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Abstract: Efficient and rapid data collection techniques are necessary to obtain transitory information
in the aftermath of natural hazards, which is not only useful for post-event management and
planning, but also for post-event structural damage assessment. Aerial imaging from unpiloted
(gender-neutral, but also known as unmanned) aerial systems (UASs) or drones permits highly detailed
site characterization, in particular in the aftermath of extreme events with minimal ground support,
to document current conditions of the region of interest. However, aerial imaging results in a massive
amount of data in the form of two-dimensional (2D) orthomosaic images and three-dimensional
(3D) point clouds. Both types of datasets require effective and efficient data processing workflows to
identify various damage states of structures. This manuscript aims to introduce two deep learning
models based on both 2D and 3D convolutional neural networks to process the orthomosaic images
and point clouds, for post windstorm classification. In detail, 2D convolutional neural networks
(2D CNN) are developed based on transfer learning from two well-known networks AlexNet and
VGGNet. In contrast, a 3D fully convolutional network (3DFCN) with skip connections was developed
and trained based on the available point cloud data. Within this study, the datasets were created based
on data from the aftermath of Hurricanes Harvey (Texas) and Maria (Puerto Rico). The developed
2DCNN and 3DFCN models were compared quantitatively based on the performance measures, and it
was observed that the 3DFCN was more robust in detecting the various classes. This demonstrates
the value and importance of 3D datasets, particularly the depth information, to distinguish between
instances that represent different damage states in structures.

Keywords: convolutional neural network; deep learning; transfer learning; point clouds; structural
damage assessment

1. Introduction

One of the emerging approaches for aerial image collection is to utilize the unpiloted (or unmanned)
aerial system (UAS), commonly known as a drone [1–3]. Following natural hazard events, the data
collection is often limited by time and site accessibility imposed by precarious structures, debris,
road closures, curfews, and other restrictions. However, UAS imagery enables first responders
and emergency managers to perform effective logistical planning, loss estimates, and infrastructure
assessment for insurance adjusters, engineers, and researchers [4]. UAS with an onboard camera
enables assessors to collect numerous images from large areas efficiently as well as to reconstruct
the three-dimensional (3D) scene via three steps, including Scale Invariant Feature Transform
(SIFT), Structure-from-Motion (SfM), and Multi-View Stereo (MVS). Here, SfM is generated using
two-dimensional (2D) aerial images [5]. The SfM derived point cloud has relative accuracy at the
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centimeter level [1]. The creation of a 3D SfM point cloud is a time-consuming process; however,
it enables a reconstruction of the depth information in the scene, which may improve various analyses.
Recently, deep learning techniques have become a more common approach to develop various computer
vision workflows. These techniques have been utilized to create workflows to investigate damage in the
aftermath of extreme events from aerial images, in particular for large areas and at the community scale.

The main objective of this manuscript is to study and compare three deep learning models
based on 2D aerial images and 3D SfM derived point clouds to detect damaged structures following
two hurricanes. In addition, the study investigates the application of transfer learning for the 2D
convolutional neural network (CNN) as a rapid post-event strategy to develop a model for damage
assessment of built-up areas with minimal to no prior data. The model created for damage assessment
using 2D images is developed based on transfer learning from two well-known image classification
networks, namely AlexNet and VGGNet [6]. During the training process, the pre-trained weights
of these models were further modified to match the user-defined classes. Moreover, a 3D fully
convolutional network (3D FCN) with skip connections is developed based on expanding the 3D
FCN model proposed by Mohammadi et al. [7]. While the goal of 2DCNN is to classify the aerial
images based on the most prominent object observed in the images, the 3D FCN with skip connections
semantically classifies the SfM derived point cloud. Both 2D and 3D models were trained on similar
datasets with identical numbers of classes and were compared based on precision, recall, and overall
accuracy. The comparison between 2D and 3D models is to demonstrate the entropy and value
associated with the depth-information that is present in the 3D datasets.

