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Abstract

Recent years saw an increasing proliferation of the use of digitally generated traces of data

for understanding human behaviour. The quantitative understanding of social networks as

well as patterns of human mobility benefited tremendously from these new sources of data.

The main dynamics of both social networks and human mobility such as a propensity of

humans for heterogeneous behaviour, how humans choose to explore new places, or the

fact that both spheres are intrinsically linked are now fairly well understood.

However, how various other factors mediate the observed dynamics is still relatively

unknown, not least due to the difficulty in obtaining adequate data. Thus, for my thesis

I focus on how a variety of factors—places, longer-term dynamics, the personality of

individuals, or neighbourhoods—might be a driver of various aspects of social and mobility

behaviour.

I used data from the Copenhagen network study that tracked 847 students with smart-

phones and measured their social encounters as well as the locations they visited for a

whole academic year. I further utilised a variety of methods for analysing the data ranging

from applied machine learning over inferential statistics to social network analysis. Using

this dataset, I found that the qualities of places were very informative for understanding

future encounters between students, that the longer-term dynamics shaped both social



and mobility behaviour, and that while personality had a significant effect on the observed

regularity of behaviour, its effect was rather small.
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“Begin at the beginning”, the King said gravely, “and go on till

you come to the end: then stop”

Lewis Carroll

1
Introduction

Every day countless people commute to work, go out to bars and restaurants in the

evening, visit and message their friends, and carry with them phones that can track their

movement and social interactions. Moving from A to B and socialising with others are so

ingrained into our lives that it stands to wager that most of us do not think twice about

the infrastructure that enables us to move about so freely, about the digital systems that

allow communication between far flung places almost instantaneously, and about the huge

amount of time we dedicate on grooming and maintaining social relationships. Humans

spend an inordinate amount travelling and socialising with others, and not without good
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reason: both social relationships and mobility are key aspects of human life.

1.1 A Short History of Social Network Analysis &
Mobility Studies

Social networks, with whom we form social ties, are central to who we are as humans.

Social relationships shaped the development of children (Cochran & Brassard, 1979), were

related to a variety of health outcomes (Perkins, Subramanian, & Christakis, 2015), and

potentially gave rise to our unusually large brains (Dunbar, 1993; Dunbar, 2009).

Given the salient role social ties play for humans, social network analysis became

a prolific field of study in recent decades. The modern field of social network analysis

consists of four defining axioms (Freeman, 2011):

1. the notion that ties between actors are salient,

2. collection of data related to links between actors,

3. a heavy reliance on graphs to study patterns, and

4. models to describe and explain the observed patterns.

It was not until the 1930s that researchers used all those four properties together and

thus the modern field of network analysis emerged (Freeman, 2011). In the 1970s social

network analysis eventually became widely recognised as an independent field of research.

(Freeman, 2011). According to Borgatti, Mehra, Brass, and Labianca (2009) among the

two most influential works in this period were: the work of Lorrain and White (1971)

on structural equivalence and Granovetter’s (1973) work on the strength of weak ties.

Lorrain and White (1971) were among the first to start to take network structure rather

than individuals into account. They proposed that nodes that were structurally equivalent
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(i.e. nodes that have exactly the same set of ties to others) occupy equivalent social

positions in the network and should thus be treated similarly. Their work proved highly

influential, even though in practice the criterion of identical sets of ties was soon relaxed

by other researchers (Freeman, 2011). Granovetter (1973) argued that in “strongly”

knit communities there was a high degree of transitivity between nodes; this being the

defining feature of a socially tightly integrated group. However, this could be detrimental

for spreading new information. The information circulating in a group was to some degree

redundant as almost everyone talked to everyone else. “Weak” ties to members outside of

the group on the other hand were by definition not well connected to the group itself. They

could thus act as bridges to other communities and access novel sources of information.

Slightly later Feld (1981) also published his influential work on the focused organization

of ties. He discovered that ties between individuals did not form randomly but were often

organised around external focal points such as sport clubs or shared workplaces.

In the late 1990s physicists started to publish studies on social networks and thereby

revolutionised the field (Borgatti et al., 2009; Freeman, 2011). Watts and Strogatz (1998)

wrote about the small-world property of social networks and showed that distances be-

tween nodes were significantly shorter than those expected by chance. Barabasi and

Albert (1999) analysed the degree distribution of nodes and found that they were heavily

skewed towards the nodes that already had the majority of ties. While Watts and Stro-

gatz (1998) and Barabasi and Albert (1999) were the first physicists to publish on social

networks, a deluge of publications by other physicists on social networks soon followed

(Freeman, 2011). While physicists often rediscovered findings of earlier social network

researchers such as the small world property of networks or the inequal distribution of

ties (Freeman, 2011), they also contributed to new findings such as that social gatherings

were composed of a stable core of members (Sekara et al., 2016) or that mobility patterns

and social behaviour were intrinsically linked (Alessandretti, 2018). As time went on the
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two communities, traditional social network researchers and physicists, seemed to have

found a common language and now formed a more coherent research field (Borgatti et al.,

2009; Freeman, 2011).

In the same vein that social ties are of utmost importance to humans, mobility or

the propensity of humans to travel from one place to another, is another key aspect of

everyday life, from hunter-gatherers (Kelly, 1983) to modern day commuters (Lima et al.,

2016). The amount of time spent on travelling stayed remarkably stable over human

history (Marchetti, 1994), which suggests that mobility is indeed an innate quality of

being human.

With a rapidly urbanising landscape in the later half of the 19th century came an

increasing interest to not only study life in cities (Simmel, 1969) but also the flows of

people (Greenwood & Hunt, 2003). While lifetime migration data were available as early

as the 1850s for the US and the UK (Greenwood & Hunt, 2003), arguably it took several

decades for the first quantitative study of migration (Ravenstein, 1885) to be published

in the 1880s. Beginning with the 1940s census data began to include information about

individuals’ prior residence and in 1960 the first study utilising microdata on migration

was conducted (Greenwood & Hunt, 2003).

It was, however, not until Torsten Hägerstraand’s seminal article “What about people

in regional science?” in 1970 that modern studies of human mobility emerged specifically

accounting for individual behaviour (Hägerstrand, 1970). Before then researchers studied

mobility mostly on an aggregate level and focused on the “modal man” and “modal

woman” (Hägerstrand, 1970) and applied aggregate level models such as the Gravity

Model (Greenwood & Hunt, 2003). Hägerstrand was one of the first to suggest that,

conversely, there were fundamental links between the micro-situation of the individual

and the aggregate outcome.

The approach became later to be known as “time-geography” or “time-space geogra-
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phy”. Time-geography in short provides a framework for the study of socio-environmental

mechanisms and how events occurred in both time and space (Ellegard & Svedin, 2012).

It built upon the insight that concurrently one needs a “way of finding out the workings

of large socio-environmental mechanisms” and that “the individual is indivisible” (Häger-

strand, 1970, p. 20f). At the behavioural level time geography was distinct in its attempt

to capture the movements and activity patterns of people instead of aggregates.

While in the 1980s time-geographic methods had fallen out of favour due to a lack of

tools and individual level data, in the 1990s new GIS-based research led to a resurgence

of the field (Neutens, Witlox, & Demaeyer, 2007). Eventually time-geography approaches

led to important contributions such as assessing accessibility on an individual level, new

models of travel behaviour, improved spatial decision making, and understanding network-

related travel possibilities (Neutens et al., 2007; Neutens, Schwanen, & Witlox, 2011).

It is noteworthy that around the same time Hägerstrand proposed his new frame-

work for understanding mobility, social network analysis gained traction as a research

field. Both approaches tried to understand complex phenomena from the bottom up. As

Alessandretti (2018) noted, Thomas Schelling developed one of the earliest agent-based

models (Schelling, 1971) around the same time as well. Schelling again studied how indi-

vidual actions can lead to emergent properties of the whole. In his example, he showed

how only a slight preference for similar neighbours could lead to segregated communities

over time.

The 1970s, thus, marked a shift from the study of aggregate statistics about human

behaviour to the quantitative study of individual human behaviour. Interestingly this epis-

temological shift coincided with the proliferation of computing power and the widespread

adoption of the micro-processor in the 1970s (Ceruzzi, 2003) as well as the beginnings

of the study of explicitly complex systems (Vemuri, 1978). Although, until very recently

the lack of suitable individual level data hampered development of both understanding
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individual mobility and social relationships on a quantitative level (Watts, 2007; Lazer,

Brewer, Christakis, Fowler, & King, 2009). After all both, social network analysis and

studies of human mobility, heavily depend on data about individual human behaviour.

1.2 Contribution & Chapters

Traditionally data about both social networks and human mobility was expensive to

collect and thus comparatively less well studied on a larger scale (Lazer et al., 2009).

