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Compositional Probabilistic Analysis of
Temporal Properties over Stochastic Detectors

Ivan Ruchkin, Oleg Sokolsky, James Weimer,
Tushar Hedaoo, and Insup Lee

Department of Computer and Information Science

University of Pennsylvania

Philadelphia, PA, USA

{iruchkin,sokolsky,weimerj,tghedaoo,lee}@seas.upenn.edu*

Abstract

Run-time monitoring is a vital part of safety-critical systems. How-
ever, early-stage assurance of monitoring quality is currently limited:
it relies either on complex models that might be inaccurate in un-
known ways, or on data that would only be available once the system
has been built. To address this issue, we propose a compositional
framework for modeling and analysis of noisy monitoring systems.
Our novel 3-value detector model uses probability spaces to repre-
sent atomic (non-composite) detectors, and it composes them into a
temporal logic-based monitor. The error rates of these monitors are
estimated by our analysis engine, which combines symbolic probability
algebra, independence inference, and estimation from labeled detec-
tion data. Our evaluation on an autonomous underwater vehicle found
that our framework produces accurate estimates of error rates while
using only detector traces, without any monitor traces. Furthermore,
when data is scarce, our approach shows higher accuracy than non-
compositional data-driven estimates from monitor traces. Thus, this
work enables accurate evaluation of logical monitors in early design
stages before deploying them.

*This article was presented at the International Conference on Embedded Software
2020; original version appears as part of the ESWEEK-TCAD special issue.
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1 Introduction

Many cyber-physical systems (CPS) operate in challenging safety-critical
contexts, such as roadways, urban airspaces, and coastal waters. Not only
is the control of the CPS expected to be safe, but also safety monitoring
is necessary to trigger fail-safes and notify human operators. This moni-
toring typically detects whether the CPS has experienced a fault/failure or
finds itself in an environment where it may be unsafe. Such environments
include plants with hardware malfunctions, severe weather conditions, and
unmapped physical locations.

In the last decade, the runtime verification research has developed formal
techniques and tools to increase confidence in the system’s safety [5,15]. Log-
ically and temporally related events can be monitored based on specifications
in Linear Temporal Logic (LTL) [20] and its descendants. When observations
violate these specifications, the conditions are possibly unsafe and the system
should execute a fail-safe fallback maneuver (e.g., stopping or landing).

Runtime safety monitors rely on inputs from noisy and potentially unre-
liable perception mechanisms. For example, the algorithms processing visual
sensor data may randomly fail to detect features, or instead report non-
existent artifacts [24]. Further, some perception systems are based on sta-
tistical tests, which at times may not have sufficient data for a conclusive
answer. Such detectors feed stochastic errors into monitors, which become
difficult to analyze only using non-deterministic logical constructs: they do
not distinguish the more and less likely scenarios. Thus, we require proba-
bilistic guarantees for logical monitors. These guarantees often take the form
of false positive and false negative rates.

Unfortunately, the existing work falls short of providing such guarantees
given perception uncertainties, especially in early design stages when data is
scarce. One way to address this problem is model-driven: probability con-
structs are embedded into a logical property (e.g., in PCTL [14]), and the
property is model-checked on a probabilistic dynamics model. This method
requires a detailed closed-loop model of the whole system — not only of the
perception mechanism, but also of the controller and the environment. Such
models are rarely available in practice, and even when available they tend to
be inaccurate, hard to validate, and lack scalability.

Another path to probabilistic monitoring guarantees is directly through
the testing/execution data: safety monitors are treated as black-box binary
random variables, thus turning the problem into observation of Bernoulli
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trials and estimating their error probabilities using standard statistical tech-
niques [11]. In this case, the binary variable representation unnecessarily
abstracts away our knowledge about the perception uncertainties and the log-
ical structure of the monitor. This method requires substantial and specific
data that may be difficult to collect; e.g., the system needs to be repeatedly
put in an unsafe state to calculate the false negative rate of a safety monitor.
Usually such data is unavailable in early design stages.

In this paper, we present an approach to estimating the error rates of
logic-based runtime monitors. We combine the strengths of model-based and
data-driven approaches by taking advantage of logical specifications and us-
ing only perception (non-monitor) data — without any closed-loop system
models. Thus, we can evaluate monitors before they are built.

Shown in Figure 1, our approach consists of two parts: modeling and
analysis. Inspired by statistical hypothesis tests [8], the modeling part fo-
cuses on binary ground-truth conditions (e.g., whether a vehicle faces an
obstacle), which are true or false at each time. At the heart of our model are
stochastic detectors of those ground truths with three outcomes: true, false,
and unknown. Logical monitors are modeled by composing, these detectors
using LTL operators; the composed detection outcomes are determined by
the 3-value1 LTL [19], whereas the ground truths are composed by classic
binary LTL.

The analysis part, performed offline by a heuristic computational assis-
tant, treats a monitor’s error rate as a probability in an outcome space com-
posed from the detector spaces, in accordance with the monitor’s logical
definition. This probability is represented by a symbolic formula that can
be decomposed into smaller probabilities of events associated with individual
detectors. These probabilities (shown at the bottom on Figure 1) are easier
to estimate because they require only labeled data from the detectors, but
not monitors.

We evaluated our approach on a simulated underwater vehicle that de-
tects and follows an underwater pipeline. One safety property we monitor
is that, after losing sight of the pipeline, the vehicle rediscovers it within
a given period of time; otherwise, the vehicle declares that it is lost, sur-
faces, and needs to be evacuated by a ship crew. We implemented a monitor
for this property and applied our approach to estimate its false negative
rate (along with the false positive rate of a different monitor, which checks

1We do not mean the 3-value inconclusiveness due to incomplete traces [6].

3



Figure 1: Our modeling and analysis framework.

whether the vehicle reliably follows the pipeline). This evaluation showed
that our approach provides estimates on par with purely data-driven esti-
mation, exceeds them when little data is available, reuses labeled detector
data due to its compositional nature, and executes within seconds. However,
the approach is dependent on accurate independence assumptions between
detectors.

This paper makes three contributions:

� A probabilistic model of 3-outcome detectors (Section 4) based on a
logic for these detectors (Section 3).

� An analysis of error rates based on probabilistic calculations and using
labeled detection data (Section 5).

� An application of the above model and analysis to two monitors in a
simulated underwater vehicle (Section 6).

This paper is accompanied by a supplement [21] with additional deriva-
tions and illustrations. The source code and data can be found at https:

//github.com/bisc/prob-comp-asst.
The next section introduces a running example.
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2 Motivating Example

The DARPA Assured Autonomy program considers an unmanned underwater
vehicle (UUV) that follows a continuous underwater pipeline and scans it for
defects. To discover and track the pipeline, the vehicle uses two side-looking
sonars pointing to the sides and downwards from the vehicle. Thus, going
above the pipeline in parallel to it provides the necessary data. The quality
of the pipeline is investigated manually offline, after the UUV mission is com-
plete, by processing the collected scan data via synthetic aperture imaging.
The UUV is also equipped with a forward-facing sonar for obstacle avoidance.

The UUV software is comprised of a perception subsystem, a controller,
and a safety monitor. The perception subsystem continuously processes the
sensor data from both side-scan sonars. Since the data is noisy, the pipeline
detector (represented as a predicate Pl here) produces a potentially inaccu-
rate 3-valued output at each moment:

� Confident that the pipeline is visible (value T).

� Confident that the pipeline is not visible (value F).

� Not confident in either outcome (value U).

