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The popularity of machine learning (ML) across drug discovery continues to grow, yielding impressive

results. As their use increases, so do their limitations become apparent. Such limitations include their

need for big data, sparsity in data, and their lack of interpretability. It has also become apparent that the

techniques are not truly autonomous, requiring retraining even post deployment. In this review, we

detail the use of advanced techniques to circumvent these challenges, with examples drawn from drug

discovery and allied disciplines. In addition, we present emerging techniques and their potential role in

drug discovery. The techniques presented herein are anticipated to expand the applicability of ML in

drug discovery.
Introduction
The application of ML applied in the field of drug discovery

continues to grow, facilitating research in numerous avenues.

The success of ML is demonstrated by the increasing number of

pharmaceutical companies in which ML is central to their business

model (Table 1). In addition, ML has also been explored by large

pharmaceutical companies for drug discovery [1–6]. Such success

is a testament to the necessity and utility of ML for drug discovery,

and an unambiguous indication that drug discovery will be in-

trinsically tied with ML. The goal is to reduce the resource- and

labour-intensiveness of drug discovery, primarily the high-

throughput screening (HTS) technique. Another aim of ML is to

obviate the need for animal testing, which has received negative

publicity of late.

The success of ML lies in its ability to discern patterns in

complex and large volume data sets [7]. In addition, ML techni-

ques (MLT) can be developed using common programming lan-

guages, including Python and R, which are accessible to most

researchers. Furthermore, there are third-party software that pro-

vide access to ML techniques for researchers unfamiliar with

coding, such as Apple’s Create ML. Despite their simplicity,
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third-party software are limited in their capacity to perform ML

techniques, as well as other aspects of the ML pipeline.

Conventional MLTs have been thoroughly explored in drug

discovery [8–10]. Such techniques include both supervised and

unsupervised MLTs, including k-Nearest Neighbour (kNN), deci-

sion tree, random forest, support vector machines (SVM), artifi-

cial neural networks (ANN), principal component analysis (PCA),

and k-means. Their appeal stems from their simplicity, compu-

tationally undemanding, yet improved prediction accuracy com-

pared with traditional predictive algorithms [11]. Equally, the

underlying mechanisms for conventional techniques can be

cognitively comprehended by noncomputer scientist researchers.

For example, for kNN, the user has one parameter to control, the k

value, which in turn determines the classification search space

based on a plurality vote. Another example is SVM, which

delineates categories using a hyperplane in conjunction with

support vectors to maximise the distance between the different

categories. SVM benefits from using the kernel trick, which allows

for nonlinear mapping of the data, which has been widely used

for nonlinear data sets [12]. The technique is also available for

PCA (kernel PCA; kPCA) [12]. A recent study found that kPCA can

be used to improve the classification of linear models, with

comparable performance to nonlinear models, although at a

significantly faster rate [13].
icense (http://creativecommons.org/licenses/by/4.0/).
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TABLE 1

Examples of pharmaceutical companies in which ML is central to their business model

Company Application URL

AIQ Solutions Patient heterogeneity www.aiq-solutions.com/
Atomwise De novo drug www.atomwise.com/
Benevolent AI De novo drug www.benevolent.com/
Bioxcel Therapeutics Clinical trials www.bioxceltherapeutics.com/
BullFrog AI Identifying niche patient population www.bullfrogai.com/
CytoReason Target discovery www.cytoreason.com/
DeepCure De novo small molecules www.deepcure.ai/
EVQLV Biologics discovery https://evqlv.com/
Genesis Therapeutics Therapeutic target www.genesistherapeutics.ai/
Genome Biologics Drug repurposing https://genomebiologics.com/
Genomenon Drug discovery and clinical trials www.genomenon.com/
HealX Therapeutic target https://healx.io/
InSilico Medicine Therapeutic target https://insilico.com/
InveniAI Disease indication www.inveniai.com/
Kintai Therapeutics De novo compounds www.kintaitx.com/
MabSilico Biomarker discovery www.mabsilico.com/
MIMS General purpose www.mims.ai/
Pepticom Therapeutic targets https://pepticom.com/
Recursion De novo drug www.recursionpharma.com/
Reveal Biosciences Pathology www.revealbio.com/
Socium Inc Biomarker identification www.socium.co.jp/en/about.html
Standigm De novo drug www.standigm.com/
Thinkcyte General purpose https://thinkcyte.com/
Trials.ai Designing clinical trials www.trials.ai/
TWOXAR Small-molecule discovery and development www.twoxar.com/
aSource accession date: August 29, 2020.
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Despite their simplicity, conventional MLTs have their draw-

