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We consider the newly proposed Bahamonde-Dialektopoulos-Levi Said,(BDLS) theory, that is the
Horndeski analog in the teleparallel framework and thus contains‘amon-minimally coupled scalar
field, including higher order derivatives, that leads however to second order field equations both for
the tetrad and the scalar field. This theory was mostly construgted to revive those models that were
severely constrained in the scalar-tensor version of the theory from the GW170817, but includes also
much richer phenomenology because of the nature of the torsion tensor. For this theory we determine
the parametrized post-Newtonian limit, calculate the full set of pest-Newtonian parameters and
highlight some special cases.

I. INTRODUCTION

General Relativity (GR) and its cosmological model, ACDM, are known to possess some features that do not go
along with observations [1, 2]. The accelerating expansion of the Universe is usually associated to the cosmological
constant A, the observed value of which differs from the,theoretical prediction, i.e. considered as the vacuum energy
from Quantum Field Theory (QFT), for 120 ordersiof magnitude. On top of this, experiments fail to detect a suitable
particle candidate for dark matter (am, unknown form, of matter that interacts only gravitationally), as well as a
TeV-scale supersymmetry. These problemsytogether with some other astrophysical ones, motivated physicists to start
formulating alternative descriptions of the gravitational interactions, leading to a plethora of modified theories of
gravity [3-5].

Many theories in several different contexts have been studied throughout the years in the literature. Some indicative
examples are extensions of GR such as(R),f(G) models [6-9]; theories involving extra fields like scalar-tensor
theories, Tensor-Vector-Scalar (TéVeS) theories, Einstein-Aether and so on; higher dimensional theories like the Dvali-
Gabadadze-Porratti (DGP) model, Kaluza-Klein, Randall-Sundrum I & II and more [3]; as well as non-local theories
involving terms as (1= R andfther suchsséalars’ [10-13].

Lately, it has been realised that, gravitational interactions can be equivalently described by three different theories
[14]. This is known in theliterature as the Geometric Trinity of Gravity and it refers to three theories all describing
gravity in a different mathematical way, using different connections of the spacetime, but are all equivalent with each
other [15, 16]. The first one is GR that is based on the curvature of the Levi-Civita connection, the second one is
Teleparallel gravity (TG) [17;, L8] that is based on the torsion of the Weitzenbock connection, and the third one is
Symmetric Teleparallel gravity (STG) [19-21] based on the non-metricity of a flat, symmetric connection. Even in

these alternative formulations of GR based flat connections, there have been proposed many modifications [18, 22-27].
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Horndeski theory is the most general scalar-tensor theory with a single scalar field in four dimensions leading to
second order field equations [28]. Recently, part of the authors proposed a new theory, that is a reformulation of
Horndeski theory in the Teleparallel framework, i.e. using a connection that is curvature- and nonmetricity-free and
possesses only torsion [29]. Based on that, S. Bahamonde, K. F. Dialektopoulos and J. Levi Said (from hereon BDLS)
introduced a scalar field and constructed the Horndeski analog in this “different” geometry. The resulting theory
should have second order field equations, in order to avoid ghosts, should not contain parity-violatingitérms and up to
quadratic contractions of the torsion tensor. The motivation for this, is the fact that Horndeski theory in its known,
i.e. curvature, formulation, was severely constrained by the GW170817 event. It turns out thatdmsthe teleparallel
framework not only the eliminated couplings revive, but also many more interesting ones result because of the presence
of a new function [30].

There are several ways to constrain modifications of gravity. Theoretically, they should satisfy some_ criteria such
as positivity of energy, causal structure and so on. Another important criterion is to ‘confront the theory with
observations. To do so, we have to bring the theory to a form that is characterized by a cértain ameunt of parameters
and to compare these parameters with high precision measurements of their values i the solar system in order to
constrain different classes of theories. A broadly used and well established tool to-test modifications of gravity is
the parametrized Post-Newtonian (PPN) formalism which effectively characterize§ gravity theories by a set of ten
parameters and by comparing them with high precision data from the Solar System, we can study the viability of the
theory.

Several studies of the PPN formalism in scalar-torsion theories have shown/that ma@ models give the same values
with GR to the PPN parameters and thus cannot be distinguished using thesé high-precision measurements. More
specifically, in [31] and [32] the authors study the PPN expansion of teleparallel dark energy models showing that
they cannot be distinguished from GR and thus being much different than scalar-tensor theories [33, 34] that need
specific screening mechanisms to pass Solar system tests. In [35] they study the same models as before by adding
a non-minimal coupling of the scalar field with the boundary termsmlnterestingly enough, they find that this new
coupling affects the PPN parameters of the theory, which they obtain for different cases. The interested reader should
also check the recent works on the subject [36-38]. In this papér, we study the PPN parametrization of the BDLS
theory, i.e. the teleparallel analog of Horndeski gravity, in order-to eonstrain its parameters from various experiments.

This paper is organized as follows: in section II we review the basics'of ‘Eeleparallel gravity, meaning the fundamental
fields of the theory and the basic underlying principles; in addition, we formulate the recently proposed BDLS theory.
In Sec. III we derive the field equations for this theory both for(the tetrad and for the scalar field. The main result of
the paper is presented in Sec. IV where we discuss the PPN expansion of BDLS theory. Finally, in Sec. V we discuss
some special cases, i.e. models that draw more attention imthe literature. In Sec. VI we conclude our results and
discuss future aspects.

Throughout the paper, capital Latin letters A, B, Cys..are Lorentz indices, while the Greek ones «, 8, i, ... represent
coordinates of the spacetime manifold. Furthermore, small TLatin letters from the middle of the alphabet, i.e. 7,5, k, ...
are used for spatial indices. Quantities calculated with the Levi-Civita connection (e.g. connections, covariant
derivatives, d’Alembertians) are given with a circle on top, e.g. @# and quantities referring to flat spacetime are
denoted with a bar on top, e.g. [O. All the other quantities that have no symbols, e.g. TI'® uv, are calculated
with (or referred to) the Weitzenbock connections, Also unless otherwise stated, we use the metric signature 7, =
diag(—1,1,1,1), and geometric units.

N

II. TELEPARALLEL GRAVITY AND ITS EXTENSION TO BDLS THEORY

Through the Levi-Civita connection, f‘fw, GR expresses gravitation as geometric curvature. In curvature-based

theories of gravity, the;amount of curvature present in a system is then expressed through the Riemann tensor which
is the fundamental measureiof curvature in standard gravity [39]. This has been extended to produce several extended
theories of gravity |3, 4| which are constructed on the Levi-Civita connection together with the metric tensor.

On the other hand,/he fundamental dynamical object of TG is the tetrad, eAM, which acts as a soldering agent

[17] between thelgeneral manifold (Greek indices) and Minkowski space (capital Latin indices). Along this line of
reasoning, the tetrad can readily be used to raise Minkowski space indices to the general manifold or vice versa [10]

g#l’ = eA/LeBunAB ) (1)

NAB = EAHEBDQ;W > (2)
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which serve as the definition for the inverse tetrad, E ", which must also adhere to the orthonormality conditions
A A
e /LEB# = 5B 5 (3)
eAHEA” = (5,’1 , (4)

which also normalise the tetrads. However, there are an infinite number of tetrad choices that satisfyathese conditions
due to the local Lorentz transformations (LLTs), A5, on the Minkowski space.

TG is based on the replacement of the Levi-Civita connection with a flat, metric connection whieh,exchanges the
tetrad as the fundamental dynamical variable instead of the metric. This is the most general lingar athine.connection
that is curvatureless and satisfies metricity V,gos = 0 [11]. This connection can be expressed as |15, 22]

5, ()

where wABH represents the components of a flat spin connection, 8[MwA‘B|,,] +wAC[MwC‘B|,,] = 0. Asiin GR, this object
accounts for the LLT degrees of freedom (DoF), but unlike GR, this is a flat connection and plays‘an active role in
the field equations to counter any inertial effects from the LLT invariance of the theorys Naturally, there always will
exist a frame in which the spin connection components will be allowed to vanish, this is thesso-called purely inertial
or Weitzenbock gauge [18].

