 +
√

C∗∕�)‖g − gℎ‖ℎ

1 − (1 − ")
1
2

+
(
√

d + 2)
√

C∗
(

∑

e∈E i
ℎ

1
ℎe

∫e[[)uℎ∕)n]]
2
e ds

)
1
2

1 − (1 − ")
1
2

.

(3.13)

Proof: Define u0 ∶= u − g ∈ H2(Ω) ∩H1
0 (Ω). We see that u0 satisfies

sup
�∈Λ

{A� ∶ D2u0 − g�} = sup
�∈Λ

{A� ∶ D2u − f �} = 0 a.e. in Ω,
u0 = 0 on )Ω,

where g� ∶= f � − A� ∶ D2g. Defining uℎ,0 = uℎ − gℎ ∈ Vℎ,0, by Theorem 3.4, we have that

‖u0−uℎ,0‖ℎ ≤
‖ sup�∈Λ{
�(A� ∶ D2ℎuℎ,0 − g

�)}‖L2(Ω) + (
√

d + 2)
√

C∗
(

∑

e∈E i
ℎ

1
ℎe

∫e[[)uℎ,0∕)n]]
2
e ds

)
1
2

1 − (1 − ")
1
2

. (3.14)

Let us denote g�ℎ ∶= f � − A� ∶ D2ℎgℎ. The triangle inequality and (3.9) imply that
‖ sup
�∈Λ

{
�(A� ∶ D2ℎuℎ,0 − g
�)}‖L2(Ω) ≤ ‖ sup

�∈Λ
{
�(A� ∶ D2ℎuℎ,0 − g

�
ℎ)}‖L2(Ω)

+ ‖ sup
�∈Λ

{
�(A� ∶ D2ℎuℎ,0 − g
�)} − sup

�∈Λ
{
�(A� ∶ D2ℎuℎ,0 − g

�
ℎ)}‖L2(Ω)

≤ ‖F
 [uℎ]‖L2(Ω) + (
√

d + 1)‖g − gℎ‖ℎ,
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as well as
⎛

⎜

⎜

⎝

∑

e∈E i
ℎ

1
ℎe ∫e

[[)uℎ,0∕)n]]2e ds
⎞

⎟

⎟

⎠

1
2

≤
⎛

⎜

⎜

⎝

∑

e∈E i
ℎ

1
ℎe ∫e

[[)uℎ∕)n]]2e ds
⎞

⎟

⎟

⎠

1
2

+ ‖g − gℎ‖ℎ∕
√

�.

Applying the above two estimates to (3.14), and using the triangle inequality once more provides
‖u − uℎ‖ℎ ≤ ‖u0 − uℎ,0‖ℎ + ‖g − gℎ‖ℎ

≤
‖F
 [uℎ]‖L2(Ω) + (

√

d + 2)(1 +
√

C∗∕�)‖g − gℎ‖ℎ + (
√

d + 2)
√

C∗
(

∑

e∈E i
ℎ

1
ℎe

∫e[[)uℎ∕)n]]
2
e ds

)
1
2

1 − (1 − ")
1
2

,

as desired. □
According to Theorem 3.5, the error estimator
�ℎ ∶= ‖F
 [uℎ]‖L2(Ω) + ‖D2ℎ(g − gℎ)‖L2(Ω)

+
⎛

⎜

⎜

⎝

∑

e∈E i
ℎ

1
ℎe ∫e

[[)gℎ∕)n]]2e ds
⎞

⎟

⎟

⎠

1
2

+
⎛

⎜

⎜

⎝

∑

e∈E i
ℎ

1
ℎe ∫e

[[)uℎ∕)n]]2e ds
⎞

⎟

⎟

⎠

1
2

,
(3.15)

is reliable. On the other hand, the local efficiency of �ℎ (modulo data approximation terms) is obvious because
‖F
 [uℎ]‖L2(Ω) ≤ ‖ sup