2. Literature Review

2.1. Studies Used 2D Images for Detection and Classification

The task of object detection or classification of a set of images has been investigated by various
studies using CNNs with different architectures. Among all proposed methods, transfer learning
has become one of the most popular techniques. Transfer learning corresponds to the process of
fine-tuning the upper layers of a pre-trained model based on a new dataset for a newly proposed
task(s) [8]. Models developed based on a transfer learning strategy demonstrated not only improved
performance in comparison to other models but also that such models could be developed more
efficiently. In an early study within the area of deep learning, Bengio discussed transfer learning
algorithms and their effectiveness in classifying new instances based on pre-trained models and
demonstrating the process through numerous examples of transfer learning [8]. One of the most
referenced studies was performed by Krizhevsky et al. [9]. The authors within this study developed a
CNN model through transfer learning from the subset of the ImageNet network [10]. Krizhevsky et al.
modified the fully connected layers to accommodate classifying the new labels [9]. The modified
network architecture contained eight layers to maximize the correct label under prediction distribution.
The authors reported that the validation of the results showed test error rates of 17% to 37.5% for the
used datasets. Another application of transfer learning was studied by Oquab et al. [11]. The authors
developed various CNN models for the task of visual recognition based on transfer learning from
the pertained ImagetNet model [10]. Within this study, the training images are mainly comprised of
centered objects with a clear background in the image, and authors reported that the model was able
to classify images with a high level of accuracy after an extended training process. Different CNN
performs distinctively as the network architecture varies. As a result, Shin et al. listed a few popular
image-based classification transfer learning networks, such as CifarNet, AlexNet, and GoogleNet [6].
These network performances were compared based on a set of medical images via transfer learning.
It was concluded that transfer learning has been consistently beneficial for classification experiments.

Various studies have investigated the application of CNN models for post-event assessments
using aerial images. For example, Hoskere et al. proposed post-earthquake inspections based on
UAS imagery and CNN models [12]. Within this study, the authors developed a fully convolutional
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network to semantically segment images into three classes of pixels. The developed model was
able to segment the images with an average accuracy of 91.1%. More recently, Xu et al. studied the
post-earthquake scene classification task using three deep learning methods. These methods included
a Single Shot MultiBox Detector (SSD), post-earthquake multiple scene recognition (PEMSR) based on
transfer learning from SSD, and Histogram of Oriented Gradient along with Support Vector Machine
(HOG+SVM) [13]. Within the proposed method, the aerial images were initially classified into six
classes, including landslide, houses, ruins, trees, clogged, and ponding. The dataset was created via
web-searched images of the 2014 MW 6.5 Ludian earthquake (China), which were later preprocessed and
degraded into 300 × 300 pixels and manually classified into the six classes aforementioned. The authors
reported that the PEMSR model demonstrated a higher efficiency of 0.4565 s comparing to HOG+SVM
of 8.3472 s as well as higher accuracy. In their work, the transfer learning strategy also improved the
overall accuracy and performance, although the average processing time was slightly higher than
the SSD method. Moreover, in addition to the effect of transfer learning in the increasing accuracy
and performance of 2D CNN models, Simonyan and Zisserman pointed out the CNN performance
improvement can be achieved by increasing the network depth [14]. As a result, Gao and Masalam
developed a deep 2D CNN based on transfer learning from the VGGNet model for Structural Health
Monitoring (SHM) and rapid post-event damage detection [15]. The 2D image-based SHM used red,
green, blue (RGB) information based unsupervised training algorithms and was able to obtain 90%
accuracy for binary classification.

2.2. Studies Used 3D Point Clouds for Detection and Classification

With the rapid development of technologies to collect remotely sensed 3D point clouds and the
growing application of these data in various fields of civil engineering, many researchers have proposed
various methods to analyze 3D point clouds, in particular for routine inspections or post-event data
collection and analyses [16,17]. The datasets here are considered to be non-temporal, which is a single
post-event only dataset that does not utilize change detection from a baseline (or pre-event) dataset.
For example, Axia et al. proposed a workflow to classify an aerial 3D point cloud into damaged and
undamaged classes [18]. Within the proposed workflow, Axia et al. estimated a normal vector for each
point within the point cloud data as the key damage sensitive feature and identified the variation of
these normal vectors with respect to a global reference vector. Lastly, the study used a region growing
approach based on the variation of normal vectors to classify the point cloud. Axia et al. reported
that while the proposed method can classify the collapsed structures, the developed method may
misclassify the partially damaged structures.