In choosing the Weitzenbock connection, the Riemann tensor turns out todidentically vanish for every choice of
tetrad (or the metric it produces) irrespective of its components. This occursg becatiSe the Riemann tensor measures
curvature which is associated with the connection not the metric and so /TG mecessitates another way to measure
geometric deformation due to gravitation. To do this, TG uses the torsion tensor defined by the antisymmetry of the
connection through [17, 12]

o _ o A o, A
P9 =E 70", + Ejw g, e

A A
T wv =20 [VH] 5 (6)
which is a measure of the field strength of gravitation in TG, [and where square brackets denote antisymmetry.
This quantity transforms covariantly under local Lorentz transformations [43]. The torsion tensor can be readily
decomposed into irreducible axial, vector and purely tensorialsparts which are defined by [44, 45]
1 vop ’
a, = EEIWUPT , (7)
Up = TUU[L ) (8)
1 1 1
to’u,l/ = 5 (TO'/,LV + Tuo’l/) + 6 (gllavu + guuva') - ggo;ﬂ)u ) (9)

where €,,5, represents the totally antisymmetric Levi=Civita symbols in four dimensions, and where here and in
the remainder of this article we use the tetrad and its inverse to implicitly translate between Lorentz
and spacetime indices, 177, = E?T A uv- These'tensors are irreducible parts with respect to the local Lorentz
group, and vanish when contracted with each other due to the symmetries of the torsion tensor. The axial, vector,
and purely tensorial parts can be used tereonstruct the scalar invariants

1
Tax := ayath= 15 (Lo T7M — 2T, THY) (10)
Tyec = vt =19, T, (11)
1
Ly == to’uutguu = 5 (Ta;u/TU#V + TU/LVT#JV) - ingqu P s (12)
which are all possible scalar invariants,that are parity preserving that can be produced from these irreducible parts
[16]. In fact, these scalar invariants form the most general purely gravitational Lagrangian, f(Tax,Tvec;Tten) [15],

that is quadratic in torsion in that\the scalars are at most quadratic and second-order in terms of the resulting field
equations, while not being parity/violating. Another critical feature of these scalars is that the linear combination,
labelled as the torsion scalar,

3 2 2

1 1
T := iTax + then - gTvec = 5 (EAUQPHEBV + ZEBPQJ#EAD + QWABQM)QVU) TAMVTBPU ) (13)

turns out to be equal to the regular Ricci scalar, R (calculated using the Levi-Civita connection), up to a total
divergencesterm given/by [16]

R=é+T—§@@J%w:o, (14)
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where R is the Ricci scalar determined with the Weitzenb&ck connection which naturally vanishes, and e = det (eA #) =
v/—g is the tetrad determinant. This means that

o 2
R=-T+ =09, (eI","):=-T+ B. (15)
e

Given that B is a boundary term, a torsion scalar Lagrangian will produce identical field equatiouns, as those of GR
and thus form the Teleparallel Gravity equivalent to General Relativity (TEGR) [17, 47], despite the total divergence
difference at the level of the Lagrangian.

In GR, the procedure by which local Lorentz frames are transformed to general ones is by the exchange of the
Minkowski metric with its general metric tensor while also raising the partial derivative to the covariant derivative
associated with the Levi-Civita connection [39]. TG is different in that this couplingprescription,is guided by an
exchange of so-called trivial (tangent space) tetrads with their general manifold tetrad analdg, while, for a scalar field
¥ = U(x), the identical derivative procedure is kept, i.e. [17]

Oy =V, (16)

which emphasises the close relationship both theories have [14].

With both the gravitational and scalar field sections adequately developed, we consider thé conditions on which the
Teleparallel Gravity analog of the Horndeski framework in four dimensions is built [29], which are (i) the dynamical
equations of the theory are at most second-order in their derivatives of the tefrads; (ii).the scalar invariants are not
parity violating; and (iii) at most quadratic contractions of the torsion tensor are allowed. In standard gravity, the
Lovelock theorem [48] shows that any Lagrangian beyond that in the Einstein-Hilbert action (up to a constant) cannot
remain second-order in their field equations. This is not the case in TG [49] ' wheré'a potentially infinite number of
terms can be incorporated into the Lagrangian of a second-order theery. Condition (iii) is a statement about the
possible terms that are considered from this infinite series of terms, where higher order corrections may play a role in
other phenomenology.

These conditions directly produce a finite set of scalar invariants that describe the nonminimal coupling with the
scalar field for the linear appearance of the torsion tensor [29]

I, =v"¢.,, (17)
and the quadratic torsion tensor coupling terms
Ji = g, 9., (
Jz = 'Uatalwgb;uQs;u s (
J5. = tguytaﬂuqs;#(ﬁ;ﬂ ) (
Jo = "D h0 o (21
J8 = taﬂyta,uy(b;l/(b;ﬁ ) (
JlO = Euuo'pautapo-(b;u(b?a ’ (

which also observe the other conditionss and where semicolon represents Levi-Civita covariant derivatives.
These new scalar invariants can be arbitrarily combined to produce a new Lagrangian term

Lreed= Grore (X, T, Tox, Tvec, I2, J1, J3, J5, Js, Js, J10) (24)

where the kinetic term is defined as X ;= — %8“(1)8“(;5. Given the lower-order nature of TG, the other terms of standard
Horndeski gravity retain their original formalations except that they are now expressed through the tetrad formalism.
Therefore the TG analog of Horndeski* theory of gravity [50] turns out to be [29]

Spprs'= % d*x eLoree + 21%22 / d'vel; + / d*zely, (25)
where
Lo =G> (4, X)) (26)
L3 = Ga(d X))o, (27)
Ly :=G4(p, X) (=T + B) + G4 x(¢, X) {(Dsb)Q - ¢-,W¢?“”] , (28)
L = G5 (¢, X) G ™ ~ %Gs,xw,X) [(M)g + 20,76, b0 — 3™ 0| | (29)
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with £, being the matter Lagrangian in the Jordan conformal frame, x? = 871G, (o}',“, is the standard Einstein
tensor, and comma represents partial derivatives. The standard Horndeski gravity is clearly recovered for the choice
Grele = 0. Stemming from the invariance under LLTs and the general covariance of the underlying torsion tensor
formalism, the TG analog of Horndeski’s theory of gravity turns out to also adhere to these invariance properties. Let
us emphasise here that since the torsion tensor is covariant under local Lorentz transformations, the BDLS theory is
also invariant under these transformations [29].

III. FIELD EQUATIONS FOR BDLS THEORY

In this section, we will present the field equations in BDLS gravity. By varying the a¢tion (25) with respect to the
tetrads, we find that

5 5
5eSBDLS = €£TeleEA#66Au + 656£Tele +e Z EiEA#(SeAM + 656 Z Li + 2526@A#66Au = 07 (30)

i=2 i=2
where we have used de = eE 4*de? u» and we have defined the energy-momentum tensor as

16(eLm) ~
mo_ =
©a e det,

(31)

We assume that the matter action is Lorentz invariant, and that all matter fields are minimally coupled
to the metric only, from which follows that the energy-momentum tensor ©,, = eA,LgW,@AP is symmetric,
O[] = 0. Hence, all test matter follows the geodesics of the metric tensor, thus satisfying the weak
equivalence principle. It should be noted that throughout this paperrwe use the standard notation for
antisymmetrization of tensors. For example, for a rank-2/tensor Ay = (A;; — Aji)/2.