�∈Λ
{|
�A� ∶ D2ℎ(uℎ − u)|}‖L2(Ω) ≤ (

√

d + 1)‖D2ℎ(uℎ − u)‖L2(Ω), (3.16)
1
ℎe ∫e

[[)uℎ∕)n]]2e ds =
1
ℎe ∫e

[[)(u − uℎ)∕)n]]2e ds ∀e ∈ E i
ℎ. (3.17)

We denote the local indicators as follows for e ∈ E i
ℎ, and K ∈ Tℎ:

�K (uℎ) ∶= ‖F
 [uℎ]‖L2(K), �gℎK ∶= ‖D2(g − gℎ)‖L2(K),

�2e (uℎ) ∶=
1
ℎe

‖[[)uℎ∕)n]]‖2L2(e), �2e (gℎ) ∶=
1
ℎe

‖[[)gℎ∕)n]]‖2L2(e).

4. Iterative Scheme
Since the form aℎ is nonlinear in the first argument, we shall employ an iterative scheme, in order to approximate the

solution of (1.1)-(1.2). The method itself is referred to as a semismooth Newton’s method (described in Algorithm 1),
we cannot apply classical Newton’s method, since aℎ is not classically differentiable in the first argument, due to the
presence of the supremum. The semismooth Newton’s method presented is also provided in [20], and superlinear
convergence results for a similar (discontinuous Galerkin) finite element method are proven in [19]. This particular
semismooth Newton’s method is also known as Howard’s Algorithm [32, 33].

In order to apply the semismooth Newton’s method, we iteratively solve discrete problems that correspond to
problems of the form (1.6)–(1.7). To this end, given a measurable function � ∶ Ω→ Λ, let us define a� ∶ Vℎ ×Vℎ,0 →
ℝ, l� ∶ Vℎ,0 → ℝ by

a�(u, v) ∶= (
�A� ∶ D2ℎu,Δℎv)L2(Ω) +
∑

e∈E i
ℎ

�
ℎe ∫e

[[)uℎ∕)n]]e[[)v∕)n]]e ds

l�(v) ∶= (
�f � ,Δℎv)L2(Ω).

One can see that the discrete problems of finding u ∈ Vℎ such that u|)Ω = gℎ, and
a�(u, v) = l�(v) ∀v ∈ Vℎ,0,

is equivalent to (2.2), in the case that Λ is a singleton set.
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Algorithm 1 Semismooth Newton’s method
Require: Ω ⊂ ℝd , tol ∈ ℝ+, itermax ∈ ℕ, Tℎ a mesh on Ω, Vℎ, Vℎ,0, Λ, {A� , 
� , f �}�∈Λ, u0ℎ, gℎ ∈ Vℎ
1: k← 0
2: r← 1
3: u0ℎ ← u0ℎ
4: while k < itermax and r > tol do
5: Select an arbitrary �k ∈ argmaxF
 [ukℎ]
6: uk+1ℎ ← the solution of

a�k (u, v) = l�k (v) ∀v ∈ Vℎ,0,

u|)Ω = gℎ
(4.1)

7: r← ‖uk+1ℎ − ukℎ‖L∞(Ω)
8: ukℎ ← uk+1ℎ
9: k← k + 1
10: end while

Remark 4.1 (Choice of �k) The maximiser �k in Algorithm 1 is a function �k ∶ Ω → Λ. In practice, �k may be
represented as a vector with Λ-valued entries (similar to the representation of a finite element function as a vector of
degrees of freedom). The dimension of this vector is typically dependent on the dimension of the finite element space
(c.f. [34] Algorithm 5.1).

