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‡Appendix 1.

Mitofusin-2 (MFN2) is one of two ubiquitously expressed homologous proteins in eukaryote cells, playing a critical role in mito-

chondrial fusion. Mutations in MFN2 (most commonly autosomal dominant) cause Charcot-Marie-Tooth disease type 2A

(CMT2A), the commonest axonal form of CMT, with significant allelic heterogeneity. Previous, moderately-sized, cross sectional

genotype-phenotype studies of CMT2A have described the phenotypic spectrum of the disease, but longitudinal natural history

studies are lacking. In this large multicentre prospective cohort study of 196 patients with dominant and autosomal recessive

CMT2A, we present an in-depth genotype-phenotype study of the baseline characteristics of patients with CMT2A and longitudin-

al data (1–2 years) to describe the natural history. A childhood onset of autosomal dominant CMT2A is the most predictive mark-

er of significant disease severity and is independent of the disease duration. When compared to adult onset autosomal dominant

CMT2A, it is associated with significantly higher rates of use of ankle-foot orthoses, full-time use of wheelchair, dexterity difficul-

ties and also has significantly higher CMT Examination Score (CMTESv2) and CMT Neuropathy Score (CMTNSv2) at initial as-

sessment. Analysis of longitudinal data using the CMTESv2 and its Rasch-weighted counterpart, CMTESv2-R, show that over 1

year, the CMTESv2 increases significantly in autosomal dominant CMT2A (mean change 0.84 ± 2.42; two-tailed paired t-test

P = 0.039). Furthermore, over 2 years both the CMTESv2 (mean change 0.97 ±1.77; two-tailed paired t-test P = 0.003) and the

CMTESv2-R (mean change 1.21 ±2.52; two-tailed paired t-test P = 0.009) increase significantly with respective standardized re-

sponse means of 0.55 and 0.48. In the paediatric CMT2A population (autosomal dominant and autosomal recessive CMT2A

grouped together), the CMT Pediatric Scale increases significantly both over 1 year (mean change 2.24 ±3.09; two-tailed paired t-

test P = 0.009) and over 2 years (mean change 4.00 ±3.79; two-tailed paired t-test P = 0.031) with respective standardized response

means of 0.72 and 1.06. This cross-sectional and longitudinal study of the largest CMT2A cohort reported to date provides guid-

ance for variant interpretation, informs prognosis and also provides natural history data that will guide clinical trial design.
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Introduction
Mitofusin-1 (MFN1) and mitofusin-2 (MFN2) are homolo-

gous mammalian proteins and members of the large mitochon-

drial transmembrane GTPase family, exhibiting ubiquitous

expression in eukaryotic cells and playing a fundamental role

in the dynamic mitochondrial remodelling process governed

by mitochondrial fusion and fission (Chandhok et al., 2018).

These two highly coordinated biological processes, amongst

other functions, are considered critical in mitigating mitochon-

drial stress, contributing to mitochondrial quality control and

facilitating cellular apoptosis in cases of extreme cellular stress

(Youle and van der Bliek, 2012). MFN2 is a 757-amino acid

long, nuclear encoded protein (Supplementary Table 1), anch-

ored to the outer mitochondrial membrane by two transmem-

brane domains (TM1 and TM2). Most of the protein,

including its large dynamin-GTPase domain and two coiled-

coil heptad repeat regions (HR1/cc1 and HR2/cc2), are cyto-

solic (Westermann, 2010; Filadi et al., 2018). MFN2 is

essential for mitochondrial fusion; however, the exact mechan-

ism by which this occurs is not fully understood. A widely

accepted hypothesis is that MFN2 proteins on opposing outer

mitochondrial membranes mediate tethering through homolo-

gous interactions primarily of their HR2, but also HR1

regions (Filadi et al., 2018). Furthermore, evidence from cul-

tured neurons obtained from Mfn2 knockout mice and embry-

onic rat and mouse neurons expressing known pathogenic

Mfn2 variants, suggest a role of MFN2 in the bidirectional

axonal transport of mitochondria (Baloh et al., 2007; Misko

et al., 2010). MFN2 also mediates sites of endoplasmic reticu-

lum-mitochondrial contact, which are important for calcium

homeostasis (de Brito and Scorrano, 2008; Merkwirth and

Langer, 2008; Filadi et al., 2015, 2017; Leal et al., 2016).

Mutations in MFN2 are associated with Charcot-Marie-

Tooth disease type 2A (CMT2A), accounting for 4–7% of all

genetically diagnosed CMT and 30–40% of genetically diag-

nosed axonal CMT (CMT2) (Saporta et al., 2011; Murphy

et al., 2012; Fridman et al., 2015). In comparison to CMT1A,
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the commonest form of CMT, CMT2A is associated with a

more severe, motor-predominant phenotype that usually mani-

fests earlier in life and carries a greater burden of disability

(Feely et al., 2011; Bombelli et al., 2014). Additional features

include optic nerve atrophy in up to 9% of patients (Chung

et al., 2006; Verhoeven et al., 2006; Züchner et al., 2006;

Bombelli et al., 2014), vocal cord involvement (Chung et al.,
2010; Kanemaru et al., 2019), upper motor neuron dysfunc-

tion (Chung et al., 2006; Ajroud-Driss et al., 2009; Choi et al.,

2015; Luigetti et al., 2016) and white matter lesions on MRI

(Chung et al., 2010; Lee et al., 2017). Moreover, variants at

specific amino acid positions, e.g. p.Arg104, cause a more

complex syndrome with learning difficulties (Brockmann

et al., 2008; Del Bo et al., 2008; Genari et al., 2011; Tufano

et al., 2015; Tomaselli et al., 2018).