The variations of d, Z?:2 L; gives the standard Horndeski field equations whereas the variations d.Lree are related
to the extra terms coming from Teleparallel gravity. After deing several computations, one finds that the field
equations can be written as

4(O7Grrele,r)Sa M 4 4e710x (€S 4 M) Grrete 7 A4G oo 7To A4S M + 4G e 7w 4, SBYH

—b.A [GTele,XqS;u — Grele 1,V — 2GTele.3, 0 a ¢ G 1o 7,01t k" HF — 2t 3.t E s

+2Ge1e 35t 1Lt M ¢ GO M — 2G g3t 1 7t ST = Grete, 5,007 ¢ (‘EHJCDtICD + €IJCD#LCD>}
1

+§ [MI(GIBCDECMTBAD — EIBCDED“OJBAc) + 6_181, (eMIEIACDECVED“)}

_NI(E[“UJPAP —whar —TH a1 — ’UAE]‘U) + e‘la,, (eNI(EAVE]“ - EA#E]V))

O EHseat +e710, (GO”KLIJKAW> — LraeEat +2E4" g Z G, = 2k20.4", (32)
i—2

where the quantities M!, NI, OIK {H;gest and Lijxa™ are given by (A33), (A34), (A35), (A12) and (A16),
respectively. The terms G, Z?:Q G\, /were explicitly found in [51] (see Egs. (13a)-(13d) there). The complete
derivation of the Teleparallel texms are wiitten in the Appendix (A) for completeness. The quantity Sy = i(TA Ap—
TA A — TH4*) + 2(6# AT = 63 T™). is the so-called superpotential.

Variations of the action with respect to the scalar field give us the modified Klein Gordon equation,

5 5
\%s (Jp—Tele + Z JL) = Pd)—Tele + Z P(;ﬁ ) (33)
=2

=2

where J;,_Tele and Pyl are defined as

Ju—Tdle = —GTelc,x(ﬁu@ + Grele. 1,V + 2GTele,1, 00"V — Gele 35Vt (Vo 0)
_2GTe1e,J5th¥tﬁ,ua(%u¢) + 2GTele,J8tayutaVB(6B¢) - 2GTele,J6tV(xﬂtuau(6a¢)(%ﬂ(b)(%a(b) ,
—CTele, 100" (Vad) (€M pst™P7 + €%, pet'?7) | (34)
Py_tele =G rele,s - (35)
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For more details about the derivation of these equations, see the appendix §.A 3. Using R=-T+ B, one finds that
Py is given by [51]

P} =Gay, (36a)

P} =V,Gs4V", (36b)

Pl =Guo(~T+ B) + Guox (06 = (V,V00)?] (36¢)
o o o 1 o o o o

P} = —V,G5.4G" V06 — £ Gs.ox [<D¢)3 —30¢(V,uViud)® +2(V,u V)| | (36d)

and J}, is defined as [51]

Jh = Ly xV,ub, (37a)
J3 = L3 xVup+ Gsx VX +2G34V,0, (37D)
Jp = =L x Vb + 26 x R V76 — 26 xx (D69, X = VXV, 0

— 2G4ox ¢V 16+ V, X)), (37¢)

- o o ~
J) = —Ls5xVup — 2G5 4G, V'¢

— Gs.x |G VX + RuDOV" 6 — RaV" 9V 16 — R, V7 6V o)

+ G x| 5 VX [(O0 — (VaVis0)?] - VX (CHR076 -~ WaV,09°v70) |

+ G57¢X{%%¢> [(EW - (%ﬁm)z] + 0oV X — %”X%ﬁ#qs} . (37d)
Note that no terms from the matter Lagrangian appear,since we are working in the Jordan conformal

frame, in which there is no direct coupling term between the scalar and matter fields. To fully express all
terms in the above equations in terms only depending on Telepatrallel quantities, one can use the following identities

j%)\ pov — 6u[{a)\u - %OKI/)\/I/ + Kapp,KuAp - Ka)\pKypu ) (38)
R,uu = VVK)\/\;L - VAKU/\;L + KAPMKV)\p - K)\/\pKup,u ’ (39)
s — o o 1 o
G;w =e 1eAung8a(eSAp )— S VTBUM + ZTg/W — eAHwBAUSB,, . (40)

Here, the term K,/‘,, = (1/2)(T’\W — T,,H)‘ + TN’\,,) is the contortion tensor.

IV. POST-NEWTONIAN LIMIT IN BDLS THEORY

We now come to the post-Newtonianilimit of the class of theories displayed in the previous section. In order
to simplify the calculation and the'result we.display later, we first introduce a new parametrization of the action
in section IV A. We then briefly/ review the post-Newtonian expansion of the field variables and post-Newtonian
energy-momentum in section IV B. Lo apply this formalism to the theories at hand, we perform a Taylor expansion
in section IV C. It turns out that we must'impose that certain Taylor coefficients vanish; we list these restrictions in
section IV D. In section IV Ejwe finally come to solve the field equations. The resulting PPN parameters are presented
in section IV F.

A. Change of parametrization

For the calculation/of the post-Newtonian limit it is helpful to rewrite the teleparallel Lagrangian Grel in the
equivalent forma

F(T, T2, 73, X, Y, 9,J), (41)
where we used the shorthand notation J = (J1, Js, J5, Js, Js, J10), and where we have introduced the new terms

7-1 = THVpTqu ) 7-2 = THVpru;L 3 7; = TM;LpTVVp 3 Y = gHVTppuqb,l/ . (42)
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terms by

To= (T —2T), Tun=5(Ti+T-T), Te=Ts, T={Ti+3H-T, L=Y, (&)
so that we can express Grele as
Grele($, X, T, Tax; Tvee, I2,J) = Grele (QS,X, 27'1 + %7—2 —Ts, %8(7-1 - 27—2)77531/,«]]) . (44)
Conversely, we can express F' in terms of the original variables as
PO T To X.Y.0.0) = F (2T 4 To) 4 9 T4 To = 5 o T X D) (15)

There are two reasons for this change of variables and rewriting of the Lagrangian. First, it turns out that the field
equations and derivation of the post-Newtonian limit become simpler in the newly introdueed variables. Second,
these variables allow for a more direct comparison with previous results on the post-Newtonian limit of other theories,
which now become obvious special cases of the class of theories we consider here [36~38, 52].

~

B. Post-Newtonian expansion

We now come to a post-Newtonian approximation of the field equations of the BDLS theory detailed in the previous
sections. Hereby we follow the parametrized post-Newtonian approach for teleparallel gravity theories developed in [38]
and its adaptation for scalar-torsion theories used in [36, 37]. The starting point of this formalism is the assumption
that the energy-momentum tensor of the source matter is given by that ofa perfect fluid, and thus takes the form

0" = (p + pIl + p)utu” Hpg"” (46)

with utu”g,, = —1. Further, one assumes that the velocity v! = ufju®of the source matter is small, |7] < ¢ = 1,
compared to the speed of light, in a particular frame of reference! Based on this assumption, one promotes the velocity
to a perturbation parameter, and assigns velocityforders O(n) o |0]" to all quantities. For the matter variables
constituting the energy-momentum tensor (46), which are the rest mass density p, specific internal energy
IT and pressure p, one assigns velocity orders O(2) to p.and II and O(4) to p, taking into account their
orders of magnitude in the Solar System; see [53] for their definition and more thorough explanation
of their properties. One further assumes‘that thergravitational field is quasi-static, which means that it changes
only following the motion of the source matter. Hence, time derivatives are weighted with an additional velocity order
do ~ O(1). Finally, one assumes that the background of the perturbative expansion is given by a diagonal tetrad and
a constant value of the scalar field,

¢}

0
e, = Aty =diag(1,1,1,1), ¢=2a. (47)

One then performs a perturbative expans'{on of the tetrad and the scalar field of the form
k
= e, 6=> 9. (48)
k k

Note that we do not introduce am expansion of the spin connection here, since we assume the Weitzenbock gauge

wA Bu = 0 at all perturbation orders. Further, it is useful to lower the Lorentz index of the tetrad perturbations using

the Minkowski metric and to convert it to a spacetime index using the background tetrad, hence defining

k k
Cuv = AAp,nABeBV . (49)
Finally, we perform a 3+ 1 $plit of .the tetrad components into temporal and spatial parts. Following the procedure
detailed in [36—-38], - we find that the only relevant and non-vanishing components of the field perturbations are given
by
2 2 3 3 4 2 4
€00, €5, €o0i, €0, €00, ¢, . (50)

These are the components we will solve for in order to determine the post-Newtonian limit and hence the PPN
parameters.