backs. kNN suffers from the curse of dimensionality, wherein, at

high dimensional space, the predictive performance begins to

weaken [14]. Similarly, the performance of SVM begins to degrade

when the number of dimensions is greater than the sample size

[15]. Increasing the number of trees in random forest improves

the predictive accuracy, although a large number of tree results

produces an algorithm inefficient for real-time monitoring

[16,17]. However, there are two chief criticisms of MLT, which

are their demand for big data and lack of transparency. Addres-

sing these limitations is required given that the collection of data

can be challenging, costly, and time-consuming. In addition,

transparency might facilitate the user’s understanding of the

discovery process and minimise their reliance on ML to under-

stand the process. Another limitation with conventional MLTs is

their lack of autonomy. For example, supervised learning requires

labelling of the target variable (i.e., the variable to be predicted).

In addition, once deployed, for example as a web-based software,

it will require post-production maintenance, particularly as the

data set evolves. To address these limitations, new techniques

have been adopted by research communities and with promising

results. It is anticipated that these advanced techniques will

further expand the application of ML. Ultimately, the goal is

to achieve artificial intelligence (AI) in the drug discovery pipe-

line [18]. AI is a broad branch in computer science that seeks to

create human intelligence using machines, of which ML is central

to achieving this goal. In recent years, a subset of ML, deep

learning, as emerged as a technique capable of achieving high

accuracies from big data, while handling both structured and

unstructured data.
770 www.drugdiscoverytoday.com
As mentioned earlier, ML in drug discovery continues to grow.

This growth is accompanied by suitable reviews discussing the

fundamentals and the application of conventional MLTs [8], and

deep learning [19]. There is also a recent review of natural language

processing, a field that is gaining attention in drug discovery [20].

Here, we focus on advanced techniques that have not received

sufficient attention, albeit that have strong potential to advance

the field. We prioritise examples used in drug discovery, although,

if not available, we draw examples from allied fields. The reviewed

techniques include reinforcement learning (RL), transfer learning,

and multitask learning. In their well-received review centred on

ML for drug discovery, Lo et al. remarked that techniques with

increased visibility, as well methods for preventing overfitting,

warrant further development [8]. We address their remark by

describing Bayesian neural networks (BNNs) and explainable al-

gorithms. We also detail the emergence of hybrid quantum-ML

and recommender systems.

Advanced machine-learning techniques
Some of the criticisms of MTLs include the need for large data sets

and for human intervention. From these remarks, advanced tech-

niques were investigated to address the shortcomings of conven-

tional MLT, and thereby further widen their applicability. These

advanced techniques include RL, which bridges the gap toward

self-autonomous learning techniques; transfer learning, and

multi-task learning for developing predictive models where big

data are lacking. Here, we provide an overview of these advanced

techniques and illustrate examples of their application in drug

discovery where possible. A summary of the techniques are tabu-

lated in Table 2.
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TABLE 2

Overview of advanced techniques described in this review

Advanced MLT Summary Refs

RL Continuous learning through a reward and penalty system [32–35,37,39]
Transfer learning Making predictions on a data set using knowledge developed from another, larger data set [46,54–58]
Multitask learning Simultaneous learning of multiple tasks [67–71]
Active learning Semiautomated learning using human feedback [72,75–77]
Generative models ML for generating new data; can be used for de novo, data augmentation, and dimensionality reduction [59,60,79–81]
BNNs Using Bayesian probability distribution for neural network weights and biases; can handle small data sets [84–86]
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Reinforcement learning
RL is an exhilarating subcategory of ML that is sparking interest

across both academia and industry. It has been around since the

1950s and its recent rise in popularity was sparked when RL models

were victorious in a game of Go against professional human

opponents, where no algorithm before was able to achieve this

remarkable feat. The game Go is one of the world’s oldest contin-

uously played games [21], and is used as a benchmark for AI

because the number of possible configurations in the game is

thought to be 250150 [22]. This far exceeds both the number of

proteins in the human body and the number of protons in the

universe [23].

