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Abstract—Glaucoma is an ailment causing permanent vision loss but can be prevented 

through the early detection. Optic disc to cup ratio is one of the key factors for glaucoma 

diagnosis. But accurate segmentation of disc and cup is still a challenge. To mitigate this 

challenge, an effective system for optic disc and cup segmentation using deep learning 

architecture is presented in this paper. Modified Groundtruth is utilized to train the proposed 

model. It works as fused segmentation marking by multiple experts that helps in improving 

the performance of the system. Extensive computer simulations are conducted to test the 

efficiency of the proposed system. For the implementation three standard benchmark datasets 

such as DRISHTI-GS, DRIONS-DB and RIM-ONE v3 are used. The performance of the 

proposed system is validated against the state-of-the-art methods. Results indicate an average 

overlapping score of 96.62%, 96.15% and 98.42% respectively for optic disc segmentation 

and an average overlapping score of 94.41% is achieved on DRISHTI-GS which is 

significant for optic cup segmentation. 

 

Keywords- Glaucoma, Fundus Image, Convolution Filters, Overfitting, Optic Disc, Optic 

Cup. 

 

1. Introduction 

Glaucoma is an ailment which causes vision loss over time and hence is referred to as 

"silent thief of sight" [1]. The seriousness of the ailment can be estimated from the prediction 

that the population affected from glaucoma may increase from 76 million in 2020 to 111.8 

million in 2040 [2]. Therefore, people between 40 to 64 years of age are advised to get their 

eye checkup done once in 2 to 4 years, by American Academy of Ophthalmology [3]. 
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However, such a mass screening might raise the chances of human error. Also, the scarcity of 

ophthalmologists is a major issue. Hence, Computer-Aided Diagnostic (CAD) systems can 

help to reduce the errors and may assist the healthcare experts in an impartial screening of 

patients [4]. Glaucoma is recognized by changes in the shape and size of the optic disk and 

cup. It tends to change the Cup to Disk Ratio (CDR) [5]. The CDR can be calculated by 

taking the ratio of the vertical length of the optic cup and optic disc [6].  

Presently, several imaging techniques are used such as Confocal Scanning Laser 

Ophthalmoscopy (CSLO), Optical Coherence Tomography (OCT) [7], Scanning Laser 

Polarimetry (SLP) etc. but the more economical and portable approach is to acquire fundus 

images using a fundus camera [8].  An add-on advantage of using fundus camera is that 

images captured from the camera can also be used to detect some other eye diseases such as 

age-related macular degeneration (AMD) and diabetic retinopathy (DR) [9-11]. 

Accurate segmentation of Optic disc and Optic cup is important to obtain the precise Cup-

to-Disc Ratio (CDR), which is an essential step for Glaucoma classification, analysis and 

grading. But the Segmentation boundaries/contours of optic disc and optic cup, usually 

marked by multiple medical experts, differ by a small amount in every case. An average of 

these marked boundaries (binary masks) are normally treated as ground truth and are used to 

train the model.  

In particular, the merits and key contributions of the proposed system are highlighted as 

follows:  

• We present a novel method of training the network with modified ground-truths and build 

a model, where the boundary pixels have been assigned probabilities instead of binary 

values of either 1 or 0.  

• We used a modified segmentation measure for accuracy and in representing the 

subsequent loss function. The intersection/union of two binary maps is now transformed 

into multiplication of two probability masks, which make more sense. 

• We show the utility of transfer learning, where in the model is trained exclusively on 

glaucoma image datasets before being evaluated for test performance. This makes the 

architecture robust and suitable for real-time applications. Also, this approach eliminates 

the overheads of designing customized features for the segmentation problem.  

• Extensive simulations are conducted to demonstrate the performance of the proposed 

system.  

 



A broader paper outline is given as follows: Section 2 presents the previous work; Section 

3 explains the model architecture that have been utilized in the segmentation work; Section 4 

discusses the methodology; Section 5 presents results and analysis; and finally, conclusions 

are drawn in Section 6.  

2. Related work 

Numerous methods have been successfully implemented in the past for purpose of 

automatic diagnosis of the disease [4].There exists various factors such as blood vessels 

present in the fundus image, affect the classification accuracy of glaucoma present in the eye 

[47][48].Chakravarty et al. [12] performed co-training on SVM classifier on image-based and 

segmentation-based features for the classification of fundus images. In order to find the 

segmentation-based features, they segmented the optic disc (OD) and optic cup (OC) using 

coupled sparse dictionary for depth-based segmentation technique. Yanwu-Xu et al. [39] 

utilized multiple kernel learning framework through the incorporation of class for glaucoma 

detection. Bock et al. [13] calculated Glaucoma Risk Index (GRI) from the pre-processed 

image with the use of the probabilistic two-stage scheme. Agarwal et al. [42] implemented 

classic morphological operations iteratively followed by active contour fitting for the precise 

segmentation of the optic disc. Issac et al. [43] utilized the concept of super pixels for the 

removal of false positives followed by the analysis of geometrical features to accurately 

segment out the optic disc. Raghavendra et al. [14] calculated features using radon transform 

technique and modified census transform technique to train the SVM classifier, and achieved 

state of the art results. Feature reduction was done using Locality Sensitive Discriminant 

Analysis (LSDA). 