This output of Pl is fed into the controller and the safety monitor. The
former actuates the propeller and fins to follow the pipeline as well as possible.
The goal of the latter is to determine when the UUV has definitively lost track
of the pipeline and needs to be evacuated. The monitor is required to raise
an alarm when the pipeline is not visible (i.e., F) for d ∈ [5, 30] seconds. To
define this monitor in classic LTL, we map T to the boolean truth value,
and both F and U to the falsehood value. Thus, we write the following LTL
formula, from which a monitor2 can be automatically generated [5]:

¬Pl→ ♦[1,d]Pl. (1)

Our goal is to determine two probabilistic properties of the above monitor
at design time: the false positive rate (FPR: “detected but not present”)
and the false negative rate (FNR: “not detected but present”). High FPR is
undesirable because the it takes the effort of an entire vessel to evacuate the
UUV. High FNR is a safety issue because if the UUV is lost for longer than

2A monitor raises an alarm when the formula it monitors evaluates to F.
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d seconds, it may find itself in an area where surfacing may be unsafe due to
potential collisions (e.g., near a busy port). The next section describes our
logical model for monitors.

3 Three-Value Temporal Logic for Detectors

Our model of monitors has two aspects: logical and stochastic. The logi-
cal aspect (this section) specifies monitors as logical formulas over detector
outputs. The stochastic aspect (next section) represents these monitors as
probabilistic compositions of detectors. Both aspects focus on the outputs of
detectors, abstracting away heterogeneous details of the exact functionality
of the detectors.

A detector D is — abstractly for now — a random process that at each
moment tries to determine the presence or absence of some hypothesis H1.
We model the output of D at a certain moment as a pair of random variables
(DO ,GT ):

� Detection outcome DO ∈ {T,F,U} is the 3-value output of the detector:
T (confident in H1), F (confident in the absence of H1, i.e., the presence
of null hypothesis H0), and U (not confident in either H1 or H0).

� Ground truth GT ∈ {T,F} is the actual presence of H1, which can
either be true (T) or false (F).

Sampled at consecutive times, a detector produces a pair of finite equal-
length sequences (sdo, sgt), where sdo is a sequence (or, trace) of DO values
and sgt is a sequence of GT values. For example, Pl is a detector for H1:
“pipeline present”. For it, sgt(t) is whether the pipeline is indeed present at
time t, and sdo(t) is the 3-value detection output.

Monitors are specified in ltl3d, a 3-value linear temporal logic for detectors
with bounded temporal modalities. This logic is our modification of the 3-
value LTL with unbounded modalities [19], which in turn builds on Kleene’s
strong logic of indeterminacy k3 [17]. ltl3d adds bounds on modalities and
two extra negations to handle uncertain values. ltl3d considers fully known
traces: the value U is orthogonal to the inconclusiveness from not knowing a
complete trace [6].

Formulas in ltl3d are constructed from atomic detectors D1 . . .Dk, the
truth constant T, three operators of negation (¬¬¬¬s, ¬¬¬¬w, ¬¬¬¬se), conjunction ∧∧∧∧,
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and bounded until UUUU [m,n] (where m,n ∈ N0 and m < n for the rest of this
section).

ϕ ::= ϕ UUUU [m,n] ϕ | ϕ ∧∧∧∧ ϕ | ¬¬¬¬sϕ | ¬¬¬¬wϕ | ¬¬¬¬seϕ | D | T

where D ∈ {D1 . . .Dk}. These operators conventionally define other syntax:
disjunction ∨∨∨∨, three implications →→→→s, →→→→w, →→→→se, and modalities eventually
♦♦♦♦ and always ����; their definitions are available in the supplement [21].

Any ltl3d formula ϕ can be evaluated in two ways. The first evaluation is
over the values of DO , calculating the 3-value detection results. The second
evaluation is over the values of GT , characterizing the binary ground-truth
“oracle” (and coinciding with the standard LTL semantics). Both evaluations
happen on a finite state trace s = s1s2 . . . sL, where L ∈ N is the trace length.
We assume we always have a trace of sufficient length to evaluate a given
formula: L ≥ n. A tail of trace s by starting from position t < L is denoted
as s(t..) = stst+1st+2 . . . sL.

We formulate the 3-value evaluation first, denoted [[[ϕ]]]s. Here the state
trace s is a collection of the DO traces s1

do . . . s
k
do of the respective detectors.

[[[T]]]s = T

[[[Dj]]]s = sjdo(1), where j ∈ [1, k]

[[[¬¬¬¬sϕ]]]s =


T if [[[ϕ]]]s = F

F if [[[ϕ]]]s = T

U if [[[ϕ]]]s = U

[[[¬¬¬¬wϕ]]]s =


T if [[[ϕ]]]s = F or [[[ϕ]]]s = U

F if [[[ϕ]]]s = T

U never

[[[¬¬¬¬seϕ]]]s =


T if [[[ϕ]]]s = F

F if [[[ϕ]]]s = T or [[[ϕ]]]s = U

U never

[[[ϕ1 ∧∧∧∧ ϕ2]]]s =


T if [[[ϕ1]]]s = T and [[[ϕ2]]]s = T

F if [[[ϕ1]]]s = F or [[[ϕ2]]]s = F

U otherwise

7



[[[ϕ1 UUUU [m,n] ϕ2]]]s =



T if ∃i ∈ [m,n] · [[[ϕ2]]]s(i..) = T

and ∀j ∈ [m, i) · [[[ϕ1]]]s(j..) = T

F if either ∀i ∈ [m,n] · [[[ϕ2]]]s(i..) = F

or ∃i ∈ [m,n] · [[[ϕ1]]]s(i..) = F and

∀j ∈ [m, i) · [[[ϕ2]]]s(j..) = F

U otherwise

Definition 3.1 (3-value Satisfaction). Formula ϕ is 3-value satisfied on state
trace s, denoted s |=3 ϕ, if [[[ϕ]]]s = T.

A few remarks are in order. Similarly to k3, we interpret U as a value of
insufficient information, leading to the semantics that take advantage of the
known information, e.g., U ∧∧∧∧ F ≡ F. We adopt this principle because CPS
often need to make decisions with limited information rather than waiting
for the complete picture to be known. Similarly to the 3-value LTL [19], our
Until operator handles uncertainty in the values of its operands — not in
whether the available trace values are sufficient to evaluate the Until.

Unlike the existing 3-value logics, our ltl3d has several negations. Oper-
ator ¬¬¬¬s is equivalent to the negation in k3: it flips the certain outcomes (T,
F) while preserving the uncertain value. The two other negations, weak ¬¬¬¬w

and strong exclusive ¬¬¬¬se, are never uncertain, with ¬¬¬¬w erring on the side of
H1 and ¬¬¬¬se erring on the side of H0.

The 2-value evaluation ([[ϕ]]s) is based on the sgt traces s1
gt . . . s

k
gt of the

respective detectors. The semantics are the same as for [[[ϕ]]]s except not
using the U values: atomic detectors can only evaluate to T or F because
here the state trace s is based on the ground-truth traces:

[[Dj]]s = sjgt(1), where j ∈ [1, k]

Definition 3.2 (2-value Satisfaction). Formula ϕ is 2-value satisfied on state
trace s, denoted s |=2 ϕ, if [[ϕ]]s = T.

Remark 1. We use bold operators (e.g., ∧∧∧∧, ¬¬¬¬s, UUUU ) where both 3-value and
2-value interpretations are possible; non-bold operators (e.g., ∧, ¬) have the
usual 2-value interpretation.

