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Abstract
The COVID-19 pandemic continues to expand, while the relationship between weather conditions
and the spread of the virus remains largely debatable. In this paper, we attempt to examine this
question by employing a flexible econometric model coupled with fine-scaled hourly temperature
variations and a rich set of covariates for 291 cities in the Chinese mainland. More importantly,
we combine the baseline estimates with climate-change projections from 21 global climate models
to understand the pandemic in different scenarios. We found a significant negative relationship
between temperatures and caseload. A one-hour increase in temperatures from 25 ◦C to 28 ◦C
tends to reduce daily cases by 15.1%, relative to such an increase from−2 ◦C to 1 ◦C. Our results
also suggest an inverted U-shaped nonlinear relationship between relative humidity and confirmed
cases. Despite the negative effects of heat, we found that rising temperatures induced by climate
change are unlikely to contain a hypothesized pandemic in the future. In contrast, cases would tend
to increase by 10.9% from 2040 to 2059 with a representative concentration pathway (RCP) of 4.5
and by 7.5% at an RCP of 8.5, relative to 2020, though reductions of 1.8% and 18.9% were
projected for 2080–2099 for the same RCPs, respectively. These findings raise concerns that the
pandemic could worsen under the climate-change framework.

1. Introduction

The world has been badly hit by the COVID-19
pandemic, with more than 42.7 million confirmed
cases and over 1.1 million deaths as of October 25,
2020 (Johns Hopkins Coronavirus Resource Cen-
ter 2020), and the number of cases is still grow-
ing. Numerous mitigation efforts have proven to be
effective at curbing the transmission of the virus,
such as travel restrictions, early identification, isol-
ation of cases, etc (Hellewell et al 2020, Lai et al

2020, Prem et al 2020, Tian et al 2020). On the other
hand, the role of weather conditions (temperature
and humidity) amid the ongoing pandemic remains
unclear, yet has gained enormous attention.

Existing results on this topic are mixed, not only
in terms of the limited lab experiments but also in
fast-growing empirical studies. For instance, from the
lab-experiment perspective, Chin et al (2020) found
that the virus was highly stable at 4 ◦C, but sensit-
ive to heat. Omer et al (2020) claimed that infectivity
lasts for a shorter time at temperatures greater than
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30 ◦C. However, Kratzel et al (2020) challenged the
above lab-based results and found that higher tem-
peratures (up to 30 ◦C) do not necessarily inactiv-
ate the virus. From an empirical perspective, Li et al
(2020a) stated that higher temperatures reduced case-
load. In contrast, Yao et al (2020) argued that there
was no association between COVID-19 transmission
and temperature. Baker et al (2020), on the other
hand, concluded that the climate only drives mod-
est changes to the pandemic’s size. These results are
informative and promising, however are subject to
inherent drawbacks. For instance, controlled exper-
imental conditions usually fail to adequately mimic
those in the real world, whereas empirical studies
may be plagued by confounding effects, omitted vari-
able biases, and other internal and external validity
threats.

In the work described in this paper, we con-
structed a rigorous econometric model and relied on
small-scale variations in hourly temperatures and a
rich set of covariates to identify the impacts ofweather
conditions on the COVID-19 pandemic in 291 cities
in the Chinese mainland from January 24 to February
29, 2020. Specifically, we contribute to the existing lit-
erature from several perspectives.

First, we differentiate our work from the exist-
ing literature (Islam et al 2020, Ma et al 2020, Xie
and Zhu 2020, Yao et al 2020, Li et al 2020a, Wang
et al 2020b) by adopting hourly temperatures. These
small-scale temperatures avoid the potential misiden-
tifications that can happen inmodels with aggregated
temperatures (Schlenker and Roberts 2009, Auffham-
mer et al 2013, Auffhammer 2018). Second, unlike
the literature that focuses on simulating transmission
dynamics by epidemiological models (Giordano et al
2020, Prem et al 2020), we develop a more flexible
semiparametric Poisson model with fixed effect that
is capable of taking full advantage of the hourly tem-
perature variation. Besides, the fixed effect is desig-
nated to account for any time-invariant unobserv-
able characteristics (i.e. population mix, proximity to
the epicenter, inherent hospital capacities, and differ-
ent living styles, etc.) that might confound the estim-
ates. Third, we took account of city lockdowns, virus
incubation periods, outdoor population movement,
and changes in case-diagnosis criteria in our model.
Existing studies either considered only a few of these
potential impactors or completely omitted them from
their models, which may have caused biased estima-
tion results.