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - CQG-107367.R2 Page 8 of 22

8

C. Taylor expansion of parameter functions

In order to perform the perturbative expansion of the field equations around the background (vacuum) solution (47),
we must perform a perturbative expansion of the parameter functions which appear in the action around the same
background. For the parameter functions G, G3, G4, G5, Grele, F' this means that we must perform a Taylor expansion
around ¢ = ®, and all other arguments to these functions vanish. For the Horndeski part, this expansion takes the
form

1 1
Gl(qﬁ,X) = G1(¢70) + Gi,d:((by 0)¢ + Gi’X(Q%())X + iGi’¢¢(¢,0)’l/12 =+ Gi’¢X((I>7O)’L/JX + iGi,XX((by 0))(2 —+ ... (51)
1 1
=G+ G+ G xX + §Gi,¢¢w2 + Gigx X + §Gz‘,XXX2 + ...

for i = 2,3,4,5, where we introduced boldface letters to denote the constant Taylor coefficients at, the background
0
level. We have decomposed_ the scalar field as ¢ = &+, where ® = ¢ is the scalar field evaluated at the

background and ¢ = Z?zlg; is the sum of all the order perturbations. Similarly, we introduce the notation

Gele; GTele,6, GTele, X, GTele, 7y GTele, T, » GTele, Todd GTele)I (52)
~

for the background value of Gree and its derivatives, as well as
F,F,F2,F3F x,Fy F, (53)

for the background value of F' and its derivatives. Note that we do not intreduce any notation for the derivatives with
respect to J, as it will turn out that these do not enter the field equations at the post-Newtonian order we consider.
For the relevant Taylor coefficients, we find the relations

_ 9GTe1e,T + 2GTele,Tax _ 9GTele,T - 2C"'Tele,Tax

F F : Fy=G — Gruer 54
,1 36 ) ,2 18 . ,3 Tele,Tyec Tele, T ( )
9G ele 2G ele 9G ele _2G ele
F g = —oofh e 0T F = —1ool —ede - F 45 = Grele gt — Grelegr s (55)
36 18
as well as their inverses
18F ; — 9F

Greer =2F 1 +F 5, Greledyee =2F 1 +F >+ F 3, Grele,1,, = % , (56)

18F - 9F
Grele, o = 2F g1 + F 4o, Grele,¢Tvee = 2Fyg1 +F g2 + F 43, GTele, ¢ Ty, = H (57)

for the derivatives with respect to the various,torsion scalars, while derivatives with respect to the scalar field terms
¢, X,Y = I, take the same form in both parametrizations.

N

D. /Restrictions on the considered theories

In order to be able to solve the post-Newtonian field equations and express the solution in terms of the PPN
potentials, we must impose‘several restrictions on the parameter functions. The first restriction is imposed by the
background field equationsiy We. findithiat our assumed background (47) is a solution to the field equations only if we
assume

F+Gy=0, Fg3+Gyys=0, (58)
or analogously in terms of Grple,
Gree + G2 =0, Grele,p + G2,p =0, (59)
Further, we restrict ourselves to theories in which the scalar field is massless. Without this restriction, Yukawa-like
terms would appearywhich would require an extension of the standard PPN formalism [54, 55]. Hence, we set
Foo+Gopo=0, F o6+ Gopps=0, (60)
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which we can also write as
Grele,pp + G260 =0, Grrele,ppp + G290 = 0. (61)
Finally, we remove terms which are of higher than second derivative order, and would thus lead to terms in the
solution involving higher derivatives of the source terms [56]. These terms are eliminated by [52]
G3x —3Gagx =0, Gyx —Gs54=0. (62)

In the following, we will consider only theories which satisfy these restrictions.

E. Post-Newtonian solution

We are now in the position to derive a perturbative solution to the field equations.” We proceed in three steps
with increasing velocity (perturbation) order. We solve the field equations at O(2)"in section IVE1, at O(3) in
section IVE2 and at O(4) in section IVE3. See, e.g., [53] for the definition /of the post-Newtonian potentials
U, Vi, W;, @1, Pg, 3, Dy, Py, A, B we use in this section.

1. Second velocity order

Since we have already solved the zeroth-order (vacuum) field equations by restrieting the Taylor coefficients to the
values (58), we continue by solving the field equations at the second velogity order. These are given by the temporal
tetrad equation

_ 4 1 _ 2
(2F71 + F72 + F73)Aé00 + (F73 + G4)(éij,ij — Aéu) + §(F7y — 2G47¢)A¢ = H2p, (63)

where A = §% 0;0; denotes the Laplacian of the spatial backgrotﬁld metric, the spatial tetrad equation

1 e 2 2 2 1 = 2 2 2 1 2
5(21?,2 —Gy)A(eij—erj,ik _eik,jk)+§(4F,2 —G4)(Afzfji—€jk,ik)+(F,3+G4)(600,ij —ekk,ij)+ 3 (2F 2+2F 35+Guy)eg jk

1 2 _ _ 1 _ 2
+ 5Py = 2Ga )05 TallE s + Gi)(Deii — eiji; — Do) — 5 (Fly = 2Gug)Ag| i =0 (64)

and the scalar field equation

— — _ 2
(Fy —2G44)(Aego =20 + ¢55.45) — (Fx + Gax —2G3.4)Ad = 0. (65)
In order to solve these equations, we make an ansatz of the form
2 > 2 2
eoo =a1U, e =aUdy;, ¢=asU, (66)

where a; 2 3 are unknown constants which are to be determined from the field equations. This ansatz is motivated
by the structure of the/field equations, which contain second-order spatial derivatives of the field
variables, which must beproportional to the matter density, and can be obtained, e.g., from a gauge-
invariant formalism as shown'in [57]. Inserting this ansatz into the second order field equations yields the solution

(2F’1 -+ F72 + 2F73 + G4)(F7X + G27X — 2G37¢,) + (F7y — 2G47¢)2

- , (67
T T 9r(3F | £F 2 GR(2F 1 + F o+ 3F 5 + 2G4)(F x + Gox —2G34) + 3(F.y — 2Gy)7) (67a)
a3 = =K 2(F 3+ Ga)(F x + Gox —2Gs) + (Fiy — 2Ga)’ (67h)

47(-(2F’1 =+ F,Q - G4)[2(2F’1 + F’Q + 3F’3 + 2G4)(F,X =+ GQ,X — 2G3’¢) + S(F,Y _ 2G47¢)2} )
as = _I§}2 (F)y — 2G4¢) (67C)

271'[2(21‘1,1 +Fo+3F 3+ 2G4)(F7X + G2,X - 2G37¢) + 3(F7y — 2G47¢)2] '

We will make use of this solution in the remainder of the calculation.
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2. Third velocity order
We then proceed with the third velocity order. The corresponding field equations read

2

1 L 1 .
5(4F,1 — Gy)(Deio — i505) + 5(2F,2 — Gy)(Aéoi — oj,ij — €ji05)

1 1
+ 5(2F,2 + 2F,3 + G4)éj07ij — (F73 + G4)éjj70i + §(F7Y - 2G4’¢) ES —H2p’l}i (68)

and
]. ~ 3 3 2 ]. ~ 3 3
5(2F,2 — Gy)(Aeio — €jo,ij — €ijo0;5) + 5(4F,1 — Gy)(Aeg; — eoj,ij)

2 2 2 1
(2F,2 +2F 5 + G4)6j¢70j — (F,3 + G4)€jj,0i + (2F’1 +Fo+ F$3)600’i0 + i(F’Y — 2G4’¢) = —Ii2p1}i . (69)

N =

+
Solving these equations using an ansatz of the form ~
eio = biV; + bs Wi, eo; = bsV; + by Wiy (70)

which follows from a similar motivation as for the second order field equations, we find that the solution
is not unique. This is a consequence of the diffeomorphism invariance ofithe theory and the resulting gauge invariance
of the post-Newtonian approximation. In order to solve the equations, one, therefore needs to fix a gauge. Here we
choose to work in the PPN gauge, which is determined only after the fourth velocity order is solved [36-38]. At the
third velocity order we thus obtain the partial solution

L

K/Q

(2F,1 + F,Q — G4) ’

51:1334_54:4” by =0, (71)

while the difference bs — by is left to be determined in the following step.