However, as everyday behaviour became increasingly mediated by digital technologies,

humans left ever more digital traces of their behaviour behind. Consequently, both fields

have seen a torrent of new quantitative studies dealing with various aspects of both

social and mobility behaviour. For Chapter 2, I thus review the main strains of both

fields with an emphasis on studies using digital traces of behaviour. In general, the

main drivers and dynamics of both social networks and human mobility patterns are now

relatively well understood. Various studies (Alessandretti, 2018; De Domenico, Lima, &

Musolesi, 2013; Larsen, Urry, & Axhausen, 2006; Cho, Myers, & Leskovec, 2011; Scellato,

Noulas, & Mascolo, 2011) furthermore showed that both mobility behaviour and social

networks were intrinsically linked. What remains less well studied is how various other

factors might (or might not) shape both social as well as mobility behaviour. That is

not to say that other factors were completely disregarded by previous work. The most

obvious factors such as time, age, socio-economic status, gender, race, personality, etc.

and their effect on both social networks and mobility behaviour have indeed been studied

(Section 2.5). Nevertheless, a lack of suitable multi-dimensional data greatly hindered

the analysis of potential, other mediating factors such as the role of places for predicting

future encounters, how longer term dynamics shape the interplay between mobility and

social ties, and how personality traits shape regularities of behaviour.

6



Thus, for my thesis I aimed to evaluate light on how a variety of contextual and

mediating factors influenced observed patterns of social and mobility behaviour. Given

access to data collected via the Copenhagen Network Study (CNS), which I describe

in Chapter 3, I considered how the following various factors shaped social and mobility

behaviour and the relationships between the two, using a variety of methods ranging from

social network analysis over time series analysis to applied machine learning. I also briefly

review the methods and metrics that are common to several chapters in Chapter 3. The

three mediating factors that I researched for my thesis were:

First, I tried to understand the role of places for predicting future co-occurrences.

There is evidence that the type of places hold discriminatory power for predicting fu-

ture co-occurrences. However, current studies (Scellato, Noulas, & Mascolo, 2011; Yang,

Chawla, Basu, Prabhala, & La Porta, 2013; Sekara et al., 2016) failed to account for

potential confounding factors. In Chapter 4, I consequently analysed the role the type of

places play for predicting future encounters, while simultaneously accounting for social,

spatial, and temporal variables.

Second, aggregated measures of both social ties and mobility behaviour seemed to have

an influence on how much people travel and how much they socialise (Viry, Kaufmann, &

Widmer, 2009; Stanley et al., 2011). Nonetheless, the current literature focused mainly on

more traditionally acquired data and was ambiguous to whether more social ties increase

or actually decrease mobility. Hence, in Chapter 5, I analysed the interaction between

social and mobility behaviour at longer time-scales.

Third, while it was established that human behaviour with regards to both social ties

and travel is to a large extent regular (Clauset & Eagle, 2007; Song, Qu, Blumm, &

Barabasi, 2010), what effect personality might have on the regularity of behaviour was

largely unknown. In Chapter 6, I looked to what extent personality traits are a driver of

regularity of social and travel behaviour.
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In short, my contribution consisted of shedding light on the role various mediating

factors play for both social ties and patterns of human mobility such as place, long-term

temporal dynamics, and personality. Chapter 7 then summarises the findings and lays

out further avenues for research.
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There are two motives for reading a book; one, that you enjoy it;

the other, that you can boast about it.

Bertrand Russell

2
Literature review

As this thesis was very much situated at the intersection of human mobility and social

networks, I first give an overview of how digital traces of behaviour are re-shaping research

into human behaviour. I then briefly review the existing literature of both fields with a

particular focus on digital traces of human behaviour. As my research for this thesis

addressed how mediating and contextual factors shaped the observed dynamics, I also

briefly discuss previous studies dealing with various other factors and their effects on

behaviour.

9



2.1 Digital Traces of Behaviour

Recent years saw an increasing proliferation of the use of digitally generated data for

understanding human behaviour. The invention of the internet and the widespread adop-

tion of mobile devices created a platform to digitally capture most aspects of everyday life

with a high spatial and temporal resolution (Arribas-Bel, 2014). Digitally generated data

allowed the study of human behaviour in a variety of contexts on very different spatial

and temporal scales ranging from patterns of mobility and its predictability (De Domenico

et al., 2013; Eagle & Pentland, 2006; González, Hidalgo, & Barabási, 2008a; Sadilek &

Krumm, 2012; Schneider et al., 2013; Song, Qu, et al., 2010) over human behaviour in

economic arenas (Radicchi, Baronchelli, & Amaral, 2012; Preis, Moat, & Stanley, 2013)

to the analysis of political trends (Adamic & Glance, 2005; Carpenter, Esterling, & Lazer,

2004). Human mobility itself was governed by processes at various spatial scales ranging

from intra-urban (Noulas, Scellato, Lambiotte, Pontil, & Mascolo, 2012; Reades, Cal-

abrese, & Ratti, 2009; Wu, Zhi, Sui, & Liu, 2014), over inter-urban (Liu, Sui, Kang, &

Gao, 2014; De Montis, Barthelemy, Chessa, & Vespignani, 2007), and national (Brock-

mann, Hufnagel, & Geisel, 2006; Sobolevsky et al., 2014), to global (Barrat, Barthelemy,

Pastor-Satorras, & Vespignani, 2004; Balcan et al., 2009; Hawelka et al., 2014) dynamics.

Data for these studies was predominantly collected via online social networks, financial

transactions, GPS enabled devices, and mobile phones.

Furthermore, social relationships and interactions between humans were studied in a

variety of settings. Researchers used online social media (Grabowicz, Ramasco, Gonçalves,

& Egúıluz, 2014; Goncalves, Perra, & Vespignani, 2011; Takhteyev, Gruzd, & Wellman,

2012; Volkovich, Scellato, Laniado, Mascolo, & Kaltenbrunner, 2012), online commu-

nications (Burke & Kraut, 2014; Johansen, 2004; Kossinets & Watts, 2006), call data

records (Blondel, Decuyper, & Krings, 2015; Onnela et al., 2007) to study social networks

and the dynamics unfolding within them. Another strain of research utilised Bluetooth,
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WiFi and RFID enabled devices to study the proximity of individuals (Stopczynski et al.,

2014; Sekara et al., 2016; Clauset & Eagle, 2007; Eagle & Pentland, 2006) and their

face-to-face interactions (Isella et al., 2011; Cattuto et al., 2010; Starnini, Baronchelli, &

Pastor-Satorras, 2013; Zhang, Li, Xu, & Vasilakos, 2015).

The proliferation of digitally recorded interactions and behaviour was beginning to lift

the traditional constraints on research into individual human behaviour as each online

interaction and increasingly also our movements through space leave behind digital bread

crumbs of human behaviour. No longer were the only methods available to send out

surveys or to interview people. To generate data about social phenomena and behaviour

via surveys or observation was a rather costly and laborious process; moreover, studies

that relied on self-reports to, for example, study social ties or travel behaviour suffered

from cognitive bias, errors of perception and framing ambiguities (Marsden, 1990; Watts,

2007). As a result historically studies about individual human behaviour were relatively

small in terms of sample size (Lazer et al., 2009; Watts, 2007).

These new studies of behaviour improved our quantitative understanding of phenom-

ena that had previously often only been considered from a qualitative point of view

(Barabasi, 2005; Eagle & Pentland, 2009; Alessandretti, 2018; Williams, 2013). Thus,

they potentially bridged the gap between a very quantitative world-view and the social

sciences (Lazer et al., 2009); a development that had and still has tremendous implica-

tions for research concerned with the social world. Especially since more and more of

our communications and interactivity happen online or leave behind digital traces of be-

haviour. For example, the temples of consumerism, shopping malls and high-streets, were

increasingly faced with consumers, who ordered their goods online and as a consequence

become ever more often deserted (Zhang, Zhu, & Ye, 2016). Facebook’s dominance in

shaping our interactions online, led to calls to safeguard democratic elections from un-

due interference in how ideas and information were spread via the platform (D’Ancona,
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2018). Not only had smartphone usage become near ubiquitous in the Western world,

but nomophobia—smartphone addiction—was proposed to be included in the Diagnostic

and Statistical Manual of Mental Disorders (Bragazzi & Del Puente, 2014).

For the first time, one could begin to study interactions of a multitude of humans and

their movements through space at a resolution that was sensitive to individual level effects.

As a result a new type of science into human behaviour was emerging that leveraged the

capacity to collect and analyse data both at an unprecedented scale and scope (Lazer et

al., 2009). As data had unequivocally transformed fields such as biology and physics, the

emerging field of computational social science held the promise of potentially transforming

our understanding of our lives, organizations, and societies in a fashion that was barely

conceivable just a few years ago (Lazer et al., 2009). In this view Big Data might provide

a new lens with which to look at the social realm.