Genotype-phenotype studies of 25–45 CMT2A cases

show significant phenotypic and allelic heterogeneity (Chung

et al., 2006; Verhoeven et al., 2006; Feely et al., 2011;

Bombelli et al., 2014). Missense variants in the heterozygous

state are frequently implicated in CMT2A and the majority

of these reside within or adjacent to the dynamin-GTPase

domain. GTPase domain dimerization may occur during

tethering and mitochondrial fusion (Filadi et al., 2018), and

there is recent evidence suggesting that a dominant negative

or gain-of-function pathomechanism may be responsible. In
vitro and in vivo models of CMT2A have shown that certain

pathogenic variants (p.Arg94Gln, p.Thr105Met) cause mito-

chondrial hypofusion (El Fissi et al., 2018; Rocha et al.,
2018; Ueda and Ishihara, 2018) whilst others (p.Leu76Pro,

p.Arg364Trp) cause mitochondrial hyperfusion (El Fissi

et al., 2018; Ueda and Ishihara, 2018). Certain variants,

such as the p.Arg94Trp/Gln and p.Arg364Trp are repeatedly

observed to occur de novo and occur in guanine and cyto-

sine nucleotides that reside in CpG dinucleotide sequences

(Chung et al., 2006; Verhoeven et al., 2006). Despite this,

polymorphisms in MFN2 although uncommon do occur

and hence the interpretation of novel MFN2 variants is chal-

lenging. Furthermore, autosomal recessive and semidomi-

nant cases of CMT2A have been published further

illustrating the allelic heterogeneity of the condition

(Nicholson et al., 2008; Polke et al., 2011; Tomaselli et al.,

2016). A recessive trait is inherited and causes disease in a

recessive manner and heterozygous carriers of recessive traits

are usually phenotypically normal. However, a recessive trait

is considered to also be inherited in a semidominant manner

when it can cause a late-onset, mild disease in the heterozy-

gous state. Examples of variants showing semidominant in-

heritance in CMT2A include p.Thr362Arg (Tomaselli et al.,

2016) and p.Thr362Met (Nicholson et al., 2008).

Interestingly, the former, which is described in three further

families in this study, is absent from the genome aggregation

population database (gnomAD) (Karczewski et al., 2020)

whereas the latter is present nine times in gnomAD.

Nonetheless, these are very rare variants and using the

minor allele frequency in population databases to distinguish

between semidominant and likely benign heterozygous var-

iants is challenging. Interestingly, multiple symmetrical

lipomatosis, a rare and phenotypically distinct disease char-

acterized predominantly by massive increase in upper body

adipose tissue and the presence of lipomata, has been associ-

ated with biallelic MFN2 mutations (Sawyer et al., 2015;

Rocha et al., 2017). In all cases, at least one of the MFN2

variants is p.Arg707Trp and phenotypically some patients

also manifest a late-onset axonal neuropathy.

The mitofusin knockout mouse models illustrate the bio-

logical importance of mitofusins, since strains in which either

Mfn1 or Mfn2 are completely knocked out die in utero (Chen

et al., 2003). Furthermore, mitofusin-depleted embryonic

fibroblasts show fragmented mitochondria, most likely due to

the severely impaired process of mitochondrial fusion (Chen

et al., 2003). However, both Mfn1 and Mfn2 heterozygous

knockout strains do not express a phenotype and demonstrate

normal fertility (Chen et al., 2003). There are several trans-

genic mouse models of CMT2A (Mfn2R94Q; Mfn2R94W;

Mfn2T105M) which, nonetheless, seem to provide conflicting

evidence and none of which show progressive peripheral

axonal degeneration as seen in CMT2A (Detmer et al., 2008;

Cartoni et al., 2010; Strickland et al., 2014; Bannerman et al.,

2016; Bernard-Marissal et al., 2019; Zhou et al., 2019).

Aim

This is a cross-sectional and longitudinal study of the largest

CMT2A cohort reported to date which has been collected as

part of the ongoing Inherited Neuropathy Consortium

(INC-RDCRN) natural history study of CMT. The aim of

the study is to provide genotype-phenotype correlations to

aid variant interpretation, inform prognosis and to provide

natural history data to guide clinical trial design.

Materials and methods

Ethical approvals, study design and
patient recruitment

Patients included in this study were enrolled in the INC-
RDCRN 6601 natural history protocol (registered at
ClinicalTrials.gov NCT01193075), and 6602 and 6603 research
protocols, which gained ethical approval from the institutional
review boards and research ethics committees of the participat-
ing centres in the US, UK, Italy and Australia. All patients or
their guardians signed the relevant consent/assent forms.
Patients were evaluated at one of the 19 INC centres between
2009 and 2019 and at Wayne State University between 1996
and 2009. Antecedent clinical data were collected retrospectively
from the patient history. Longitudinal follow-up data (clinical
history and examination with or without neurophysiological
studies) was collected prospectively during annual visits.

MFN2 variant curation and
classification

For conciseness, we hereafter use the term autosomal dominant
(AD) CMT2A (AD-CMT2A) to refer to all the cases that carry
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a heterozygous variant in MFN2, irrespective of whether the
variant was parentally inherited or occurred de novo. In our
study, we used pathogenicity criteria from both pathogenic and
benign categories (Supplementary Table 2) as published in the
American College of Medical Genetics and Genomics and
Association for Molecular Pathology (ACMG/AMP) guidelines
(Richards et al., 2015), and classified all MFN2 variants into
pathogenic, likely pathogenic and variants of uncertain signifi-
cance (Supplementary Tables 3 and 4). The most recent
Association for Clinical Genomic Science (ACGS) recommenda-
tions on variant classification (Ellard et al., 2020) were also
taken into consideration to appropriately use downgraded or
upgraded pathogenicity criteria in cases/pedigrees that could not
be fully classified on the ACMG/AMP guidance alone. The
ACMG/AMP guidelines suggest using the PP1 criterion (segrega-
tion data) as a stronger evidence with increasing segregation
data; however, they do not provide a quantification for this.
Therefore, we used the Jarvik and Browning guidance (Jarvik
and Browning, 2016) on how to quantify segregation data from
multiple affected family members and appropriately assign
pathogenicity criteria to that variant. Briefly, the product of all
informative meioses across all affected members from all unre-
lated families was used to determine if the segregation criterion
can be used as a supporting (PP1), moderate (PP1_moderate) or
strong (PP1_strong) level of evidence based on probabilistic pre-
set cut-offs between the three categories. We also used the
REVEL meta-predictor tool, which combines pathogenicity and
conservation scores from individual in silico prediction tools
(Ioannidis et al., 2016). The REVEL-derived aggregate score is
more accurate compared to the combination of individual tools,
which often assess overlapping subsets of evidence, thus inad-
vertently leading to ‘double-counting’ of evidence.

The presence of a variant in the gnomAD population data-
base (Karczewski et al., 2020) was considered in the context of
the disease prevalence, penetrance, genetic and allelic heterogen-
eity of CMT. A threshold of an allele count of 3 in gnomAD
was used to distinguish between heterozygous variants that are
plausible or not to be causal for CMT2A (Pipis et al., 2019).
Furthermore, all the variants described in autosomal recessive
CMT2A cases (AR-CMT2A) in this study (Supplementary
Table 5) had a gnomAD population allele frequency that would
be compatible with the genetic architecture of autosomal reces-
sive CMT as previously published (Pipis et al., 2019). We have
also detailed the benign (B) and likely benign (LB) variants we
have encountered in our study and the reasons for their classifi-
cations (Supplementary Table 6).