The following algorithm (Algorithm 2) describes the adaptive scheme. A general adaptive scheme is defined by
iterating the following procedure:

Solve ↦ Estimate ↦ Mark ↦ Refine.
There are several potential marking schemes that one could consider (for example Dörfler marking [35]); for the
experiments of this section, we implement the maximum marking strategy (described in Algorithm 2) with newest
vertex bisection (that is, a marked simplex is bisected, and then the generated node is joined to the closest vertex, so
that the refinement procedure does not result in hanging nodes).
4.1. Solving the Linear Problem in FEniCS

At each step of Algorithm 1, we are required to solve a linear problem of the form (4.1). This is equivalent to
solving a linear system. The following code snippet details how we define the bilinear form a(⋅, ⋅) and linear form l(⋅)
in (4.1) in FEniCS (for simplicity we drop the �k subscript). For simplicity of exposition, we assume that A, f , g, �, ℎ
and Tℎ are given.
# d e f i n i n g f i n i t e e l emen t
f e s = F i n i t e E l emen t ( "CG" , mesh . u f l _ c e l l ( ) , d eg r e e )
# d e f i n i n g f i n i t e e l emen t space
FES = Func t i onSpace ( mesh , f e s )
# d e f i n i n g t r i a l and t e s t f u n c t i o n s
uh = Func t i o n ( FES )
v = Te s t F u n c t i o n ( FES )
# d e f i n i n g boundary da ta as L^2 p r o j e c t i o n
gd = p r o j e c t ( g , FES )
# d e f i n i n g u n i t normal
n = Face tNormal ( mesh )
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Algorithm 2 Adaptive finite element method
Require: Ω ⊂ ℝd , tol ∈ (0, 1), itermax ∈ ℕ, � ∈ (0, 1], T0 an initial mesh on Ω
1: k← 0, �0 ← 1
2: while k < itermax and r > tol do
3: Solve: uk ← the solution of Algorithm 1
4: Estimate: For all K ∈ Tk, e ∈ E i

ℎ(Tk), calculate �K (uk), �gkK , �e(uk), �e(gk)
5: �k ← max{maxK∈Tk

�K (uk),maxK∈Tk
�gkK ,maxe∈E i

ℎ(Tk) �e(uk),maxe∈E i
ℎ(Tk) �e(gk)}

6: Mark:
7: for e ∈ E i

ℎ(Tk) do
8: if �e > ��k then
9: Mark e
10: end if
11: end for
12: for K ∈ Tk do
13: if �K > ��k then
14: Mark K
15: end if
16: end for
17: Refine: Define Tk+1 by bisecting all marked simplices, all simplices whose boundary contains a marked edge,

and joining created hanging nodes to closest vertices.
18: k← k + 1
19: end while

# d e f i n i n g p e n a l t y parame te r
gamma = (A00+A11 ) / ( pow (A00 , 2 )+2 . 0∗pow (A01 ,2 )+pow (A11 , 2 ) )
# d e f i n i n g mesh p e n a l t y parame te r
s i g = sigma∗pow ( h , −1)
# d e f i n i n g jump s t a b i l i s a t i o n op e r a t o r
def J_h ( u , v , mesh ) :

J1 = s i g ∗( n [ 0 ] ( ’+ ’ ) ∗ ( u . dx ( 0 ) ( ’+ ’ )−u . dx ( 0 ) ( ’− ’ ) ) \ \
+ n [ 1 ] ( ’+ ’ ) ∗ ( u . dx ( 1 ) ( ’+ ’ )−u . dx ( 1 ) ( ’− ’ ) ) ) \ \
∗ ( n [ 0 ] ( ’+ ’ ) ∗ ( v . dx ( 0 ) ( ’+ ’ )−v . dx ( 0 ) ( ’− ’ ) ) \ \
+n [ 1 ] ( ’+ ’ ) ∗ ( v . dx ( 1 ) ( ’+ ’ )−v . dx ( 1 ) ( ’− ’ ) ) ) \ \
∗dS ( mesh , me t ada t a={ ’ q u a d r a t u r e _ d e g r e e ’ : quad_deg } )