Yet, it was not the sheer size of those new data sources alone, that made it such a

valuable tool for researching human behaviour. Often sources of Big Data enabled re-

searchers to apply filters to find the salient pieces of information or to aggregate the data

into the right temporal or spatial resolution (González-Bailõn, 2013). They further en-

abled longitudinal research into patterns of behaviour and allow the capture the dynamics

of complex systems (Holme, 2015). Traditionally longitudinal data about social networks

and individual mobility was relatively scarce due to the required effort in collecting the

data (Xu et al., 2015; Zhao, Stehlé, Bianconi, & Barrat, 2011; Watts, 2007).

Additionally the deluge of digital traces of behaviour might lead to a dramatic change

regarding what it means to do research in the humanities and social sciences. Several

authors (Berry, 2011; Kitchin, 2013, 2014; Rabari & Storper, 2015) argued that digital

technologies and the increased availability of data were affecting both the epistemologies

as well as the ontologies of social scientific research. Many of the statistical techniques

currently in use in Geography were created in a context of relatively sparse datasets
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and new methods might be required for the analysis of spatial data (Arribas-Bel, 2014;

Kitchin, 2013). Furthermore, historically, the data used by social scientists was aggre-

gated into pre-determined categories such as “city”, “census tract”, “industry”, “age”,

“occupation”, and so on (Rabari & Storper, 2015). While those data categories were

built upon theoretical assumptions about the social world, they also hid a considerable

amount of heterogeneity (Rabari & Storper, 2015) Computer science, thus, could very

well start to play a foundational role for the humanities, “supporting and directing their

development and issuing lucid directives for their inquiry” (Berry, 2011, p. 9) by both

providing new detailed sources of data as well as new tools for analysing said data.

As data and computational models became more important for doing social scientific

research, the traditional social sciences could be losing their dominant position as gate-

keepers for understanding the social world (Savage & Burrows, 2007) and social scientists

might be cut off from doing potentially interesting studies altogether (Kitchin, 2013).

Big Data posed a fundamental challenge to the authority of the social sciences to define

knowledge about the social as “[i]t permits a dramatically increased range of other agents

to claim the social for their own” (Burrows & Savage, 2014, p. 5). This development

was particularly worrisome as corporations whose operations and customers generate a

lot of digital traces in the first place, became de facto gatekeepers of knowledge about

the social world (Lazer et al., 2009; Savage & Burrows, 2007). Not even democratic in-

stitutions could easily supervise who holds what data about whom. For example, the

House of Commons needed to resort to an archaic procedure to force a plaintiff in a US

american court case against Facebook to hand over documents that would have otherwise

been unavailable to parliament but deemed crucial for investigating Facebooks’s practices

(Cadwalladr, 2018). And as algorithms that used these data as input shaped ever more

aspects of our lives, closed off collections of data had implications on daily life not just

for the way social scientific research was conducted.
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Notwithstanding the challenges digital traces posed to social scientific research and to

society as a whole, studies using them clearly shed light on a variety of novel behavioural

insights. In particular, the area of human mobility as well as social networks saw a

plethora of studies using digital traces. The fields of mobility studies and social networks

were easily among the most prolific areas of study concerning individual human behaviour

using digital traces. Especially, data generated by mobile phones was shown to be useful

for both fields and allowed the study of the link between patterns of human mobility and

dynamic social networks. Recent examples include an upper limit to the predictability of

human mobility (Song, Qu, et al., 2010), evidence for a link between social ties and human

mobility (Alessandretti, Sapiezynski, Sekara, Lehmann, & Baronchelli, 2018), and how

relatively simple community structures seem to govern the evolution of networks (Sekara

et al., 2016).

2.2 Social Ties

While the power of a network approach lies in its ability to simplify complex systems

(Holme, 2015), acquiring data was historically a key limitation. Until relatively recently

collecting data about human networks was costly and prone to error (Watts, 2007). Not

least due to the difficulty of collecting data, the standard approach to analysing networks

was to treat associations between nodes as temporally invariant and permanent (Blonder,

Wey, Dornhaus, James, & Sih, 2012). Researchers shifted towards studying temporal dy-

namics of social networks only relatively recently (Blonder et al., 2012; Holme & Saramaki,

2012; Holme, 2015).

Consequently, studies utilising temporal data to study networks became more pop-

ular (for an overview see Holme and Saramaki (2012) and Holme (2015)); of particular

interest were how networks themselves evolved (Krings, Karsai, Bernhardsson, Blondel,
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& Saramäki, 2012; Kossinets & Watts, 2006, 2009; Kovanen, Karsai, Kaski, Kertesz, &

Saramaki, 2011) and how dynamic processes propagated through networks as connections

between individuals could serve to spread infectious diseases, ideas, information, and gos-

sip (Lima, 2016; Karsai, Iniguez, Kaski, & Kertész, 2014; Kramer, Guillory, & Hancock,

2014; Lu, Roberts, Lio, Dunbar, & Crowcroft, 2009; Meo, Ferrara, Fiumara, & Provetti,

2014; Iribarren & Moro, 2009; Tizzoni, Sun, Benusiglio, Karsai, & Perra, 2015; Holme &

Liljeros, 2014; Perra, Gonçalves, Pastor-Satorras, & Vespignani, 2012; Rocha & Blondel,

2013; Romero, Meeder, & Kleinberg, 2011; Williams & Musolesi, 2016). Furthermore, in

recent years studies of networks began to include several layers of analysis concurrently

(Boccaletti et al., 2014). Examples include the simultaneous analysis of calls, texts, and

physical interactions to account for different dynamics in other layers of the multiplex net-

work (Eagle & Pentland, 2006; Stopczynski et al., 2014) or the analysis of spatio-temporal

networks that considerd both space and time simultaneously (Williams & Musolesi, 2016).

The expansion in scope and complexity of the study of human social networks very

heavily relied on broader and more detailed sources of data. Typical sources of data

nowadays include call data records of mobile phone users (Karsai, Kaski, Barabasi, &

Kertesz, 2012; Kovanen, Kaski, Kertesz, & Saramaki, 2013; Miritello, Lara, Cebrian, &

Moro, 2013), emails (Bird, Gourley, Devanbu, Gertz, & Swaminathan, 2006; Holme &

Liljeros, 2014), online social networks (Kanai, Bahrami, Roylance, & Rees, 2011; Romero

et al., 2011; Nguyen & Szymanski, 2012; Takhteyev et al., 2012), and scientific studies

that track their users either via RFID badges (Cattuto et al., 2010) or mobile phones

(Eagle & Pentland, 2006; Stopczynski et al., 2014; Wang et al., 2017).

Using the above mentioned new sources of data several characteristic features of social

networks had either been identified in recent years or confirmed on a much larger scale.

In particular, I will briefly discuss the following nine characteristics:

1. the propensity of “heterogeneous” (i.e. diverse) activity in networks,
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2. differences in tie strength (most often between weak and strong ties and differences

in how individuals chose to maintain their ties),

3. preferential attachment of nodes to others that already have a high degree of con-

nections,

4. the tendency for friends-of-friends to become friends themselves,

5. the emergence of community structures in networks,

6. small-world properties of real life networks,

7. similarity of individuals that form ties, and

8. the bursty nature of temporal interactions in networks,

9. the regularity of social interactions.

For a graphical overview of how these concepts related to each other see Figure 2.1.