Literature revealed that high precision results have been achieved on highly challenging 

datasets using the emerging technique of Convolutional Neural Networks (CNNs) [15]. The 

depth of these networks is the key factor of its performance hence the effective selection of 

network depth is task specific [16]. Not only for the classification purpose but also state of 

the art results have been obtained in the segmentation-oriented tasks, using deep neural 

networks [52] [62]. Jonathan et al. [17] have achieved state-of-the-art segmentation of 

PASCAL VOC, NYUDv2 and SIFT Flow, using the learned representations of contemporary 

classification networks which were transferred after fine-tuning. This highlights the scope in 

transferring of weights from one problem to another, popularly known as transfer learning. 

Jason et al. [18] highlight the characteristics attained by the model depending on the layer 

from which weights are being transferred. They discuss the frozen and non-frozen weights 



and tried to quantify the generality of the layers. Along with such a wide range of 

applications, DCNNs is also a very popular approach to computer-aided diagnosis (CAD) of 

the medical path. Shin et al. [19] discussed the application of deep learning for the detection 

of thoraco-abdominal lymph node detection and interstitial lung disease, along with under-

discussed characteristics of the model including model architecture, dataset characteristics, 

and transfer learning. 

With regards to glaucoma analysis, deep convolutional neural networks have been 

recently used for both classification and segmentation purposes and few ensemble approaches 

have also been proposed. Fu.et al. [44] proposed Disc-aware Ensemble Network (DENet) for 

automatic glaucoma screening from fundus image. DENet works consists four deep streams 

on different levels and modules of fundus image. In these four deep streams, first focus on the 

classification of fundus image, second detects the disc localization, third works on disc region 

level and fourth focus on disc region with polar transformation to improve screening 

performance. The combined streams produce screening performance.  Phasuk et al. [45] 

proposed a glaucoma screening network by utilizing DENet, incorporating Residual 

deconvolutional neural network for segmentation and artificial neural network for 

classification network. This approach claimed better accuracy against on DENet ORIGA-650, 

RIM-ONE and DRISHTI-GS dataset.  Bajwa et al. [46] proposed a two-stage framework for 

classification of glaucoma from fundus images. First stage uses regions with convolutional 

neural network for localization and second stage uses CNN for classification of glaucoma. 

Pinto et al. [54] performed assessment of glaucoma on different ImageNet-trained CNN: 

VGG16, VGG19, InceptionV3, ResNet50 and the performance of Xception architecture was 

found better compared to other architectures. 

Deep Convolutional Neural Networks (DCNNs) have also been a choice for researchers 

for the glaucoma segmentation tasks previously. Kausu et al. [20] calculated morphological 

and wavelet features followed by training them on a three-layered artificial neural network, 

and successfully outperformed state of the art results. Srivastava et al. [21] defined a seven-

layered model for the optic disc segmentation in the presence of Parapapillary Atrophy (PPA) 

and attained state of the art results. An approach of two-folded CNN is given in [22], where 

they first segmented the OD and then fed that segmented image to the model for 

classification purpose. Zilly et al. [23] proposed a unique method of CNN with entropy 

sampling and ensemble learning, and successfully achieved a classification accuracy of 

94.1% on RIM-ONE dataset. Lim et al. [24] calculated state-of-art vertical cup to disc error, 

after the successful segmentation of OD and OC along different orientations. Maninis et al. 



[36] have implemented a base network architecture with two sets of specialized layers for the 

segmentation of blood vessels and optic disc. Huazhu et al. [41] have proposed a new 

network named as M-net architecture for the segmentation of OD and OC, and have 

successfully attained state-of-the-art results on ORIGA dataset. They also have proposed 

reasonable glaucoma screening in terms of CDR. JIANG et al. [55] proposed a multi-label 

DCNN model by utilizing GAN, the better performance of this model is claimed on 

DRISHTI-GS1 dataset.  

U-net architecture is one of the most popular architectures and has performed 

extraordinarily in various biomedical segmentation-based tasks [25][61]. It also resolves the 

problem of the limited number of annotated images. Ronneberger et al. [26] performed 

segmentation task on three different classes of dental images to achieve dice similarity of 

56.4% on a dataset of 39 images provided by the challenge organizers. The number of 

training images available was only 39, but training was done using data augmentation. Gao et 

al. [27] utilized U-net architecture along Gaussian matched filter to outperform the existing 

algorithms of blood vessel segmentation from fundus images. Work proposed in [28] consists 

of applying a customized loss function on U-net architecture for the purpose of segmentation 

of OD and OC. They tried to reduce the number of training parameters so as to reduce the 

computational time and attained state-of-art results. Almost all the papers that we have come 

across for optic disc or cup segmentation have taken the averaged ground truth labels for the 

training phase. A better way is perhaps to take all the images with different expert markings 

to train the data but that is not made available in public datasets. So, there lies an opportunity 

to build a model which is trained on modified ground truths instead of binarized ones. 