More importantly, we combined our baseline
estimates with climate change projections from 21
state-of-the-art global climate models under Rep-
resentative Concentration Pathways (RCP) 4.5 and
RCP8.5, respectively. We aim to answer the question
of how the confirmed cases would change for a hypo-
thetical pandemic between 2040 and 2059 (middle of
the century) and between 2080 and 2099 (end of the
century), relative to 2020. Studies have suggested that

climate change might contribute to the emergence
and spread of various infectious diseases (Semenza
and Menne 2009, Lindgren et al 2012, Altizer et al
2013). Besides, COVID-19 may resurge and spread
in places where the pandemic was thought to be well
under control. It is therefore insightful to examine the
severity of a hypothetical pandemic in the framework
of future climate change.

2. Data andmethodology

2.1. Data collection
Our data set consists of daily new confirmed cases,
weather data, and population movement data in 291
cities in the Chinese mainland from January 24 to
February 29, 2020. We chose this time window based
on two considerations. First, Wuhan, the epicenter
in China, was locked down on January 23. As we
aimed to identify the relationship between weather
conditions and the spread of the virus, migrations
from Wuhan could have been a major threat to our
identification. Thus, we focused on the period right
after lockdown. We also performed corrections on
the daily caseloads to further eliminate the impacts
of travelers that had already traveled to those 291 cit-
ies before January 23 (see Methodology). Second,
the period under study generally coincides with
the two stages mainly experienced during the out-
break in China: a rapid increase phase and a station-
ary phase, as shown in figure S1 (available online
at stacks.iop.org/ERL/16/014026/mmedia). From
March onwards, new cases were mostly imported.
For instance, total daily new domestic cases in those
251 cities remained below five for the whole ofMarch.

It should also be noted that we excluded cities
in Hubei province from our sample. There are sev-
eral reasons for this restriction. First, as the epicenter
in China, the healthcare system in Hubei was over-
whelmed by the sheer number of patients who needed
testing. Contracted patients may have recovered on
their own or died before even being officially tested
(Fang et al 2020). Therefore, the reported caseloads
in Hubei may have missed a considerable number of
cases. By contrast, the cases in cities outside Hubei
were much fewer. We argue that the healthcare sys-
tem was unlikely to miss a large proportion of cases.
Second, from a statistical point of view, the sheer
number of cases inHubei would highly skew the over-
all case distribution in our sample, and thus reduce
the statistical power of our regressions and make the
estimations less reliable.

2.1.1 Confirmed case data.
The original city-level confirmed case data were col-
lected from the provincial health commissions and
prepared in a ready-to-use format by the Wind Eco-
nomic database. We directly downloaded the case
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data from the database9 (Wind 2020). It is noteworthy
that the Wind Economic database did not perform
any additionalmanipulation on the original case data.
See supplementary figure S1 for the development of
cases over time and figure S2 for the spatial distribu-
tion of cases.

2.1.2 Weather data.
Weather data, including temperature (in ◦C) and
relative humidity (in %), were obtained from the
China Meteorological Data Service Center (National
Meteorological Information Center 2020). The ori-
ginal data were observations from over 300 monit-
oring stations distributed across the Chinese main-
land. To get the hourly data, we extrapolated the
daily minimum and maximum temperatures based
on a location-dependent sine curve, see Luedeling
(2020) for the technical details. It it worth not-
ing that the extrapolation process was performed at
the monitoring-station level, which preserved tem-
perature variations between stations (Deschênes and
Greenstone 2011).

Following that, we converted the station-level
hourly temperatures to the city level. For those cit-
ies with no stations, we adopted the temperatures
from the closest station10. For those cities with mul-
tiple stations, we simply took the average. Finally,
we constructed 18 temperature bins with an inter-
val of 3 ◦C from the small-scale hourly temperatures,
as shown in figure 1(a). Moreover, figure 1(b) below
presents significant spatial variations in temperature
that greatly contributed to our model identification.