2.2.1 Heterogeneities

Observed social networks were characterised by a propensity of individuals for heteroge-

neous activity in the network (Barrat et al., 2004; Cattuto et al., 2010; Candia et al.,

2008; Ghoshal & Holme, 2006; Lima, 2016; Kim & Altmann, 2017; Karsai, Perra, &

Vespignani, 2014; Perra et al., 2012; Onnela et al., 2007; Starnini et al., 2013; Stehle

et al., 2011; Ubaldi et al., 2016), which significantly impacted social dynamics playing

out within the network (Min, Goh, & Vazquez, 2013; Rocha & Blondel, 2013). While

the behaviour of individuals itself was fairly static, the distribution of behaviour that

could be observed was rather wide; in other words more heterogeneous than one would

initially expect. The size of individuals’ networks differed considerably (Miritello et al.,

2013; Roberts, Dunbar, Pollet, & Kuppens, 2009), even though the overall size of an
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Social networks are characterised by Human mobility is characterised by

1) Heterogeneity of  travel behaviour

2) Community structure 
         (Sec. 2.2.5)

3) Small world properties (Sec. 2.2.6)

4) Distinct temporal patterns
    a) Burstiness (Sec. 2.2.8)
    b) Regularity (Sec. 2.2.9)

activity (Sec. 2.2.1)
tie strength (Sec. 2.2.2)
attachment (Sec. 2.2.3)

homophily (Sec. 2.2.7)

5) Interplay with human mobility (Sec. 2.4)

{
influences

gives rise to

triadic closure (Sec. 2.2.4)

1) Heterogeneity of 

2) Regularity

3) Interplay with social networks (Sec. 2.4)

4) Mediating and external factors (Sec. 2.5.2)

6) Mediating and external factors (Sec. 2.5.1)

are interlinked

Figure 2.1: Main Discussed Concepts and How They Are Related
The figure provides an overview of the main concepts discussed in this literature review. On

the left side are the main characteristics of social networks as discussed in this chapter; on the
right side, are the main features of human mobility as presented in this chapter. Note, that

several factors such as heterogeneity, regularity, interplay of social networks and mobility, and
the existence of mediating factors shaped both social networks and human mobility.
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individual’s social network seemed to be limited to around 150 (Dunbar, 1993; Hill &

Dunbar, 2003). Furthermore, individuals showed differences in the network structure

of their ego-network and the turnover of ties (Centellegher, Lopez, Saramaeki, & Lepri,

2017), where ego-networks are the subset of ties that are immediately adjacent to each

individual in the graph. In general, social relationships followed a skewed distributions (in

the case of social networks the right tail of the distribution was usually long and heavy)

and frequently a power-law, P (k) ∼ k−β, or exponential function, P (k) ∼ e−λk (Arn-

aboldi, Conti, Passarella, & Pezzoni, 2013; Song, Wang, & Barabasi, 2012; Hossmann,

Spyropoulos, & Legendre, 2011; Tizzoni et al., 2015), where the shape of the distribution

usually indicates an inequal distribution of ties.

It is noteworthy here that whether a distribution was scale-free or exponential with a

heavy-tail was an active debate (Stumpf & Porter, 2012). Stumpf and Porter (2012, p.

665) even went so far as to argue that “[m]ost reported power-laws lack statistical support

and mechanistic backing” and that the knowledge that the distribution was heavy tailed

was far more important than whether it follows a power-law or not.

These heterogeneities could partially be explained by various factors external to the

network itself. Gender (Dunbar & Spoors, 1995; Igarashi, Takai, & Yoshida, 2005),

age (Ajrouch, Blandon, & Antonucci, 2005; Sander, Schupp, & Richter, 2017; Wrzus,

Hänel, Wagner, & Neyer, 2013; Zhaoyang, Sliwinski, Martire, & Smyth, 2018), socio-

economic status (Ajrouch et al., 2005; Campbell, Marsden, & Hurlbert, 1986), physical

attractiveness or fitness (Ali, Amialchuk, & Rizzo, 2012; Reis, Nezlek, & Wheeler, 1980),

personality characteristics (Alessandretti, 2018; Kalish & Robins, 2006; Pollet, Roberts,

& Dunbar, 2011; Staiano et al., 2012; Lu et al., 2009) and the built-environment (Boessen,

Hipp, Butts, Nagle, & Smith, 2017; Xu, Belyi, Bojic, & Ratti, 2017) all influenced how

individuals socialised in networks. Moreover, there is evidence that personality traits (i.e.

fundamental traits) shaped how individuals formed ties (Wehrli, 2008) and exchanged
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alters in their network (Centellegher et al., 2017).

Notwithstanding the external factors, Ubaldi et al. (2016) suggested two main dynam-

ics that led to the observed heterogeneity: different levels of activity as well as a different

strategies for allocating resources.

Firstly, not everyone was equally socially active in a given network and participated at

a different rate (Cattuto et al., 2010; Iribarren & Moro, 2009; Perra et al., 2012; Muchnik

et al., 2013; Starnini et al., 2013; Ubaldi et al., 2016). As activity and degree distribution

of an individual were highly correlated (Muchnik et al., 2013) variations in activity resulted

in a diverse number of observed interactions. Furthermore, several analytical models were

proposed that linked the heterogeneity of activity to the heterogeneity of degrees (Perra

et al., 2012; Starnini et al., 2013; Moinet, Starnini, & Pastor-Satorras, 2015; Ubaldi et

al., 2016) and spreading processes (Iribarren & Moro, 2009; Tizzoni et al., 2015). This

finding held for a variety of different types of networks ranging from dating sites (Ghoshal

& Holme, 2006) over call data records (Onnela et al., 2007; Saramäki & Moro, 2015) to

face-to-face networks (Starnini et al., 2013).

Secondly, individuals varied in how they allocated their resources to form ties; in

general they had a choice of “bonding” within their group or ”bridging” communities

(Putnam, 2000). For Putnam (2000) the trade-off between inclusive and exclusive tie

formation was one of the most essential features of social life. Some might have favoured

re-visiting a limited number of ties frequently, thus bonding and strengthening the connec-

tion between them and the other person. Others might have chosen to explore a range of

weaker social contacts, potentially leading to more diverse but weaker ties (Granovetter,

1973; Levin & Cross, 2004; Putnam, 2000; Karsai, Perra, & Vespignani, 2014).
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2.2.2 Tie Strength

In general, the heterogeneity of tie strengths between nodes of a network is a typical

feature of human networks and especially the dichotomy between strong and weak ties

was a key ingredient of empirically observed social networks (Granovetter, 1973; Meo

et al., 2014; Karsai, Perra, & Vespignani, 2014; Kumpula, Onnela, Saramäki, Kaski,

& Kertész, 2007; Kumpula, Onnela, Saramäki, Kertész, & Kaski, 2009; Onnela et al.,

2007; Song et al., 2012). Among others, it could be found in networks in the workplace

(Gee, Jones, & Burke, 2017; Levin & Cross, 2004; Zenou, 2015), in online social networks

(Goncalves et al., 2011; Meo et al., 2014), in collaboration networks (Karsai, Iniguez,

et al., 2014; Newman, 2001), and communication networks (Ara & Van Alstyne, 2011;

Onnela et al., 2007; Saramäki & Moro, 2015).

The source of the observed heterogeneities in tie strengths could again be traced to a

trade off between competing factors and how individuals tried to resolve it. Social rela-

tionships generally imbued individuals with various advantages, while imposing a mainte-

nance cost (Takano & Fukuda, 2017). Moreover, there seemed to be an upper limit to the

overall complexity of social network individuals could maintain (Dunbar, 2009; Miritello

et al., 2013). In other words, there was an upper limit to the total number of ties and

the emotional intensity of each relationship they could maintain. Consequently, humans

needed to balance the following three competing objectives (Takano & Fukuda, 2017):

First, humans were unsurprisingly inherently social and had a need for close rela-

tionships. They further received various benefits from maintaining social ties. Previous

researched showed that social ties played an important role for mental health (Kawachi

& Berkman, 2001), physical well-being (Helliwell & Putnam, 2004) and even morbidity

(Holt-Lunstad, Smith, & Layton, 2010).

Second, it took effort to maintain social ties, which limited the capacity of an individual

to socialise (Dunbar, 1998). Especially, since the time costs of maintaining social ties were
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significant. In line with other primates, humans across various cultures spent about 20%

of their waking time on grooming relationships with others (Dunbar, 1998). And there

was a clear limit to how much time individuals could and were willing to invest in ties

(Saramaki et al., 2014). And the deeper the relationship the more time was needed to

maintain it. Not only was network size negatively related to emotional closeness of the ties

of an individuals (Roberts et al., 2009) but also contact frequency was linked to emotional

closeness (Hill & Dunbar, 2003). Takano and Fukuda (2017) found that the total number

of ties N was inversely proportional to the mean tie strength ma, where a > 1, which

indicated the higher cost of social grooming for stronger ties.

Third, maintaining social ties in a coherent group was a relatively expensive cognitive

task (Dunbar, 1993; Dunbar, 2009). The size and complexity of human social networks

correlated with various factors of mental aptitude such as memory and processing con-

straints (Powell, Lewis, Roberts, Garćıa-Fiñana, & Dunbar, 2012; Stiller & Dunbar, 2007).

Humans had thus also to make a trade-off between the cognitive costs of establishing new

ties and the benefits they might accrue from their network (Dunbar, 1993; Dunbar, 2009;

Powell et al., 2012; Stiller & Dunbar, 2007).

However, social networks were not static. Social networks, including tie strengths,

were changing to various degrees (Centellegher et al., 2017; Kossinets & Watts, 2006).

For example, Miritello et al. (2013), using call data records (CDR1), found that on av-

erage about 75% of links stayed active over a seven month period; a significantly larger

percentage than would be expected by chance alone. Arnaboldi et al. (2013) by using

Twitter data, found a much higher turnover rate of around 75% over just five months.