3. Model Architecture: U-Net 

Convolutional neural networks are basically mathematical models, which are capable of 

learning high-level features from the low-level ones [29-30]. The traditional use of CNNs was 

for the classification tasks, but various computer vision tasks are segmentation based. Ciresan 

et al. [31] trained a network on the patches of the image, predicting the class of each pixel. But 

as visible, the network is too slow and almost impossible to run on huge datasets, as the 

training dataset is many times larger than the actual dataset. This is where encoder-decoder 

networks come into the picture. They allow feed an image as a whole and result is the 

segmented output of the image. 

The model proposed in this work is based on the U-net architecture. The name of the 

architecture is derived from its unique design. It is an encoder-decoder type network which 



takes the image as an input along with its ground truth and returns the probability map of the 

ROI as the output. In the network, the feature maps from the convolutional layer of 

downsampling steps are fed to the convolutional layers of the upsampling part. The U-Net 

architecture was considered in our experiments because it has proven to achieve outstanding 

results in the applications of biomedical segmentation tasks [25]. Also, with the help of data 

augmentation, it has proved to achieve good results even in the absence of a huge dataset. 

Moreover, the absence of a fully connected layer eliminates the restrictions on the size of the 

input image. This fact permits the user to process images of different sizes, which is definitely 

an appealing trait to apply the technique of deep learning on the biomedical images with high 

precision. The block diagram of the model proposed is depicted in Fig. 1. 

 

 

Fig.1 Proposed Model Architecture. 

Unlike the original U-Net architecture, the proposed network has half the filters in each 

convolution layer and size of the input image is kept low (128×128).This is done in order to 

reduce the  number of parameters to be trained and to reduce the  time during the training 

phase. However, experiments have also been performed for an image size of 256×256 and 

512×512. Total numbers of trainable parameters in the model are 7,760,097. Details about the 

number of layers and feature maps are mentioned in the following subsections. 

 

 



3.1 Convolutional Filters 

They form the crux of any deep learning model and can be considered as a cube. Each cell of 

this cubic filter comprises of some weights which get multiplied to the intensities of the image. 

The sum of the bias and product terms obtained replaces the value of the center pixel. This 

model consists 19 convolution layers. Number of filters in each layer varies according to its 

position in the model and ranges from 32 filters to 512 filters. All the layers except the last one 

is using relu activation with padding feature kept on. 

3.2 Pooling Layer or Downsampling Layer 

Pooling layers are generally applied to reduce the redundant features and reduce the image 

size. Hence, they are also known as downsampling layers. Here we have used max-pooling 

layers for the purpose. The model is formed with 4 downsampling layers each with a window 

size of (2,2). 

3.3 Upsampling Layer and De-convolutional Layers 

Upsampling layers as the name suggests, are the exact opposite to the pooling layers. An 

upsampling filter is also a window but this time, one pixel on the input image is copied to all 

the pixels lying under that window in the output image. Hence a basic window size of 2×2 will 

result in an image size of 2N×2N×d. This layer is used to increase the image size and number 

of features. Also, it is the most important part of the decoder network. Our model is embedded 

with de-convolutional layers which are only a bit different. They in place of copying the exact 

same value, multiply them with certain weights and hence have trainable filters. 4 such layers 

are present in the proposed model with filter size (2, 2) and number of filters varies as shown 

in Fig.1. 

4. Methodology 

4.1 Preprocessing of Fundus Images 

Prior to the segmentation of optic disc and cup, preprocessing is performed in two stages. 

During the optic disk segmentation phase, contrast of the images was adjusted, using Contrast 

Limited Adaptive Histogram Equalization (CLAHE) as one of the preprocessing steps.  The 

images were resized to 128×128 pixels and rescaled such that the pixel values are between 0 

and 1. Image data is then normalized by mean centering and standard deviation scaling. For 

the optic cup segmentation phase, the fundus image is cropped to the bounding box of the 



optic disc obtained as the result of stage 1. As the optic cup is always located inside the optic 

disc [28], these subimages were used for training the model for optic cup segmentation. A 

sample image before and after preprocessing of optic disc segmentation step is shown in Fig. 2 

while Fig.3 depicts the complete fundus image and the cropped optic disc region, suitable for 

the segmentation of optic cup. 

 

Fig.2 Pre-processing (a) Original Fundus Image (b) Pre-processed Image. 

 

 

Fig.3 (a) Original Fundus Image (b) Window cropped for OC segmentation. 