re turn J1
# d e f i n i n g nond i v e rg enc e pa r t o f t h e b i l i n e a r form
def ah ( u , v , mesh ) :

a = gamma∗(A00∗u . dx ( 0 ) . dx (0)+A11∗u . dx ( 1 ) . dx (1)+A01∗u . dx ( 1 ) . dx ( 0 ) \ \
+A01∗u . dx ( 0 ) . dx ( 1 ) ) ∗ ( v . dx ( 0 ) . dx (0)+ v . dx ( 1 ) . dx ( 1 ) ) \ \
∗dx ( mesh , me t ada t a={ ’ q u a d r a t u r e _ d e g r e e ’ : quad_deg } )

re turn a
# d e f i n i n g b i l i n e a r form a

a = ah ( u , v , mesh)+ J_h ( u , v , mesh )
# d e f i n i n g l i n e a r form l

l = gamma∗( f ) ∗ ( v . dx ( 0 ) . dx (0)+ v . dx ( 1 ) . dx ( 1 ) ) \ \

S. C. Brenner, E. L. Kawecki: Preprint submitted to Elsevier Page 11 of 20



ACIPM for HJB equations

∗dx ( mesh , me t ada t a={ ’ q u a d r a t u r e _ d e g r e e ’ : quad_deg } )

Remark 4.2 (Boundary data) We apply the Dirichlet boundary condition using the DirichletBC function in FEniCS.
In the code snippet, and in our numerical examples, we take gℎ to be the L2 projection of g onto Vℎ. However, one
could take gℎ to be the unique element of Vℎ satisifying (3.1).

5. Applications to the Fully Nonlinear Monge–Ampère Equation
Let us consider the fully nonlinear Monge–Ampère (MA) equation:
detD2u = f, in Ω, (5.1)

u = g, on )Ω, (5.2)
u is convex, (5.3)

where f and g are given functions, and f is assumed to be uniformly positive. Thanks to [25] we may characterise
equation (5.1)-(5.3) as the following HJB problem:

max
W ∈X

{−W ∶ D2u + 2f 1∕2(detW )1∕2} = 0, in Ω, (5.4)
u = g, on )Ω, (5.5)

where X ∶= {W ∈ ℝ2×2 ∶ W ≥ 0,W = W T , Trace(W ) = 1}.
However, the control set, X, contains degenerate matrices, which do not satisfy (1.5). This is remedied by the

results (in particular Theorem 5.2) below, which prove that we may consider a restricted control set of matrices that
satisfy (1.5) uniformly. The material that follows is present in [36], under the assumption of classical differentiability
of the solution to the MA problem (5.4)-(5.5). Furthermore, similar results are also present in [25].

Theorem 5.1 Let Ω be a bounded convex open subset of ℝ2, and assume that g ∈ H2(Ω), and that f ∈ C0(Ω) is
nonnegative. Let X� ∶= {W ∈ X ∶ detW ≥ �}. Then, for any constant � ∈ (0, 1∕4], there exists a unique solution
u ∈ H2(Ω) of the following HJB equation

sup
W ∈X�

{−W ∶ D2u + 2(detW )1∕2f 1∕2}(x) = 0, a.e. in Ω,

u(x) = g, on )Ω.
(5.6)

Proof: First note that as � ≤ 1∕4, one has that (1∕2)I ∈ X� , and so X� ≠ ∅. The set X� also contains only positive
definite matrices (since all elements ofX� are 2×2matrices with positive trace and determinant), and in two dimensions
uniform ellipticity implies the Cordes condition. Then, setting Λ = X� , we can see thatX� is a compact metric space;
using the Euclidean distance as a metric, and noting that X� = D−1([�, 1∕4]), where D ∶ Λ→ ℝ given by

D(W ) ∶= det(W ), W ∈ X� ,

is a continuous function, we deduce that X� is closed. Since each member of X� is of unit trace, denoting the eigen-
values ofW ∈ X� by �1, �2, we have that |W |

2 = �21 + �
2
2 = (�1 + �2)

2 − 2�1�2 = 1 − 2 detW ≤ 1 − 2� <∞. Thus
X� is bounded. It then follows that X� is compact.