2.1.3 Population movement data.
Population movement data are represented by a
mobility index, which is a normalized ratio of move-
ment within 24 h by the city’s residential population.
This index is consistent across cities and time. We
obtained the index from Baidu Migration, offered by
Baidu, the largest Chinese search engine (Fang et al
2020). The data is based on real-time location records
for every smartphone using the company’s mapping
app and thus ideally reflects population movement.

The company provides both intra-city and inter-
city mobility indices. We include the former as a cov-
ariate in our model to address the concern that the
estimated temperature effects on cases could be con-
founded by intra-city population movement. On the
other hand, we use the inter-citymovement to correct

9 The Wind Economic database is a highly reputable commercial
data provider. A commercial account is required to download data
from this source.
10 There were 39 cities (13%) that did not have monitoring sta-
tions. For these cities, we adopted temperatures from the closest
station to the city’s centroid. In most cases, stations were available
within a relatively short distance. For instance, the nearest station
was within 5.5 km of the centroid, the longest distance was 63 km,
while the mean distance was 37.5 km.

confirmed case data that were possibly ‘contamin-
ated’ by travelers fromWuhan (the capital of province
Hubei and the epicenter in China), which we will
describe in detail in the modeling section below.

2.1.4 Climate change projection data.
We obtained the output of 21 global climate models
from the Center for Climate Simulation of NASA (the
National Aeronautics and Space Administration of
the United States) (NASA 2020). Each of the models
provides future projections of the dailyminimumand
maximum temperatures under RCP4.5 and RCP8.4,
respectively. We extracted projections for January 24
to February 29 for the years 2040 to 2059 and 2080 to
2099 to match our research time window in 2020.

Note that the projection data are for a grid with a
spatial resolution of 0.25◦ by 0.25◦ (25 km by 25 km).
We converted the grid-based data to city-level data
by averaging over the grid cells that overlapped each
city, weighting them by the area of the grid cell falling
inside the city. Finally, the projected daily temperat-
ureswere interpolated to an hourly basis following the
same process as that used for the weather data.

2.2. The baseline regressionmodel
We primarily employ a Poisson model with fixed
effects to accommodate the daily confirmed case
counts. The log transformation of our Poisson model
takes the form below:

ln(Caseit) =
∑
j

βjTempij,t−6 + γ1Rhi,t−6 + γ2Rh2i,t−6

+ ρTraveli,t−6 +ϕTest+wi + ξit (1)

where i indicates the 291 cities in our sample, t indic-
ates the reporting dates between January 24 and Feb-
ruary 29. We account for an incubation period of 6 d,
as indicated by t− 611 on the right-hand side of equa-
tion (1). That is, we match the number of cases to
the weather conditions on the date of infection instead
of the date of reporting. The city-level fixed effects,
wi, capture any unobservable, time-invariant city-
level characteristics that might confound the estim-
ates (Deschênes and Greenstone 2011, Davis and
Gertler 2015, Li et al 2019).

Casei,t represents city-level daily confirmed case
counts. It is worth noting that we corrected the case
counts reported in the first week of our study period
(January 24–January 31) to eliminate the potential
confounding effects of importers from Wuhan. This
concern arises because several epidemiological stud-
ies found that the transmission of COVID-19 in cities

11The estimated incubation period ranged from 2 d up to 24 d (Bai
et al 2020, Guan et al 2020, Hoehl et al 2020, Li et al 2020b, Mcmi-
chael et al 2020, Xiong et al 2020, Yang et al 2020). As more and
more confirmed cases were analyzed, the estimated average incub-
ation period converged to 5–7 d. Thus, we chose 6 d as our baseline
incubation period and performed robustness checks with 5 and 7 d,
respectively. The results are presented in supplementary figure S5.
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Figure 1. The temporal (temperature bins) and spatial distributions of temperature (unit: ◦C). (a) Each bar indicates the number
of hours in the respective temperature bin. The histogram plots the weighted distribution of hourly temperatures from January 24
to February 29, 2020. First, we drew the temperature bin histogram for each of the 291 cities. Second, we obtained the national
histogram (figure 1(a)) by averaging the temperature bins across cities with their populations in 2019 12 acting as weights (the
sum of the weights was normalized to one). In this manner, the total number of hours in the histogram (figure 1(a)) remained at
888 (24 h by 37 d). In (b), the spatial distribution of mean temperatures is shown from January 24 to February 29 across the 291
cities in the Chinese mainland.