4.2 Dataset Description 

Public datasets like DRISHTI-GS1 [33, 34] provided ground truths for optic disc and 

optic cup segmentation of fundus images while RIM-ONE [32] and DRIONS-DB [35] cater 

only to OD segmentation. DRISHTI-GS1 dataset consists of a total of 101 images. These 

have been divided into 50 training and 51 testing images. All the images have been marked 

by 4 opthalmologists. The markings by all the four medical experts have been fused to form a 

soft segmentation map. Rim-one has 169 images (majority of them normal) with 5 manual 

boundary markings for each one. There were 5 glaucoma domain experts (4 ophthalmologists 

and 1 optometrist) who developed manual optic disc segmentation in each image. These 

manual segmentations were subsequently used for establishing the gold standard.   Drions-db 

has 110 images with 2 manual markings for each image. For each image, the gold standard 

was defined from a contour that was the result of averaging two contours, each of them traced 

by an expert.  Optic disc and cup segmentation are both important parts of ONH 

segmentation and together they form a base for glaucoma assessment. 

 



4.3 Modification of Ground-Truth 

Optic disc and cup boundaries do not have a steep slope. Instead, the pixel intensities taper 

off linearly as one moves radially away from the centre of the Optic nerve head (ONH) region. 

As a result, datasets consist of boundaries marked by more than one expert and this is due to 

the uncertainty about the exact boundary of optic disc and cup as shown in Fig 4. It depicts 

two such images where boundaries were marked by five different experts (Fig 4 a) and by four 

different experts as shown in figure 4 b.  

 

          (a)         (b) 

Fig.4:  Sample fundus images marked with OD boundaries by multiple experts. [32] [33] 

There is no one precise boundary but the disc and cup tend to fade over the range of a few 

pixels. This can be clearly seen in the surface plot of a sample image, which is shown in Fig.5. 

The ground truths are formed from averaging these multiple markings and then binarizing the 

resulting image. In this proposed work, this uncertainty is addressed, and the ground truths 

have been modified as probability masks instead of binary masks and then are used to train the 

network. 

 

                                          (a)                      (b) 

          Fig.5: (a) Sample fundus gray scale image (b) 3D surface plot 

The provided ground truths are modified in a manner such that, a boundary pixel is 

assigned a probability instead of a binary value. For this purpose, the circumcircle of the 

multiple markings is found out and pixels ranging from 0.9R to 1.1R (where ‘R’ is the radius 

of the circum circle) are assigned certain probabilities. ‘r’ is the radius of the incircle. The 



circumcircle and the ring created from the circle is illustrated in Fig.6. It is assumed that all 

the pixels that are equidistant from the optic disc centre, lie on the circumference of a circle 

of a specific radius having similar intensity values. The probabilities assigned are such that 

the value linearly decreases from 0.9R to 1.1R in small steps and varies in the range of (1,0).  

 

 

 

  

 

 

 

 

(a)                                                               (b) 

Fig.6: (a) Ring of Uncertainty around the optic disc boundary (b) Graphical representation of GTmod. 

      The modification of the ground truth (for multiple markings) can be understood through 

Algorithm-1. 

Algorithm-1: Modification of Ground Truth 

1) Let GTi be the ground truth marked by ith eye expert, having value either 0 or 1. 

2) Then    GT = ceil( 
ΣGTi

2
 )      (1)  

Where ceil ( ) rounds off the value to the nearest upper integer; which in this case will 

always be 1. 

3) Then circumcircle of GT is constructed with (x, y) as the center of the circle and R as the 

radius. 

4) Assume (xg, yg) be the coordinates of any pixel of the modified ground truth, GTmod. Then 

calculate distance, ‘d’ as: 

                      d = √(xg − x)2 +  (yg − y)2                             (2) 

5) The pixel intensities of GTmod are given as: 

GTmod =

{
1;                            d < 0.9

[1 − (n) ∗ 0.1];                   0.9 + (n − 1) ∗ 0.02 ≤ d < 0.9 + (n) ∗ 0.02
0;                           d ≥ 1.1

                         (3) 

where n = 1,2…,9 



In order to avoid confusion, the modified ground truth will be referred to as GTmod and actual 

ground truth as GT. The average ground truth GT and the modified ground truth GTmod is 

depicted in Fig. 7. 

 

Fig. 7 (a) Average Ground Truth, GT (b) Modified Ground Truth, GTmod. 

4.4 Convolution Feature Learning 

Convolution filter is that part of the network which convolves the features from the input 

data to extract intrinsic patterns hidden in the image which are then used for further 

classification. Neurons of these layers are randomly initialized in order to provide adequate 

distinctions and then are further optimized with the help of the errors over various iterations. 

Loss functions also referred as cost functions; are used to calculate the error and optimizers are 

used to improve those weights utilizing the calculated error. Hence the optimum choice of loss 

function is very important for any model. We have tried to modify the existing evaluation 

measure (Overlapping Score or Intersection-over-Union) to create a custom loss function 

[Equation (3)]. 