Previously published case series and case reports of CMT2A
were identified through an extensive PubMed literature review,
the Inherited Neuropathy Variant Browser (Saghira et al., 2018)
and ClinVar (Landrum et al., 2014).

CMT clinical outcome measures

The clinical outcome measures used in this study included the
CMT Neuropathy Score version 2 (CMTNSv2) and the Rasch
modified CMTNSv2 (CMTNSv2-R), both composite scores
based on patients’ symptoms (three items), examination findings
(four items), and electrophysiology (two items) (Murphy et al.,
2011; Sadjadi et al., 2014). The CMT Examination Score version
2 (CMTESv2) and Rasch modified version (CMTESv2-R) are
subscores of the CMTNSv2 comprising seven items from the
patients’ symptoms and examination findings. The psychometrics

of the Rasch weighting have only been performed in CMT1A
patients (Sadjadi et al., 2014) and hence we used CMTESv2 as
our primary clinical outcome measure for this study. Most assess-
ment visits did not include neurophysiological studies and only
the CMTESv2 and CMTESv2-R were obtained during these vis-
its. Therefore, to maximize the sample size during the statistical
analysis of the longitudinal data, the CMTESv2 and CMTESv2-
R were primarily analysed; a similar analysis approach was also
used in a CMT1A natural history study (Fridman et al., 2020).
We also analysed data obtained from the CMT Pediatric Scale
(CMTPedS), a well-validated composite score that assesses
strength, hand dexterity, sensation, gait, balance, power and en-
durance in children with CMT from the age of 3 years (Burns
et al., 2012). For each of these scales a higher score indicates a
higher level of impairment. Clinical investigators at each site
received training in the administration of the clinical outcome
measures and were certified clinical investigators prior to use.

Statistical analysis

Data were analysed mostly on an available basis. The chi-
squared goodness-of-fit test (skewness, kurtosis, median, mean)
was used to ascertain the distribution of data. The baseline
demographics and characteristics, clinical data from the history
and examination and the physical disability were analysed using
descriptive statistics. Throughout the manuscript values describ-
ing continuous data represent the mean ± standard deviation
(SD). Correlations between categorical data at baseline were
assessed with chi-squared (v2) or Fisher’s exact test as appropri-
ate. Correlations between the CMTESv2 and the disease
duration as calculated at the baseline visit were assessed with
two-tailed, Spearman’s rank correlation coefficient. The longitu-
dinal responsiveness of the CMTESv2, CMTESv2-R and
CMTPedS was quantified as the standardized response mean
[SRM = mean change/standard deviation (SD) change]. SRM-
values of 0.20–0.49, 0.50–0.79, and 50.80 correspond to
small, moderate, and large responsiveness, respectively as sug-
gested originally (Cohen, 1988). A two-tailed, paired Student’s
t-test was used to compare longitudinal changes in the
CMTESv2, CMTESv2-R and CMTPedS. P40.05 was consid-
ered statistically significant.

Data availability

The data that support the findings of this study are available
from the corresponding author, upon reasonable request. The
data are not publicly available since they contain information
that could compromise the privacy of research participants.

Results
A total of 225 patients with MFN2 variants were recruited

in 19 INC centres in the US, UK, Italy and Australia (100

males: 125 females). Eighty-seven of these were children

under the age of 20 years (43 males: 44 females) and the

average age ± SD at enrolment for the entire cohort was

31.30±19.88 years. The age distribution was considered as

a single mode with an arbitrary cut-off at the age of 20 years,

rather than bimodal, as there are no distinct paediatric and

adult presentations in CMT2A.
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We identified 179 patients from 133 families with domin-

ant pathogenic (ACMG class 5) or likely pathogenic (class

4) MFN2 variants (AD-CMT2A; Supplementary Table 3),

and 17 patients from 13 families with AR-CMT2A

(Supplementary Table 5); 13 of 17 patients with AR-

CMT2A harboured homozygous variants or compound het-

erozygous variants proven to be in trans phase. Twenty-nine

patients from 23 families with variants of uncertain signifi-

cance are also reported (Supplementary Table 4). For both

the cross-sectional genotype-phenotype and longitudinal

studies, only cases with pathogenic or likely pathogenic var-

iants were considered.

Disease presentation and variant
topology

Most patients with AD-CMT2A and AR-CMT2A first

noticed symptoms in the first two decades of life, usually

walking or balance difficulties. For both modes of inherit-

ance, the correlation of the average age of onset with the

genotype (amino acid position) is illustrated in Fig. 1 with

variants at most amino acid positions being associated with

symptom onset at or before the age of 15 years. Many of

these variants reside in the dynamin-GTPase domain even

after standardizing for the size of the domain. Although

most of these are associated with early onset disease, there is

considerable phenotypic heterogeneity within the domain

with respect to the age of onset even for variants in adjacent

positions. Furthermore, variants at specific amino acid posi-

tions that are usually associated with early onset disease

(p.Arg94, p.Arg104, p.Leu248, p.Arg364, p.Trp740) also

seem to be associated with a tight time window during

which the disease manifests. Patients with AR-CMT2A al-

most always had disease onset and first symptoms in child-

hood with an average age of onset of 8.06 years ± 10.92

years (SD); one exceptional case stands out who despite

careful questioning could not time the onset of his symptoms

before his late 40s. His brother who also carries the same

variants in trans suffers from early onset AR-CMT2A and

both suffer from a moderate burden of disease in their sixth

decade of life (AR8 pedigree in Supplementary Table 5;

Tomaselli et al., 2016).

In this cohort, and in line with previous publications,

mutations in certain amino acid positions are always patho-

genic, with no evidence of reduced penetrance or variable

expressivity (range of phenotypic expression) despite differ-

ent amino acid substitutions. Examples of different missense

Figure 1 The average age of onset of symptoms at each amino acid position for all the pathogenic and likely pathogenic var-

iants with dominant inheritance and AR-CMT2A cases identified in this study. AR-CMT2A cases shown on the far right. For each

amino acid position, the cumulative variant count irrespective of the amino acid substitution, is also listed (n; for example ‘p.Arg94–, n = 31’ con-

tains all 31 cases of p.Arg94Trp, p.Arg94Gln, p.Arg94Gly and p.Arg94Leu). On the x-axis, the variants are equidistant from one another for graph-

ical purposes; the distance between the variants displayed is not to scale. However, the primary structure of the MFN2 protein has been drawn

below the graph in a skewed fashion to account for this and highlights which functional domains the variants reside in. The average age of onset

of symptoms for each amino acid position is displayed with a horizontal red bar and the standard deviation bars, indicative of the spread in age of

onset for each position, are also shown for all amino acid positions with variant counts of two or more.
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changes being observed at the same conserved amino acid

position in our cohort include p.Arg94Trp/Gln,

p.Arg104Glu/Trp, p.Ser249Thr/Cys and p.Trp740Ser/Arg.