RL distinguishes itself from supervised and unsupervised learn-

ing in that it is a form of continuous learning while being auton-

omous. This is because RL algorithms produce judgements,

whereas most supervised and unsupervised algorithms make pre-

dictions. This ability of RL to rapidly respond to dynamic envir-

onments is why it is being used for gaming, robotics, and trading

in the finance sector [24]. Indeed, there are applications where RL

outperformed classification tasks compared with supervised learn-

ing [25], but it is the ability of RL to continuously learn with

minimal human interference that is desirable [26].

The concept of RL draws inspiration from the reward mecha-

nism found in animals [27]. In RL, the system is not presented with

examples of desired strategies. Rather, RL empirically learns the

optimal decision to take through receiving reinforcement signals

from its environment. The main components of RL are an agent,

environment, state, policy, and reward function [28]. An agent is

trained by interacting with the environment, which can have

multiple states (i.e., scenarios). The agent will select an action

for a given state and will receive either a positive or a negative (i.e.,

penalise) reward. The agent will continue taking actions for each of

the different states while looking to increase the cumulative

reward it receives. The reward is a mathematical formula and is

defined by the user with a specific goal in mind [29]. Using gaming

as an example, the agent’s goal, or policy, is to win the game and it

will receive +1 for when it does, and –1 for when it loses. In the case

of financial trading, the policy can be to maximise profits and,

hence, the agent will be rewarded for taking the series of actions

that result in maximising the profit [30]. There are multiple

versions of the reward function [31].

Contemporary RL has centred on de novo molecule designs

[32–35] or molecule optimisation [36]. A noteworthy study that

combined both aspects was conducted by Popova et al. for the de

novo design of drugs (Fig. 1a) [37]. With this approach, RL was

combined with two deep-learning techniques. One technique, the

generative model, acted as the agent and generated ostensibly
chemically feasible molecules. The other technique, the predictive

model, acted as the critic, whereby it rewarded or penalised the

generative model for every generated molecule. Using this ap-

proach, the researchers used �1.5 million structures from the

CheMBL21 database to train the generative model based on their

SMILES strings. The results were that 1 million compounds were

generated, from which 95% were confirmed to be feasible using

the structure checker from ChemAxon. Moreover, they discovered

that �32 000 molecules of de novo-generated structures existed in a

separate database (ZINC). The study went further and demonstrat-

ed that novel compounds optimised for desirable physical proper-

ties, chemical complexity, or biological activity were attainable via

deep RL. Although the study demonstrated that RL can be

exploited to generate new compounds, further work is needed

to refine the model. For example, the strategy adopted might not

guarantee drug-specific compounds [38]. Moreover, the study used

SMILES, which, despite being a simple and elegant representation

of compounds, issues have been raised with its use in generative

models [32].

In a separate study, Zhavoronkov et al. developed a model for de

novo for specific compounds: DDR1 kinase inhibitors (Fig. 1b) [39].

Their aim was to demonstrate the effectiveness of RL for rapidly

identifying potent compounds, thereby demonstrating that RL can

address important drawbacks of drug development, namely the slow

development phase and drug selectivity. In just 46 days, the authors

were able to design, synthesise, and perform both in vitro and in vivo

tests. However, one of the generated compounds was similar to both

a compound that was used to train the model, as well as an existing

marketed drug [40]. Hence, despite the success of demonstrating

how RL can expedite the drug discovery pipeline, future models will

need to be coded such that newly generated compounds are dissim-

ilar from both the input data and existing marketed compounds.

Although in the pharmaceutical discipline, the use of RL has been

limited to drug design, the wider medical community has

explored other potentials for the algorithm. In a step towards

personalised dosage, several simulation-based studies explored

using RL to provide dynamic decision-making for sepsis treatment

[41], anaesthetic drug delivery control [42], and detection of diabetic

retinopathy [43]. The use of RL has also been extended to ‘omics,

bioimaging, and medical studies [28]. A schematic representation of

RL is illustrated in Fig. 2a.