Relations |=3 and |=2 are used to define a monitor’s output and ground
truth, respectively.
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Definition 3.3 (Monitor). A monitor M , defined by formula ϕ in ltl3d over
detectors D1 . . .Dk, is a function that maps the detector traces (s1

do, s
1
gt) . . . (s

k
do, s

k
gt)

to a pair of monitor traces (mdo ,mgt):

mdo(t) = s1
gt(t..) . . . s

k
gt(t..) |=3 ϕ

mgt(t) = s1
gt(t..) . . . s

k
gt(t..) |=2 ϕ

Notice that detectors produce a 3-value sdo and a 2-value sgt, whereas
monitors produce two 2-value traces: mdo and mgt . In all cases, we interpret
the value T an “alarm”, and F and U as “no alarm”.

To sum up, the ground truth values are substituted into logical formulas
in the 2-value case, and the detector output values are substituted in the
3-value case.

With the logical aspect defined, we rewrite the motivating property (Equa-
tion (1)) in ltl3d. We use ¬¬¬¬w to be conservative: the unknown presence of
pipeline (U) is interpreted as its loss:

ϕpr := ¬¬¬¬wPl →→→→w ♦♦♦♦ [1,d]Pl (2)

We define a pipe recovery monitor Mpr to alarm only when certain about
violations of ϕpr. Thus, we use ¬¬¬¬s to indicate this requirement of certainty:

Mpr = ¬¬¬¬sϕpr = ¬¬¬¬s(¬¬¬¬wPl →→→→w ♦♦♦♦ [1,d]Pl) (3)

We implemented Mpr over the sdo trace of detector Pl, and it raises an
alarm when T occurs in its mdo . The GT trace mgt is calculated from sgt
of Pl. Monitor code generation relies on the standard approaches [5] and is
out of this paper’s scope.

A monitoring error occurs if, for some t, mdo(t) 6= mgt(t). We are in-
terested in two types of errors: if mdo(t) = T and mgt(t) = F, it is a false
positive; if mdo(t) = F and mgt(t) = T, it is a false negative. Since detectors
and monitors are random variables, we talk about probabilities, or rates, of
either type of errors.

Having monitors with high error rates can be a safety-critical concern,
as illustrated on Mpr in Section 2. Typically, these rates are evaluated by
collecting, labeling, and analyzing their output data. The data is collected
over multiple executions, each providing one mdo , labeling which yields one
mgt . Then the error rate estimate is the count of errors (e.g., false positives)
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divided by the count of cases where this type of error (e.g., a false positive)
was possible (e.g., all true negatives).

We believe that this estimation can be done in early design stages and
using only the data from the atomic detectors (without executing the moni-
tors). The central problem of this paper is, hence, to estimate the error rates
of a monitor of a ltl3d formula. This estimation relies on labeled traces of
atomic detectors (paired sdo and sgt).

4 Probabilistic Composition of Detectors

This section models detectors as probability spaces behind the random vari-
ables (DO ,GT ), described in the previous section. Then, we show how
compositions of these spaces correspond to formulas in ltl3d, in order to
analyze these formulas probabilistically in Section 5.

4.1 Stochastic Detectors

We start by defining a probability space of one detector.

Definition 4.1 (Atomic stochastic detector). An atomic stochastic detec-
tor (D) is a pair of random variables (DO , GT ) over a probability space
(Ω,F ,Pr):

� Ω is an elementary outcome space, defined as the set of all six possible
pairs of values for (DO ,GT ): (T,T), (T,F), (F,T), (F,F), (U,T), (U,F).

� F = 2Ω is a sigma-algebra of events over signature Ω, defined as the
powerset of Ω (including the empty set). We use the following marginal
events as shortcuts for the individual values of either random variable:
3

gtt(D) = (∗,T) = {(T,T), (F,T), (U,T)},
dot(D) = (T, ∗) = {(T,T), (T,F)},
gtf(D) = (∗,F) = {(T,F), (F,F), (U,F)},
dof(D) = (F, ∗) = {(F,T), (F,F)},
dou(D) = (U, ∗) = {(U,T), (U,F)}.

3By definition, events dof, dot, and dou partition Ω. The same applies to gtt and gtf.
Any such partitioning events constitute a well-formed detector.
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� Pr is a single-detector discrete probability measure over F , subject to
the usual Kolmogorov axioms.

Our concept of a stochastic detector encompasses a wide range of algo-
rithms with ternary outcomes over time series, including anomaly detectors,
machine learning classifiers, and sensor fusion algorithms. We have conve-
niently abstracted away the inputs of these algorithms, making this model
broadly applicable. As mentioned in Section 3, our convention is that a de-
tector raises an alarm iff event dot occurs, thus introducing the asymmetry
inherent in statistical tests (which reject H0 only with sufficient evidence).

Now we handle time and multiple detectors. When detector D produces
readings over time points t1 . . . tk (e.g., a UUV gets consecutive readings of
the pipeline), we model it with a sample of k “instances” of the original
detector: D1 . . .Dk, i.e., a stochastic process. These copies have their own
respective variables DO1 . . .DOk and GT 1 . . .GT k. These instances are not
necessarily i.i.d.; in general, their individual probability spaces are coupled
to form a larger, multi-detector probability space, which we use to describe
compositions.

Definition 4.2 (Multi-detector probability space). For detectors D1 . . .Dk,
a multi-detector probability space (Ω,F ,Pr) is defined as follows:

� Ω = Ω1 × · · · × Ωk is a k-dimensional space of elementary outcomes;
each dimension produces an elementary outcome pair for the respective
detector.

� F = 2Ω is an event sigma-algebra, which is a powerset of the outcome
space Ω (including the empty set). Thus, an event is a set of k-sized
vectors.

� Pr is a global probability measure over F , extended from Pr1 . . .Prk in
a manner consistent with them (this requirement is formalized in the
supplement [21]).

For a given set of atomic detectors, there are infinite multi-detector spaces
because individual probabilities Pr1 . . .Prk can be coupled in many ways to
form the joint Pr. Analysis of possible couplings is one of the tasks we handle
in Section 5.
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Now consider k different4 detectors for n time points, leading to a k × n
multi-detector space. Although we can handle the general joint distribution
from Definition 4.2, for tractability it is common to impose domain-specific
constraints on Pr. A common type of them is independence constraints,
denoted A ⊥⊥ B for random variables A and B; a set of independence con-
straints is denoted I. Detectors of a random walk would have independent
sequential actions: Ai ⊥⊥ Ai+1. This means that any combination of marginal
events produced by these variables is independent (as expanded in the sup-
plement [21]).

One of the common measurement models is that the error is stateless
between measurements, meaning that previous measurements do not provide
any extra information5 given the current ground truths. In our terms, this
implies the independence of any sequence of outcomes given their respective
ground truths — an assumption we will use in Section 5:

∀i, j : N, 1 ≤ i < j ≤ k · (4)

DO i ⊥⊥ DO i+1 ⊥⊥ . . . ⊥⊥ DO j | GT i . . .GT j

Remark 2. For convenience, we will perform symbolic calculations over
marginal events introduced in Definition 4.1. These events can be connected
with operators from classic binary logic: ¬, ∧, and ∨. We use non-bold
fonts for them interpret as usual (e.g., ∧ means that both events occurred).
These operators correspond to set operations over events in F : complement,
intersection, and union respectively.

The above probabilistic model expresses any error rate, denoted er, straight-
forwardly as a conditional probability over marginal events. This paper fo-
cuses on two specific error rates:

� False positive rate: fpr(D) = Pr(dot(D) | gtf(D)).

� False negative rate: fnr(D) = Pr(¬ dot(D) | gtt(D)).