Preprocessed images discussed in section 3 are fed to the network with GTmod as the labels; 

via the data generator which performs the data augmentation. Data augmentation includes 

width and height shifts, horizontal and vertical flips, zooming within range of 20% and 

random  rotations in the range of 0o to 90o; which  is  performed  in order to avoid the over 

fitting of  the model. 500 images were trained in one epoch with a batch size of 1, due to the 

hardware constraints and the model is trained for 30 such epochs. For each epoch, the model is 

validated on 200 test images. The training of the model was stopped   after 30 epochs, since 

the improvement in validation loss of the network was minimal. And moreover after 50 

epochs, the nature of the graph of validation loss was far different from the ideally expected 

one. As mentioned above, the customized loss function is used for the purpose of error 

calculation. The main idea behind designing the custom loss function was to create a loss 

function for 2-D labels which considers the probabilities predicted by the network. The 

original IOU (Intersection-Over-Union) function is designed such that it accepts only 0s and 



1s as the input values; whereas the modification of the function accepts all values ranging 

between [0, 1]. This permits the network to calculate the gradient of the function and hence 

ensures back propagation. The idea was inspired by the work done in [28]. The logarithm of 

modified IOU function was chosen to be minimized for the purpose of optimization. Equation 

(4) and (5) represents the modified IOU function and the loss function, l(A, B) of the network. 

                     IOU (A, B) = 
∑ 𝑎𝑖𝑏𝑖

𝑁
𝑖

∑ 𝑎𝑖
2 +∑ 𝑏𝑖

2−∑ 𝑎𝑖𝑏𝑖
𝑁
𝑖

𝑁
𝑖

𝑁
𝑖

                                    (4) 

    l(A, B) = −log(IOU(A, B))                                     (5) 

Where A is the predicted probability map and B is modified ground truth mask. 

′𝑎𝑖
′  Є  [0,1] , represents the pixel values of predicted segmentation map A and ′𝑏𝑖′  Є  [0,1] ,  

represents the pixel values of set B respectively.  

Once the result after the first iteration is predicted, it is compared with GTmod and error is 

calculated with the help of the loss function. This error is then back propagated, and weights 

are modified in accordance with the optimization function. These weights are then improvised, 

iteration over iteration for a certain number of epochs. After that, the model starts overfitting 

and starts memorizing features of the training images and model will not give impressive 

results on test image datasets. The weights of the network are updated using Adam function as 

the optimizer with a learning rate of (1e-5) and experiments have also been performed for a 

learning rate of (1e-3). The features learned by the convolution filters are represented by the 

output of the filter, given a certain input. The output of the filters shows an interesting pattern 

as the corresponding layer proceeds towards the final output. Where the initial filters tend to 

highlight the edges of the foreground object, the contour can easily be seen developing in the 

filters of final layers. The output of the convolution filter of the first layer and second last layer 

is shown in Fig.8-9. 

 

Fig.8 Convolution filter output of first layer 



 

Fig.9 Convolution layer output of second last layer 

4.5 Final output Segmentation 

After completion of training the network, the fine-tuned model was used for testing on the 

test datasets. The last layer of the network is a 2D convolution layer with kernel size (1, 1) and 

only one feature map so that the resulting image is dimensionally equivalent to a probability 

map. But the resulting image is not actually a probability map, as the result of final 

convolution could be anything varying in the range (-∞, ∞). For the sake of converting the 

resulting image into the desired probability map, the sigmoid activation function was applied 

after the last layer of the network. The sigmoid function limits the input values to a range of 

[0, 1].  

Once the probability map is obtained, the next task was to create the contour of that 

probability map. To accomplish that, the simple step function was applied to the probability 

map. The function applied is expressed in equation (6). 

 

               u =  {1; a≥0.5
0;a<0.5

}                                                  (6) 

      Where ‘a' is the pixel value of the probability map and ‘u’ is the pixel value of the final 

segmented contour. Fig.10 depicts the probability map of a sample test image and the contour 

obtained from the probability map. 

 

Fig.10 (a) Probability map of sample test image (b) Final contour. 



5. Results Analysis   

We have tested the proposed algorithm on three different datasets: DRISHTI-GS dataset 

[33, 34], RIM-ONE v3 dataset [32] and DRIONS-DB [35] dataset. The former two datasets 

are tested for optic disc segmentation as well as optic cup segmentation, whereas the third one 

is only tested for the optic disc segmentation since the ground truth for the optic cup is not 

provided in the dataset. The DRISHTI-GS dataset is separated into training and testing 

subsets. The training set consists of 50 images whereas the test set comprises of 51 images. 

The ground truth for both optic disc and cup are provided within the dataset along with the 

notch information. The resolution of the images is 2896 × 1944 which is centered at OD and is 

provided in PNG format. The ground truth available is collected from experts possessing a 

clinical experience of 3 to 20 years. The third release of the RIM-ONE dataset [Retinal Image 

database for Optic Nerve Evaluation] comprises 159 fundus images, which are further 

classified as healthy and glaucoma suspects. All the images are provided along with optic disc 

and cup notch information from two different expert ophthalmologists. Our experimentation 

includes all the images provided, out of which 80% are used for the training purpose while 

20% is used for testing. The images are shuffled properly before dividing into train and test 

subsets. DRIONS-DB dataset entails 110 fundus images, for which two expert annotations of 

the optic disc is provided. The images are centered at the optic disc and have a resolution of 

600 × 400. Similar to the RIMONE, this dataset is first shuffled and then divided into training 

and testing subsets in a ratio of 8:2. 