8. Fourth velocity order

In the last step, we come to solve the fourth velocity order of the perturbative expansion of the field equations. At
this perturbation order the equations become very lengthy, and so we will not display them here, but only sketch the
procedure. The equations we must solvesatnthé fourth velocity order are given by the temporal and spatial tetrad
field equations, as well as the scalar field equations. It turns out that by taking a suitable linear combination of these
equations, the unknown fourth-order/terms

4 —

Aé“-, €ij,ij » AV (72)

which are not relevant for determining the post-Newtonian parameters, drop out of the equations, and the only
remaining fourth-order term wemeed to solve for is Aéoo. This is achieved by making an ansatz of the form

€00 = 1By + ca®y + c3P3 + 4Py + c5U?, (73)

which follows from the fact that its second-order derivatives reproduce the matter source terms in
the corresponding field equations at the fourth velocity order. We can then solve the field equations for
the constants ci . ., cs, as well as the so far undetermined difference b3 — by left from the third velocity order. This
solution then determines all tetrad components which we need in order to obtain the full set of PPN parameters.
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F. PPN parameters

Finally, we can compare our result for the post-Newtonian tetrad solution to the standard PPN form, according to
which its symmetric components are given by [57]

éoo = U, (743,)
€y = Ui (74D)
: 1 1
é(Oi) = —1(3 +ady+ oy —ap + (G -2V — 1(1 +oag — (1 +2)W;, (74c)

4 1 1
eoo:5(1—25)U2+§(2+27+043+C1—25)@14'(14‘37—254'@24-5)‘1’2

1
+ (14 G3)P3 + (37 + 3G — 2Py — £y — 5((1 =20 (74d)
By comparison with our result we find the PPN parameters

f=ar=w=a3=0=0=03a=0u=0, (75)

which indicates that the class of theories we study is fully conservative, i.e., it does not-exhibit any preferred-frame or
preferred-location effects, or a violation of the conservation of total energy-momentum. The only PPN parameters,
for which we obtain a deviation from their general relativity values, are v and 8. For the former we find

(Fy —2Gy4)®> +2Q2F 1 + F 3+ F3)(F x + Gazx— 2G3 4)

=1- , 76
! 2(Fy —2Gup)* +20Q2F 1 + F 2+ 2F 3+ Gq)(F x + G2 x —2G3) (7o)
which we can express in the alternative parametrization as
Gele.1, — 2G4.¢)?% + 2GTele G rele G, x — 2G
N (Grrele, 1, 4,6)" + 2Grele 1 e (Girete x + G, x 3.6) (77)

2(Grrele,1; — 2G4,6)? + 2(2G1ele,10o. —Greltys #1G4)(Grele, x + Go,x —2G3¢) |

The result for 8, however, is very lengthy. It is possible to express the PﬁN parameters in a neat form by introducing
the following combinations,

H, =Gyx —2G34+F x =Gy x —2G3 ¢ + Grgle, x , (78)
Hy :=2F41 + Fyo = Grole,¢7 » (79)
H3z; =Fy — 2G4y = Grele,1, — 2G4 4, (80)
H,:=2F;+F+F;3=Greenr,.. (81)
H;:=2F 1 +F3+2F 3+ G4 =2Gele, 7yo. — Gele,7 + Ga, (82)
Hg:=H3(4H Gy g6 — 2H 1 F 4y $H 3 (Gogx — 2G4y + F gx)) — 2HA Fy3 (83)

= Q(Gz,x —2G3 4 + GTele,X) ( (Greleier — Grele,oTe. ) (G2,x —2G3,4 + Grele, x)

+ (Grele,1; — 2Ga,) (2Gu g = GTele,¢12)) + (Gele,1, — 2Ga,6) 2 (Go,px — 2G3,66 + GTele.sx) , (84)

giving us the following form of ~

2H H , + H?
Y=1-= § ’ (85)
2 (H H s + H%)
and S becomes
B
=< — , 86
g 8(H Hs+H%)2(3H% —2H, (H, — 2H5)) (86)
where the function B is
B =4H%H (H,2 (4H 4 H 5 — 2H? — 3H%) + H3 (3H,H 5 — H, + H) ) —4H H H; (H, — 2H ;)
+H  HY, (8}1,2 (H,—2H;)+H3 (4H, + THj) ) +H 3 (—6HHY + 3H% + 2H s (H; — 2H 4) %)
+Gi o) SHHY, (H, - 2H,5) + SHYH s (H — H2) + 6HY ). (87)
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Note the appearance of particular combinations of the Taylor coefficients in the denominators of the PPN parame-
ters (85) and (86). If any of these denominators vanish, the PPN parameters diverge, and the theory is ill-defined.
Indeed, one finds that these values correspond to cases in which either the scalar field or the metric becomes strongly
coupled around the background vacuum solution we consider. For

H;H;+H% 0 (83)
the kinetic term of the metric in the Einstein frame vanishes, while for
3H% —2H, (H, —2H;) >0 (89)

the same happens for the kinetic term of the scalar field.

V. SPECIAL CASES

In the previous section we have derived the PPN parameters of the most general class of BDLS teleparallel Horndeski
theories. We now highlight a few special cases, which are of particular interest for various reasonsi First, in section V A,
we consider the “purely teleparallel” class of theories, in which only the term Gr)e is presentiin the action. We then
reproduce a number of previously obtained results for three well-known classesyofitheories: Horndeski gravity in
section V B, scalar-torsion gravity in section V C and F(71, T2, T3) gravity in séction V.'The general relativity limit
of BDLS theory, which can be obtained in different ways, is discussed in section V E. Finally, we derive the most
general class of theories with PPN parameters identical to those of generalwelativity in section V F; theories of this
latter class are indistinguishable from general relativity at the level of their PPN parameters.

A. Pure Grele theories

A particular case is given if we consider theories in which only the teleparallel term Gy is present, while the usual
Horndeski terms vanish, Go = G3 = G4 = G5 = 0. In this case werfind the PPN parameters

1 F2, H2F oF 07
T 2F% +Ex(2F ) +F, +2F ;)

v (90)

These can alternatively be written as
1 G”z[‘ele,lz -+ 2GTelc,Tvec GTclc,X

S ’
2 G, FGmele x (2Gele, 1. — Gele,)

and in terms of H, this quantity reads as in (85).“For the § parameter, the expressions look cumbersome in Grele
and F, but using the functions H defided in (78)-(82), one finds the following neat expression,

1
P=1-3 (., H; + H%)2(3H% —2H,; (H = 2H5))

vy=1 (91)

{ — 2H,2( — 4H H%, (H, — 2H ;)

+2H? H 3 (—4H 4H ;5 + 2H=#:3H%) + 3H?3) +HHY (4H 4 + TH ;) + 4H* H% (3H 4H ; — H’, + H%)

—AHY H H 5 (H 4 — 2H 5) + 20 sHg (H 5 — 2H ;)2 + 3Hf33} . (92)

B. Horndeski gravity

The opposite case, ¢ompared to the previous one, is the well-known case of Horndeski gravity, which is obtained
for Grele = 0. In thisscase the PPN parameters reduce to

=1 1Gis (93)
T G4(G27X — 2G37¢) + 4Gi¢
and
- A G4G] 4[GuGy p(Gapx — 2G3.60) + (Gox —2G34)(G 5 — 2G4Gy gp)] . (04)

2[G4(G2,X — 2G3,¢) + 3GZ,¢][G4(G2,X - 2G37¢) + 4Gi¢]2
This result agrees with the PPN parameters found in [52].
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C. Scalar-torsion gravity

A particular subclass of the pure teleparallel class discussed in section V A is obtained if the torsion enters the
action only through the linear combination

1 1
T=-"Ti+;T2~Ts. (95)
4 2
In this case the parameter function reduces to
1 1
F(7—177—277§7X7K¢7J):L<47—1+27-2_757X7Y7¢) ) (96)

where we also omitted the dependence on J, as it does not contribute to the post-Newtonian limit. Equivalently, we
have

GT€1€(¢; Xa T; Tax7 Tvecv IZ) J) = L(T7 Xv 121 ¢) . (97)
For this action, which was proposed in [26], we find the PPN parameters
L3
=14+ — = 98
LT P T TS (%8)
and
B=1+

L7y [L,TL,XL?Y (16L¢T — 7L’Y) + 3Lfly (L’y — 2L¢T) - 8L?TL?XL¢T == QL?TL,Y (2L,2X + L’YquX - 2L’XL¢y)]

8 (4L,TL}X - 3L?Y) (L?Y = L,TL,X>2

Y

(99)
L
in agreement with an earlier result [36]; where L is the Taylor geries coefficients of the Lagrangian (97) evaluated at

the background level.