In general, one of the main steps in point cloud analysis workflows is to classify the points into a
set of predefined classes. As a result, multiple workflows have been introduced to classify point clouds
through machine learning and more recently deep learning techniques. Hackel et al. introduced one of
the most successful workflows to classify dense point clouds of urban areas into multiple classes [19].
These classes include building façades, ground, cars, motorcycles, traffic signals, and pedestrians.
Within this study, authors extract a series of features for each point based on various neighboring sizes
using eigendecomposition, the height of points, and first and second statistical moments and used
random forest learning algorithm to classify each point. The proposed method results in the main
overall accuracy of 95%. More recently, Xing et al. used the Hackel et al. workflow as a basis and
developed a more robust workflow by adding a series of features computed based on the difference
of normal vectors for better identification [19,20]. Their study demonstrated a 2% improvement
on average.

Recently deep learning method applications become more widespread to analyze 3D datasets in
science and engineering fields. Various deep learning-based workflows have been developed to classify
the 3D point cloud datasets. The main advantage of deep learning-based learning algorithms over the
more traditional learning algorithms (e.g., artificial neural networks) is the capability of the algorithms
to learn the feature extractors from the input data directly. Therefore, deep learning algorithms,
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in particular CNN architectures, eliminate the need for engineering feature extractors based on the
geometry of the objects within the dataset and background. One of the early studies to investigate
the application of deep learning for 3D point cloud classification was performed by Prokhorov [21].
Prokhorov proposed a 3D network architecture similar to CNN to classify point cloud of various objects
by converting the point cloud data into 3D grid representations. The developed 3D CNN network had
one convolutional layer, one pooling layer, and two fully connected layers, which was followed by
a 2-class output layer. The weights or parameters within the convolutional layers were pre-trained
using lobe component analysis and were updated using the stochastic meta-descent method [22].
Following this study, Maturana and Scherer proposed a 3D CNN for object recognition similar to that of
Prokhorov [22,23]. The proposed 3D network had two tandem convolutional layers, one max-pooling
layer, and one fully connected layer, which was followed by the output layer. In contrast to the study
conducted by Prokhorov [22], Maturana and Scherer did not pre-train the developed network while
the network resulted in a performance on par or better than the network proposed by Prokhorov.
This highlights that the developed 3D CNN network was able to extract features during the training
process effectively.

Recently, Hackel et al. introduced a point cloud classification network based on 3D CNN
architecture. The proposed network accepts five occupancy grid models with different resolutions
for each instant as input and has five convolutional layers in parallel with an organization similar to
VGGNet, which followed by a series of fully connected and one output layers [14,24]. The authors
have reported a maximum overall accuracy of 88% and an intersection over the union value of 62%
for datasets collected from urban environments. This work classifies the scene into classes of natural
terrain, high vegetation, low vegetation, buildings, hardscape, vehicles, and human-made terrains.
More recently, Zhang et al. proposed a network to semantically segment point clouds based on a
model that consists of three distinct networks [25]. The first network encodes the point cloud into
2D instances. The second network consists of a series of fully connected and max-pooling layers,
which are followed by convolutional layers. Finally, the third and last network goal converts the 2D
encoded data into 3D grid models, which semantically classify the voxels in the grid and creates a
bounding box for each detection object. The authors reported that the experimental results demonstrate
an overall improvement in accuracy of 10% in comparison to the network developed by Maturana
and Scherer [25].

2.3. Knowledge Gap

Previous studies have explored the application of CNNs in post-natural hazard event assessment
using aerial images. Both deep learning-based methods and unsupervised learning were implemented
for 2D and 3D datasets, while the difference between 2D and 3D datasets in deep learning has yet to
be fully understood by quantitative comparisons. As reviewed, the majority of studies developed to
analyze the 3D point clouds for post-event applications were created based on traditional methods.
In contrast, the applications of deep learning models developed based on transfer learning for 2D aerial
images was investigated in various studies. However, due to the lack of depth information, limitations
of the damage and structural component recognition still exist. As a result, this study investigates
the application of deep learning-based models using 2D images and 3D SfM derived point clouds
corresponding to the same post-event scenes.