Our model allows error rates to change between detectors D1 . . .Dn.
However, in this paper we assume the error rates to be constant across time

4The detectors may be of the same phenomena or different ones. We address the general
case where all ground truths are different.

5A slightly stronger assumption, common in time series analysis [7], is written DO t =
GT t + εt, where εt is a white noise series.

12



moments because here they represent inherent qualities of detectors. Math-
ematically, this means that our model averages out temporal variation in an
error rate.

4.2 Composition of Stochastic Detectors

Now we will show how to interpret formulas in ltl3d as compositions of
detector spaces. Intuitively, a composite detector defined by a formula is
a result of applying this formula’s evaluation to the atomic detectors. The
composite outputs are distributed over a multi-detector probability space.

Definition 4.3 (Composite detector). A composite detector D′ for formula
ϕ over detectors D1 . . .Dk with state trace s is a pair of random variables
(DO ′,GT ′) over a multi-detector probability space for D1 . . .Dk, with these
values at time t:

DO ′(t) = [[[ϕ(D1 . . .Dk)]]]s(t..)

GT ′(t) = [[ϕ(D1 . . .Dk)]]s(t..)

Our insight here is that logical formulas correspond to composite detectors
in multi-detector spaces. For example, ϕpr and Mpr are composite detectors
over Pl,Pl1 . . .Pld defined in a (d + 1)-dimensional event space, according
to Equations (2) and (3). These spaces can be analyzed probabilistically,
yielding estimates of error rates.

Given a fully defined Pr in some multi-detector space, a logical formula
determines the probabilities of events of the corresponding composite de-
tector. In our experience, however, a fully defined probability measure on
a multi-detector space is rarely available or needed: it would require a lot
of data and/or prior knowledge to determine. Instead, this space can be
manipulated symbolically (i.e., without assigning numeric values) to express
the desired probabilities through the known or easy-to-measure ones (e.g.,
probabilities of the atomic events), without committing to a fully defined
Pr. These symbolic manipulations are convenient to carry out in the classic
binary propositional logic, so we calculate using probability formulas over
event predicates.

Let us provide some examples to illustrate event predicates in compo-
sitions, say conjunction. Its marginal events are derived from the logical
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semantics to be as follows: 6

gtt(Da ∧∧∧∧ Db) = gtt(Da) ∧ gtt(Db)

gtf(Da ∧∧∧∧ Db) = gtf(Da) ∨ gtf(Db)

dot(Da ∧∧∧∧ Db) = dot(Da) ∧ dot(Db)

dof(Da ∧∧∧∧ Db) = dof(Da) ∨ dof(Db)

dou(Da ∧∧∧∧ Db) = dou(Da) ∧ dou(Db) ∨
dou(Da) ∧ dot(Db) ∨
dou(Db) ∧ dot(Da)

Such rewritings for other compositions can be found in the supplement [21].
Another rewriting to note: in our finite-trace semantics, the temporal

modalities “always” and “eventually” for integers m and n > m can be
expressed with ∧∧∧∧ and ∨∨∨∨ (which in turn can be analyzed based on their
marginal events):

���� [m,n]D ::= Dm ∧∧∧∧ . . . ∧∧∧∧ Dn

♦♦♦♦ [m,n]D ::= Dm ∨∨∨∨ . . . ∨∨∨∨ Dn

In summary, this section showed that an error rate of a LTL3d formula
can be represented as a probability of events in a multi-detector space. We
take advantage of this fact to calculate estimates of error rates in the next
section.

5 Analysis of Error Rates

The goal of our analysis is to compute a numeric estimate of the false positive
or false negative rate of a monitor, such as fnr(Mpr), which is treated as a
probability in an event space F over some detectors D1 . . .Dk. This is chal-
lenging because, even though it is precisely defined, a computable formula
for that probability is not known a priori — and there is generally an infinite
number of them. Finding a computable formula is complicated by knowing

6The form of dou(Da ∧∧∧∧Db) follows from events dot(Da ∧∧∧∧Db) and dof(Da ∧∧∧∧Db), being
a complement of their union. Specifying the marginal events fully defines a detector, as
shown in the supplement [21].
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probability values for some set of events and having traces for another set of
events.

We factor this problem into three analyses; each takes different inputs
and produces a numeric estimate êr of a given error rate er:

� Exact Compositional Calculation (ECC): to compute êr, this analysis
requires a monitor formula M , user-specified probability values Pr of
selected events in F , independence assumptions I, and transformation
rules R:

êr(M) = ECCer(M ,Pr, I,R)

� Noisy Compositional Calculation (NCC): this analysis requires a mon-
itor formula M , labeled traces for atomic detectors (for simplicity rep-
resented by one trace pair: sgt and sdo), independence assumptions I,

a set of symbolic “preferred” probabilities P̂ of user-specified events
in F , and transformation rules R (which we elaborate in the next
subsection). The preferred probabilities is a set of probability sym-
bols (Pr) over the events of F . The user chooses P̂ as a heuristic7 for
probabilities to express the error rate through. For example, we use
P̂ = {fpr(Pl), fnr(Pl)} because the composite error rates can often be
compactly expressed using the atomic error rates. The goal is to find a
rate formula with a minimal number of non-preferred probabilities and
estimate these probabilities from the labeled detector traces.

êr(M) = NCCer(M , sgt, sdo, I, P̂,R)

� Black-Box Calculation (BBC): this analysis uses only labeled monitor
traces, represented with a pair (mgt ,mdo), produced by monitor M
whose rate is being estimated. This analysis does not need the M
formula: it estimates the error rate directly from the traces.

êr(M ) = BBCer(mgt ,mdo)

To perform BBC, we use the standard approach using count-based fre-
quency estimation, exemplified in the second last paragraph of Section 3,

7The reasons for choosing a specific set P̂ may vary. Some probabilities have strong
priors or more data for accurate estimation; others can limit the formula search or help
find a small formula.
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which is is an optimal estimator for event probabilities [8]. Generally, to
estimate an error rate ρ = Pr(A | B), BBC is computed as follows:

BBCPr(A|B)(mgt ,mdo) =

|{(mgt(t),mdo(t)) s.t. A(t) ∧B(t)}|
|{(mgt(t),mdo(t)) s.t. B(t)}|

(5)

This paper proposes a novel semi-automated heuristic analysis to compute
ECC and NCC. To support the analysis, we implemented a semi-automated
computational assistant based on the Mathematica’s symbol manipulation
(see its source code at https://github.com/bisc/prob-comp-asst)

5.1 Transformation Rules

Our computational assistant symbolically transforms formulas and computes
numeric estimates. The assistant starts with the formula of the desired error
rate (er) of a monitor and transforms it towards a computable formula. Here,
“computable” means that each probability in this formula is either known or
can be estimated from (sgt, sdo).

This assistant manipulates formulas using transformation rules. Each
transformation rule has this form:

[G]A→ C, where

� A is the antecedent to replace. E.g., it can be Pr(X, Y ) where X and
Y are placeholders for any events.

� C is the consequent to replace the antecedent. E.g., it can be Pr(X)Pr(Y ),
where X and Y are fromA.

� G is the guard condition, such as X ⊥⊥ Y.

All transformation rules can be partitioned into four lists, the combination
of which is denoted R. The four lists are below (their rules are fully specified
in the supplement [21]):

� Rlog are logical tautologies of LTL3d, e.g., ¬¬¬¬s¬¬¬¬sD = D.

� Rev are rules substituting the logical operators of LTL3d for their def-
initions in terms of detector events.
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� Rprob are rules to algebraically manipulate probability expressions.
This includes the rules to turn probabilities of event conjunctions into
products of event probabilities, if these events are independent.