The different rates of turnover between Twitter and mobile phone based ties might also

be due to differences in tie strength itself.

1Phone companies record the calls and texts customers make within their network for billing purposes.
Those records usually included a time stamp and the location to which base station a phone was connected
(Lima et al., 2016).
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Interestingly, even though there was a significant turnover of ties, how humans balance

the competing interests off quantity and quality was highly unique and hardly varied with

respect to both time and changes in network composition (Saramaki et al., 2014). Some,

“social explorers”, allocated their efforts more uniformly, cast a wider net, and exhibited a

frequent turnover of ties (Centellegher et al., 2017; Miritello et al., 2013). Others, “social

keepers”, showed a high persistence in the ties they keep and a focus on their closest

relationships (Centellegher et al., 2017; Miritello et al., 2013).

This apparent trade-off between quantity and quality was also apparent in how in-

dividuals chose the medium for social grooming and in the resulting network structure;

higher grooming costs generally led to smaller but deeper networks (Takano & Fukuda,

2017). While using text communications via the internet, people developed rather wide

and shallow networks (Arnaboldi et al., 2013), whereas more elaborate forms of interac-

tions such as telephone calls and face-to-face were associated with stronger relationships

(Burke & Kraut, 2014). Unsurprisingly more costly forms of grooming such as face-to-

face interactions led to higher satisfaction than less intensive forms of grooming such as

texting (Vlahovic, Roberts, & Dunbar, 2012).

Different types of ties also played different roles for the network. While weak ties

appeared to be necessary to maintain a network’s structure and overall connectedness

(Kumpula et al., 2009), strong ties played a crucial role for maintaining local communities

(Onnela et al., 2007). Furthermore, weaker ties provided access to a wider range of

non-redundant information (Granovetter, 1973; Putnam, 2000; Meo et al., 2014; Levin

& Cross, 2004) and enabled a significant portion of salient discussions (Small, 2013).

By definition in tightly knit groups there was a high degree of transitivity and strong

ties hence may had a negative role for information spreading as strong ties constrain

information in clumps of strongly connected social groups (Karsai, Perra, & Vespignani,

2014).
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2.2.3 Preferential Attachment

Individuals, however, did not form new connections to alters randomly. The network

structure, or who was connected to whom, influenced how new ties were established. One

of the most well known and earliest proposed mechanisms was preferential attachment

(Barabasi & Albert, 1999; Jeong, Néda, & Barabási, 2003; Newman, 2001) and recent

research (Pham, Sheridan, & Shimodaira, 2015; House, Read, Danon, & Keeling, 2015;

Klimek & Thurner, 2013) further corroborated the process of preferential attachment.

Preferential attachment, in short, was the idea that the probability of a node to acquire

a new link scales with the degree of that node (Barabasi & Albert, 1999). In other

words, already popular nodes received more new ties than less popular ones as nodes

preferentially attach to those that were already well connected. It could explain the

observed scale-free or heavy tailed distributions observed in many networks (Pham et

al., 2015). While Barabasi (2012) argued that preferential attachment was one of the

most profuse concepts of network science and its impact was hard to miss, there was still

some debate whether preferential attachment applies to social networks as well (Newman,

2008).

Preferential attachment had important implications for inequality that might be ex-

acerbated by the network structure of unequally distributed connections. As social ties

had a bearing on labour markets (Calvo-Armegol & Jackson, 2004; Finneran & Kelly,

2003), income (Dawid & Gemkow, 2013), health (Perkins et al., 2015), and quality of

life (Cattell, 2001), an unequal distribution of ties could lead to unequal outcomes in a

variety of contexts.
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2.2.4 Closure

Yet, the process of preferential attachment alone was not sufficient to generate realistic

networks. In particular, networks generated with just preferential attachment as a gen-

erative principle were not very realistic. They exhibited a very low clustering coefficient

(Bianconi, Darst, Iacovacci, & Fortunato, 2014), a salient feature of real social networks

(Watts & Strogatz, 1998), and no community structure (Bianconi et al., 2014), where

communities are roughly defined as sub-graphs that have high internal density so that

between group connections are relatively sparse.

Clustering in real life networks implied a high proportion of loops of short length

(Newman, 2003). Triads, loops of length three, have been found to be especially prevalent

in social networks (Klimek & Thurner, 2013; Kumpula et al., 2007). The intuition is that

triads represent transitive relationships between nodes, or in other words friends-of-friends

are also friends. The idea that friends-of-friends are more likely to become friends (also

referred to as triadic closure or balanced triads) seemed to be a fundamental principle

of how social networks were organised and was a fairly well established process in social

networks (Bramoullé, Currarini, Jackson, Pin, & Rogers, 2012; Bianconi et al., 2014;

Laurent, Saramäki, & Karsai, 2015; Klimek & Thurner, 2013; Kossinets & Watts, 2006,

2009).

Triadic closure was, however, not the only empirically observed process that could give

rise to community structures in the network. Focal closure, by contrast, followed from

an alternative theory of tie formation, that of “social interaction foci” (Feld, 1981). The

idea was that an individual’s life was structured around foci, which were defined as so-

cial, psychological, legal, or physical entities around which joint activities were organised.

In essence, all the different groups, settings, institutions and places such as workplaces,

voluntary organizations, sport clubs, families, etc. around which social life was often

structured. These foci, that were external to the network itself, provided repeated oppor-
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tunities for ties to form between individuals (Kossinets & Watts, 2006, 2009) and shaped

the resulting network structure (Doreian & Conti, 2012). Foci as well as triadic clustering

could give rise to communities in networks (Feld, 1981).

Whereas triadic closure implied a local attachment bias for creating new links, focal

closure was external to the network and could thus be seen as attachment bias outside

the immediate neighbourhood of the node (Kumpula et al., 2007; Kumpula et al., 2009;

Laurent et al., 2015); notwithstanding the fact that triadic and focal closure could overlap

in real life social networks and potentially shape the evolution of networks concurrently

(Laurent et al., 2015; Kumpula et al., 2007; Kumpula et al., 2009).

2.2.5 Community Structure

As mentioned above social networks exhibited a pronounced community structure, which

not only shaped with whom individuals connected but also how dynamic processes spread

within real life social networks (Newman, 2003). In networks certain isomorphic sub-

graphs appeared more commonly than due to chance alone and were often referred to as

network motifs (Milo et al., 2002). Nonetheless, not all significant and recurring subgraphs

represented communities. The defining features of communities were that ties within the

group were highly transitive within the group but hardly with respect to the rest of the

network (Meo et al., 2014; Watts & Strogatz, 1998; Newman, 2001). Analogously in a

weighted social network the ties within a community were much stronger than globally

between individuals (Hossmann et al., 2011). Clustering was thus the result of nodes

organising into more or less distinct groups or communities, where communities varied in

size, connectedness, and distribution of tie strengths (Ravasz & Barabási, 2003; Hossmann

et al., 2011).

Those communities were themselves then in turn organised hierarchically (Clauset,

Moore, & Newman, 2008; Palla, Derényi, Farkas, & Vicsek, 2005; Ravasz & Barabási,
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2003). For example, it is easily imaginable that a community of students attending the

same class is embedded in community of a particular school which in itself is embedded

within the group of the wider university (Palla et al., 2005). Further complicating matters

was that individuals could and usually were part of several overlapping communities at

the same time (Palla et al., 2005). Most people were members of different groups centred

around various foci such as the workplace, school, and family.

And communities exhibited varying degrees of turn over. Smaller groups, correspond-

ing to stronger ties between their members, were usually fairly static (Palla, Barabási, &

Vicsek, 2007; Sekara et al., 2016), whereas bigger groups, such as institutions, showed a

relatively high rate of change (Palla et al., 2007). Sekara et al. (2016) showed that there

exists a remarkably stable core of group members for smaller groups. Those social cores

were in fact so stable and regular that they could be used to predict the arrival of missing

group members. In a sense, the core of these communities represented the various social

settings and foci each of us move through in our daily lives. Uncovering the communities

in social networks received considerable attention and a variety of algorithms was pro-

posed for both static and temporal networks (Girvan & Newman, 2002; Fortunato, 2010;

Fortunato & Hric, 2016; Scott & Carrington, 2011).

2.2.6 Small World

The community structure of networks gives rise to one of the most famous properties of

social networks, the small world property of networks (Milgram, 1967; Watts & Strogatz,

1998). Notwithstanding the fact that social networks were highly clustered, the average

path length between any two nodes was usually relatively short, at least it was much

shorter than for regular lattices (Milgram, 1967; Watts & Strogatz, 1998). Connections

between communities beyond the local neighbourhood of nodes dramatically decreased

the average path length (Watts & Strogatz, 1998). For example, it took a relatively
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short number of hops in a social network to connect two people from opposite sides of

a country (Milgram, 1967). Often small-word networks had a high degree of hubs that

were very well connected within the network (Karsai et al., 2011). While not all social

networks necessarily exhibited small world properties, they were relatively common for

social networks (Karsai et al., 2011; Hossmann et al., 2011).