We can apply Theorem 1.1, yielding existence of a unique v ∈ H2(Ω) satisfying
⎧

⎪

⎨

⎪

⎩

sup
W ∈X�

{W ∶ D2v + 2(detW )1∕2f 1∕2} = 0 in Ω,

u = −g on )Ω.
(5.7)

We then (uniquely) define u ∶= −v. □
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Theorem 5.2 Let d = 2, assume that Ω is convex, that g ∈ W 2,∞(Ω), and f ∈ C0(Ω) is uniformly positive. Fur-
thermore, assume that u ∈ W 2,∞(Ω) is uniformly convex, and satisfies (5.1)-(5.2). Then, there exists � ∈ (0, 1∕4]
dependent upon |u|W 2,∞(Ω), such that u is also the unique solution to

⎧

⎪

⎨

⎪

⎩

sup
W ∈X�

{−W ∶ D2u + 2(detW )1∕2f 1∕2} = 0 a.e. in Ω,

u = g on )Ω.
(5.8)

Proof: Let us define the map Au ∶ Ω → ℝ2×2 by:

Au(x) ∶=
Cof(D2u)
Δu

, (5.9)

note that this map is well defined, since u is uniformly convex, and so, its Laplacian is uniformly positive. Also, since
u ∈ W 2,∞(Ω), we have that Au ∈ L∞(Ω). Furthermore, Cof(D2u) is symmetric, and

Tr(Au) =
1
Δu

Tr(Cof(D2u)) = Δu
Δu

= 1,

and so Au ∶ Ω → X. We see that Au satisfies
− Au(x) ∶ D2u(x) + 2 det(Au(x))1∕2f 1∕2

= 1
Δu(x)

(−Cof(D2u(x)) ∶ D2u(x) + 2(det(Cof D2u(x)))1∕2f (x)1∕2)

= 2
Δu(x)

(− detD2u(x) + det(D2u(x))1∕2f (x)1∕2)

= 2
Δu(x)

(− detD2u(x) + f (x)) = 0.

(5.10)

We also obtain a lower bound on the determinant of Au:

det(Au) = det
(

Cof(D2u)
Δu

)

=
det(D2u)
(Δu)2

=
f

(Δu)2
≥ �
2|u|2

W 2,∞(Ω)

=∶ �,

where � = infx∈Ω f (x) > 0, and so, � > 0.
Let us consider the following HJB equation: find v ∈ H2(Ω) such that
⎧

⎪

⎨

⎪

⎩

sup
W ∈X�

{−W ∶ D2v + 2(detW )1∕2f 1∕2} = 0, x ∈ Ω,

v = g, x ∈ )Ω.
(5.11)

There is an important difference between the set X and the set X� ∶= {W ∈ X ∶ detW ≥ �}, which is that the
latter set consists entirely of positive definite matrices. It then follows from Theorem 5.1 that there exists a unique
v ∈ H2(Ω) that satisfies (5.11).

We then see that the solution u of the MA equation satisfies (noting that X� ⊆ X)
sup
W ∈X�

{−W ∶ D2u + 2(detW )1∕2f 1∕2} ≤ sup
W ∈X

{−W ∶ D2u + 2(detW )1∕2f 1∕2} = 0 a.e. in Ω.
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Since A(x) ∈ X� for a.e. x ∈ Ω, from (5.10), we obtain
sup
W ∈X�

{−W ∶ D2u + 2(detW )1∕2f 1∕2} ≥ −A(x) ∶ D2u + 2(det A(x))1∕2f 1∕2 = 0 a.e. in Ω.

By combining these results, we obtain
sup
W ∈X�

{−W ∶ D2u(x) + 2(detW )1∕2f 1∕2} = 0 a.e. in Ω.