D. F(T1,72,73) theories

Another special subclass of the pure teleparallel.case is obtained if the function F' does not depend on the scalar
field, and hence takes the form

F(TyT2, 75, X, Y, 6,0) = F(T1, T2, T3) - (100)
This action was studied in [45, 58]. In his case wefind the PPN parameters
2 F F 1 2F F F
v 14 Fy + F o+ 3 g1 1+ Fo+ 3 (101)
2F’1 + F72 + 2F73 4 2F’1 + F’g + QF’g
This is the result obtained in [83]. It may equivalently be recast in the form
1
= 1 G"Tele,TVec 7 ﬁ -1 GTele,T\,ec (102)

- - b
2Gele, 7. — GTele, T 4 2Grele, Tyo. — GTele, T

using the parametrization through Greje.

E. General relativity limiting cases

There are different limiting cases, in which the class of theories we consider reduces to general relativity. One of
these cases is given by the teleparallel equivalent of general relativity (TEGR). This limit is obtained as a special case
of the puresteleparallel action shown in section V A by the choice

1 1
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or equivalently by
GTele(Qj)?Xa T7 TaxyTvecy-[QaJ) =-T. (104)

The same limit, up to a boundary term, can be achieved by starting from the Horndeski action discussed in section V B
and choosing G4 = 1, G2 = G3 = G5 = 0. In this case the only contribution to the action arises from the Lagrangian

L,=-T+B, (105)

where the boundary term B does not contribute to the field equations. In both cases one finds the PPN parameters
B8 =~ =1, as expected.

F. Theories with f=~v=1

We finally determine the most general class of theories whose post-Newtonian limiteagrees with the limit =~ =1
obtained in general relativity. For this purpose, we start from the result (85) for 4. One immediately sees that this
reduces to v = 1 if and only if

2H H,+H%=0. ~ (106)
We can classify the solutions of this equation into two branches:

1. We first consider the case H3 = 0. In this case we must also demand Hy = 0 (since H; cancels in the
expression (85)), as well as H 5 # 0 to avoid divergences due to strong coupling, as mentioned at the end of
section IV. Inserting these conditions into our result (86) for48 we findythat also 8 = 1. Theories of this type
can be regarded as minimally coupled, since neither the scalar field nor additional torsion terms contribute to
the post-Newtonian limit.

We can also express this class of theories in the parametrization through the function F. We find that the three
conditions amount to 4

Fy= 2G47¢, 2F +Fo+F3 =0, Fs3+ Gy #0. (107)

In the parametrization through Gree, the three eonditions (107) for the minimally coupled class of theories take
the form

Grete,r, = 2Gu s, Gmele .. =0, Grele,r # Ga. (108)

2. We can obtain another class ofétheories if we assume H 4 # 0. This case may hence be regarded a non-
minimally coupled class of theories. In, this case we may solve the condition v = 1 for, e.g., H; and find the
Taylor coeflicients

H%

H = — Z . 1
~ o (109)

Further, we must demand 2Hy— H 5/ 0 to avoid divergences. Inserting this into the expression (86), we find
the simplified result

H, (-3H,H% +2H4G, 4 + 2H2H
Be1=-— 4 (3, = 34¢ iHo) (110)
4H% (2H 4 — H ;)

Solving for 5 =1, we findsthe further conditions

H% (2G4 4 — 3H )
Hg=—-— ’ —, (111)
2H?

as well'as H 3 # 0.

Indhe parametrization through the function F' this class is given by the assumptions

2F 1 +F+F3#0, 2F;+F,—Gy#0, Fy #2Gyg, (112)
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and solving for v = 1 yields the condition

1 (Fy — 2Gy,)>
Fx=-Gayx +2G34 — 5—2(1? ’1Y+ F fﬁ - (113)

By using this condition in 8 = 1, one gets an expression in terms of F, from which one can selve'e.g.

1
2G4y —Fy)(2F1 +F4+ F3)
_ 4G4,¢¢F,Y(2F,1 + F’Q + F’g) — FVQY(6F$¢1 + 3F,¢2 + F’¢3) — 4G421’¢(2F,Y + 6F’¢1 + 3F’¢2 =+ F7¢3)

+8GH + 2Gu g (Fy +4Gu g (2F 1 + F o + F ) + 2F v (6F 41 #8F 52+ Figg)) | . (114)

F gy = o [2(21“,1 +F 2 +F3)%(Gopx — 2G4 + F ox)

Expressed through Grele, the assumptions read

Grele,r, #2Ga4, GraeTe. #0, Grele,r #/Ga, (115)

and we can solve, e.g., for the Taylor coeflicients for v =1
~
(GTeler — 2G4,¢)2

Grele,x = —Go,x +2G3,4 — STem
e e7 vec

(116)

while by replacing this expression in the condition S = 1, one requires

1
Gele,1, —2Gu4,9) 2

+2Gy, <2GTe1e,Tvec (2G4, — GTele,¢1,) + 2Gele, 1, GTele ¢ Tee T+ GzTele,Ig) +8G3 4

Gele, ¢ = 2 {2G2,¢XG2Tele,Tvec — 4G4 66Ghe it — 4GE 4 (2Grele 1, + Grele ¢ Thec)

+2Grele, 1, (GTele,T\,ec(GTele,cbIg — 4Gy fp) — GTele,I?GTele,¢Tvec) + QG%GI&T G Tele,6x (117)

vec

to have the same PPN parameters as in General Relativity.

VI. CONCLUSION

We consider the post-Newtonian limit of a recently. proposed covariant formulation of the teleparallel extension to
the Horndeski class of gravity theories{ealled BDLS theory [29]. In order to apply the standard PPN formalism, we
restrict ourselves to theories with a massless scalar field and in which terms of higher than second total derivative
order are absent. We then calculate the PPN parameters for this restricted class of theories, and obtain a general
formula for the PPN parameters in terms of the free functions determining the Lagrangian of a specific theory. Our
findings show that the only PPN parameters which potentially deviate from their general relativity values are ~
and [, which means that all considered theories are fully conservative, i.e., they do not exhibit any preferred-frame
or preferred-location effects or violation of{total energy-momentum conservation. Further, we identify the class of
theories whose parameters are identical to those of general relativity. We find a large class of theories, which are thus
indistinguishable from general relativity by measuring the PPN parameters.

Our findings are in line with amumber of previous results on the post-Newtonian limit of teleparallel gravity theories
and generalize these previous results [36—35]. By comparing our results with bounds on the PPN parameters obtained
from solar system observations, we are able to constrain the class of teleparallel Horndeski theories, in addition to
the constraints obtained from the'speed of propagation of gravitational waves [30] — > By comparing the results in
this work with theobservational values of the PPN parameters, we would be able to constraint model parameters
for specific forms of thegeneral BDLS theory. For instance, by using the Doppler tracking of the Cassini spacecraft
about Saturn, it was found in Ref[59] that v — 1 = (2.1 £ 2.3) x 1075, while in Ref.[60] the perihelion advance of
Mars can be used to obtain 3 — 1 = (0.4 + 2.4) x 10~*. These constraints may be crucial for selecting viable models
within the framework of models that are possible in general BDLS theory. Most interestingly, we find a large class of
theories beyond general relativity, which pass all solar system tests of the PPN parameters.