2.2.7 Homophily

In general, homophily (also referred to as assortative mixing), is the tendency of individu-

als in networks to interact with others that were similar to them with respect to different

individual characteristics. It is fairly well documented phenomenon for social networks.

Both in the real world as in virtual communities variables along lines such as emotion,

gender, age, education, religion, proximity, network position, and physical characteristics

were linked to increased interaction and tie formation between individuals (Bollen, 2011;

Centola & van de Rijt, 2015; Huang, Shen, & Contractor, 2013; Holme, 2003; Marsden,

1988; Putzke, Gloor, Fischbach, & Schoder, 2010; McPherson, Smith-lovin, & Cook, 2001;

Skopek, Schulz, & Blossfeld, 2011). Homophily could even lead to positive network effects

for those that as a consequence of homophily were now better connected (DiMaggio &

Garip, 2011; Vigier, 2014)

Researchers identified several different mechanisms that could lead to the observed

homophily. Centola and van de Rijt (2015) proposed two individual level explanations

for why we observe homophily in social ties, choice homophily and social contagion. The

most obvious one is choice homophily, the propensity of individuals to preferentially form

connections to those that were similar to themselves (McPherson & Smith-Lovin, 1987).

The second individual level mechanism, social contagion, acts on the preferences of the

individuals themselves. Friends could influence the views and behaviours of their friends

(Bond et al., 2012; Christakis & Fowler, 2007; Centola & van de Rijt, 2015; McPherson
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& Smith-Lovin, 1987; Karsai, Iniguez, et al., 2014), where social influence could both act

at a global and local level (Pan, Hou, & Liu, 2017) and controversial ideas could have

unexpectedly large effects on adoption with repeated exposure (Romero et al., 2011).

While some innate characteristics could not be influenced by friends such as race and

gender, a wide array of other variables were susceptible to peer influence: ranging from

political views and partisanship (Bond et al., 2012; Campos, Heap, & de Leon, 2017;

Peng, Liu, Wu, & Liu, 2016) over emotions (Bollen, 2011; Kramer et al., 2014) to health

related behaviour such as smoking and obesity (Centola & van de Rijt, 2015; Christakis

& Fowler, 2007).

In addition, there were several structural mechanisms that might lead to homophily

even though individuals did not necessarily have a bias towards interacting with similar

others: induced homophily, triadic closure, and preferential attachment (Centola & van de

Rijt, 2015). Induced homophily occured when the groups and institutions, within which

individuals were embedded, were themselves homogeneous (McPherson & Smith-Lovin,

1987). Organizational and institutional sorting processes inherently limited the hetero-

geneity of others an individual was exposed to in settings like schools (Currarini, Jackson,

& Pin, 2010; Elman & O’Rand, 2007; Moody, 2001), in academia (Wang & Zhu, 2014), at

workplaces (Bertrand & Mullainathan, 2004; Feld, 1982; Ruef, Aldrich, & Carter, 2003)

and at voluntary organizations (McPherson & Smith-Lovin, 1987). Institutions were often

focal points for forming new ties (Feld, 1981) and repeated exposure to others increases

one’s opinion about them (Swap, 1977). Hence, homogeneous institutions inhibited tie

formation to heterogeneous others by excluding them a priori (Centola & van de Rijt,

2015). They then acted as an implicit filter of individuals into homogeneous groups along

race, gender, education, and other characteristics. In general, homogeneity within groups

and institutions played a significant role for determining overall homophily, even when the

individuals did not necessarily have a strong preference for homogeneous ties (McPherson
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& Smith-Lovin, 1987). For example, Asian students at American high schools did not

seem to have a strong preference for friends of the same race but were still highly racially

segregated with whom they interact (Currarini et al., 2010).

Furthermore, triadic closure, could also lead to homophilic outcomes without the

individuals necessarily seeking out similar others (Centola & van de Rijt, 2015; Kossinets

& Watts, 2009; Wimmer & Lewis, 2010). If A and B are friends and are similar to each

other and B and C are friends and similar to each other, then B and C are likely to

become friends as well and also be similar to each other without either B or C actively

seeking out a connection that is similar to them (Centola & van de Rijt, 2015).

Last, individuals in networks often had a preference to form ties to others they per-

ceived as desirable (Centola & van de Rijt, 2015). Examples include preferential attach-

ment to popular, fit or attractive nodes in the network (Ali et al., 2012; Barabasi, 2012;

Wang & Zhu, 2014). The less desirable nodes then were not only at a disadvantage from

forming new ties, because they were less popular (i.e. they had a lower probability of

being selected by chance simply because they were less popular; Barabasi, 2012) but also

because they were perceived as less desirable alters (Centola & van de Rijt, 2015). The

less desirable nodes in the network were then forced to form ties to each other as they were

effectively excluded from forming ties to the overall population (Centola & van de Rijt,

2015). As the less desirable nodes shared certain characteristics by their nature of being

less popular, this systematic exclusion could then re-enforce homophily in a variety of set-

tings ranging from health (Ali et al., 2012) over dating (Skopek et al., 2011) to scientific

collaboration (Wang & Zhu, 2014).

The above described processes, a tendency for individuals to select similar individuals

as friends, biased opportunities to meet new individuals, as well as social contagion could

act simultaneously. For example, (Kossinets & Watts, 2009) showed that the dynamic

interplay between choice and induced homophily could over generations amplify the bias
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for homophily. Although certain types of networks and settings might be more amenable

to certain types of biases (McPherson et al., 2001).

Homophily had a clear impact on the overall network structure leading to tighter

communities and an overall difference in the degree distribution of nodes. Bramoullé et al.

(2012) showed, theoretically, that homophily led to more integrated groups that shared

a common property than for groups that did not. The bigger the homophily bias the

bigger the effect was, no matter the group size. Furthermore, homophily could exacerbate

preferential attachment (Vigier, 2014) as those that already had a lot of connections were

further favoured by homophily as the nodes rich in ties became even richer (Kim &

Altmann, 2017). In particular, the overall degree distribution in a log-log plot changed

from concave to convex the greater the level of homophily (Kim & Altmann, 2017), where

a convex shape indicates a higher level of inequality.

2.2.8 Temporal Auto-Correlation of Behaviour

Another very common aspect of human interactions in networks was that the interactions

were not randomly distributed in time. If the frequency distribution of the time between

events were uniformly sampled, one would expect the resulting data to follow a poisson

process (Barabasi, 2005). However, human activities in networks were highly correlated

in time (Barabasi, 2005; Candia et al., 2008; Backlund, Saramaeki, & Pan, 2014; Goh

& Barabasi, 2008; Karsai et al., 2011; Karsai et al., 2012; Karsai, Perra, & Vespignani,

2014; Laurent et al., 2015; Moinet et al., 2015; Ubaldi et al., 2016) and usually were

heavy-tailed (Barabasi, 2005; Holme, 2003; Johansen, 2004).

In other words, interactions of humans in networks were not ahistoric but exhibited

patterns of a memory effect (Karsai et al., 2012; Karsai, Perra, & Vespignani, 2014)

and reinforcement processes (Zhao et al., 2011). Once an individual had interacted with

another there was then a higher chance that more interactions occurred in a relatively
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short period of time—“the memory effect” or burst. There was, however, some debate

about the exact strength of the memory effect in social networks (Goh & Barabasi, 2008).

Furthermore, past interactions increased the probability of future interactions—the re-

inforcement process—while the longer an individual went without interactions the lower

the probability of future interactions.

As Karsai et al. (2012) pointed out the observed bursty patterns of behaviour aligned

well with the Decision Field Theory of psychology (Busemeyer & Townsend, 1993), where

each decision is a threshold phenomenon and a stimulus needs to reach a certain level

to trigger the individual to choose an action from the large number of possible actions.

This makes sense as an interaction initiated by another person such as a phone call or

text messages acts as a trigger for a reciprocal interaction. As human social actions

were strongly reciprocal (Fehr, Fischbacher, & Gaechter, 2002) and friendships needed

regular investment in maintenance or otherwise they risked breaking down (Duck, 1999).

Unrequited social interactions potentially led to the end of the social relationship, thus

explaining the bursty pattern of observed interactions.