Transfer learning
If data are in short supply, then there are techniques that can be

used to circumvent this problem. One such technique is transfer

learning, which is the process of transferring knowledge acquired

from solving one task to another related task. Transfer learning is
www.drugdiscoverytoday.com 771
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FIGURE 1

Examples of generated compounds using reinforcement learning (RL) reported by (a) Popova et al. [37] and (b) Zhavoronkov et al. [39].
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FIGURE 2

Schematic representations of (a) reinforcement learning (RL), (b) transfer learning and (c) multitask learning.
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an increasingly popular ML framework, particularly in medical

image classification [44,45], that encompasses a range of techni-

ques. Transfer learning is the improvement of learning a new task

through the transfer of knowledge from a related task that has

already been learned. The technique leverages the features gener-

ated from a large data set, A that is used to predict its target variable

Ya, and sequentially transfer the knowledge to predict a different

target, Yb, from a data set, B, which has insufficient data. In the

context of deep learning, the learned weights of the models are

trained using the larger data set and then transferred to perform

models for new similar tasks (Fig. 2b). The approach has been

found to outperform conventional MLTs that were trained on the

smaller data set. Furthermore, transfer learning can be rapidly

deployed for new models because the optimisation process has

already been performed. It makes the assumption that the predic-

tive features in the larger data set can in principle be applied to a

different yet related task. In addition, if the features are physically

related, the features learned can be transferred partially as input

features for the target domain [46]. Transfer learning frameworks

can comprise supervised and unsupervised learning techniques,

where the latter is lacking labelled output variables for the

target domain [47]. Transfer learning has been implemented using

spectral [48,49], images [50,51], audio, text [52], and numeric [53]

data types.

Turki et al. illustrated the potency of transfer learning in pre-

dicting the drug sensitivity of patients with multiple myeloma,

where there was a lack of gene expression data, and acquiring new

data was costly [54]. Using SVM and ridge regressions, the research-

ers trained the model on data from patients with lung and breast

cancer, which were in abundance, and subsequently applied it to

the multiple myeloma data set. The authors recorded a higher

accuracy compared with their baseline. Most gene data sets gener-

ated by individual researchers are too small for MLTs. Taroni et al.

leveraged the large, public expression compendia for transfer

learning [55] and demonstrated that it was possible to describe

biological processes more effectively than by using models trained

only on their original features when using transfer learning. kNN

regression-based transfer learning was combined with latent re-

gression prediction to predict the sensitivity of different antican-

cer compounds [56]. Transfer learning was recently used to

identify adverse drug reactions based on a model developed for

automatic text classification of sentences to detect mentions of

adverse drug reaction [57]. A large corpora source was used to train

the model, and the knowledge gained was sequentially applied to a

small-scale corpora. Other applications of transfer learning in-

clude incorporating the technique in de novo drug design [58–60].

ML has also been applied in material science, although its use is

not as developed as in drug discovery and development. Material

science is of interest to pharmaceutical formulation, and indeed is

an allied field, sharing similar research concepts and approaches.

Recently, transfer learning was applied to various materials, in-

cluding small molecules, polymers, and inorganic crystalline

materials [46]. The study was able to successfully apply transfer

learning to a data set with a small number of observations. In

addition, underlying links between small molecules and polymers,

and between inorganic and organic chemistry, were revealed. For

example, a mean absolute error and correlation values of 0.063 and

0.832, respectively, for predicting the refractive index were
obtained using the transferred features. By contrast, a notably

poor error and correlation of 0.833 and 0.541, respectively, were

obtained without transfer learning.