On the contrary, mutations in other amino acid positions

are associated with phenotypic heterogeneity (early versus

later onset of disease) dependent on the amino acid substitu-

tion at the same position. An example from our cohort is

the group of 13 patients carrying the known p.Arg364Trp

variant which is associated with early onset and severe dis-

ease and a single proband carrying the p.Arg364Gln variant

who first presented with symptoms at the age of 32 years

and had a recorded CMTESv2 of 8 at the age of 55 years,

consistent with mild disease.

Genotype-phenotype study

The clinical characteristics of patients (Tables 1 and 2) were

captured at their baseline visit and were analysed after classi-

fying by inheritance pattern, age of onset, variant topology

and the biological effect of variants. Inheritance pattern was

defined as AD-CMT2A versus AR-CMT2A, and age of

onset was defined as childhood onset if disease presentation

occurred between 1 and 20 years versus adult onset if the

presentation occurred after 21 years (analysed in AD-

CMT2A patients). Variant topology was defined as variants

within the dynamin-GTPase domain versus those outside the

domain and the biological effect of variants was defined as

those variants shown to cause mitochondrial hypofusion in

non-human disease models (p.Arg94Gln, p.Thr105Met) ver-

sus variants shown to cause mitochondrial hyperfusion

(p.Leu76Pro, p.Arg364Trp).

Comparing AD-CMT2A to AR-CMT2A (Table 1), both

groups had a similar age of onset of symptoms [average

11.61 years ± 15.07 years (SD) versus average 8.06 years ±
10.92 years (SD), two-tailed Mann-Whitney U-value 1291.5,

P = 0.472] and at the baseline assessment had no significant

difference in their disease duration [average 19.98 years ±
14.84 years (SD) versus average 25.35 years ± 12.36 years

(SD), two-tailed Mann-Whitney U-value 1057.5, P = 0.069].

Disease duration was calculated from the age at the baseline

visit minus the age of onset of symptoms. A minority of

patients in both groups had delayed walking milestones

(walked after the 15th month) but there was no significant

difference between this percentage in the two groups (15%

versus 30%, Fisher’s exact test P = 0.196). Despite a similar

disease duration between the two groups, a significantly

higher proportion of patients with AD-CMT2A had foot

deformities (79% versus 53%, Fisher’s exact test P = 0.047),

but a significantly higher proportion of patients with AR-

CMT2A were using ankle-foot orthoses (63% versus 93%,

v2 test P = 0.017) and had undergone foot surgery (25%

versus 53%, Fisher’s exact test P = 0.032). Overall, patients

with AR-CMT2A had a significantly higher mean

CMTESv2 at baseline [10.75±6.90 (SD) versus 14.57± 6.07

(SD), two-tailed Mann-Whitney U-value 708.5, P = 0.028],

as well as a higher mean CMTESv2-R indicating a higher

burden of accrued disability over the same time-frame. Both

groups had a moderate mean CMTPedS score [AD-CMT2A

mean 26.45± 10.26 (SD) and AR-CMT2A mean

27.00±11.31 (SD)] but with no significant difference be-

tween them. There were no statistically significant differen-

ces between the two groups in the use of walking aids (29%

versus 47%) or wheelchair (26% versus 20%), dexterity dif-

ficulties (64% versus 79%), optic nerve atrophy (7% versus

20%), hearing loss (both 7%) or scoliosis (12% versus

29%).

Of 179 patients with pathogenic or likely pathogenic auto-

somal dominant variants (AD-CMT2A), 170 had available

data on age of onset and the majority had onset in child-

hood (n = 144; Table 1). In both groups of patients, a mi-

nority had delayed walking milestones but there was no

significant difference in this percentage between the two

groups (14% versus 13%, Fisher’s exact test P = 1). Despite

similar disease duration between childhood and adult-onset

AD-CMT2A at the baseline visit [average 20.86 years ±
15.56 years (SD) versus average 15.15 years ± 8.67 years

(SD); two-tailed Mann-Whitney U-value 1592.5, P = 0.226],

there was a significantly higher percentage of patients with

childhood onset AD-CMT2A compared to adult onset AD-

CMT2A, using ankle-foot orthoses (68% versus 40%, v2

test P = 0.007), wheelchair-dependent (31% versus 4%, v2

test P = 0.008) and with impaired dexterity (defined as either

difficulties with cutlery or difficulty with buttons or both;

70% versus 46%, v2 test P = 0.021). Furthermore, patients

with childhood-onset AD-CMT2A had a significantly higher

mean of CMTESv2 [12.06± 6.82 (SD) versus 6.50± 3.42

(SD), two-tailed Mann-Whitney U-value 787, P5 0.001],

CMTESv2-R, CMTNSv2 [17.20± 9.79 (SD) versus

8.47±4.93 (SD), two-tailed Mann-Whitney U-value 249.5,

P = 0.001] and CMTNSv2-R over a similar disease duration

compared to adult-onset AD-CMT2A. Patients with child-

hood onset AD-CMT2A had a moderate mean CMTPedS

score of 27.31± 9.57 (SD) at baseline. There was no signifi-

cant difference in the prevalence of foot deformities between

the two groups (80% versus 76%), the use of walking aids

(29% versus 35%), the prevalence of previous foot surgery

(29% versus 12%), hearing loss (6% versus 12%) or scoli-

osis (12% versus 13%).

In an analysis of AD-CMT2A cases with variants residing

within the dynamin-GTPase domain (amino acid positions

93–342) versus AD-CMT2A cases with variants outside the

domain (Table 2), there were no significant differences in the

age of onset of symptoms, baseline mean CMTESv2,

CMTESv2-R, CMTNSv2, CMTNSv2-R and CMTPedS

scores and both groups had similar disease duration periods.

Nonetheless, a slightly higher proportion of patients with

variants in the dynamin-GTPase domain used ankle-foot

orthoses (70% versus 53%, v2 test P = 0.026), complained

of dexterity difficulties (70% versus 55%, v2 test P = 0.047)

and developed scoliosis (16% versus 6%, v2 test P = 0.049).