Furthermore, the non-Poissonian waiting times between events affected the dynamics

unfolding on the network. The burstiness of interactions slowed down dynamical processes

spreading via the network as the high variance increased the expected waiting times be-

tween events (Saramäki & Moro, 2015), even though initially heterogeneous contact pat-

terns could enable a relatively fast initial growth (Rocha, Liljeros, & Holme, 2011; Rocha

& Blondel, 2013). The slower rate of spreading then could also lead to longer prevalence

times of epidemics (Min et al., 2013). While burstiness generally hindered the dissemina-

tion of information at large scales by increasing the duration of the fastest temporal path

(Saramäki & Moro, 2015), if the networks were dense enough global information cascades

were still possible (Backlund et al., 2014). On a local level the community structure of

the network could lead to rapid dissemination of information even in bursty networks
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(Miritello, Moro, & Lara, 2011).

What was more, temporal patterns of interactions could also be found for neighbour-

hoods within networks, which to an extent reflected social behaviour in groups, and not

just dyads. At the smallest level one could find temporal correlations between interac-

tions to and from one individual’s acquaintances and between them (Karsai et al., 2011;

Miritello et al., 2011). However, temporal correlations existed for mesoscopic structures

as well.

Similarly to network motifs in static network, one may distil all observed configu-

rations of temporal subgraphs from a temporal network given a choice of time interval

(Kovanen et al., 2011). Temporal motifs were usually further restricted to the classes of

isomorphic valid subgraphs, where the isomorphism was taken to include the temporal

order of events (Kovanen et al., 2011). As a result, two temporal subgraphs were only

considered to be isomorphic if they were both topologically equivalent and the order of

their constituting events was identical. The most common temporal motifs involved only

two nodes (Kovanen et al., 2011) but even higher order motifs usually followed just one

temporal mesoscopic patterns (Kovanen et al., 2011; Kovanen et al., 2013; Zhang et al.,

2015). Those motifs themselves exhibited bursty temporal dynamics (Zhang et al., 2015),

indicating that even interactive group behaviour was bursty in nature.

Nodes in similar temporal motives furthermore tended to have similar properties—

temporal homophily—with respect to node attributes (age, gender) and links (intra- or

inter-communities) beyond that was predicted by the aggregate structure of the network

(Kovanen et al., 2013). There were gender related differences in communication motifs

as well and motifs within groups were more complicated than motifs between different

groups (Kovanen et al., 2013).
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2.2.9 Regularity

While temporal events in networks exhibited a bursty pattern, this did not mean the

absence of regularities. External cycles shaped the dynamics of interactions considerably

as Clauset and Eagle (2007) reported that topology of social networks evolved at a broad

range of time scales. Different calendar cycles were observable as periodicities in the time

series of the network. Daily as well as weekly rhythms in human behaviour could be

observed (Clauset & Eagle, 2007; Jo, Karsai, Kertesz, & Kaski, 2012; Krings et al., 2012;

Scellato, Musolesi, Mascolo, & Latora, 2010) as human behaviour was phase-locked to the

day night cycle (Saramäki & Moro, 2015) and human life was generally structured around

a seven day week. Underlining the importance of the home-work-home daily schedule,

social behaviour during the week was significantly more regular than on weekends (Sekara

et al., 2016)

2.3 Human Mobility

It was, however, not just social networks that had received high levels of academic atten-

tion. Ever since the seminal work of Hägerstrand (1970), how individuals moved around

space had been a core problem of understanding human behaviour. Traditional studies re-

lied heavily on self-reported travel behaviour in order to analyse people’s movements and

activities (Xu et al., 2015). Yet conducting such studies was costly as they included de-

tailed information not only about the respondents but also about the trips they undertook

(Xu et al., 2015).

Newer studies increasingly utilised digital traces of travel behaviour often leading to

better data quality (Wan et al., 2013). Among the new sources of data were mobile

and call data records (Becker et al., 2013; Barbosa, Lima-Neto, Evsukoff, and Menezes,

2015; Csaji et al., 2013; Krings, Calabrese, Ratti, and Blondel, 2009; Sevtsuk and Ratti,
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2010; Williams, Thomas, Dunbar, Eagle, and Dobra, 2014), online location based social

networks (Bapierre, Jesdabodi, & Groh, 2015; Cho et al., 2011; Cheng, Caverlee, Lee,

& Sui, 2011; Jurdak, Zhao, Liu, Jaoude, & Cameron, 2015; Noulas et al., 2012; Wu et

al., 2014), GPS traces of vehicles (Bazzani, Giorgini, Rambaldi, Gallotti, & Giovannini,

2010; Jiang, Yin, & Zhao, 2009; Krause & Zhang, 2018; Lima et al., 2016; Luo, Cao,

Mulligan, & Li, 2016), transportation cards (Hasan, Schneider, Ukkusuri, & González,

2013; Roth, Kang, Batty, & Barthélemy, 2011; Seaborn, Attanucci, & Wilson, 2009;

Sun, Axhausen, Lee, & Huang, 2013), digital monetary transaction (Lenormand et al.,

2015; Sobolevsky et al., 2014) and digital traces of individuals (Eagle & Pentland, 2006;

Stopczynski et al., 2014; Wang et al., 2017). Recent studies found two main characteristics

of human mobility behaviour: travel was characterised by heterogeneities in behaviour and

a surprising regularity as well as predictability of travel, which was not necessarily a new

finding. However, the scope and scale of studies using digital traces of mobility behaviour

was unprecedented allowing for a much better quantitative understanding of patterns of

human mobility.

For a graphical overview of the main concepts related to human mobility discussed in

this chapter see also Figure 2.1.

2.3.1 Heterogeneities

Similarly as in social networks human mobility was characterised by heterogeneities. In-

dividuals exhibited a broad spectrum of travel ranges (Alessandretti, 2018) and their

particular travel patterns were highly unique (De Montjoye, Hidalgo, Verleysen, & Blon-

del, 2013). Human mobility, as activity in social networks, was often heavy tailed and

indeed a wide variety of empirical studies found evidence supporting this using a variety

of data sources such as bank notes, CDR, and GPS traces (González et al., 2008a; Song,

Koren, Wang, & Barabasi, 2010; Rhee et al., 2011; Baronchelli, Ferrer-i-Cancho, Pastor-
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Satorras, Chater, & Christiansen, 2013; Lu, Wetter, Bharti, Tatem, & Bengtsson, 2013;

Wang et al., 2011; Wang, Han, & Wang, 2014; Zhao, Musolesi, Hui, Rao, & Tarkoma,

2015; Jurdak et al., 2015; Beiro, Panisson, Tizzoni, & Cattuto, 2016; Cheng et al., 2011;

Hawelka et al., 2014; Brockmann et al., 2006; Yan, Han, Wang, & Zhou, 2013).

The distribution of spatial displacements (i.e. offsets) of individuals 4r usually fol-

lowed a power-law, P (4r) ∼ 4r−β), while, especially at shorter distances, exponential

distributions, P (4r) ∼ e−λ4r, were also observed (Alessandretti, 2018). There is some

evidence that human mobility might follow other heavy tailed distributions such as a log-

normal distribution, P (4r) ∼ (1/4r) ∗ e−(log4r−µ)2/σ2(Alessandretti, 2018). For a com-

prehensive review of mobility models and the observed distributions, I refer the reader to

Alessandretti (2018).

Often the observed distribution could be described as a Levy flight as 1 < β ≤ 3

(Baronchelli et al., 2013; Rhee et al., 2011; Zhang et al., 2018), where a Levy walk is

a random walk, whose step lengths follow a heavy tailed distribution. Levy walks were

highly efficient for exploring unknown areas (Baronchelli et al., 2013). It is noteworthy

here that while human mobility was clearly not a random walk, it nevertheless often

shared a lot of statistical similarities with a Levy flight.

One possible reason for the observed variety in empirical distributions was the pos-

sibility that human mobility was inherently multi-modal (Seaborn et al., 2009; Jurdak

et al., 2015; Zhao et al., 2015; Yan et al., 2013). Jurdak et al. (2015) reported that the

distribution of 4r was best described as a mixture function differentiating between move-

ments within the same site, within the same city, and between different cities. Another

possible factor influencing the observed variety in distributions of 4r is the difference in

spatio-temporal resolution of the underlying data. Tuhin, Kevin, Nathaniel, Scott, and

Nazeem (2016) found that most common metrics of human mobility including 4r were

sensitive to the spatio-temporal resolution and direct comparisons of data with different
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resolutions might not be meaningful.

In general, however, all studies confirmed that 4r was skewed and the important take

away was that “[m]ost people go a short distance; few people go a long distance” (Stouffer,

1940). Even when varying the resolution of the data, 4r was found to be consistently

heavy tailed (Tuhin et al., 2016). As a result human mobility patterns overall were highly

heterogeneous and the tail of 4r for the individuals with the most displacements was

often “heavier” than for exponential distributions.