Multitask learning
Whereas transfer learning is the sequential learning and subse-

quent transfer of knowledge to another task, multitask learning is

the simultaneous learning of different tasks in one model. It was

observed that learning related tasks simultaneously led to an

improved predictive performance than when learning the tasks

individually (i.e., single task learning). The benefits of multitask

learning are particularly useful in low-volume data sets and/or

when noise is significant [61]. In addition, multitask learning was

found to outperform traditional MLT, particularly when data were

relatively sparse. Using the example of a neural network, a tradi-

tional architecture learns a single task at a time that outputs a

single layer for the predictive task. By contrast, multitask learning

outputs multiple hidden layers corresponding to the number of

tasks predicted. The related tasks could be uncorrelated at the

output layer, but they should be correlated at the internal repre-

sentation level. Multitask learning allows for the inductive transfer

of knowledge between tasks. This optimises multiple loss func-

tions that can enable models to better generalise across multiple

tasks. The improved predictability of multitask learning can be

attributed to different factors [62]. With multitask learning, the

data are amplified because of the extra information shared be-

tween the related tasks (Fig. 2c). The multiple tasks are able to learn

from one another and are able to filter between relevant and

irrelevant features, particularly where data are few and/or signifi-

cant noise is present. Furthermore, bias and overfitting are miti-

gated, because the multiple tasks learn cooperatively. In the case of

overfitting, multitask learning affords the multiple tasks to help

each other to create a smoother dependence on common features.

Multitask learning can be used for both supervised and unsuper-

vised learning [63,64], and can be realised with different MLTs,

such as neural networks, kNN [63], Bayesian multiple linear re-

gression [65], and SVM [66].

In drug discovery, multitask learning has found application in

addressing the effect of multitarget drugs. Such candidates were

studied because their severe adverse effects, which is a negative

consequence of acting on multiple targets. Of equal importance, it

was recently demonstrated that multitarget drugs have been found

to be more effective than single-target drugs for several complex

diseases, such as cancer and metabolic diseases. This rationale was

leveraged by Li et al., who showed that multitask learning could

discover useful multiple targets that are affected by the same drug

[67]. The researchers used unsupervised ML for their approach and

both expression data and compound structure information. Yang

et al. developed a multitask framework, called Macau, for large-

scale drug screening, while simultaneously deriving interpretable

insights about the interactions between the characteristics of the

drugs and the cell lines [68]. Their algorithm used Bayesian multi-

task multi-relation to explore the interaction between the drug

targets and signalling pathway activation using drug and gene

data. Gene expressions were used as molecular inputs to predict

signalling pathways; whereas, for the drug, their nominal targets

were used as inputs. The rationale for their work was that the

interaction between drug targets and signalling pathways can
www.drugdiscoverytoday.com 773
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provide novel in-depth views of cellular mechanisms and drug

mode of action.

In addition to sequential learning, multitask learning can be

combined with gradient-boosting decision trees for small data sets

[69]. Four data sets were investigated using this approach, with test

sizes of 7413, 1792, 823, and 353 compounds. For the smallest set

of 353 compounds, the R2 values when gradient boosting and

multitask learning were used were 0.472 and 0.721, respectively.

Combining the two techniques resulted in a R2 value of 0.733,

which is an improvement on both individual techniques.

Multitask learning was also revealed by Weng et al. to simulta-

neously learn both classification and regression task analyses for

drug–target interactions [70]. Classification tasks are prone to

higher bias, whereas regression models are susceptible to over-

fitting because of the large variance encountered. Thus, to address

the trade-off between bias and variance, a convolutional neural

network model was developed to simultaneously optimise the

regression and classification loss, using shared features. In another

application. Han et al. used multitask learning for sentiment

analysis of drug reviews [71]. The main objective was to identify

people’s sentiment, opinions, and attitudes from a collection of

4200 drug reviews. In addition, Zubatyuk et al. combined multi-

task and multimodal learning to overcome sparsity in training

data. Another key benefit of their approach is that the results were

comparable to the density functional theory (DFT) method, which

is a considerably more expensive modelling method.