Analysis of patients harbouring variants that have been

shown to cause mitochondrial hypofusion (p.Arg94Gln,

p.Thr105Met) or hyperfusion (p.Leu76Pro, p.Arg364Trp),

showed no significant difference in the age of onset, disease
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Table 1 Baseline clinical characteristics classified by inheritance pattern and age of onset in 179 patients with patho-

genic and likely pathogenic dominant variants (AD-CMT2A) and 17 patients with AR-CMT2A

Clinical characteristics Inheritance pattern Onset in AD-CMT2A

AD-CMT2A AR-CMT2A Childhood onset (1–20

years)

Adult onset

(420 years)

Patients, n 179 17 144 26

Age of symptom onset,

years, mean ± SD

11.61 ± 15.07

(range 1.0–81)

8.06 ± 10.92

(range 1.5–48)

6.15 ± 4.82

(range 1–20)

41.88 ± 16.63

(range 23–81)

Disease duration, years,
mean ± SD

19.98 ± 14.84
(range 0.1–65.2)

25.35 ± 12.36
(range 4.3–46.1)

20.86 ± 15.56
(range 0.1–65.2)

15.15 ± 8.67
(range 0.7–33.3)

Delayed walking (4 15

months), n

22/148 (15%) 3/10 (30%) 18/126 (14%) 2/15 (13%)

Foot deformities, n 127/160 (79%) 8/15 (53%) 102/128 (80%) 19/25 (76%)

Ankle-foot orthoses, n 104/166 (63%) 14/15 (93%) 91/133 (68%) 10/25 (40%)

Walking aids, n 46/161 (29%) 7/15 (47%) 38/130 (29%) 8/23 (35%)

Wheelchair-dependent, n 43/163 (26%) 3/15 (20%) 41/132 (31%) 1/23 (4%)

Foot surgery, n 42/166 (25%) 8/15 (53%) 39/134 (29%) 3/25 (12%)

Dexterity difficulties, n 106/166 (64%) 11/14 (79%) 92/132 (70%) 12/26 (46%)

Optic nerve atrophy, n 12/168 (7%) 3/15 (20%) 12/134 (9%) 0/25 (0%)

Hearing loss, n 11/159 (7%) 1/14 (7%) 8/126 (6%) 3/25 (12%)

Scoliosis, n 19/162 (12%) 4/14 (29%) 16/131 (12%) 3/24 (13%)

CMTESv2 10.75 ± 6.90 (157) 14.57 ± 6.07 (14) 12.06 ± 6.82 (122) 6.50 ± 3.42 (26)

CMTESv2-R 14.27 ± 8.05 (157) 19.14 ± 6.56 (14) 15.82 ± 7.71 (122) 9.42 ± 5.15 (26)

CMTNSv2 15.27 ± 9.71 (90) 21.00 ± 5.20 (7) 17.20 ± 9.79 (71) 8.47 ± 4.93 (15)

CMTNSv2-R 19.13 ± 10.73 (90) 26.14 ± 5.61 (7) 21.42 ± 10.47 (71) 11.13 ± 6.45 (15)

CMTPedS 26.45 ± 10.26 (47) 27.00 ± 11.31 (2) 27.31 ± 9.57, (45) n/a

Of 179 patients with pathogenic and likely pathogenic dominant variants, five were asymptomatic at the age of assessment and four patients had an unknown age of onset of symp-

toms. Continuous and categorical data that are highlighted in bold in the inheritance pattern and AD-CMT2A groups, indicate a statistically significant difference (P5 0.05) between

the observed values within those groups. The CMTPedS was only performed in patients aged 420 years at the time of assessment. Data in the bottom five rows showing the clinical

outcome scores represent mean ± SD (n). All percentage values are rounded to the nearest whole point. n/a = not applicable.

Table 2 Baseline clinical characteristics classified by variant topology and biological effect of the variant in patients

with pathogenic and likely pathogenic dominant variants (AD-CMT2A)

Clinical characteristics Variant topology (AD-CMT2A) Biological effect of variants

GTPase domain

variants

Non-GTPase

domain variants

Mitochondrial hypofusion

(R94Q, T105M)

Mitochondrial hyperfusion

(L76P, R364W)

Patients, n 104 75 11 17

Age of symptom onset,

years, mean ± SD

11.79 ± 15.35

(range 1–81)

11.37 ± 14.76

(range 1–70)

5.55 ± 2.97

(range 2.5–12)

5.71 ± 14.85

(range 1–63)

Disease duration, years,
mean ± SD

19.03 ± 13.99

(range 0.1–53.1)

21.31 ± 15.96

(range 2.6–65.2)

19.19 ± 12.67

(range 3.6–43.7)

17.51 ± 16.68

(range 2.7–49.3)

Foot deformities, n 73/93 (78%) 54/67 (81%) 7/8 (88%) 11/14 (79%)

Ankle-foot orthoses, n 67/96 (70%) 37/70 (53%) 9/10 (90%) 14/16 (88%)

Walking aids, n 24/93 (26%) 22/68 (32%) 4/10 (40%) 8/16 (50%)

Wheelchair-dependent, n 25/96 (26%) 18/67 (27%) 4/10 (40%) 9/16 (56%)

Foot surgery, n 29/95 (31%) 13/71 (18%) 5/10 (50%) 2/17 (12%)

Dexterity difficulties, n 68/97 (70%) 38/69 (55%) 8/10 (80%) 11/15 (73%)

Optic nerve atrophy, n 10/99 (10%) 2/69 (3%) 0/11 (0%) 2/14 (14%)

Hearing loss, n 3/90 (3%) 8/69 (12%) 0/10 (0%) 2/13 (15%)

Scoliosis, n 15/94 (16%) 4/68 (6%) 0/9 (0%) 3/16 (19%)

CMTESv2 11.31 ± 7.06 (87) 10.06 ± 6.68 (70) 12.13 ± 7.02 (8) 16.73 ± 7.81 (15)

CMTESv2-R 15.15 ± 8.16 (87) 13.19 ± 7.82 (70) 16.25 ± 8.00 (8) 20.07 ± 8.46 (15)

CMTNSv2 16.68 ± 10.38 (47) 13.72 ± 8.79 (43) 20.50 ± 16.26 (2) 26.00 ± 8.26 (10)

CMTNSv2-R 20.98 ± 11.30 (47) 17.12 ± 9.81 (43) 25.00 ± 16.97 (2) 29.90 ± 8.20 (10)

CMTPedS 27.88 ± 8.17 (24) 24.96 ± 12.06 (23) 27.00 ± 7.07 (2) 34.78 ± 5.97 (9)

The amino acid positions used for the dynamin-GTPase domain are 93–342. Variants shown to cause mitochondrial hypofusion in non-human disease models are p.Arg94Gln

(R94Q) and p.Thr105Met (T105M), whereas variants shown to cause mitochondrial hyperfusion are p.Leu76Pro (L76P) and p.Arg364Trp (R364W). Categorical data highlighted in

bold in the variant topology group indicate a statistically significant difference (P5 0.05) between the observed values within that group. The CMTPedS was only performed in

patients aged 420 years at the time of assessment. Data in the bottom five rows showing the clinical outcome scores represent mean ± SD (n). All percentage values are rounded

to the nearest whole point.
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duration, mean CMTESv2, CMTESv2-R, CMTNSv2,

CMTNSv2-R and CMTPedS scores (Table 2).