outside Hubei province was highly related to travelers
from Wuhan until late in January (Zhang et al 2020,
Li et al 2020b) thoughWuhan was locked down from
January 23. To correct this, we ran an auxiliary regres-
sion as shown in equation (2).

ln(Caseit) = τMirInit + ζit (2)

MirInit denotes the summed travelers from
Wuhan to city i during the last 6 d. ζit is an error
term that is independent of MirInit by construction.
We therefore replaced the daily confirmed case counts
reported during from January 24 to January 31 with
the residual ζ̂it from the regression (2).

Tempij,t−6 denotes the number of hours in tem-
perature bin j in city i for day t− 6. Here, we dropped
the bin for [−2,1] to avoid the perfect collinearity
problem. In otherwords, coefficients in the remaining

12 For those cities where population data for 2019 were not avail-
able, we used the populations in 2017 or 2018 as weights.

bins denote impacts on cases relative to the omitted
bin. There is no golden rule for picking a reference
bin in the literature. What matters is to interpret the
results relative to the reference. The choice of reference
point should not be a major concern.

Nonetheless, in practice, if a U-shaped (Davis and
Gertler 2015, Li et al 2019) (or inverted U-shaped)
curve is expected, the point at the bottom (top) of
the curve is usually set as the reference point. Fol-
lowing this conventional wisdom, we ran an auxil-
iary Poisson regression with the daily temperature
and its quadratic term and chose the point at the
top of the curve (roughly at 0 ◦C) as our reference
point, within the [−2,1] temperature bin). Rhi,t−6

and Rh2i,t−6 indicate the linear and quadratic terms
for the relative humidity.

Another concern is that the weather variables
may have multicollinearity problems, for example, if
the temperatures were related to humidity. However,
this may not be a major threat to our estimations,
given the robustness of our results (Wooldridge
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2010). Nonetheless, we performed a multicollinear-
ity test to check the degree to which weather variables
were related to each other. The results are presen-
ted in supplementary table S1. The mean variance-
inflation factor was 1.81, far below the threshold of
10 (Wooldridge 2013); thus, multicollinearity is not a
primary issue.

Traveli,t−6 represents the intra-city population
movement in city i on day t− 6.Test is a dummy vari-
able, which is 0 before January 29 and 1 otherwise.We
set up this dummy variable to account for the impacts
of a significant change in the diagnostic criteria. On
January 28, 2020, the Chinese government released
the third edition of ‘The Novel Coronavirus Pneu-
monia Prevention and Control Protocol,’ in which
the diagnostic criteria were relaxed by additionally
including mild cases and asymptomatic infections in
confirmed-case reporting and management, regard-
less of epidemiological history (The State Council of
the People’s Republic of China 2020).

ξit is the stochastic error term.We clustered errors
at the city level to allow for serial correlation and
address variance restriction in Poisson models.

3. Main results

3.1. Results of the baseline estimates
Figure 2 shows the estimated coefficients and the
corresponding 95% confidence intervals of the tem-
perature bins. The tabulated regression results are
provided in supplementary table S2.

In figure 2, we observed an approximately linear
negative relationship between temperatures and case-
load. A similar linear relationship was found in stud-
ies on temperature bins and suicide rates (Burke et al
2018) and cognitive performance (Zivin et al 2020).
In general, we found that lower temperatures tend
to increase cases, whereas hot temperatures reduce
them. The beneficial effects gradually fade out as tem-
peratures increase. Starting from the 4 ◦C–7 ◦C tem-
perature bin, the estimated coefficients become neg-
ative and the adverse effects are enhanced rapidly with
rising temperatures. For instance, an additional hour
at 4 ◦C–10 ◦C decreases the daily confirmed cases by
roughly 3%, relative to −2 ◦C to 1 ◦C, whereas an
additional hour at 25 ◦C–28 ◦C would reduce cases
by 15.1%.