� Rindep are rules to infer conditional independence. We use the standard
semi-graphoid axioms: contraction, decomposition, weak union, and
intersection [18].

Each of the four lists can be applied to a formula. The application of each
list proceeds one rule at a time in the order of the list. A rule is applied to
every matching subformula and until no subformulas match the antecedent
and satisfy the guard. If/once a rule can no longer be applied, the next rule
is read. If no rule is applicable, the list application terminates.

All rule lists use only sound transformations: assuming G holds, we know
that A = C. We ensure that by using only the standard rules of probabil-
ity, Boolean algebra,conditional independence, as well as the easy-to-show
tautologies of ltl3d. Therefore, applying R never produces a formula not
equivalent to the original one, er(M), under the assumptions I.

The outcome of rule application significantly depends on the rule lists
chosen by the user. While we provide large sets of rules, it is up to the user
to pick a subset and order that would be effective for a given scenario. To
do so, the user needs to understand the rules and their effects on probability
expressions.

The presence and order of rules in R, and particularly Rprob, determine
the completeness, termination, and algorithmic efficiency of ECC and NCC.
Some rule lists may lack the necessary transformations (e.g., adding and
removing negations to events) to produce a computable formula. Application
of other rule lists may not terminate; e.g., replacing Pr(X) with Pr(X ∧
Y ) requires a rule that introduces a variable Y , which could be applied
indefinitely. Such rules can lead to a set of formulas that grows exponentially
(to consider all combinations of events) and is possibly unbounded (if normal
forms for event expressions are not enforced).

We expect a large number of formula-finding problems to be solvable with
rule lists. Unfortunately, we do not have a precise characterization of this
class, leaving it for future work. For the monitors and error rates in this
paper, we found sufficient and efficient rule lists, given in full detail in the
supplement [21].
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Figure 2: The ECC/NCC analysis steps.

5.2 Steps of ECC and NCC

Tne ECC and NCC analyses proceed in five steps, illustrated in Figure 2.
Their abstract description below is exemplified in Subsection 5.3.

Step 1: rewrite the formula in terms of marginal events dot, dof, dou, gtt, gtf—
without any operators of LTL3d.

Inputs:

� er(M) — the goal error rate er of a monitor M .

� Rlog — transformation rules for the logic operators.

� Rev — transformation rules for events of detectors.

Output: f(Pr(F)) — a formula f over probabilities of Boolean combina-
tions of marginal events of atomic detectors.

Sub-steps:

1.1 Apply rules Rlog to er(M) to simplify the composite detector for-
mula. While not required, this sub-step can shorten the subsequent
steps, e.g., by removing negation operators when valid (examples in
the supplement [21]).
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1.2 Apply rules Rev to the result of the previous step. This sub-step re-
places the 3-value logical constructs with an equivalent encoding using
replacing them with binary events dot, dof, dou, gtt, and gtf. The ex-
pression becomes more verbose but also manipulable with the classical
Boolean logic.

Step 2: algebraically reduce the formula to the preferred or known proba-
bilities.

Inputs:

� f(Pr(F)) — a formula f over probabilities of Boolean combinations of
marginal events of atomic detectors.

� Rprob — transformation rules for probabilities.

� (ECC only) Pr(F) — known probabilities of some given events in F .
The rest are unknown.

� (NCC only): P̂(F) — a set of preferred probabilities.

Output:f(Pr(F)) — a formula f over Pr of events in F .
Sub-steps:

2.1 Apply rules from Rprob, with two caveats:

– Do not apply rules to known/preferred probabilities.

– If a rule has an independence guard, send this independence state-
ment to Step 3. If Step 3 returns T, apply the rule; otherwise, skip
to the next rule.

2.2 After all Rprob have been applied, proceed to this Step:

– For ECC, go to Step 5.

– For NCC, send the events under probabilities in the current for-
mula f to Step 4 (then go to Step 5).

Step 3: check of whether an independence statement hold under the inde-
pendence assumptions.

Inputs:
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� An independence statement of form X ⊥⊥ Y or X ⊥⊥ Y | Z, where
X, Y,and Z are event expressions.

� I — a set of independence assumptions.

� Rindep — a list of transformation rules for independence.

Output: T (if the statement can be assumed to be true) or F (if not
enough information to conclude independence).

Sub-steps:

3.1 Apply rules Rindep to I. This produces a larger set of independence
statements assumed to be true.

3.2 Return T if the given statement is in the produced set. Otherwise,
return F.

Step 4 (NCC only): produce numeric probability estimates for the set of
events requested in Substep 2.2..

Inputs:

� Events E in F . requested in Substep 2.2

� A labeled detector trace (sgt, sdo).

Output: probability estimates P̂r for the requested events.
Sub-steps:

4.1 For each event in E, calculate a count-based estimate analogously to
Equation (5) but over trace (sgt, sdo).

4.2 Send all probability estimates P̂r(E) to Step 5.

Step 5: calculate a numeric estimate êr of error rate er.
Inputs:

� Formula f(Pr(F)) from Step 2.2.

� (ECC only) Known probabilities Pr(F).

� (NCC only) Estimated probabilities P̂r(F).
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Output: a numeric estimate of error rate êr(M).
Sub-steps:

5.1 Replace each probability in f(Pr(F)) with its value:

– ECC uses known probability values Pr(F).

– NCC uses the estimates P̂r(F) from Step 4.

5.2 Calculate the numeric expression and return the result.

5.3 Example of ECC/NCC Application

As an illustration, we walk through8 the NCC calculation of fnr(Mpr). As
inputs we have the definition of Mpr in Equation (2) with some known value

of d, a labeled trace (sgt, sdo) for Pl, and P̂ = {fpr(Pl), fnr(Pl)}, rules R,
and two independence assumptions: Equation (4) and that only the current
ground truth affects the detector output:

∀i : N, 1 ≤ i ≤ k · (6)

DO i ⊥⊥ GT 1 . . .GT i−1,GT i+1 . . .GT k | GT i

The initial formula er(M ) is below:

fnr
(
¬¬¬¬s(¬¬¬¬wPl →→→→w ♦♦♦♦ [1,d]Pl)

)
(7)

Step 1.1 replaces →→→→w with ∨∨∨∨ and ¬¬¬¬w, rewrites ♦♦♦♦ [1,d] using ∨∨∨∨, and
distributes ¬¬¬¬s over the ∨∨∨∨ operators in the parentheses. The outcome is a
different detector under fnr:

fnr
(
¬¬¬¬wPl ∧∧∧∧ ¬¬¬¬sPl1 ∧∧∧∧ . . . ∧∧∧∧ ¬¬¬¬sPld

)
(8)

Step 1.2 rewrites Equation (8) as a conditional probability over the marginal
events of the detector under fnr. Specifically, the rewriting uses events dot
and gtf according to the definitions of operators ∨∨∨∨, ¬¬¬¬w, ¬¬¬¬s:(

dof(Pl0) ∨ dou(Pl0)
)
∧ dof(Pl1) ∧ . . . ∧ dof(Pld),

gtf(Pl0) ∧ gtf(Pl1) ∧ . . . ∧ gtf(Pld)

8The full derivation for this error rate formula is in the supplement [21].
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Hence, Step 1.2 produces this probability formula:

Pr
(
¬
(
(dof(Pl0) ∨ dou(Pl0)) ∧ dof(Pl1) ∧ . . .

∧ dof(Pld)
)
| gtf(Pl0) ∧ . . . ∧ gtf(Pld)

)
(9)

Then Step 2.1 switches the negation to 1− Pr :

1− Pr
(

(dof(Pl0) ∨ dou(Pl0)
)
∧ dof(Pl1) ∧ . . .