Active learning
Active learning is a unique semiautomated ML approach that also

seeks to address the issue of low-labelled data sets using user

feedback. In contrast to passive learning, active learning is ideal

where there is an abundance of unsupervised training data that

require costly and resource-intensive experiments to label. Conse-

quently, the user can conduct experiments and subsequently label

the data for a subset of the data set and use active learning to

obtain the predictions for the remaining unlabelled data. Using

this approach, active learning makes queries of samples that it is

unsure of. For example, in using ML to predict the penetration of

drugs through the blood–brain barrier, one can perform the ex-

periment on 10% of the molecules, and train the model using said
(a)

FIGURE 3

Differences between (a) discriminative and (b) generative modelling. Discrimina
boundaries. By contrast, generative models look at the probability distribution o

774 www.drugdiscoverytoday.com
10% to make predictions for the other 90%. Where the model is

uncertain, it will make a query and the researcher can then

perform the experiments on those samples. Hence, compared with

passive learning, it has the potential to require considerably fewer

labelled data [72], and thereby accelerate the drug discovery

process while minimising costs. Further information regarding

active learning, including sampling method and query strategies,

can be found in [73].

Active learning models can be built using conventional MLTs,

such as SVM, and also deep learning [73,74]. Recent work demon-

strated that active learning can be used for predicting small-

molecule bioactivity, ligand–target interactions, and toxicity

[75–78].

Generative models
As described earlier, generative models are MLTs capable of gener-

ating new samples. This was leveraged for RL de novo applications,

but generative models can also be used as standalone techniques.

Generative models distinguish themselves from discriminative

models by directly learning from the input data and do not

necessarily require explicit rules to be coded by users. Generative

models can generate new data instances through implementing a

probabilistic estimator of data distribution, where the new data lie

within the distribution. In other words, generative models are able

to generate new samples for a given distribution. This contrasts

with discriminative models, which reveal the probability of the

labelled data given the data instance, regardless of whether the

data instance is valid (Fig. 3). Recent studies used deep-learning

generative models, which, in addition to generating new com-

pounds, can be used for data augmentation when working

with small data sets, and dimensionality reduction [79–81]. As

mentioned earlier, newly generated molecules will need to

be thoroughly assessed to ensure that they are distinct from

compounds that already exist in the market and/or different to

compounds fed into the model.

Bayesian neural networks
BNNs are ensemble models that combine multiple neural network

models using Bayesian inference [82]. Unlike conventional neural

networks, which require large amount of data for training, BNN
(b)

Drug Discovery Today 

tive modelling seeks to classify through establishing, for example, decision
f the classes.
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can handle small data sets because of their ability to avoid over-

fitting. Overfitting is a problem associated with most conventional

MLTs, which BNN avoids through prior probability distribution to

compute the average across numerous models during training,

which yields a regularisation effect to the network [83]. In other

words, the weights and biases for neurons are not a single value but

rather sampled from a distribution, which is regularly updated to

train the BNN. The use of BNN has not been thoroughly explored

for drug discovery. A recent study revealed that Bayesian graph

networks outperformed conventional graph networks in predict-

ing the inhibitory activity of molecules, using the ChEMBL data

set [84]. BNNs were also used to identify genes associated with

anticancer drug sensitivities using data gathered from the cancer

cell line encyclopaedia study [85]. More recently, BNN were ap-

plied for identifying drug-likeness, where the Bayesian error dis-

tribution of individual classifiers can yield an accuracy of 93% for

distinguishing drug-like from nondrug-like molecules [86]. Al-

though BNNs are able to address some of the shortcomings of

neural networks, they require a comparatively large effort to

design the neural net, which can lead to establishing casual

influences that are recognised by the individual programming it.

Explainable algorithms
The use of ML is indeed to facilitate and expedite decision-making,

particularly for routine tasks. Thus, it might not be necessary to

understand the decision-making process achieved by the model.

However, understanding the decision process made by ML will

instil confidence in researchers. Interpreting the model can help

researchers troubleshoot when the model appears erroneous. In

addition, the insight from the decision process could lead to

plausible research questions. In addition, it can facilitate research

understanding by providing insight into the decision making.

Equally, transparency might also instil trust in regulatory bodies

if the technology is to be commercialised.

A recent example of explainable ML was applied to quality

structure–activity relationship modelling, wherein semisupervised

regression trees were found to outperform supervised regression

trees [87]. Using a different strategy for predicting activity, Rodri-

guez-Perez and Bajorath developed a method that elucidates the

prediction process of conventional techniques, as well as ensemble

and deep-learning models [88]. The focus of their work was to

eliminate the ‘black-box’ nature of ML models. The approach was

based on Shapley values that was initially developed for game

theory, but were demonstrated by the authors to be applicable to

ML. In their approach, each feature was assigned an importance

value for a given prediction and, in turn, it provided an overview of

which features have the most contribution to a model. Moreover,

their approach uncovered model errors and consequently provid-

ed rationales for inaccurate predictions, which otherwise could

not have been readily rationalised.