Our findings on the approximately linear rela-
tionship between temperature and caseload are con-
sistent with those of Wang et al (2020a), and different
from those ofWang et al (2020b) in which the authors
detected a nonlinear relationship, though all three
studies were conducted based on data in China. Nev-
ertheless, they all show that high temperatures mitig-
ate the pandemic. Importantly, the temperature bin
setup in this paper allows us to further examine the
heterogeneities, i.e. extreme temperatures (<−20 ◦C
or >28 ◦C) have substantial effects (positive or

negative) on daily confirmed cases, relative to the
moderate impacts for milder temperatures.

The estimated coefficients of relative humidity
and its quadratic term suggest an inverted U-shaped
nonlinear relationship with daily confirmed cases
(figure 3). The turning pointwas estimated to be 86%,
which is a fairly high level of humidity, given that
the mean and median humidities in our sample are
69% and 71%, respectively. Only 17.9% of the days
were exposed to a relative humidity level higher than
86% during our research period (see the bar chart
in figure 3). Nevertheless, our estimates are consist-
ent with Ficetola and Rubolini (2020), in which they
also suggested a turning point at a fairly high humid-
ity level.

In addition to the impacts of weather conditions,
we also observed the statistically significant positive
effects of intra-city population movement on case-
load. Specifically, a one unit increase in the mobil-
ity index tended to contribute to a growth of 14.5%
in daily confirmed cases on average (see supplement-
ary table S2). This finding is in line with epidemiolo-
gical studies, which have shown evidence that travel
restrictions can effectively mitigate the transmission
of the virus (Hellewell et al 2020, Prem et al 2020,
Tian et al 2020). Finally, the change in the diagnostic
criteria played an important role as well. The num-
ber of reported cases increased by an average of 80%
after the introduction of the new diagnostic stand-
ard (see supplementary table S2). That meant more
peoplewere able to be screened andmore cases identi-
fied. Consequently, isolation and contact tracing were
able to be conducted earlier to contain the spread of
the virus.

3.2. Impacts of climate change
In this section, we combined our baseline estimates
with climate-change projections from 21 global cli-
mate models to examine the changes of caseload for a
hypothetical pandemic in the middle of the century
(2040–2059) and at the end of the century (2080–
2099) relative to 2020, under the RCP4.5 and RCP8.5
scenarios, respectively.

Figure 4 depicts the changes in the temperature
bins in the future under different scenarios. In line
with the global warming expectation, we observed
more frequent hot temperatures (over 10 ◦C) and
fewer cold temperatures (<7 ◦C) in the future. While
changes in temperatures lower than−8 ◦C and higher
than 25 ◦C are moderate, changes in temperatures
between −8 ◦C and 25 ◦C (except for temperatures
in 7 ◦C–10 ◦C) are more significant. One possible
avenue to explain this phenomenon is by consider-
ing how climate change governs weather distribu-
tion. Specifically, in the current climate, bin [7,10]
has the highest probability in the distribution in
figure 1(a). Climate change in the future is expected
to change the distribution so that the incidence of
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Figure 2. Estimated coefficients of temperature bins.

Figure 3. The relationship between relative humidity and daily confirmed cases.

temperatures greater than [7,10] increases, and the
incidence of low temperatures decreases, due to global
warming (Xu et al 2018); however, [7,10] may still
have the highest incidence, due to the subtlety of the
changes.

The changes in caseload caused by climate change
in the future were derived via two steps. We first
multiplied the changes in the temperature bins with
the associated coefficients from the baseline estimates

(Deschênes and Greenstone 2011). The formula takes
the form below.

PctChangeit =
∑
j

β̂j •∆Tempij,t−6 (3)

where PctChangeit indicates the projected percentage
changes in caseload in a city i on day t from24 January
to 26 February. The estimated coefficients, β̂j, are
associated with the j temperature bins from equation

6



Environ. Res. Lett. 16 (2021) 014026 J-L Fan et al

Figure 4. Changes in temperature bins in 2040–2059 and 2080–2099 relative to 2020, under RCP4.5 and RCP8.5 respectively.