5.1 Evaluation Metrics 

     The evaluation measures for the testing phase are given by Dice Coefficient (DC) and the 

Intersection over Union (IOU). Dice coefficient of two images P and Q can be seen as the 

harmonic mean of precision and recall, which are expressed in equation (7) and (8). 

   Precision =  
tp

tp+fp
       (7) 

    Recall =  
tp

tp+fn
       (8) 

Where ‘tp’ are true positives, ‘fn’ are false positives and ‘fn’ are false negatives of the image P 

in accordance to Q. The dice coefficient is also referred as F-score and is represented in 

equation (9). The value of the dice coefficient varies in the range of [0,1]. 

   DC(P, Q) = 2.
Precision.Recall

Precision+Recall
=  

2×|P∩Q|

|P|+ |Q|
    (9) 



     Intersection Over Union (IOU) is calculated as the ratio of the intersection of two binary 

maps of predicted output and ground truths to the union of these images. The IOU function 

results in the range of [0,1] and is also designated as the Jaccard index or overlapping score. 

Equation (10) shows the exact formulation of IOU. 

                                                IOU(P, Q) =  
|P∩Q|

|P∪Q|
      (10) 

The predicted optic disc contours were originally non-binary masks which have been binarized 

so that evaluation measures like Intersection-over-Union (IOU) and Dice Coefficient (DC) 

could be used for comparison with papers in existing literature. However, in recent times, 

researchers have come up with several new measures to evaluate the accuracy of non-binary 

foreground maps with respect to binary ground truths. Evaluation Measures such as IOU and 

DC are based on pixel-wise errors. These ignore the structural similarities of the foreground 

map.  Evaluation measures like weighted Fβ – measure [58], S-measure [59] and E-measure 

[60] consider the underlying structure of foreground maps and compare it with ground truth 

masks to evaluate the similarity between both the masks. So, these measures were also 

considered in evaluation of optic disc and cup contours. 

Previous measures like IOU and DC assumes that the pixels of the foreground map are 

independent, which is not true. Weighted Fβ – measure tries to capture this interdependency 

between foreground pixels. It also assigned weights (importance) to false positive pixels based 

on the distance of these pixels from the foreground maps. 

𝐹𝛽
𝑤 = (1 + 𝛽2)

Precisionw.Recallw

𝛽2.Precisionw+Recallw
    (11) 

 

where  Precisionw  =  
𝑇𝑃𝑤

𝑇𝑃𝑤+𝐹𝑃𝑤
    and  Recallw  =  

𝑇𝑃𝑤

𝑇𝑃𝑤+𝐹𝑁𝑤
 

 

S-Measure or Structure – measure takes into consideration, the object structure of the 

predicted foreground mask to evaluate the similarity with the ground truth mask. 

       𝑆 =  𝛼. 𝑆𝑜 + (1 − 𝛼). 𝑆𝑟                                (12) 

where 𝑆𝑜  𝑎𝑛𝑑 𝑆𝑟 are object-aware and region-aware structural similarity measures 

respectively. Value of α has been kept at 0.5. 

 

E-Measure or the Enhanced-alignment measure accounts for both the pixel level and image 

level properties and hence is suited for efficient evaluation of foreground maps. 

𝐸 =  
1

𝑤 𝑥 ℎ
∑ ∑ 𝜙𝐹𝑀(𝑥, 𝑦)ℎ

𝑦=1
𝑤
𝑥=1     (13) 



where ϕ is the enhanced alignment matrix. 

5.2 Segmentation results 

The proposed algorithm utilizes the power of the encoder-decoder network which is 

trained on three different datasets. The encoding part of the   network mainly comprises of the 

convolutional layers which are used to find different patterns in the image. These features are 

then fed to the respective deconvolutional layer from the decoding part of the network. The 

decoder of the network actually differentiates between the foreground and the background 

objects. 

In this section, the model is being trained and tested in the same mode. These results are 

reported for the image resolution of 128×128 and learning rate (1e-5). The results reported are 

compared with GT of the image and not GTmod; as the actual ground truth of the image is GT 

and the purpose of creating GTmod was only to train the model. Finally predicted contours of 

some images from these three datasets are shown in Fig. 11.  

 

 

Fig.11: (a) Optic Disc Test Image (b) Groundtruth image (c) Predicted Optic Disc (d) Optic 

Cup Test Image (e) Groundtruth (f) Predicted Optic Cup. 

 

 

     The best and worst segmentation results for the optic disc and cup, in terms of IOU with 

regards to DRISHTI-GS dataset are shown in Fig. 12. 