3. Datasets

3.1. Introduction to Hurricane Harvey and Maria

Within this study, three othomosiac image and point cloud datasets were collected in the aftermath
of Hurricanes Harvey and Maria. Hurricane Harvey made landfall on 25 August 2017 on the coastline
of Texas. Hurricane Harvey was a Category 4 hurricane and produced wind gusts over 215 km/h,
and storm surges as high as 3.6 m. This incident resulted in the destruction of more than 15,000 partial
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damage, 25,000 residential and industrial structures, as well as other critical infrastructure in coastal
communities, including the towns of Rockport and Port Aransas [26]. Hurricane Maria made landfall
on 19 September of 2017 in Puerto Rico. Hurricane Maria was classified as Category 5 hurricane and
produced wind guests over 280 km/h, and storm surges as high as 2.3 m, which makes it the most
severe natural hazard event recorded in history to affect Puerto Rico and other Islands in the region [27].
As a result of this extreme event, the power grid of Puerto Rico was significantly damaged, a major
dam for the Guajataca reservoir sustained critical structural damage, and more than 60,000 buildings
were damaged [28].

3.2. Data Collection Method

To carry out the data collection task of the selected areas, a medium-size drone with an onboard
camera was deployed. A DJI Phantom 4 UAS collected high-resolution aerial images with an
onboard camera. The selected flight paths were fully controlled autonomously with the Pix4dcapture
application on a handheld tablet. The data collection in Puerto Rico produced 4077 images in 7 flights,
which covered approximately 1.75 km2 area with a 53.5 m elevation change. The Texas Salt Lake
dataset contained 1379 images in 2 flights with 0.75 km2 area coverage with an elevation range of 9.3 m.
The Texas Port Aransas site had 1424 images collected from four flights, with a 0.88 km2 area coverage
with an elevation range of 1.9 m. The collected images were further processed using SfM workflow,
which used a series of two-dimensional images with sufficient overlap to generate 3D point cloud and
further processed orthomosaic datasets of the surveyed area [1]. The SfM derived point clouds for the
two sites are shown in Figures 1–3. Other key characteristics of these datasets are presented in Table 1.
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Table 1. Summary characteristics of the datasets.

Dataset
Characteristics

GSD (cm) Orthomosaic
Dimensions (pixels)

Point Cloud Number
of Vertices (count)

Puerto Rico 1.09 29,332 × 39,482 393,764,295
Texas—Salt Lake 2.73 61,395 × 61,937 78,830,950

Texas—Port Aransas 2.69 96,216 × 84,611 131,902,480
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3.3. Dataset Classes

Within this study, each dataset was segmented manually into one of the following seven classes:
Undamaged structures, partially damaged structures, completely damaged structures, debris, roadways,
terrain, and vehicles. An earlier study by Mohammadi et al. informs the classification used here [7].
However, the scope of damaged structures is expanded where the instances are modified into two
damaged structure classes based on the level of damage sustained during the event, which relates to
the degree of damage sustained. A structure that sustained partial damage includes any building that
does not represent any physical changes while the roof of the structure is covered by tarps, which are
typically blue or red. Completely damaged structures are buildings that underwent physical changes
due to the event, such as roof damage without tarp coverings with visible structural components such
as beams, columns, or walls. If a structure is collapsed such that no structural component can be
identified, the structure is classified as debris. The class of debris consists of everything that is not
in its native state. Debris, in general, is comprised of rooftop shingles, fallen trees, downed utility
or light poles, and other wind-blown objects. Terrain incorporates any region that is comprised of
grass, low-height vegetation, water, sand, trees, exposed soil, fences, or utility poles. Note that any
nonbuilding structural objects that are represented by a cylindrical shape (e.g., utility and light poles)
are considered as terrain [29]. Lastly, the vehicle class corresponds to objects used for the transportation
of people or goods. This includes cars, SUVs, trucks, carts, recreational vehicles, trailers, construction
vehicles (e.g., excavators), or any water-borne vessels that can be propelled on water by oar, sail,
or engine. Figures 4 and 5 demonstrate the example of each class point cloud and its corresponding
images. Lastly, Tables 2 and 3 illustrate the number of point cloud and image instances that were
manually identified from the datasets, respectively.
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Figure 5. Examples of instances existed from all datasets: (a,b) vehicles, (c,d) terrain, (e,f) debris field,
and (g,h) completely damaged structure.