(1). ∆Tempij,t−6 denotes the changes in the num-
ber of hours in the temperature bins. It should be
noted that we assume the other impactors, such as
relative humidity, populationmovement, etc., remain
at their 2020 levels because the projected data on
these variables are either not available (i.e. intra-city
population movement) or less reliable (i.e. humidity)
than the projections of temperature. The national-
level percentage change in caseload is then calculated
as the weighted mean of changes in all cities, where
the value of a city was weighted by the average popu-
lation from 2017 to 2019 in that city (Wind 2020).

It is striking that we observed increases in
confirmed case counts in the future despite the neg-
ative effects of rising temperatures induced by climate
change (figure 5). Specifically, for a hypothetical pan-
demic that occurs in themiddle of the century (2040–
2059), increases in the frequency of hot temperatures
are unlikely to sufficiently contain the spread of the
pandemic. Instead, the confirmed case counts tend
to increase by 10.9% for RCP4.5 and by 7.2% with
RCP8.5 from 2040 to 2059, relative to 2020. This is, in
part, due to our adjustment for reality. To be specific,
for those cities with projected percentage changes
<−100%, we adjusted the change rate to−100% (the
confirmed cases cannot be negative). Similarly, for

those cities with zero confirmed cases but projected
negative change rates, we adjusted the change rate to
a zero rate.

On the other hand, projections for a pandemic
at the end of the century tell different stories,
for which the confirmed cases decrease by 1.8%
and 18.9% in 2080–2099 for RCP4.5 and RCP8.5,
respectively.

Figure 6 depicts the spatial distribution of the per-
centage changes in the confirmed cases in China and
table 1 summarizes the heterogeneity across cities.
On one hand, our findings suggest a worse pan-
demic in 2040–2059, whereby 85% (243/287) and
77% (222/287) of cities are expected to experience
increases in the confirmed cases for the RCP4.5 and
RCP8.5 scenarios, respectively (table 1). On the other
hand, in 2080–2099, fewer cities are projected to face
increases in confirmed cases, and the majority of
cities would have a reduction in cases of between
−20% and 0% (table 1). In terms of geographical
distribution, cities in the northern part of China
tend to have higher rates of increase, relative to cit-
ies in the south. However, those cities with higher
increase rates do not show a specific spatial pattern,
which poses challenges for the development of more
accurate spatial mitigation strategies.

7
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Figure 5. Percentage changes of caseload in 2040–2059 and 2080–2099, relative to 2020, for RCP4.5 and RCP8.5,
respectively.Each box is defined by the upper and lower quartile, with the median depicted as a horizontal line within the box. The
small red triangle is the mean. The red dashed line denotes a zero percentage change of caseload.

Table 1. Summary of changes in caseload for cities in the Chinese mainland.

2040–2059 2080–2099 2080–2099 vs 2040–2059

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5Percentage changes
in confirmed cases (1) (2) (3) (4) (5) (6)

>40% 10 7 4 1 −60% −86%
20%–40% 60 42 15 2 −75% −95%
20%–0% 173 173 128 50 −26% −71%
0% to−20% 41 61 131 143 220% 134%
−40%–20% 3 4 8 79 167% 1875%
<−40% 0 0 1 12 — —
Proportion of
cities experiencing
increases

85% 77% 51% 18% −40% −76%

Proportion of
cities experiencing
decreases

15% 23% 49% 82% 218% 260%

Columns (1)–(4) indicate the number of cities that are expected to experience different percentage changes in confirmed cases.

Columns (5) and (6) compare 2080–2099 with 2040–2059 for RCP4.5 and RCP8.5. The last two rows show the proportions of cities that

are projected to experience increases and decreases in cases, respectively.

Finally, since the pandemic is closely related
to population, which is projected to drop in the
future (United Nations 2015), we feel it is insightful
to picture the pandemic in a population-reduction
scenario. Although subjective, we speculate that it
is still possible that the population reduction can-
not fully offset the increases in caseload induced
by climate change. For instance, temporary human
mobility is expected to increase due to the benefits

of infrastructure and economic development, which
could significantly facilitate the spread of the virus.
Moreover, the number of permanent environmental
migrants, i.e. driven by adaptation to climate change,
on the other hand, is expected to reach between
25 million and 1 billion by 2050 (Anon 2019, Boas
et al 2019). Although the number is uncertain and
debated, the sheer size of such a migration could trig-
ger severe clusters of cases.
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Figure 6. The spatial distribution of percentage changes in caseload.