In our cohort, optic nerve atrophy was reported in a total

of 15 patients: 12 patients with AD-CMT2A (of a total of

168 who had documented optic nerve assessment, 7.1%)

and three patients with AR-CMT2A (of a total of 15 who

had documented optic nerve assessment, 20%). Despite the

higher percentage in the AR-CMT2A group, this was not

statistically significant (Fisher’s exact test P = 0.111).

Furthermore, in patients with AD-CMT2A, optic atrophy

was most frequently involved with variants at the amino

acid position p.Arg104 (n = 4), followed by p.Arg364Trp

(n = 2) and p.Leu248 (n = 2). None of the category groups

of age of onset of symptoms (child versus adult onset AD-

CMT2A), variant topology (GTPase domain variants versus

non-GTPase domain variants) or the biological effect of cer-

tain variants on mitochondrial fusion dynamics (hypofusion

versus hyperfusion variants) had statistically significant en-

richment with cases of CMT2A and concurrent optic

atrophy.

Disease progression

CMT2A is a progressive disease with regards to length-

dependent weakness and sensory loss and a cross-sectional

analysis of the baseline data of patients with AD-CMT2A

shows a statistically significant correlation between disease

duration and the CMTESv2 (Fig. 2); this illustrates a wor-

sening CMTESv2 as the disease progresses (two-tailed

Spearman’s q = 0.44, P5 0.001). Correlation of the

CMTESv2-R with disease duration showed similar results

with a parallel linear regression coefficient line (not shown).

It is important to also note that this correlation includes

patients with variants that are known to be associated with

early and late onset disease, and with varying degrees of

pace of progression.

According to the current study and previously published

studies, the amino acid positions p.Arg94, p.Arg364 and

p.Trp740 are the three commonest residues for the occur-

rence of missense variants in MFN2 causing CMT2A.

Patients with variants in the amino acid position p.Arg94,

which is the most common of the three, show a significant

correlation of baseline CMTESv2 with disease duration

(two-tailed Spearman’s q = 0.65, P5 0.001) (Fig. 3A). A

detailed assessment of the disease impact over time in these

29 patients with regards to the use of ankle-foot orthoses,

walking aids and wheelchair use is presented in Fig. 4.

Almost all patients require ankle-foot orthoses in the first

two decades of life, with most prescriptions given in child-

hood and of the seven patients requiring regular use of a

wheelchair, this was before the age of 40 years in six.

Patients carrying the p.Arg364Trp variant (Fig. 3B) also

show a significant correlation between baseline CMTESv2

and disease duration (two-tailed Spearman’s q 0.72,

P = 0.005). However, these patients have more severe disease

early on and throughout the entirety of the disease com-

pared to p.Arg94 as illustrated by the higher CMTESv2

scores and have a slightly faster pace of progression. On the

contrary, patients with variants at the p.Trp740 position

(Fig. 3C) have milder disease early on and throughout the

entirety of the disease compared to p.Arg94 and p.Arg364

as illustrated by the lower CMTESv2 scores. Patients with

variants at the p.Trp740 position also show a significant

correlation between baseline CMTESv2 and disease duration

(two-tailed Spearman’s q 0.58, P = 0.011).

Of the 179 patients with AD-CMT2A, 92 patients had

longitudinal data, of whom 38 had 1-year follow-up data

and 34 had 2-year follow-up data. Eight patients with AR-

CMT2A had longitudinal data, of whom six had 1-year fol-

low-up data, four had 2-year follow-up data and five had 4-

year follow-up data. The longitudinal data from the

CMTESv2, the weighted CMTESv2-R and the CMTPedS of

Figure 2 Correlation of CMTESv2 and disease duration as surrogate evidence of disease progression. The disease duration was

calculated by subtracting the age of onset from the age at assessment at the baseline visit. The dashed line represents the linear regression coeffi-

cient (R2). 148 patients with a dominant pathogenic or likely pathogenic MFN2 variant had CMTESv2 data at their baseline visit; the correlation

between CMTESv2 and disease duration is statistically significant (two-tailed Spearman’s q 0.44, P5 0.001).
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Figure 3 Correlation of CMTESv2 and disease duration in the three commonest missense variants causing CMT2A. The disease

duration was calculated by subtracting the age of onset from the age at assessment at the baseline visit. The dashed line represents the linear re-

gression coefficient (R2). (A) 24 patients with a heterozygous mutation at the p.Arg94– amino acid position had CMTESv2 data at their baseline

visit. This subgroup includes patients with the variants p.Arg94Trp, p.Arg94Gln, p.Arg94Gly and p.Arg94Leu; the correlation between CMTESv2

and disease duration in this group is statistically significant (two-tailed Spearman’s q 0.65, P5 0.001). (B) Thirteen patients carrying the heterozy-

gous variant p.Arg364Trp had CMTESv2 data at their baseline visit and the correlation between CMTESv2 and disease duration is statistically sig-

nificant (two-tailed Spearman’s q 0.72, P = 0.0054). (C) Eighteen patients with a heterozygous variant at the p.Trp740– amino acid position had

CMTESv2 data at their baseline visit and the correlation between CMTESv2 and disease duration is statistically significant (two-tailed Spearman’s

q 0.58, P = 0.011).
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all AD-CMT2A and AR-CMT2A patients was used to cal-

culate the mean change over 1 and 2 years for each group

respectively. Subsequently the aggregated data were used to

calculate the SRM of the CMTESv2, CMTESv2-R and

CMTPedS over 1 and 2 years (Table 3). The SRM is a met-

ric that describes how sensitive a particular outcome is to

change. In patients with AD-CMT2A, the CMTESv2

increased significantly over 1 year [mean change 0.84± 2.42

(SD), two-tailed paired t-test P = 0.039]; the equivalent 1-

year SRM at 0.35 showed small responsiveness.