∧ dof(Pld) | gtf(Pl0) ∧ . . . ∧ gtf(Pld)
)

(10)

Now Step 2.1 matches a rule with an independence guard and sends the
events under Pr to Step 3. Step 3.2 finds that the assumedEquation (4)
matches the provided events and returns T. Step 2.1 now replaces the above
probability with a product of probabilities of each detector’s events. Fur-
ther, Step 2.1 reduces the conditioning of dofi to gtfi using a rule that checks
Equation (6). A few algebraic transformations in Step 2.1 yield the final
formula for fnr(Mpr):

1−
(
1− fpr(Pl)

)(
1− fpr(Pl)− Pr

(
dou(Pl) | gtf(Pl)

))d
(11)

Step 2.2 leads to Step 4, which estimates the probabilities fpr(Pl) and
Pr(dou(Pl) | gtf(Pl)) from the trace (sgt, sdo) of Pl. Step 4.1 counts the
events of interest (e.g., false positives for fpr(Pl)) and divides it by the counts
of possibilities for false positives (i.e., ground-truth negatives for fpr(Pl)).

Finally, Step 5.1 substitutes the estimates of fpr(Pl) and Pr(dou(Pl) | gtf(Pl))
into Equation (11). Step 5.2 yields a numeric estimate of fnr(Mpr). We in-
vestigate the accuracy of such estimates in the next section.

To summarize, this section introduced three analyses of error rates. ECC
consists of two stages: symbolic manipulation (Steps 1–3) and numeric com-
putation (Step 5). NCC consists of three stages: symbolic manipulation
(Steps 1–3), estimation from data (Step 4), and numeric computation (Step
5). BBC consists only of one step — estimation from data.

ECC/NCC can take advantage of their modularity: (i) prior knowledge
about detectors can be used for accurate of (ii) that the symbolic manip-
ulation can be performed once per monitor and reused should the data or
numerical inputs change, (iii) labeled monitor traces are not required.

22



6 Evaluation: UUV Case Study

Our validation goals are four-fold; we evaluate (a) the accuracy of predictions
of monitor error rates by our approach (NCC) compared to the purely data-
driven approach (BBC), (b) the dependency of this accuracy on the amount
of provided data, (c) the sensitivity of our approach to the independence
assumptions, and (d) the computational costs of our approach. Note that in
(a), NCC is not intended to beat the accuracy of BBC because it is used on
different inputs in different circumstances; instead, NCC aims to achieve a
comparable accuracy without any traces (mgt ,mdo) from monitors.

At a high level, our evaluation goes as follows. First, we specify and im-
plement two monitors: Mpr in Equation (3) and Mrf defined below in Equa-
tion (13). Second, we collect multiple labeled traces (outputs and ground
truth) of each monitor and detector. Third, we produce three estimates of
an error rate of each monitor: ECC uses the error rates of the atomic detector
known-by-construction, NCC uses the labeled traces of the atomic detector,
and BBC uses the labeled traces of monitors.

To evaluate (a), we compare the residuals of NCC and BBC relative
to ECC, which in this case plays the role of the true monitor error rate.
To evaluate (b), we compare these residuals at different amounts of data
provided to NCC and BBC. To evaluate (c), we compare NCC and BBC
on traces with sensor noise that invalidate our independence assumption
in Equation (4). Finally, to evaluate (d), we measure the time it takes to
perform the five steps of NCC.

6.1 Data Collection

We based our evaluation on the DARPA Assured Autonomy case study
described in Section 2. Data was collected a ROS Gazebo UUV simula-
tor (https://github.com/uuvsimulator/uuv_simulator) customized with
underwater vehicle dynamics and pipeline generation. We executed 73 pipeline-
following missions, totalling 7.7 hours of simulation time (the data can be
found at https://github.com/bisc/prob-comp-asst). Each mission started
with the pipeline in view and terminated 30 seconds after the pipeline was no
longer visible (either due to a successful completion or getting lost). We kept
all the system design parameters (including the controller) fixed across all
missions, with the only variables being the random seed that determines the
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pipeline shape9 and the initial position relative to the first pipeline segment.
During each mission, the pipeline detector Pl provided a trace of binary

values, each indicating the presence of a pipeline in the UUV’s view at that
moment, at the rate of 1 Hz. Pr(dou) for Pl is set to 0 for simplicity. We
used two (mutually exclusive) types of noise in Pl: stateless and stateful.
The former has fixed fpr and fnr equal to 0.1 by construction, without any
dependency on the past noise (only on the current GT). The latter is state-
fully dependent on the past 5 detection results, varying with the noise weight
w ∈ [0, 1] from 0.1 at best to 0.5 at worst (a coin toss equivalent), simulating
the propensity of noise to persist over time: 10

fpr(t) = 0.1 + 0.4w ·
∑

i:1..5 1(DO t−i = T)

5
(12)

fnr(t) = 0.1 + 0.4w ·
∑

i:1..5 1(DO t−i = F)

5

We investigated two monitors, chosen for their different syntactic struc-
ture:

1. The pipeline recovery monitor Mpr, which has been described in Sec-
tion 2 and formalized in Equation (3):

Mpr := ¬¬¬¬s(¬¬¬¬wPl →→→→w ♦♦♦♦ [1,d]Pl).

2. A monitor Mrf for the “reliable following” detector ϕrf := ���� [0,d]Pl,
requiring that the pipeline is confidently perceived for d samples:

Mrf := ¬¬¬¬s���� [0,d]Pl. (13)

By feeding the ground-truth and noisy detector samples into each mon-
itor, we obtained the mgt and mdo traces respectively. Thus, for each of the
two composite detectors, each mission provided four binary-valued traces of
equal length: a ground truth/noisy pair of traces for the pipeline detection,
and a ground truth/noisy pair of traces for the monitor.

All experiments were run on a Lenovo X1 laptop with Ubuntu 18.04 LTS,
Intel Core i7-6600U CPU at 2.60GHz, 16 GB DDR3 RAM, and an internal
SATA SSD hard drive.

9The pipeline is always a non-circular and non-self-intersecting sequence of linear seg-
ments, and no segment connection angle is less than 90 degrees.

101(a) is an indicator function; it returns 1 if a = T and 0 otherwise.
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6.2 Variables and Sampling

We estimate one rate for each monitor: FNR for Mpr using Equation (11),
and FPR for Mrf using a formula derived in the supplement [21]. We chose
these specific rates because they have a larger range of values for different
d, from 0.2 to over 0.95. The other two rates — fpr(Mpr) and fnr(Mrf ) —
have low values, barely exceeding 0.01 at their highest.

Thus, our results have four independent variables: a chosen monitor, a
mission number, a deadline11, and a noise weight w. Our primary dependent
variables are ECC, NCC, and BBC. Given a monitor, ECC depends only on
d, whereas NCC and BBC depend on d and a subset of missions from which
the data is used. In all comparisons below, we always provided the same
subset of missions to both NCC and BBC.

Our secondary dependent variables are the errors between the estimates
and the amounts of information available in the traces. We use the root-mean-
squared error (RMSE) as a standard measure between real-valued point esti-
mates. For estimating FNR, the amount of information is determined by the
number of gtt events of the monitor: BBC considers the FNR a probability
parameter of a Binomial random variable, and each gtt is a sample of this
variable. Likewise, for estimating FPR, the information is measured by the
count of gtf events.