Since u = g on )Ω, and u ∈ H2(Ω), by uniqueness u = v. □

6. Numerical Results
Remark 6.1 (PDE coefficients) In Experiment 6.1, we consider the coefficient matrix given by Aij ∶= (1+�ij)

xixj
|xi||xj |

composed with an affine map. This example was considered in [14]. Furthermore, we multiply the coefficient matrix
by an interface function �Ω (defined below), so that the coefficients have large jumps.

Remark 6.2 (Monge–Ampère) In Experiment 6.3, we consider a family of Monge–Ampère type problems with true
solutions that have been slightly modified from an example that is present in [28] (cf. [28], Test 4). The modifications
ensure that the true solutions are uniformly convex and belong toW 2,∞(Ω) ⧵ Vℎ.

6.1. Experiment 1
In this experiment, we consider the following problems
⎧

⎪

⎨

⎪

⎩

2
∑

i,j=1
(1 + �ij)

(xi − 0.5)
|xi − 0.5|

(xj − 0.5)
|xj − 0.5|

�NΩ (x1, x2)D
2
ijus = fs, in Ω,

us = gs, on )Ω,

(6.1)

where Ω = (0, 1)2. Furthermore, the interface function �NΩ satisfies �NΩ = 1 on Ω1 ∶= ∪N∕2−1i,j=0 {2i∕N < x1 <
(2i+1)∕N, 2j∕N < x2 < (2j+1)∕N}, and �NΩ = 1000 onΩ⧵Ω1. In this case we takeN = 20. In this case fs and gs
are chosen so that the solution of (6.1) is given by u(x) = |x|1+s.We consider the exponent s ∈ {0.01, 0.1, 0.2,… , 0.5}.
It holds that us ∈ H2+�(Ω), for arbitrary � ∈ [0, s]. Furthermore, us lacks regularity at the origin, and one can see in
Figure 1, the error estimator prioritises refinement towards the origin, in addition to further refinement in the areas of
the domain where �Ω is the largest. We apply both Algorithm 2 with � = 0.2, and a uniform refinement procedure,
so that we may compare the two approaches. For clarity, we denote the numerical solution by uℎ,adapt , and uℎ,unif forthe adaptive and uniform approach, respectively. We consider a variety of values of s, and polynomial degree, p, and
calculate the error in the following (semi) norms: ‖ ⋅ ‖L2(Ω), | ⋅ |H1(Ω), ‖ ⋅ ‖ℎ, and also calculate the error estimator �ℎ.

Case 1: p = 4, and s = 0.01. We observe that
‖u0.01 − uℎ,adapt‖L2(Ω) = (ndofs−2), ‖u0.01 − uℎ,unif‖L2(Ω) = (ndofs−1.01),

|u0.01 − uℎ,adapt|H1(Ω) = (ndofs−1), |u0.01 − uℎ,unif |H1(Ω) = (ndofs−0.51),

�adapt , ‖u0.01 − uℎ,adapt‖ℎ = (ndofs−0.01), �unif , ‖u0.01 − uℎ,unif‖ℎ = (ndofs−0.005),

and so, the adaptive method outperforms the uniform scheme. We also plot the effectivity index in Figure 2, verify-
ing (3.16)–(3.17), for the adaptive scheme.

Case 2: p = 3, and s ∈ {0.1,… , 0.5}. We observe that
‖us − uℎ,adapt,s‖L2(Ω) = (ndofs−(2+s)), ‖u0.01 − uℎ,unif ,s‖L2(Ω) = (ndofs−(1+s∕2)),

|us − uℎ,adapt,s|H1(Ω) = (ndofs−(1+s)), |u0.01 − uℎ,unif ,s|H1(Ω) = (ndofs−(0.5+s∕2)),

‖us − uℎ,adapt,s‖ℎ = (ndofs−s), ‖u0.01 − uℎ,unif ,s‖ℎ = (ndofs−s∕2),

�adapt,s = (ndofs−1.11), �unif ,s = (ndofs−s∕2).
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Figure 1: On the left are the convergence rates for Experiment 6.1, with s = 0.01, and on the right is the final adapted
mesh.
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Figure 2: Plot of the effectivity index, with error indicators and true errors for Experiment 6.1, with polynomial degree
p = 4.