Surprisingly, the CMTESv2-R did not show a significant

change over 1 year [mean change 0.63±3.19 (SD), two-

tailed paired t-test P = 0.230]. Over 2 years, the CMTESv2

increased significantly [mean change 0.97± 1.77 (SD), two-

tailed paired t-test P = 0.003], as did the CMTESv2-R [mean

change 1.21±2.52 (SD), two-tailed paired t-test P = 0.009],

and their 2-year SRM values of 0.55 and 0.48 reflect moder-

ate and small responsiveness, respectively. Analysis of the

CMTPedS in all the paediatric AD-CMT2A and AR-

CMT2A cases grouped together, showed that it increased

significantly over 1 year (mean change 2.24± 3.09; two-

tailed paired t-test P = 0.009) and over 2 years (mean change

4.00±3.79; two-tailed paired t-test P = 0.031) with respect-

ive SRMs of 0.72 and 1.06. There was no significant change

in the CMTESv2 or CMTESv2-R in the AR-CMT2A group

and this is likely to be due to the small sample size of

patients with available follow-up data from baseline.

Discussion
In this large international prospective study of 196 patients

with CMT2A, the majority of pathogenic and likely patho-

genic variants occur in the dynamin-GTPase domain of

MFN2, which plays a central role in mitochondrial fusion

(Westermann, 2010; Chandhok et al., 2018). In the

gnomAD population database (Karczewski et al., 2020), of

the 30 most frequent missense variants observed in MFN2,

each with an allele count (AC) of 49 (range AC 9–1942),

only three are situated in the dynamin-GTPase domain

(p.Gly298Arg AC = 606, p.Cys281Ser AC = 92,

p.Arg250Gln AC = 62).

Figure 4 Genotype-physical impact correlation in 29 patients with CMT2A due to pathogenic and likely pathogenic variants at

the p.Arg94– amino acid position. Each horizontal set of data-points plotted over time (age in years) corresponds to one of the 29 patients

(1–29 on the y-axis). Patients 1–16 carry the p.Arg94Trp variant, Patient 17 carries the p.Arg94Leu variant, Patients 18 and 19 carry the

p.Arg94Gly variant, and Patients 20–29 carry the p.Arg94Gln variant. In each set of data-points, the red square represents the age at which the

patient was first seen and enrolled in the study (baseline visit): the dashed line to its left represents retrospective information gathered by history

and the solid line to its right represents prospective information gathered during the entirety of the study. The green diamond represents the last

age with available clinical data. Most of the patients have only been seen once and hence the red square and green diamond coincide. The blue cir-

cle represents the age of onset of symptoms in the patient, the yellow triangle represents the age at which ankle-foot orthoses were needed and

prescribed, the purple star represents the age at which walking aids (stick, walker) were required and the blue cross represents the age at which

the patient reverted to the regular use of a wheelchair.
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There are earlier reports associating nonsense MFN2 var-

iants (E65X, R418X) in the heterozygous state with

CMT2A and since such truncated transcripts are expected to

undergo nonsense mediated decay, this would suggest that

MFN2 may be intolerant of haploinsufficiency. However,

evidence from the Mfn2 heterozygous knockout mice that

do not express a phenotype (Chen et al., 2003) and more re-

cent evidence from human models of the disease would

argue against this. The mother of a proband with AR-

CMT2A, who is a heterozygous carrier of the p.Glu308X

variant and is unaffected by history and neurophysiology

(EMG) at the age of 39, had RT-PCR transcript analysis

from blood which indicated that the truncated transcript

undergoes nonsense-mediated decay (NMD) (Polke et al.,

2011). The lack of a phenotype in her (at least until mid-

adulthood) would suggest that MFN2 tolerates haploinsuffi-

ciency. An exception to this are nonsense MFN2 variants in

the last exon, which are expected and have been shown to

escape NMD (Kawarai et al., 2016) and in line with this,

heterozygous carriers of the variants p.751X and p.752X de-

velop an early onset severe CMT2A phenotype (Verhoeven

et al., 2006; Feely et al., 2011; Kawarai et al., 2016).

Ascertaining the pathogenicity of splice donor or acceptor

site variants, which may cause exon skipping, is challenging.

For these reasons and in the absence of transcriptomic and

variant-specific functional data, nonsense, frameshift and

splice donor and acceptor site variants residing in NMD-

insensitive regions of the transcript have been classed as var-

iants of uncertain significance in this cohort.

Care should be taken when interpreting novel variants

within specific domains and using cross-sectional correla-

tions. For example, the difference both in the average age

and range of disease onset between patients carrying a vari-

ant at the p.Arg94 amino acid position [average age of onset

4.7 years ± 2.5 years (SD)] and those carrying a variant at

the adjacent p.Arg95 amino acid position [average age of

onset 31.8 years ± 23.6 years (SD)] is significant. Similarly,

patients carrying the p.Arg364Trp variant, often present

with an early onset and progressive disease, in contrast to

patients carrying the nearby p.Thr362Arg variant which

usually presents with symptoms in adulthood and has a

more indolent course. Specific MFN2 variants have been

previously described to exhibit interfamilial variability with

regards to age of onset, such as the p.Leu741Trp described

in two unrelated families, one with average age of onset in

the third decade of life and the other with onset of disease in

the fifth decade in most members (Dankwa et al., 2018; Lin

et al., 2019). Other variants have been reported to show

intrafamilial variability such as the p.Arg95Gly with variable

clinical severity and significantly different age of onset of

symptoms in different affected family members (Dankwa

et al., 2019) and p.Leu146Phe with age of onset of disease

ranging from childhood to late adulthood for different fam-

ily members (Klein et al., 2011). A further family in our co-

hort carrying the dominant p.Ala100Ser variant exhibited

intrafamilial heterogeneity, since both siblings had onset of

disease in early adulthood and moderate CMTESv2 scores

in their forties to fifties, whereas their mother had a late

onset neuropathy with a CMTESv2 of 6 at the age of 81.