The evaluation (b) samples across all non-trivial subsets of our trace
dataset (sizes from 1 to 72) with replacement. We pick a fixed number (40)
of randomly (uniformly) chosen subsets for each size. In the analyses related
to RMSE, the averaging is done over fixed-sized bins for the amounts of
information (i.e., the counts of monitor gtt or gtf events). The only exception
to this sampling strategy is the first accuracy analysis, where we use our full
dataset for an estimate.

6.3 Results

Evaluation (a): Accuracy

We evaluated the accuracy of calculations for different values of deadline d
using the full dataset with stateless noise (w = 0). For both monitors the
differences between NCC, BBC, and ECC were small, with all three closely
tracing each other (see the supplement [21] for the figures). For FNR of Mpr,

11The “deadline” is the value of time bound d in both monitor definitions.
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the error of BBC increases slightly for d > 20. The RMSE of NCC (relative
to ECC) across all values of d ∈ [2, 30] is 0.015, and 0.013 for BBC (also
relative to ECC). While NCC has a larger error, it stays consistent across
all d values, whereas BBC accuracy varies because BBC needs data for each
value of d. For larger d > 20, fewer datapoints trigger the monitors ground-
truth alarm, making it harder for BBC to produce accurate estimates. For
the FPR of Mrf , the differences were negligible: the average absolute error
is on the order of 0.001 for both NCC and BBC.
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Figure 3: The log-RMSE of FNR predictions (d = 10) for Mpr, relative to
the amount of information.

Evaluation (b): Data Dependency

Here we analyze how estimate error changes relative to the amount of infor-
mation (keeping w = 0, d = 10 for illustration). Figure 3 shows the RMSE of
NCC and BBC for Mpr produced by sampling different data subsets. Each
point in the plot is produced by averaging the squared error for a 25-wide
bin12, and the minimum number of samples per bin is 37. This figure in-
dicates that NCC is more accurate than BBC for small amounts of data,
while BBC gets increasingly more accurate for larger amounts. Notice a

12Binned over the x-axis; each bin’s result is plotted at its lower bound.
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Figure 4: NCC and BBC for FNR of Mpr (d = 10) relative to weight w.
Baseline ECC is shown for w = 0, for context.

logarithmic scale: the small-data errors are orders of magnitude larger than
the large-data errors. The sudden drop of BBC is a sampling artifact: BBC
converges to the full-dataset estimate of FNR, which in this case happens to
be close to ECC. No such phenomenon was observed for Mrf : NCC is more
accurate for all data amounts, as shown in the supplement [21], confirming
that the BBC error is higher for larger deadlines.

Evaluation (c): Sensitivity to Independence Assumptions

In the previous two evaluations, the noise profile (w = 0) matched our in-
dependence assumption (Equation (4)). Here though, we intentionally set
w ∈ (0, 1] to disrupt this assumption and observe the effect on the NCC es-
timates. Figure 4 shows that for full-data estimates NCC and BBC increase
significantly for larger w. We do not have the ground-truth values for mon-
itor error rates for w > 0: a true Markov model for their calculation needs
the true detector event probabilities, which are simulated and not known
exactly. Therefore, ECC is only shown to illustrate the increase in the FNR.
NCC diverges from BBC by over 0.1 for w ≥ 0.9, over-estimating the FNR.
The supplement [21] shows an analogous picture for Mrf .
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Evaluation (d): Computational Costs

To measure the computation times of our approach, we consider its two
parts: formula manipulation (Steps 1, 2, 3, and 5)13 and estimation from
data (Step 4). The former is performed in ECC and NCC and has indistin-
guishable performance in both cases. The latter is performed in NCC (for
detector probabilities P̂r) and BBC (for monitor rate estimates êr).
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Figure 5: The dependency of computation times of two formula manipula-
tions and data estimation on the formula size.

The computation times for formula manipulation, shown in Figure 5, in-
crease with monitor formula size, linearly determined by parameter d. While
small formulas take fractions of a second, the magnitude of growth varies
with the formula and the rule list. The time to analyze fpr(Mrf ) never takes
longer than a second, exhibiting a slow and linear growth. On the other
hand, the analysis of fnr(Mpr) exhibits a polynomial growth in complexity
and takes close to 10 seconds for d = 30. We witnessed an exponential
complexity growth for some rule lists that introduce many probability terms
(e.g., by transforming disjunctions into sums of probabilities). The estima-
tion of rates for monitors and detectors alike does not depend on the formula

13Step 5 is virtually instantaneous and was timed together with the symbolic manipu-
lation steps (1, 2, and 3), which are computationally intensive.
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size and, for our dataset, takes approximately 1 second on average for one
detector/monitor.

6.4 Interpretation of Results

NCC and BBC estimates benefit differently from getting more data. How
useful extra data is depends on the probability of the GT events used in the
respective calculation. For estimating fnr(Mpr), NCC uses events gtf(Pl)
(to estimate fpr(Pl)), which are 1.58 times more likely than the gtt(Mpr)
events (for d = 10) used by BBC. Whereas for estimating fpr(Mrf ), NCC
uses events gtt(Pl) (to estimate fnr(Pl)), which are 2.02 times more likely
than the gtf(Mrf ) events (for d = 10) used by BBC. Thus, NCC for Mrf

gets a larger information advantage over BBC per trace, than in case of Mpr.
Absence of relevant ground-truth events puts BBC at a significant disad-

vantage. We notice that larger d for Mpr, but not Mrf . This is explained
by the reduced chance of pipe-loss events (gtt(Mpr)) as the definition of a
pipe loss is relaxed by increasing d. On the other hand, satisfaction events
for reliable-following (gtf(Mpr)) do not drop as drastically, since for most
of each trace, the UUV follows the pipeline successfully. As a result, NCC
performs better than BBC for d ≥ 15. We conclude that composite detectors
with infrequent violations would benefit from our approach for FNR estima-
tion, whereas those with infrequent satisfactions should use our approach for
FPR estimation.

The evaluation also highlights two benefits of compositions. First, the
events for atomic detectors are typically more prevalent than those for moni-
tors, making it easier to estimate and compose the error rates of detectors —
as opposed to observing rare monitored events. Second, NCC can reuse the
results of its steps. If the monitor formula changes, it can re-do the formula
manipulation and reuse the estimates P̂r. If the detectors or available data
change, NCC can re-do Steps 4 and 5 and reuse the outcomes of symbolic
manipulation for any value of d. In contrast, whenever the formula (e.g., the
value of d) changes, BBC needs new monitor traces and re-does the whole
analysis. These benefits have the potential to reduce the data collection bur-
den and speed up design space exploration: poor-quality monitors can be
eliminated from the design or used to justify hardware/software upgrades.
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6.5 Limitations

Our approach is indeed sensitive to the independence assumptions: the more
they are violated, the more we deviate from the data-driven estimates. How-
ever, for Mpr and Mrf , assuming independence of events that are in fact de-
pendent leads to upper-bounding the true error rate. This happens because
independent events lead to smaller probabilities in Equation (10) compared
to a stateful dependency. Hence, in this case, our estimates are conservative
upper bounds.

Therefore, one guideline is to carefully pick independence assumptions
by consulting the domain and system experts (by asking them about state-
ful/stateless events, causal relations, etc.). For example, we could handle
w > 0 in the noise model in Equation (12) by making Markovian assump-
tions on detector Pl such as DO t ⊥⊥ DO t−j | GT t,DO t−1 . . .DO t−5 for j > 5,
instead of Equation (4). This would change the FNR calculation, requiring
estimation of e.g. Pr

(
dof(Plt) | gtf(Plt), dof(Plt−1) . . . dof(Plt−5)

)
. Our

analysis procedure would remain the same.
Another way to handle independence assumptions is to validate them on

data, e.g., by informally comparing probabilities or doing chi-squared tests.
Any way of validating these assumptions would fit into our framework.