4. Discussion and conclusions

To further examine the accuracy of our preferred
Poisson model, we performed cross-validation with
alternativemodel specifications using the root-mean-
squared error (RMS) of out-of-sample projections
(Schlenker and Roberts 2009). Each model was
estimated 1000 times, and 85% of the sample size
was randomly chosen. These estimates were then
used to predict the daily confirmed case counts
in the remaining 15% of the sample. The RMS
was calculated from the predictions. The results are
shown in supplementary figure S3. Our baseline
model is preferable to linear models when fixed
effects are included, with an accuracy improvement
of a reduction of 150% to 205% in the RMS.
Additionally, our baseline model has better per-
formance, compared to the Poisson model with
average temperature (an accuracy improvement of
27.6%).

We also performed a wide variety of robustness
checks. For instance, to address the concern that
human activities drop sharply after midnight, we per-
formed a robustness check with temperature bins
constructed from 06:00 to 22:00, and the estimated
results were consistent with our baseline estimates
(see supplementary figure S4 and table S2). We also
performed robustness checkswith incubation periods
of 5 and 7 d, and the estimates were again robust and
consistent (see supplementary figure S5). Moreover,

our results were robust to absolute humidity13 (see
supplementary table S3) and the estimates for the
temperature bins barely changed (see supplementary
figure S6). Finally, to address the concern that a
specific day’s confirmed cases could have largely
depended on cases reported previously, we performed
a robustness check by introducing cumulative case
counts for the previous six days to our baselinemodel,
and the estimates were consistent and robust (see sup-
plementary figure S7).

Similarly to those studies that focused on the
impacts of climate change on mortality but obtained
heterogeneous results in terms of the magnitudes for
different regions (Deschênes and Greenstone 2011,
Yu et al 2019), our results are probably not consistent
with those of other countries, although they can still
be used as a baseline or reference evidence. Notably,
we have made an important contribution to the the-
oretical and empirical studies regarding COVID-19
and weather conditions. Through rigorous and elab-
orate modeling, we have depicted the response func-
tions between hourly temperature and COVID-19.
More importantly, our work guides the handling of
such a pandemic in the future, when climate change
will largely be inevitable if current policies continue.

13 Note that the weather data source does not provide abso-
lute humidity. We used the daily mean temperature and relative
humidity to derive the absolute humidity based on the Clausius–
Clapeyron formula (Shaman and Lohn 2009).

9



Environ. Res. Lett. 16 (2021) 014026 J-L Fan et al

The proposed modeling and projection framework
can be extended to other regions to obtain more
empirical evidence, especially in countries where cur-
rent outbreaks are still severe (e.g. the United States).

In conclusion, our findings onweather conditions
and the COVID-19 pandemic suggest that rising tem-
peratures do mitigate the expansion of the pandemic
to some degree. A one-hour increase in temperat-
ures over 28 ◦C tends to reduce the daily confirmed
cases by 23.6%, relative to an increase from −2 ◦C
to 1 ◦C. On normal days, when the relative humid-
ity is below 86%, an increase in the humidity would
drive growth in the daily confirmed cases. Our study,
in agreement with numerous epidemiological studies
(Hellewell et al 2020, Tian et al 2020, Prem et al 2020,
Lai et al 2020), but from a different angle, confirmed
that travel restrictions and wide screening and testing
play critical roles in curbing the pandemic.

We emphasize that the negative impacts of rising
temperature cannot be translated to a moderate pan-
demic. Climate change could worsen a hypothetical
pandemic occurring in the future to some extent,
causing increasing confirmed cases. For instance,
our findings suggest that 85% (243/287) and 77%
(222/287) of cities could be expected to experi-
ence increases in caseloads in 2040–2059 for RCP4.5
and RCP8.5 scenarios, respectively, in which 24%
(70/287) and 17% (49/287) of cities could be expected
to face an increase of over 20%, although the major-
ity of cities are projected to encounter reductions in
cases in from 2080 to 2099.

Last but not least, defeating the COVID-19
pandemic is tough. A portfolio of strategies should
be developed, instead of relying on variations in
weather conditions. Finally, it is not too late to
sound the alarm for a potentially more harmful
pandemic in the future, given the climate-change
framework.
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