Emerging machine-learning techniques
Hybrid quantum-machine learning
The hybridisation of ML with quantum computing has emerged as

a powerful technology in predictive analysis [89]. The main prom-

ise of quantum computing is the efficiency to solve complex

problems that are prohibitively expensive for classical computers

[90]. In classical models, the processing units compute bits that are
either 0 or 1, whereas for quantum computing, the quantum bits,

qubits, are in a superimposed state of both 0 and 1 [91]. The qubits

are processed by quantum logic gates, which, in contrast to

classical logic gates, are reversible. This yields computing prowess

that prevents loss of information [92], faster analysis, and low

power consumption [93]. The qubits and quantum gates are

components of the quantum circuit that has been demonstrated

to perform tasks that were quadratic, polynomial, or exponentially

faster than their classical counterparts [94–97]. The definition of

hybrid quantum ML is yet to be decided upon. To date, it encom-

passes the use of quantum computers to execute ML algorithms or

adopting quantum information processing into ML [94,98].

The former approach can be regarded of as quantum-enhanced

ML, whereas the latter can be regarded as quantum-inspired ML.

Examples of hybrid quantum ML include supervised [99], unsu-

pervised [100], and RL [101].

The advantages of H-QML can indeed be leveraged in pharma-

ceutical sciences, however, at the time of writing, the technology

has not yet been applied. In 2018, International Business Machines

Corporation (IBM) published an article on The potential of quantum

computing for drug discovery, wherein the authors included the

potential of quantum ML in the scope of their review [102]. More

recently, Google LLC released an open-access quantum ML frame-

work for python that will enable researchers to use hybrid quan-

tum ML [103]. Therefore, the promise of hybrid-quantum ML in

pharmaceutical sciences is likely to be realised soon.

Recommendation systems
Recommendation systems gained fame in 2006 with the an-

nouncement of a Netflix competition seeking to create accurate

user preference content for its users. A recommendation system is a

ML framework that is based on data establishing links between a

set of users (e.g., customers) to a set of items (e.g., products) [104].

Recommendation systems are heavily used in e-commerce, for

example by Amazon and YouTube, to drive their sales [105]. The

advantageous of such techniques are their ability to handle spar-

sity in data, to make predictions if prior information is unavail-

able, and to provide transparency by explaining how the

recommender system makes the decision [106].

Recommender systems have been investigated for medical

applications, where the right treatment is proposed based on

the patient’s medical history [107,108]. However, applications

in drug discovery and development are yet to be established.

Sosnina et al. developed a recommender system for compound–

target interaction prediction for antiviral drug discovery [109]. The

authors used a content-based filtering recommender system,

which is suitable for sparse data and interpretability. In addition,

their model made it possible to perform cold-start prediction, in

which predictions can be made where there is no experimental

data. Given that data in drug discovery and development are

afflicted by all three issues, it is anticipated that the use of recom-

mender system will increase.

Concluding remarks
Here, we have presented examples of MLT used to circumvent the

issues surrounding conventional techniques. We have detailed the

use of ML for automating processes without human involvement;

the use of transfer learning and multitask learning for when big
www.drugdiscoverytoday.com 775
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data are lacking; BNNs for avoiding overfitting; and explainable

algorithms that can shed light the decision-making process of a

model. In addition, emerging techniques and their potential in-

volvement in drug discovery were also discussed. Hybrid quantum-

ML has the potential to further improve prediction performance,

whereas recommendation systems can address data sparsity. It is

anticipated that the use of the techniques discussed herein will be

adopted in the near future, and that their application will further
776 www.drugdiscoverytoday.com
progress research in drug discovery. Ultimately, the quality of the

predictions made by the models will depend on the quality of the

data. Thus, the application of ML in drug discovery will benefit from

a strategic and unified database.
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