Our baseline genotype-phenotype correlations, illustrate

how CMT2A is an early and severe form of CMT2 with

most patients having foot deformities, requiring ankle-foot

orthoses and complaining of impaired dexterity at their first

visit. At the first visit, the mean CMTESv2 score was

11.06±6.90 (SD) [sample mean age 33.70± 19.42 (SD)], the

mean CMTNSv2 score was 15.68±9.56 (SD) [sample mean

age 36.00± 19.78 (SD)] and the mean CMTPedS score was

26.47±10.17 (SD) [sample mean age 10.3±4.36 (SD)], all

scores indicative of a moderate burden of disability with

CMT2A early in life. A considerable proportion require use

Table 3 Mean change and SRM of CMTESv2, CMTESv2-R and CMTPedS in AD-CMT2A and AR-CMT2A at 1- and 2-

years follow-up

Follow-up, years n Baseline Change P SRM

Autosomal dominant

CMTESv2 1 38 10.66 ± 5.94 0.84 ± 2.42 0.039 0.35

CMTESv2R 1 38 14.53 ± 6.96 0.63 ± 3.19 0.230 0.20

CMTESv2 2 34 9.47 ± 6.26 0.97 ± 1.77 0.003 0.55

CMTESv2-R 2 34 13.00 ± 7.68 1.21 ± 2.52 0.009 0.48

Autosomal recessive

CMTESv2 1 6 12.33 ± 6.65 0.17 ± 3.06 0.900 0.05

CMTESv2-R 1 6 17.00 ± 7.21 –0.33 ± 2.73 0.777 –0.12

CMTESv2 2 4 10.25 ± 7.23 0.25 ± 1.26 0.718 0.20

CMTESv2-R 2 4 14.75 ± 7.63 0 ± 1.41 1.000 0

CMTESv2 4 5 13.40 ± 6.66 1.80 ± 3.11 0.266 0.58

CMTESv2R 4 5 17.60 ± 7.23 1.40 ± 3.91 0.468 0.36

Autosomal dominant and autosomal recessive

CMTPedS 1 17 25.41 ± 8.01 2.24 ± 3.09 0.009 0.72

CMTPedS 2 7 28.86 ± 7.82 4.00 ± 3.79 0.031 1.06

The CMTESv2 changed significantly over 1 and 2 years in patients with AD-CMT2A, whereas the CMTESv2-R changed significantly over 2 years. The CMTPedS (all cases grouped)

changed significantly both over 1 and 2 years. There was no significant change in cases with AR-CMT2A over 1 and 2 years. Mean changes that are statistically significance have their

P-values and SRMs highlighted in bold. Data shown represent mean ± SD.
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of walking aids and are wheelchair-dependent at their first

visit and this degree of physical impairment is not encoun-

tered in CMT1A (Reilly et al., 2011), CMT1B

(Sanmaneechai et al., 2015) or CMTX1 (Panosyan et al.,
2017). Interestingly, the majority of patients with CMT2A

seem to achieve their gross motor developmental milestones

normally as the majority walk at or before the 15th month,

yet go on to develop early, and in most cases, severe CMT

that progresses faster than other subtypes. This is in contrast

to CMT1B, a demyelinating form of CMT, in which the

vast majority of patients with an infantile onset show a

delay in walking independently, beyond the 15th month

(Sanmaneechai et al., 2015). Considering our comparison of

baseline characteristics across a range of groups, a childhood

onset of disease in AD-CMT2A seems to be the most reliable

predictor of significant physical disability accrued and is in-

dependent of the disease duration.

The SRM is a popular effect size index used to estimate

the responsiveness of outcome measures to clinical change.

Based on data from two clinical trials of ascorbic acid in

CMT1A (Pareyson et al., 2011; Lewis et al., 2013;

Piscosquito et al., 2015), the 1-year SRM of the CMTESv1

was 0.17 indicating minimal responsiveness. Natural history

data from a large multicentre CMT1A cohort, also showed

a minimally responsive CMTESv2 and CMTESv2-R over

2 years with SRMs of 0.11 and 0.17, respectively (Fridman

et al., 2020). By comparison, CMT2A is a more rapidly pro-

gressive disease and this is reflected in a 1-year SRM of 0.35

for the CMTESv2 when used in AD-CMT2A. This means

that a hypothetical CMT2A double blinded, randomized

placebo-controlled trial, powered to detect a complete cessa-

tion in disease progression as measured by the CMTESv2

over a 12-month period with 80% power at P5 0.05 sig-

nificance, would require 131 individuals in each arm. For a

treatment trial with a duration of 24 months and using a 2-

year SRM of 0.55, the number of individuals needed in each

arm would be 53. Complementing clinical assessment tools,

biomarkers such as MRI-quantified intramuscular fat accu-

mulation at calf-level are showing promise as a sensitive out-

come measure with two studies showing a highly responsive

1-year SRM of 0.83 and 1.04 in CMT1A (Morrow et al.,

2016, 2018). Given that CMT2A is a more progressive dis-

ease, it is probable that MRI-quantified intramuscular fat ac-

cumulation in CMT2A will prove to be an even more

sensitive outcome measure in CMT2A and this is currently

being investigated. Surprisingly, the Rasch-weighted

CMTESv2-R was not sensitive to change at 1 year and had

a lower SRM compared to CMTESv2 at a 2-year follow-up.

This perceived insensitivity of the CMTESv2-R may have

arisen because the psychometrics of the Rasch weighting

were performed using CMT1A data which is a more slowly

progressive disease compared to CMT2A (Sadjadi et al.,
2014). Despite a small sample size of our paediatric

CMT2A cohort, analysis of the longitudinal CMTPedS data

showed a significant mean change over 1 and 2 years, corre-

sponding to a respective moderate (1-year SRM 0.72) and

large responsiveness (2-year SRM 1.06) of this clinical

outcome measure. Furthermore, some severe paediatric

CMT2A cases reach the ceiling of the outcome score by their

early teens and the subsequent plateauing of the clinical

scores would give a false impression of disease stabilization.

Ultimately, this may make the overall rate of progression

seem smaller than it actually is and therefore, a larger paedi-

atric CMT2A cohort is needed to delineate more accurately

the progression of CMT2A in childhood.

With the use of next-generation sequencing panels now

commonplace, more patients with CMT receive a genetic re-

sult than ever before. This has also led to the identification

of large numbers of novel variants in MFN2, the significance

of which are unknown. Large CMT2A cohort studies such

as ours are valuable to help investigators curate variants.

Moreover, with genetic therapies in development and clinical

trials on the horizon, we need to have responsive clinical

outcome measures in order to be trial-ready. This study pro-

vides evidence that CMTESv2 is a responsive outcome meas-

ure for a 2-year clinical trial that, together with the

concurrent development of responsive biomarkers, means

we are in a good position to perform clinical trials as candi-

date therapies become available for CMT2A.
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