6.2. Experiment 2
In the previous experiment, we observed the advantage of applying the adaptive scheme, when compared with

uniform refinement (see Figure 1). However, the solution is known to possessHs-regularity, with s > 2, and is known
to lack regularity at the origin. We propose a second experiment, in which the solution is unknown, the right-hand is
smooth, and the coefficients are indeed discontinuous (we choose a smooth right-hand side in order to surmise that any
bad behaviour of the solution is due to the coefficients and regularity of )Ω). In particular we consider the boundary
value problem:

⎧

⎪

⎨

⎪

⎩

2
∑

i,j=1
(1 + �ij)

(xi − 0.5)
|xi − 0.5|

(xj − 0.5)
|xj − 0.5|

�NΩ (x1, x2)D
2
ijuN = 1, in Ω,

uN = 0, on )Ω,

(6.2)

where Ω = (0, 1)2. We consider the caseN = 10, and in this case the PDE theory implies that uN ∈ H2(Ω) ∩H1
0 (Ω)(see (1.13)). We consider the polynomial degree p = 2, and an initial triangulation with a resolution that matches the

indicator function (i.e., N squares in each coordinate direction, with each square further bisected into two triangles),
and apply uniform mesh refinement, as well as adapted refinement (applying Algorithm 2), and compare the results.
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Figure 3: Final adapted mesh for Experiment 6.2, with N = 10.

Table 1
p = 2, uniform refinement

ndofs ‖�ℎ‖ℎ EOC |�ℎ|H1(Ω) EOC ‖�ℎ‖L2(Ω) EOC �ℎ EOC

1,681 0.212 0.000 3.548 ⋅ 10−3 0.000 4.531 ⋅ 10−4 0.000 169.505 0.000
6,561 0.252 0.126 3.846 ⋅ 10−3 5.906 ⋅ 10−2 1.549 ⋅ 10−4 −0.788 119.413 −0.257
25,921 0.161 −0.324 1.389 ⋅ 10−3 −0.741 4.709 ⋅ 10−5 −0.867 77.433 −0.315
103,041 9.639 ⋅ 10−2 −0.373 4.21 ⋅ 10−4 −0.865 1.27 ⋅ 10−5 −0.950 45.459 −0.386

Table 2
p = 2, adaptive refinement

ndofs ‖�ℎ‖ℎ EOC |�ℎ|H1(Ω) EOC ‖�ℎ‖L2(Ω) EOC �ℎ EOC

1,093 0.186 0.000 3.126 ⋅ 10−3 0.000 4.041 ⋅ 10−4 0.000 234.229 0.000
2,911 0.188 8.685 ⋅ 10−3 2.924 ⋅ 10−3 −6.823 ⋅ 10−2 2.729 ⋅ 10−4 −0.401 172.288 −0.314
7,501 0.189 4.851 ⋅ 10−3 2.291 ⋅ 10−3 −0.258 5.139 ⋅ 10−5 −1.764 127.046 −0.322
20,159 0.137 −0.328 1.285 ⋅ 10−3 −0.584 5.097 ⋅ 10−5 −8.282 ⋅ 10−3 82.034 −0.442
52,503 8.345 ⋅ 10−2 −0.515 4.466 ⋅ 10−4 −1.104 2.724 ⋅ 10−5 −0.655 50.968 −0.497
132,973 5.011 ⋅ 10−2 −0.549 1.47 ⋅ 10−4 −1.196 8.607 ⋅ 10−6 −1.240 31.666 −0.512