Table 2. Summary of point cloud instances for Salt Lake, Puerto Rico, and Port Aransas.

Instance
Number of Instances

Texas-Salt Lake Puerto Rico Texas-Port Aransas

Terrain 719 224 665
Undamaged Structure 307 97 355

Debris 404 764 257
Partially Damaged Structure 99 76 115

Completely Damaged Structure 146 364 76
Vehicle 256 198 224

Roadway 57 166 87
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Table 3. Summary of image instances for Salt Lake, Puerto Rico, and Port Aransas.

Instance
Number of Instances

Texas-Salt Lake Puerto Rico Texas-Port Aransas

Terrain 1972 5238 3288
Undamaged Structure 138 610 688

Debris 296 247 71
Partially Damaged Structure 236 223 485

Completely Damaged Structure 152 74 33
Vehicle 67 160 53

Roadway 246 864 904

4. Methodology

4.1. Dataset Preparation for 2D Images

The process of creating image instances was started by creating an orthomosaic image of the entire
scene. This was done using Pix4Dmapper. Afterward, the orthomosaic image was segmented into a
series of to 256 × 256 images. As a result, approximately a total of 18,000 images were created from the
Puerto Rico dataset, the Salt Lake dataset resulted in a total of 60,000 images, and Port Aransas dataset
was divided into 120,000 segmented images. The next step within the preparation image instances was
to assign a label to each 256 × 256 image based on the seven classes mentioned in Section 3. Within
this study, the image classes are determined by the most prominent object that is visible in the image.
Moreover, the Salt Lake and Puerto Rico datasets were used for model development, and the Port
Aransas dataset was used to test and validate the developed models.

4.2. 2D Convolutional Neural Network Architecture

Pre-trained CNNs have advantages due to their relative stability during the training process,
efficiency, and higher performance over various diverse tasks. Among the various networks available
to select for transfer learning, AlexNet and VGGNet were selected as a basis to develop the 2D CNN
models in MATLAB 2020a. These two networks were pre-trained by millions of images for more than
1000 classes. These selected networks for transfer learning, on the other hand, represented different
architectures. AlexNet model was developed in 2012 and was the first CNN model to perform well on
the ImageNet database, and it still performed consistently well on diverse datasets [9,30]. This network
contained five layers, including convolutional and max-pooling layers, and two fully connected layers,
as illustrated in Figure 6. The developed model based on AlexNet had identical architecture to the
AlexNet network; however, within the fully-connected layers, the dropout regularization method was
applied to combat the overfitting while training [31]. The input images were also augmented through
rotation and reflection processes to reduce the generalization error of the models. The second CNN
model was developed based on transfer learning from VGGNet from 2014. The VGGNet model had
16 convolutional and max-pooling layers, which was followed by the fully connected layers, as shown
in Figure 7. These small filter sizes (i.e., 3 × 3 kernels) in VGGNet captured and learned the small
details of input instances while larger filter sizes of the network (i.e., 5 × 5) permitted the network to
extract features that corresponded to larger regions. Development of the networks based on transfer
learning permitted to modify the previously learned feature extractors of these networks according to
a new task using a smaller number of training images and epochs [30].
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During the training process of models developed based on the transfer learning strategy,
the 256 × 256 image instances were rescaled to 227 × 227 and 224 × 224 for AlexNet and VGGNet,
respectively. In addition, the batch size, which represents the number of images input into the network
at once, was set to 64 [15]. While the number of epochs was originally set as high as 2000, the training
was terminated when the computed losses reached a plateau to combat the overfitting. The learning rate
was set as 0.01 for both networks. Besides these parameters, the remaining hyperparameters were kept
identical to the original networks [32]. Note that the training images for both AlexNet and VGGNet are
identical in order to compare the results, and because of the augmentation process, approximately over
10,000 images within seven classes are used within the network training. The training performance
was evaluated by computing the losses and validation accuracy. Generally, the training of AlexNet
contained approximately 300 iterations, while VGGNet has a higher number of approximately
500 iterations. Both developed networks resulted in optimized accuracy for seven classes, which is
88.7% of AlexNet and 91.0% of VGGNet. Figure 8 shows the confusion matrices for the developed
networks, which demonstrates that both networks were able to detect the majority of class terrain with
high-level accuracy.