 

Fig.12: (a)-(b)-(c) Best and worst segmentation outputs (Optic Disc) (d)-(e)-(f) Best and worst 

segmentation outputs (Optic Cup) 

 

The proposed method is compared with some of the state-of-the-art results which are 

reported in Maninis et al. [36] (It will be further referred as DRIU), Artem [28] and Zilly et al. 

[23]. The proposed work is implemented in Keras framework [37] with Tensorflow [38] 

backend and for the implementation of adaptive histogram equalization, the CLAHE 

implementation of skimage library is used. The algorithms are implemented in Python 3.6 on a 

system with 8 GB RAM and GPU MX 150. Table I depicts the segmentation results for the 

optic disc on all three reported datasets whereas Table II depicts the results for the optic cup 

segmentation. 

TABLE I: Initial Test Results for Optic Disc Segmentation 

Method 
DRISHTI-GS  RIMONE DRIONS-DB 

IOU DC IOU DC IOU DC 

Proposed 95.72 93.03 88.4 93.25 92.16 94.6 

Artem [28] 90 95 89 95 89 94 

DRIU [36] NA NA 89 96 88 97 

Zilly et al. [23] 91.4 97.3 89 94 NA NA 

 

TABLE II: Initial Test Results for Optic Cup Segmentation 

Method 
DRISHTI-GS RIMONE 

IOU DC IOU DC 

Proposed 94.41 93.32 65.92 78.63 

Artem.[28] 75 85 69 82 

Zilly et al. [23] 86 83 80 82 

  



The segmentation of the optic cup is comparatively more difficult task than the 

segmentation of the optic disc. This might be due to the low contrast of the optic cup 

compared to its background (i.e. optic disc region) as the pixel values fade away in a gradual 

manner with a gentle slope.  

 

Evaluation measures like weighted Fβ – measure [58], S-measure [59] and E-measure [60] 

were also used on the Drishti-GS test dataset to see the effectiveness of the algorithm for 

optic disc and cup segmentation. 

 

TABLE III: Optic disc/cup Segmentation evaluation on Drishti-GS Dataset 

 

 

 

 

 

 

 

Experiments were conducted on 51 test images of the dataset. For optic disc segmentation, 

while average weighted Fβ-Measure obtained is 0.9261, average S-Measure obtained is  

0.9285 and average E-measure is 0.8361 respectively. For optic cup segmentation, though the 

E-measure was high, comparable to IOU and DC values, weighted Fβ -Measure and S-

measure values were less impressive. 

 

5.3 Comparative Analysis 

The resolution of the input image can have considerable influence on the computational 

time and might affect the overall accuracy as well. While a smaller image size can lead to the 

loss of necessary information; a very large size can heavily increase the computation time. 

Hence the choice of the appropriate image size has always been important to finalize the 

model. We have tested our algorithm with three different image sizes: 128×128, 256×256 and 

512×512. All the experiments are done for the task of optic disc segmentation to evaluate its 

importance. An epoch with 500 training images and batch size 1 takes approximately half an 

hour for a resolution of 128×128. It was seen that in our problem, increasing the image size 

resulted in increased computation time but it did not lead to increased segmentation accuracy. 

Hence, image size of 128 x 128 was finalized for the model. 

Evaluation Measures 

 IOU DC 
Weighted   

Fβ -Measure 
S-Measure E-Measure 

 

Optic Disc 

 
0.9662 0.9529 

 

0.9261 

 
0.9285 0.8361 

Optic Cup 

 
0.9441 0.9332 0.5574 0.7095 0.9224 



Learning rate is a hyper parameter which is responsible for the amount of change being 

made to the weights with respect to the loss gradient.  And hence a small change in learning 

rate can sometimes significantly alter the results.  While a smaller learning rate can make the 

model wait forever to reach global minima, a high learning rate may overshoot and skip the 

minima point. The algorithm is tested for two different learning rates i.e. (1e-5) and (1e-3). 

The results for optic disc segmentation are tabulated in table IV below. It was seen that, a 

learning rate of (1e-3) gave better results for optic disc segmentation in comparison to a 

learning rate of (1e-5).  Also, learning rate of (1e-5) was better suited for optic cup 

segmentation on all three datasets. 

Table IV. Optic disc segmentation on learning rates i.e. (1e-5) and (1e-3) 

Dataset DRISHTI-GS RIM-ONE DRIONS-DB 

Learning Rate IOU DC IOU DC IOU DC 

1e-3 96.62 95.29 98.42 94.52 96.15 95.47 

1e-5 95.72 93.03 91.45 92.59 92.72 96.45 

As part of experimentation, we have also tried to see the effect of inpainting on model 

accuracy. We have removed the blood vessels from the original images using the inpainting 

technique described in [56]. Then the inpainted images were fed into the model as input. It 

was seen that inpainting of images had no mentionable influence on the model accuracy of 

deep neural networks unlike in traditional methods. 