The produced error rate estimates are not invariant to some changes in
the system. Examples include changing the sampling rate and re-training the
perception. To update the estimates for new perception, data collection and
Step 4 of our analysis analysis need to be repeated. However, the Pl rate
estimates we produced would be invariant to deploying a higher-performance
controller, which may increase Pr(gtt(Pl)) but not change fpr(Pl). We plan
to investigate reusing part of the data and calculations for limited changes
in the system.

The relative errors of NCC and BBC will vary for other monitors and
systems. Simple monitors of low-variance systems may not benefit from
our approach. For complex systems though, our approach could avoid pro-
hibitively difficult testing of rare monitored conditions. Either way, we expect
our qualitative observations to still hold.
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7 Related Work

The existing work related to this paper can be grouped in two large categories:
(i) detection and monitoring of uncertain events and (ii) probabilistic and
logical reasoning.

7.1 Detection, Monitoring, and Error

Combination of detection algorithms is a well-explored technique in many ar-
eas, giving rise to a variety of relations between the objects of composition. In
perception, sensor fusion reconciles multiple uncertainties about an observed
phenomenon. Popular approaches, such as Kalman filtering and Bayesian
methods, link the inputs via process and measurement models [4], whereas
we do not rely on such models and therefore only require specific knowledge
about certain probabilities. In machine learning, ensemble methods such as
bagging, boosting, and stacking [22] aim to improve the learning performance
given multiple algorithms (e.g., for anomaly detection [3]). They aggregate
the outputs of learners in dynamic ways, such as voting on them or averaging
them. Our paper focuses on pre-specified logical/temporal relations between
the outputs of black-box detection algorithms.

Logically specified properties are often used for safety monitoring and
runtime verification in CPS. For STL, robustness [1, 10] takes a worst-case
view on error, measuring the maximum deviation to violate the property. We
focus on the average-case (probabilistic) error measures, such as false positive
and false negative rates [11]. Typically estimated directly from samples, such
measures do not necessarily transfer to the deployment environment. We
provide a more rigorous way to estimate error rates based on probabilistic
computations.

Monitoring of probabilistic logical properties addresses a different prob-
lem, but uses relevant techniques: it relies on the information from the ob-
served data to test whether a probability constraint holds. Approaches like
ProMo [12], PTPSC [25], and BaProMon [26] perform online checks of prob-
ability constraints via as statistical hypothesis tests. Similarly, statistical
approaches can estimate monitor error rates, although at design time: each
rate is modeled as a Bernoulli random variable, with its parameter estimated
from monitor traces. As we show in Section 6, the downside of this approach
is the need to observe and label potentially rare events for each monitor under
analysis, necessitating extensive data collection. In contrast, our approach
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uses atomic, more observable inputs.

7.2 Probability, Logic, and Inference

We distinguish two groups of combinations of formal logics and probabil-
ity theory [13]: those with probabilistic entailment (i.e., logics of probabil-
ity [23]), and those with probability operators (i.e., probabilistic logics [9]).
The former type of logics (e.g., Adams’s logic [2]) use the classic logical syn-
tax and perform uncertainty propagation, from the uncertainties of premises
to the uncertainty of the conclusion. These logics address a problem different
from ours: they manipulate uncertain knowledge about certain statements
(e.g., “the system is safe” has a 95% chance of being true), whereas our pa-
per manipulates certain statements about uncertain phenomena (e.g., “the
chance of false positive is 5%” is true).

The latter type of logics use probability operators over events; for ex-
ample, the Probabilistic Computation Tree Logic (PCTL) [14] can describe
probabilistic transition systems. A typical use of such logics is to model-
check a desired property on a known model, or develop a set of premises that
would prove or disprove the property deductively. Similarly to these logics,
we reason about probabilities of related events, but do not use explicit prob-
ability operators in our syntax. Further, our approach also does not require
models of systems dynamics or trustworthy premises that logically entail the
desired statement.

A notable recent probabilistic logic is the Chance Constrained Temporal
Logic (C2TL) [16], which turns constraints on probabilities of deterministic
predicates into optimization problems for controller synthesis. Similar to our
approach, C2TL probabilistically handles perception uncertainty of logically
related events. The key difference is that we solve a probability estimation
— not control — problem and thus rely on error rates of atomic detectors
instead of chance constraints and a plant model.

Logic-free probabilistic inference often uses graphical models, such as
Bayesian nets and Markov chains [18]. Usually approximate, this infer-
ence computes a probability query given a network fitted to the data. In-
stead of fitting a model, we discharge part of the problem by performing
exact symbolic transformations, which allows us to handle arbitrary logical
relationships. In the future, we hope to use graphical models to perform
(in)dependence calculations for our approach.
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8 Discussion

The reader may notice that the values of FPR and FNR described in the eval-
uation are unacceptably high for a safety-critical monitor: most of the time,
the Mpr would not detect that the UUV has lost the pipeline. This finding
came unexpectedly to the authors, and it illustrates the benefit of applying
our approach in early design stages. Two responses would reduce the moni-
tor’s error rates: significant improvements to the pipe detector (i.e., reducing
its FPR and FNR below 0.1) or re-defining the properties (e.g., the loss of
pipeline occurs if it was not visible for 2 out of 3 seconds). For instance,
if the pipe detector is improved such that fpr(Pl) = 0.01, then fnr(Mpr)
is lowered from 0.651 to 0.096 for d = 10.Similarly, setting fnr(Pl) = 0.01
reduces fpr(Mpr) from 0.686 to 0.105 for d = 10. This reduction indicates
that our estimation can inform impactful design choices.

We note a dual relationship between the modalities in detector formu-
las and the FNR/FPR computations. The detectors with the box modality
lead to straightforward computations of FNR (given standard independence
assumptions) and relatively large values for it, whereas the computations
for FPR rely on complex formulas and produce small values. For diamond
modalities, the situation is reversed: simple computations for large FPRs,
and complex computations for small FNRs. Formally, this is due to the con-
ditioning in the error rate definition — either on a conjunction (simple) or a
disjunction (complex).

8.1 Future Work

Several important research directions are opened by this paper. One such
direction is enhancing the framework outputs. First, one could improve ac-
curacy for limited data by moving from point estimates to interval estimates
with uncertainty. Also, the framework could explore the design space by
optimizing error rates over parameters in probability formulas.

Another direction is transitioning the analysis to run time. One could
continuously maintain the estimates of the analysis inputs and update the
error rate estimates as needed. Monitoring independence assumptions be-
tween detectors would be particularly useful to compensate for design-time
simplifications. Furthermore, our analysis could predict the probability of fu-
ture events (e.g., crashes) that are logically connected to the observed events.

Finally, one can envision a CPS design environment that iterates through
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sets of independence assumptions that would be sufficient to calculate a de-
sired rate given the known inputs. This environment would suggests alterna-
tive independence setups to the engineers along with the additional required
inputs (and their uncertainties), making the design choices more transparent
and automated.

8.2 Conclusion

This paper proposed a modeling and analysis framework for logical composi-
tions of detectors. The modeling part represents atomic detectors as compact
probability spaces and composes them with 3-value temporal-logic formulas.
The analysis part estimates the error rates of composite detectors by ma-
nipulating symbolic probability expressions, via independence inference and
estimation from data. Our evaluation on a pipeline detection case study
showed that our framework’s estimates are accurate within fractions of a
percent and comparable to purely data-based (non-compositional) estimates
on monitor traces.
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