The evaluation of the results indicated that the model struggled to learn differences in some of
the original classes, particularly as related to structural damage assessment. Consequently, a selected
number of classes were merged to reduce the total number of classes from the original seven to specific
five and four classes. This was done to demonstrate if the model was able to distinguish between a
structural class in general, and an improvement was noted. However, none of the networks were able
to learn the other classes, including the partially damaged structure, completely damaged structure,
and debris, due to significant similarities between partially damaged and completely damaged
structures within the segmented orthoimages.
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4.3. Dataset Preparation for 3D Point Clouds

Raw and unstructured point clouds were typically incompatible with CNN architectures. This was
due to the issue that point clouds generally lack a grid structure, unlike images. Consequently, the raw
point cloud instances were converted into volumetric or occupancy gird models, which were 3D arrays.
Occupancy grid models provided a suitable data structure for point clouds that can be used within
robust CNN learning models. To convert the point clouds instances to occupancy grid models, a method
as proposed by Mohammadi et al. was used [7]. Within this study, initially, the point cloud instances
were created by slicing the labeled point cloud dataset into roughly 10 m × 10 m segments. Then,
the coordinates within each segment, which consisted of objects with various labels, were processed
to have only positive values and normalized [7]. Afterward, each segment was downsampled based
on the selected occupancy grid dimensions. Within this study, the occupancy grid model of 643 was
used as it results in a sampling of 10 to 16 cm for 10 m × 10 m segments, which was a sufficient
resolution to perform per building damage assessment in the aftermath of wind storm events [17].
Lastly, an extra-label corresponding to the empty cells within the 3D arrays was assigned to each
instance and denoted as neutral. This allowed the network not only to learn the label instances but
also to learn the geometry of the output based on the input instances as well since occlusion or gaps in
point clouds are common.

4.4. 3D Fully Convolutional Network Architecture with Skip Connections

The model developed to learn 3D point cloud instances was guided by the previous work of
Long et al. and, as discussed in Mohammadi et al. [7,33]. However, the authors reported that developed
3D FCN required a large number of training iterations to achieve an acceptable level of accuracy. As a
result, the 3D FCN architecture was modified within this study with skip connections, such that the
network can recover the most useful features during the training process at a faster rate [25,34]. The 3D
FCN was implemented in TensorFlow v1.15 within this study, and the developed 3D FCN model
had an overall general architecture similar to that presented in Mohammadi et al. [7]. In summary,
the network was comprised of an input layer that accepted three 3D arrays corresponding to red,
green, and blue channels. In addition, the network consisted of an encoding part and decoding parts.
The encoder was comprised of 6 3D convolutional layers. The decoding segment of the network
consisted of a total of 6 3D transpose convolutional layers. Note that the network did not use any
max-pooling layers. Lastly, the output layer was a single-occupancy grid model, each of which cells
represented the label of the input point cloud instance (Figure 9). Skip connections added the output
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of the convolutional layers within the encoder to the corresponding input of transpose convolutional
layers in the decoder. The skip connections conceptually helped the network to recover the fine details
in the prediction and reduce any gradient vanishing issues. Figure 9 illustrates the skip connections
by arrows.
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The developed 3D FCN with skip connections was optimized based on stochastic gradient descent,
and the cells that contained labels except neutral classes were waited by a factor of 2.0 while updating
the learnable parameters to increase boost training and reduce the convergence time. The model was
trained on instances from the Salt Lake and Puerto Rico datasets. To further improve the network
for generalization, the training instances were augmented by randomly rotating each instance two
times. This resulted in a total of 10,958 training instances. In addition, it was observed that network
convergence improved as the number of mini-batches increased from 64 to 256. Therefore, the model
was trained based on the minibatch size of 256. To evaluate the training process, three performance
measures were also calculated, including precision, recall, and cell accuracy in addition to loss, as shown
in equations below:

Recall =
Cii

Cii +
∑

j,i Ci j
(1)

Presicion =
Cii

Cii +
∑

j=i C ji
(2)

Cell accuracy =

∑
Cii∑

i
∑

j C ji
(3)

where Cii represents the diagonal of the confusion matrix, which also corresponds to true predictions,∑
j,i