Another important experiment which was conducted was to check the feasibility of using 

transfer learning.  In transfer learning, weights fine-tuned on a pretrained network are used 

for modeling another task. In most applications, networks trained on Imagenet are often used 

for transfer learning. This is usually done due to scarcity of data for the present application, in 

our case, glaucoma images.  But if datasets are available for the concerned application, 

concept of transfer learning may be used to fine tune the weights of the base model [18, 53]. 

In the present case of glaucoma images, datasets belong to a similar application. The images 

though differ in image specifications, image acquiring modality and certain conditions. 

Training the model every single time when it is required to be tested on a new dataset requires 

a lot of time and effort. Moreover, considering the practical scenarios, the new real-time image 

is actually not part of any of the dataset and may vary in the specifications. Therefore, transfer 

learning makes the architecture robust and suitable for real-time applications. Also, it 

eliminates the overheads of designing customized features for the segmentation problem  

Results using transfer learning suggest that optic disc segmentation can achieve 

appreciable performance. A network trained on few hundred glaucoma images from different 



datasets can be used to predict the optic disc boundaries for images in a new dataset. For 

example, optic disc segmentation on DRIONS-DB dataset achieved a model accuracy of 

93.76% when the model is trained on DRISHTI-GS dataset. Similarly, the segmentation 

results for DRISHTI-GS dataset are comparable (95.89%) when trained on DRIONS-DB. The 

model accuracy may increase if the number of glaucoma images used for training the model is 

large. The results obtained for optic cup segmentation though, as observed after 

experimentation via transfer learning, were very poor. This might be attributed to the variation 

in the size of the optic cup in the datasets.  The number of normal cases available in DRISHTI-

GS training dataset is less, in other words the number of images with smaller optic cup are less 

in DRISHTI-GS dataset.  

Algorithm results have been compared in particular with four recent methods in literature. 

Artem [28] have proposed a modified Unet in his paper and further proposed a stack-Unet in 

a recent paper [57] and reported the findings on these three datasets for optic disc and cup 

segmentations. Maninis et al. [36], in their paper proposed a Deep retinal image 

understanding (DRIU) model and reported results on Rim-One and Drions-DB datasets. Zilly 

on the other hand reported his findings in two papers [23,40] on Drishti and Rim-One 

datasets. It can be seen that the proposed algorithm fared well if not significantly better for 

optic disc segmentation task on all three datasets. With regards to Optic cup segmentation, 

proposed algorithm gave significantly high overlap accuracy on Drishti dataset.  

 

Table V. Optic disc and cup segmentation Comparative Performance 

Method 
DRISHTI RIM-ONE DRIONS-DB 

IOU DC IOU DC IOU DC 

Optic Disc 

Proposed 96.62 95.29 98.42 94.52 96.15 95.47 

Artem.[28] 90 95 89 95 89 94 

DRIU [36] - - 89 96 88 97 

Zilly et al. [23] 91.4 97.3 89 94 - - 

Artem et al. [57] 92 96 91 95 95 97 

Optic Cup 

Proposed 94.41 93.32 65.92 78.63 - - 

Artem [28] 75 85 69 82 - - 

Zilly et al. [23] 86 83 80 82 - - 

Artem at al. [57] 80 89 73 84 - - 

 

5.4 Threats to Validity 

      Threats to validity play an important role for any experiment. The experimental results 

should be validated for the population. Threat to external validity bound the results under the 

experimental settings. To generalize the results and to overcome the threat three 

benchmarked datasets- DRISHTI-GS dataset [33, 34], RIM-ONE v3 dataset [32] and 



DRIONS-DB [35] dataset is used, so that generalize, and realistic results can be achieved. 

Threat to internal validity mainly focuses of independent variables. To overcome this threat 

in our experiment images is selected in ration of 80:20 for training and testing respectively. 

The images are shuffled before dividing into training and testing sets. Threat to conclusion 

validity mainly affects the ability to present the correct conclusion. In our case Dice 

coefficient and Intersection over union performance parameters is utilized to overcome this 

threat. 

6. Conclusions 

In this paper, we have presented a mathematical model to segment the boundaries of optic 

disc and optic cup in retinal fundus images with improved accuracy. This will ultimately aid 

in calculating parameters like Cup-to-Disc ratio (CDR), Neuro Retinal Rim Area etc. which 

are essential for accurate glaucoma analysis, classification and subsequent grading of the 

disease.  The model helped us to improve upon the existing optic disc and cup segmentation 

results on three different dataset: DRISHTI-GS, DRIONS-DB and RIM-ONE v3. The 

proposed method aimed at finding accurate boundaries of optic disc and optic cup using deep 

neural networks. We have also tried to see whether the proposed model works on different 

datasets formed and acquired in varied conditions. But there were some images where the 

optic cup was small or on images in which the contrast between optic disc and its background 

was low, the proposed algorithm produced poor results. This is where salient point detection 

algorithms [51] could be put to good use along with CNNs to improve upon the model 

accuracy. Also relevant are context aware saliency algorithms [49,50] which could be of 

tremendous value not only to build ground truths but also could provide complementary 

information in building a robust model. 
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