The solution is unknown, and so we plot the error estimator �ℎ in each case. Due to discrete Poincaré–Friedrichs’
inequalities and the reliability and efficiency of the estimator, �ℎ may be used to as a predictor for the (semi)norms
‖ ⋅ ‖L2(Ω), | ⋅ |H1(Ω), and ‖ ⋅ ‖ℎ. Since the convergence rates in ‖ ⋅ ‖L2(Ω), | ⋅ |H1(Ω), as predicted by �ℎ are likely to bepessimistic, we calculate the error arising between successive meshes, and appeal to this to guide the convergence. In
particular, we define �k ∶= uk − uk−1, where the subscript k denotes the current refinement level, and appeal to the
fact that for the norms under consideration ‖u − uk‖ ≤ ‖u − uk−1‖ + ‖�k‖, and that the contribution ‖�k‖ should be
the dominating term. We plot the final adapted mesh generated by the adaptive scheme in Figure 3. The predictions
show that the adaptive scheme outperforms uniform refinement, however, not to the same degree as is observed in
Experiment 6.1, in the L2- andH1-norms. The exact values are provided in Tables 1-2.
6.3. Experiment 3

In this experiment, we consider the following Monge–Ampère problems
detD2ua = fa, in Ω, (6.3)

ua = ga, on )Ω, (6.4)
on Ω = (0, 1)2.
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Figure 4: Convergence rates for Experiment 6.3, we observe faster convergence rates for u0.5 than for u0.4.

Case 1: The functions fa and ga are chosen so that the true solution of (6.3)-(6.4) is given by
ua(x1, x2) = |x1 − a| sin(x1 − a) + 50.0(x21 + x

2
2),

for a ∈ {0.4, 0.5}. Our initial mesh is a uniform triangulation on Ω consisting of two squares (each further subdivided
into two right-angled triangles) in the x1 and x2 direction, as such, we have that u0.5 is piecewise smooth on the initial
mesh (and all subsequent meshes, since each marked triangle is bisected), however, u0.4 does not enjoy this piecewisesmoothness property, and so, its approximation, uℎ,a=0.4, does not converge as fast, as observed in Figure 4. In both
cases, ua ∈ W 2,∞(Ω), and we set the polynomial degree p = 4. Note that in this case we apply the adaptive finite
element method given by Algorithm 2, in conjunction with the semismooth Newton’s method given by Algorithm 1.

We also compare the adaptive scheme with that of uniform refinement. The exact results are provided in Tables 3-6.
We observe that when a = 0.4, the adaptive scheme out performs uniform refinement, whereas when a = 0.5 the two
approaches are comparable (we surmise this is due to the piecewise smoothness property of u0.5).

Case 2: Here we take fa ≡ 1, ga ≡ 0. In this case the true solution is unknown, and so we rely on the error
estimator, as well as the the incremental solutions in order to indicate the performance of the numerical method (as
in Experiment 6.2). We take p = 4 and compare the adaptive scheme with uniform refinement. We display the
exact convergence results in Tables 7-8, and observe that the adaptive scheme outperforms the uniform scheme in all
(semi)norms.

7. Concluding Remarks
In this paper, we were successful in proposing and analysing a C0-interior penalty method for the approximation

of the fully nonlinear Hamilton–Jacobi–Bellman equation with inhomogeneous Dirichlet boundary data. The analysis
consisted of three parts: proving a stability estimate, a quasi-optimal a priori error estimate, and an a posteriori error
estimate in a H2-style norm. All of the aforementioned analysis was undertaken, assuming regularity no higher than
H2(Ω), as implied by the corresponding PDE theory. All of the theoretical results were confirmed in the experiments
section, which included the implementation of an adaptive method, based upon the proven a posteriori error estimate.
Furthermore, we were able to apply the proposed method to the fully nonlinear Monge–Ampère equation, providing a
uniquely solvable, optimally convergent, and adaptive finite element method.
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