Ci j denotes to the false negatives,
∑
j,i

C ji denotes the false positive predictions,
∑

Cii represents

the total count of true predictions, and
∑
i

∑
j

C ji represents the total count of all predictions. Table 4

demonstrates the result of these performance measures for the developed model during training
for a total of 2500 epochs, and Figure 10 shows the training losses, which was measured based
on mean squared error (MSE). Lastly, Figure 11 demonstrates the confusion matrix for the trained
model. The training results demonstrated that while the model had learned the geometry of the input
instances with a high level of accuracy, cell accuracy of 98.1%, it cannot distinguish the discrepancy
between partially damaged structures, completely damaged structures, debris, and vehicles. Lastly,
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the developed network with skip connections demonstrated massive improvement in comparison to
the 3D FCN model introduced by Mohammadi et al. as the network was able to achieve a similar level
of accuracy with almost 25% training iterations [7].

Table 4. Quantified performance measures for the training dataset.

Classes
3D FCN

Precision Recall

Neutral 100 100
Terrain 85 70

Undamaged Structure 15 37
Debris 31 33

Partially Damaged Structure 8 26
Completely Damaged Structure 14 8

Vehicle 4 4
Roadway 94 94
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5. Discussion

5.1. 2D CNN Experiment

The developed 2D CNN networks have demonstrated a significant difference between training
and testing performance measures. The network accuracy during training reached 88.7% and 91.0% for
AlexNet and VGGNet, respectively, while lower accuracy was demonstrated in testing. This could be
caused by the limitation of the 2D CNN classification based only on RGB information with the lack of
depth information. Moreover, this demonstrates that the network was not able to learn useful features
to distinguish between different classes. To further investigate this thought, the model developed
based on transfer learning form VGGNet was trained using five and four classes, where the classes
related to the structures were grouped together. As VGGNet demonstrates a better performance,
this model was selected as the network for a more detailed performance investigation. The combined
classes represent more general object classes than the original seven class instances. To reduce the
classes to five, the classes comprising of completely damaged and partially damaged were merged
to create the class named damaged. Similarly, to reduce the total number of classes to a total of four
classes, the classes completely damaged structures, partially damaged, and undamaged structures
were combined to create a general class of structures. Identical parameters and architecture were used
to train the new networks based on the reduced number of classes. It was observed that the training
has improved in terms of accuracy, which turned out to be 92.0% and 94.6% for the five and four classes,
respectively. Original confusion matrix of seven classes is shown in Figure 12. As for testing results,
confusion matrices of merged five and four classes are shown in Figures 13 and 14, respectively. In the
end, the VGGNet transfer learning using four classes has a significant improvement in both training
accuracy and testing performance as expected. However, this model is not ideal for the targeted
structural damage classification following natural hazards events. This is because the structural
classes were combined, and the VGGNet training (in all models) cannot reliably distinguish between
undamaged, partially damaged, and completely damaged structures. Instead, the general object
classification of structure, roadway, terrain, and vehicles was proved to perform well. The improved
performance when the classes combined demonstrate that depth information within 3D point clouds is
critical to classify damaged structures from undamaged structures automatically.Drones 2020, 4, x FOR PEER REVIEW 16 of 21 
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5.2. 3D FCN Experiment

Similar to the 2D CNN network, the 3D FCN model was developed and trained based on Salt Lake
and Puerto Rico instances and was tested on the Port Aransas instances. To create the testing dataset,
a procedure similar to that of creating the training dataset was followed; however, the testing instances
were not augmented. Figure 15 shows the confusion matrix for testing on the Port Aransas dataset,
and Table 5 provides the performance measures for each class.

The 3D FCN network prediction results on the test dataset demonstrated an overall similar
performance measure in comparison to resulted performance measures observed during the training
process. The overall cell accuracy of the network was 97.8%. The network was able to predict the class
of terrain instances with a high level of accuracy while this was unexpected as the general terrain
within the testing dataset in terms of texture and geometry differs in comparison to the training dataset.
This suggests that the model was able to learn features that can generalize well between datasets with
moderate to low similarities. A similar pattern in detecting the classes of partially damaged structures,
completely damaged structures, debris, and vehicles to that of training was observed. Authors expect
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that by performing extended training and using more learnable parameters, the network will learn
features to distinguish between these classes with a higher level of accuracy.
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Table 5. Quantified performance measures on the Port Aransas dataset.