Theseesults further consolidate the BDLS class of teleparallel gravity theories as an interesting alternative to
curvature-based modified gravity theories, and motivate further studies of their properties, as well as similar theories
whose construction is based on related principles [61]. Our calculation of the parametrized post-Newtonian limit can be
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seen as a first step towards a more general post-Newtonian approximation to higher perturbation orders, which allows
to derive the gravitational waves emitted from orbiting compact objects [62]. Complementary sets of observables may
be derived by using the theory of cosmological perturbations [63-05] to determine, e.g., the parameters of inflation;
using universal relations between the observable properties of neutron stars [66, 67]; studying the propagation of
light and the existence of photon regions around compact objects [68]. From the theoretical side, one may employ
the Hamiltonian formalism to study the appearance of additional degrees of freedom, further génetalizing earlier
results [69-71]. Combining these different directions of research will allow us to further constrain the ¢class of viable
teleparallel gravity models.
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Appendix A: Derivation of the field equations
1. Useful identities

To be able to find the field equations for our model, we will'usersome. the following identities [15]

L
8€B 8EBV
L =64y, = —Ep"Ea", (A1)
e, e,
Oe 0g~? 99ap
——— = eEy" = —g"P B, B, oF — papdle” sheP, A2
86‘4“ ELip", 86‘4“ g A g A 86’4” NNABOL€ ﬁJFT]AB ,66 ) ( )
In addition, for variations of the torsion tensor we can'find
8TBP0' B B 8TBP0' B/sv v
g = Mg P a0 G = 0B 00)). (43)
For the vectorial part of torsion, one has
v
Cia" = 8eAIu = Er'wlap — ' ar —T" a1 —vabEr", (Ad)
8111
= EA"E* — E4,"E” A5
g, — Da"Er o (A5)

On the other hand, for the axialypart, one can compute the following identities

BaI 1 1
DA —~e1s“PEHTP sp + erp“PEptw® ac (AG)
e, 3 3
8a1 1 cD
= - Ec"Ep*. AT
ger,, ~3cia Lc"Ep (AT)
The important derivatives for the tensorial part are more involved and were not presented in [45] so, we are going to

find them heres The variations of the tensorial part with respect to the tetrads gives us

Oty 10
ded,, 2 de,,

1 0
|:TIJK + TJIK} T 5904 [UKIUJ —NKJVI — 2TIIJUK} : (A8)
m
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The first term in the first bracket can be written as
0 0
ey LKk = (TBpUEJpEKU) =wrasEx" —wrag Ej" = TrjaEx" — Traxk E5", (A9)
where we have used Egs. (Al ( 3). The second term in (A8) can be written as
1 0 1
G DeA |MKIVs — KV = 2771JUK] =5 [UKIC'JA“ —nrsCra" = 2n1;Cra" +vyDrrat — viDgga"
w
—2UKDIJAM:| s (AIO)
where Cj4* was defined in (A4) and Dgra* is given by
0
Dgra* = aZﬁfI = 67napE" ik + 0gnapE"r —narE" k — niaBly . (A11)
o
Thus, by replacing (A9) and (A10) into (A8) one gets
Otrgre 1 " " " " n 1 i Iz
A 3 [WIAJEK —wrAk By = TrjaEk" — Trak Ej" + wjarEx" —wjagEr" — TppaEx" — Trax Er
m
1
+5 [HKICJA“ =N sCra = 2nr;Cxa" + vyDgra" —viDgja" = QUKDMM} = Hryga". (A12)
The last important identity needed is
Otrjk 1 0 [ 1
K _ 2 Tk +T o = — 2150k - Al13
deA,,  20e4,, 1k + 14k | + 6 9eA,, NEIVJ — NKJVL— 2N1JVK (A13)

The first term in bracket can be easily find,

PeaLrik = 8CT(TB;)077BIEJPEKU) =nprE;"Ex” Do (T p6) = na1(E;YEx" — E;*Ex”), (Al4)
v v pov
where we have used (A3). The second term in (A13) is 4
0 0 Y Y
aT(nKI'UJ) =K1 gV = Mgi(Ba"Es" — EAVE;Y). (A15)
SN el
If one replaces the above identity and also (A14) into (A13); one finally gets
at 1 v " v " v 1 v " v
S = 5 [nar (B Exc" — By Bl SHautEEx" — Br* Bxc")| + < [n1(Ba” By — Ea"E,")
v

—nrs(Ea”E* — EgtErY) — 201 (B Ex* — EA”EKV)] = Lijxa™. (A16)

2. | Variationsywith respect to the tetrads

N

a. Variations of Lrele

The term ed.Lrele can béexpanded.as

vec

ed, eLTele = ed ¢GTele = 6(C;Tele X5 X + CTYTele T(S T+ GTele Tax J, eLax + GTele Tyoe O eTvec + GTele 125 Is + Gele J15 Ji

FGele,1500J3 + Gele,159¢J5 + Gele, 76 0c J6 + GTele, 35 0c S8 + GTele, i1 5eJ10) . (A17)

Since all these scalars’are constructed from ay,v; and t;;x and they contain up to first derivatives in the tetrads, one
can notice that, the only important terms appearing in the field equations are

[ 8@1 6@1
Is. _ [~1 - I A
Clovr = [0 555 a(c aeAH’V)}(se " (A18)
[ aCLI aal
C1dar = |7 S fa( o' )}56/‘#, (A19)
CHE 5ty = c”Kat”K 0, c”K OLIIC V] s (A20)
LJK = e, ety “ o
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where C!T and C/X are any arbitrary vector and tensor respectively. Note that the above derivatives for v;,a; and
tryx are given in (A4), (A5), (A6), (A7), (A12) and (A16), respectively. The first two above variations are

1 .
eGTele,XéeX = _ieGTele,X(b;a(b;Béegaﬁ = eGTele,X¢;a¢7uEAa66Au7 (A21)
eGrele 10T = —4e | (OrGrele1)Sa M + €10 (eS4 M) Grete,r — Gele, 7T A4Sy "
+GTele,TWBAuSBVH:| seiy . (A22)
where we have used the result found in [43, 46] to compute the second term eGrele 70T and Eq. (A2)40 compute

the first one. All the remaining variations are given by

eGele, Ty 0c Tax = 26GTole, T, ' Scar (A23)
eGrele, o, 0c Tvee = 2€Grele T, V' 6evr (A24)
eGTete,1;0¢I2 = €Grote, 1, 0evr — €Grrele 1,09, 4006, (A25)
eGrrete,1,0eT1 = 26G7ete, 1,8 0 agdear — 2eGrrere s, ara" ¢ $ a0y, (A26)
eGele, 15003 = €Grrele 1,0 7t k¢ 16ev1 + €Grrete, 1,0 ¢ v Set rlgic
+eGrele, 15Vt kM ¢ P abce? (A27)
eGrele 35005 = 26Grrete 15 L 0Tt LK St 1k — 26Grrete s, t K t1 710 6 pondee? (A28)
eGTele 160 Jo = 26Grete, 1,0 ¢ GG Mt! pardetrir + 2eGraguet ot s ¢ oL oM g adee?,,  (A29)
eGrele 350 Jg = 26Grete,1s 0L 0Kt et rii — 2eGradysti rRET K ¢ e, (A30)
GTele,100eJ10 = €GTete, 11064 D ¢/t 1P 5car + éGpere, 110 €an ™ AP G ¢ Set i
—eGTele,1,00” ¢ h:a (EMJCDtICD + EIJCDt”iD)fseeAu : (A31)

Here, we have used the identity t"V® = —t** — t*/# and also Eg. (A1) to replace 6. Ep” = —EB“EA"éeeA,L. Thus,
by replacing (A23)—(A30) into (A17) one can rewrite the wariations as