Classes
3D FCN

Precision Recall

Neutral 100 100
Terrain 61 31

Undamaged Structure 12 28
Debris 3 40

Partially Damaged Structure 10 29
Completely Damaged Structure 1 4

Vehicle 1 2
Roadway 95 13

5.3. Comparison of 2D CNN and 3D FCN

The detection accuracies of the 2D CNN models were consistently lower than the performance
obtained based on the 3D FCN network, which is 91.0% for the 2D model and 97.8% for the 3D model.
Comparing the structural damage detection performance, 3D FCN demonstrated a superior advantage
over 2D models developed based on various class numbers. Keen advantages of 2D CNN and images
relate to the smaller number of learnable parameters and reduced data sizes in comparison to the 3D
FCN model. While 2D CNN performance improved from 92.0% to 94.6% in general object classification
such as structures, terrain, roadway, or vehicles. This basic detection was not adequate for damage
detection between structural classes like completely damaged, partially damaged, debris, and other
classes. These results demonstrate a significant classification limitation when it is solely based on
RGB information (which corresponds to 2D images) in comparison to RGB with depth information
(which corresponds to 3D point clouds). Consequently, 3D FCN performs with a marked improvement
in structural damage detection when comparing to 2D CNN.

6. Conclusions

Aerial image data collection provides an efficient technique to collect perishable data following
a natural hazard event. Both 2D orthomosaic images and the 3D point clouds can be obtained and
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processed for analyses and automated classification. This study compared post-event site damage
classification using 2D and 3D datasets following two separate hurricanes from 2017 using 2D CNN
and 3D FCN. The 2D CNN was conducted via transfer learning of two pre-trained networks: AlexNet
and VGGNet. The inputs to the 2D CNN networks are 2D segmented images for unsupervised training
and outputs the label for each image segment. The 3D FCN was conducted using aerial image-derived
point clouds. Within the FCN method, point clouds are semantically classified into various classes.
To keep the parameters consistent, both 2D CNN and 3D FCN have identical classes initially. To further
demonstrate the 2D CNN classification performance, a reduction and combination of the classes were
used for performance evaluation. The combination was aimed to eliminate the narrative of the classes
of damage detection, which combines the structural damage and undamaged classes together.

Within the reduced numbers of classes for 2D CNN training, the accuracy improved at the cost of
reducing and eliminating the classes corresponding to structural damage. The accuracy improvement
demonstrates the 2D deep learning classifications are ideal for general object detection such as terrain,
structures, vehicles, roadway, etc. However, they have a demonstrated limited learning capability
to predict distinct structural characteristics from undamaged, partially damaged, and completely
damaged as well as debris. However, this limitation was overcome when using a 3D point cloud
dataset in deep learning, which contains both RGB and depth information. The model developed
based on 2D data was only able to learn the dominant class (i.e., terrain) effectively. This results in
lower precision and accuracy for other classes for both training and testing phases. On the contrary,
the model developed based on 3D point clouds was able to learn other classes in addition to the
dominant class. Classification within damage detection is known to be a class imbalance scenario,
where the instances that represent damaged or debris are often the minority class that follows a random
and unique geometric and color patterns.

Comparing the training durations, 2D CNN requires a significantly shorter time from a few hours
to a day, while 3D FCN requires numerous days. The 2D CNN training accuracy achieved 88.7% and
91.0% for seven classes, and the highest accuracy was achieved by VGGNet training using four classes
of 94.6%, while 3D FCN training accuracy was as high as 97.8%. However, when it comes to testing
accuracy, the 2D CNN has significantly lower accuracy compared to 3D FCN. The accuracy decrease in
the 2D dataset is expected due to the lack of depth information. Classification on 2D images is RGB
based only, which can be influenced by the object surface reflection, sunlight, existence of shadows, etc.
Moreover, despite 3D dataset preparation and network development is more time consuming, higher
accuracy and reliability can be guaranteed. This is especially true when classifying the location and
severity of damage following natural hazard events.
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