; o J 1K IuK i
e Lrele = €GTele 70T + € {GTele,Xﬁb ¥ — Grdenguts— 2GTee,1, 0" 070" + Grele, 1, V1t k" ¢ — 2GTele, 3,6 1ok ®
I K 5L s M IJp 5K J i1 CD
+2Grete, 16t 1t p” O P — 2Gradugtiaxt M P — Grele,1,0a” @ (€uJC'DtI

+61J0Dt“CD>} p.a0e? , + eMESear + eN'S.vr + O™ E S5tk (A32)

where we have defined the following quantities

N
M" = 2Grere ., 0”4 2Geie, {6 ¢ ay + Grere gioea’ cpd o7t ;7 (A33)
N = 2G1ae1,.. v 1Greldn, ¢ 4 2Gele, 1,0 ¢/ 05 + Grele 1,65 ¢t 1y, (A34)
OME = Grrete. 3,6 ¢F0L + 2G1ele, 1, 05 0t LK + 2Grete 3,07 0K 0L Mt Las + 2Gpete 5,0 65t
+Grete,1 B E S4B o (A35)

Now by using Eqgs. (A18)-(A20), one gets

H 3 I ;K

€6eLrele = eGrole, 701 + € [GTele,X¢ " — Grele, 1, 0" — 2GTele,3, 0" 070" + Gele,3, Vit K" ¢
InK ) I K 5L M 1J K

—2GTele, gt " 1y d + 2Grele, 3o tinkt v @ @O — 2Gele, 5 trakt D

. 8a1 6‘a1
*GTele,Jlo aJQbJ (€/LJCDtICD + 6IJC‘DtMCD>] ¢;A56A,u + |:6MI aeA - al/ <€MI 8€A )] 56A/L
W 8%

Our s atl.]K 8tUK
I — 1 A 1K OUJK 1K OULJK A
+leN 66‘4“ 81/ <€N 36’4“,11)}56 m + |:€O 86’4” 81/ (60 86‘4“,”)}66 wo (A36)
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which can be written explicitly using the identities (A4)—(A16), yielding
edeLrele = [— 46{(8)\GTele,T)SA Mt ey (eSa M) Grete,r — Grele 7T AaSs M + GTele,TwBAuSB””}
+e ¢;A{GTele,X¢;'u — Grele 1,V — 2GTele 3,0 a1 + Grrete, 3,01t " ¢ — 2Gpete 3, ' Kt s
+2Grete g6t it mt 5 G GM — 2G e 3ot 1yt O — Grete s 00”7 ¢ (euJC’DtICD + 61JCD75“CD>}
+%{er(e,BCDED%BAC — 1P BT ap) — 8, (eMe1A“PEc” Ep”) }
FeNT (Ep'wP o, — wh ag — TP a7 — vaE[") — 0, (eNI(EA”EI“ - EA”EIV))

+€OIJKH]JKAH — 81, <GOIJKL[JKAMV>:| (56‘4# s (A37)

where we have used (A22), and Hrjxa* and Lyjxa™ were defined in Eqs. (A12) and (A16), respectively. The above
equation is the contribution coming from the Teleparallel term Lrele.

b. Variations of L; (i =2,..,5)
~

The Lagrangians £; (i = 2,..,5) are exactly the same as the standard Horndeski gravity theory, therefore, it is
not necessary to compute the variations of the field equations again. The variationsfor these terms were computed
in [51] but in terms of the metric. It is easy to modify them by using the identity (A1)-(A3), i.e., by replacing
598 = —(g"PEA® + g"*E4P)des”. In other words, Egs. (11.a)—(13.:d)pin [51] are explicitly the field equations for
these terms. To convert these terms into our tetrad notation, wedieed to take Z?:z gff) in [51] and convert it to

-2 Z?:z G 4#. The factor —2 comes from the fact that the variations with.respect to the tetrad give rise two minus
terms when one is changing into metric variations (6g®? = —(§FPE4® + g"®E4#)de4"). Thus, the variations that
appears in (30) will be equal to

5 5 5 v 5
e LiEa"det, +ede > Li=—-2eY G Mo, = —2eE,"g" Y G, 8¢, (A38)
=2 =2

=2 =2

where G, were explicitly found in Egs. (13a)—(13d) in [52].

3. Variations,with respect to the scalar field

For the Teleparallel Horndeski Lagrangian, one can expand its variations with respect to the scalar field as

dg(eLrele) = €Gele,0pP A€Gmete, x 03 X + €Gele. 1,012 + €GTele,5,04J1 + €Gele, 150073
+eGrele,15 065 + €GTelg 75063 + €GTele, 1400 6 + €Gele, 3100010 - (A39)

All the other invariants do not depénd on the scalar field, hence, their variations are identically zero. The first five
terms can be straightforwardly computed, yielding

6GTele,¢5¢¢ \ eGTele,(bé(ba
1
G X09%= — > eGrruie X0 [gﬂ"(am)(aﬂz;)} =0, [eGTele,Xg””(ayfb)} 56, A4l

(A40)
(A4l1)
eGele,1, 0= €Grele 1,006 (V" 0,0) = —0,(eGrele,1,0")00 (A42)
eGTele,Jl%Jl = eGTeleleéd)(a“a”@#&,@ = —28H(6GTele’J1a“a”8U¢)5¢, (A43)

where we have integrated by parts. The next three terms in (A39) become
eG(Tele,Jg, 6(15J3 4 eGTele,Jg 5(15 [Uatalw (au¢) (8u¢):| = aﬂ [eGTele,ngat'uya (8u¢)] 5¢a

(
eGrdle, 15065 = €GTele, 5506 [tuyatu)\a(augb)(a)\(b)} = —20, {eGTele,J5tﬁyatﬁua(au¢)i|5¢7 (A45)

(

(

A40

Ad44)

eGTéic, 1500 8= €GTele,1500 {t“ Yt (5'a¢)(5ﬁ¢)} = —20, {GGTclc,JgtW” ta” (%é)}&ﬁ,

eGTele,J106¢J10 = eGTele,J105¢ [euupoaytapgﬁb;u(b;a} = _8” [eGTele,Jlo a” (aad)) (e,ul/potapa + €Oéupat'upg) 5¢7 A47)

A46)
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where we have used the identity t*¥¢ = —t**” — {*”# the symmetry property of the tensorial part of torsion t*** =

t¥#>and we have integrated by parts. The last term in (A39) is more involved but it also can be directly computed,
giving

€Greten1o09T5 = €Gitete, 1005 | 11,7 (04 8) (956) (0,0) (050)] (A48)
= 20, [Grtute, 1”17, (04 8) (950) (9,0) | 56 (A49)
where again we have used the identities t#¥* = —t** — t*F and tH*¥* = t¥I several times and we have ignored

boundary terms. Thus, by replacing all the variations given by (A43)—(A49) into (A39), we find the final expression
for the variation of the Teleparallel Lagrangian with respect to the scalar field which reads as follows

6¢(6£Tele) = —€ {%#(Jp—Tele) - P¢—Te1e:| 5¢a (A5O)
where we have defined

Ju—tete = —Grere x (Vu®) + Grelo 1oV + 2GTele, 1, 00" Vod — Grete 1300t n" UV, 6)
_2GTe1e,J5tﬁuatﬁMa(6u¢) + 2GTe1e,JgtaUutauﬁ(%B¢) - ZGTele,Jstuaﬂtyau(%aqb)(%BQS)(%GQS) )
~GTele1100" (Vad) ("1 pot ™7 + €, pat??7) - (A51)
Py—rele = GTele, 5 (A52)

to follow the same nomenclature as in standard Horndeski theory and we have also used that 0, (eA*) = e@MA”.

The variations of Z?:g L; with respect to the scalar field are the same asthe standard Horndeski equations. According
to [51], one notice that these terms can be written as

5 5 5
o5 (e D Li) = —e[ V(Do LD Pioo, (A53)
1=2 =2 =2
L
where J, and P} are defined in (36)-(37) .
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