Fewer studies explored the distribution of 4t as sampling was often uneven (Alessan-

dretti, 2018). Often data sets only recorded the position or the movement of an individual

after a specific action by that individual. For example, on Foursquare, an online location

based social network, users needed to actively check-in at a venue for their location to be

recorded (Noulas et al., 2012). Call data records usually only indicated the location of a

user when a call was placed or a text sent (Lima et al., 2016). They most often did not

include the handshake data between the phone and cell phone tower. However, studies

that had access to more evenly sampled data confirmed that P (4t) was heavy tailed as

well (Song, Koren, et al., 2010; Schneider et al., 2013; Alessandretti, 2018; Bazzani et al.,

2010; Rhee et al., 2011; Wang et al., 2014).

There were several possible explanations for the observed heterogeneities proposed in

the literature:

– the distribution of anchor locations of individuals, that dominate individual travel

patterns,

– different transportation modes,

– the built environment,

– differences in how people allocate their resources when travelling, and

– mediating factors such as age or ethnicity.
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First, travel between the top n locations dominated the everyday mobility of most peo-

ple. Analogous to preferential attachment in social networks, humans showed a significant

propensity to return to locations frequently visited before, that meant the probability of

visiting a place in the future was directly related to how often an individual had visited

that place in the past (Jurdak et al., 2015; Song, Koren, et al., 2010). Consequently,

the majority of people frequently only visited six or fewer locations (Csaji et al., 2013;

Isaacman et al., 2011) and travelled between the top two locations for most people, was

the most significant observed travel behaviour (Pappalardo, Simini, et al., 2015; Xu et al.,

2015). Unsurprisingly those two anchor points of everyday mobility consisted for most

people of the work place and the home (Xu et al., 2015). As the most frequented loca-

tions formed areas that people only infrequently left (Bagrow & Lin, 2012), the mobility

between the top n locations was hence responsible for a salient part of the observed hetero-

geneities (Pappalardo, 2016). Compounding the effects of visiting frequent locations, was

the tendency of humans to prefer to revisit locations they had recently visited (Barbosa

et al., 2015).

In particular, as people tended to visit locations that were in the same spatial neigh-

bourhood, the locations visited by individuals tended to cluster in a small number of

mobility cores. This suggested two different modes of mobility for intra-urban displace-

ment (Jurdak et al., 2015). While inter-core mobility was strongly correlated with the

overall radius of gyration, once individuals were constrained to only intra-core mobility

their travel behaviour became much more homogeneous (Pappalardo, 2016), even if their

frequency of their trips might still be heterogeneous (Roth et al., 2011). In other words,

inter-core travel was responsible for much of the observed heterogeneities.

Second, another factor contributing to the observed heterogeneities in travel behaviour

is the different travel modes individuals employ. Zhao et al. (2015) found four distinct

transportation modes, such as walk/run, bike, train/subway, and car/taxi/bus. The dis-
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tribution of displacements of each mode separately could be well approximated by a

log-normal distribution. However, when taken together the four transportation modes

produced a characteristic power-law distribution of displacements (Zhao et al., 2015).

Third, travel behaviour showed different characteristics at different scales. Both intra-

urban travel (Noulas et al., 2012) and inter-urban travel (Liu et al., 2014) appeared to

not necessarily follow a power-law and seemed to be guided by the built environment

(Zignani, Papandrea, Gaito, Giordano, & Rossi, 2014). The variability in behaviour

could thus partly be explained by differences in the distribution of places in each city

(Noulas et al., 2012) and how the built environment shaped traffic behaviour (Jiang et al.,

2009) rather than differences in behaviour per se. Furthermore, the organization of space

itself could be an important reason for the observed heterogeneities as streets themselves

exhibited scaling behaviour (Huang, Zhu, Ye, Guo, & Wang, 2016). The most popular

roads saw a disproportionate amount of traffic as well as the 80% of roads were connected

below average whereas 20% were connected above average (Huang et al., 2016; Jiang,

2007; Jiang et al., 2009). Moreover, the origin/destination pairs of trips were unevenly

distributed in space, whereas 80% of locations were scattered but 20% of locations were

densely clustered. Jiang et al. (2009) showed that these two scaling properties of the built

environment could help explain scaling properties of human mobility.

What was more, the density of the urban environment might have been a decisive

factor in how travel distances were distributed within cities. As a result, travel time and

not spatial distance might be a more appropriate distance metric (Williams & Musolesi,

2016; Zignani et al., 2014; Phithakkitnukoon, Smoreda, & Olivier, 2012). For example,

people in New York travelled a significantly shorter distance on a given day than people

in LA (Becker et al., 2013), where New York was generally a much more dense urban

environment than LA. Similarly to earlier findings about migration (Stouffer, 1940) as the

number of intervening opportunities between possible destinations increased, the travelled
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distances of individuals decreased (Noulas et al., 2012). The probability of a transition

to a destination place was thus inversely proportional to the relative rank (i.e. how many

other places were closer than the destination) of it raised to a power α, where α varied

slightly from city to city (Noulas et al., 2012).

Fourth, people employed different strategies for allocating their resources. Some in-

dividuals chose to spend most of their time at just a relative low number of locations,

whereas others chose to distribute their time more broadly between their top n locations.

Individuals could be broadly categorised into two classes based on their travel behaviour:

“explorers” and “returners” (Pappalardo, Simini, et al., 2015). For “returners” the largest

part of their travel behaviour consisted of travel to the top n locations, whereas the travel

pattern of “explorers” was not dominated by travel to the top n locations. However as n

increased ever more “explorers” also turned into “returners” and at around n = 8 most

“explorers” became “returners” as well. This dynamic was similar to how individuals

chose to allocate resources in their social network, either investing heavily in just a few

connections or cultivating more but shallower social ties (Miritello et al., 2013).

Fifth, mediating factors such as age (Yuan, Zheng, & Xie, 2012), the built environment

(Clark, Scott, & Yiannakoulias, 2013), culture (Amini, Kung, Kang, Sobolevsky, & Ratti,

2014; Wu, Wang, & Dai, 2016), ethnicity (Silm & Ahas, 2014), income (Pappalardo,

Pedreschi, Smoreda, & Giannotti, 2015), season (Isaacman et al., 2011), weather (Clark

et al., 2013) and personality (Alessandretti, 2018) were also proposed to explain the

heterogeneities in observed travel behaviour.

2.3.2 Predictability & Regularity

The average, low cardinality of the set of visited locations was consistent with the overall

high predictability of location traces. Historical patterns of travel were highly informative

for predicting future travel; and the more historical data were available the better the
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prediction (Lu et al., 2013). Up to around 90% of an individual’s mobility was predictable

(Lu et al., 2013; Song, Qu, et al., 2010) and only 17 network motifs were sufficient to

describe 90% of all observed mobility for various different countries (Schneider et al.,

2013). Remarkably the predictability of mobility behaviour was fairly independent of the

distance an individual travelled on a regular basis (Song, Qu, et al., 2010).

Moreover, the regularity in observed travel behaviour held for different time scales.

Regularities existed both at the daily (Bagrow & Lin, 2012; Schneider et al., 2013; Sevtsuk

& Ratti, 2010), weekly (Cheng et al., 2011; Csaji et al., 2013; Sevtsuk & Ratti, 2010),

and aggregate level (Ahas, Aasa, Silm, & Tiru, 2010; Sevtsuk & Ratti, 2010). And while

individual travel routines were somewhat unstable in the long term, the tendency to

explore new locations decreased with the observed time (Schönfelder & Axhausen, 2003;

Song, Koren, et al., 2010).

Everyday human activity spaces were also usually spatially constrained around the

most important locations shrinking the space of probable next locations significantly.

Individuals hardly deviate from the confidence ellipsoid spanned by their most visited

locations (Cho et al., 2011; Schönfelder & Axhausen, 2003). Furthermore, when travelling

between locations individuals rarely travelled outside an ellipsoid with the origin and

destination as foci (Lima et al., 2016). In general, the space of actively visited locations

stayed fairly constant at around 25 locations as well as the distribution of how time was

allocated to different locations (Alessandretti et al., 2018).

In short, individuals usually did not select their next destination at random and their

movements were most often spatially confined. This greatly contributed to their observed

regularity as the possible space of likely next locations was relatively small compared to

an unbounded space of possibilities. Furthermore, this also allowed for the predictions

of mobility traces; sometimes far into the future. By extrapolating robust patterns of

mobility behaviour (Sadilek & Krumm, 2012), as the activity space of users only gradually
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evolved (Alessandretti et al., 2018), one could fairly accurately predict individual mobility

behaviour months or sometimes even years in advance.

Driving the regularities were several dynamics. Unsurprisingly, the commute between

work and home played an important role for a significant portion of the population as

both home and work were the two most common locations (Csaji et al., 2013; Ranjan,

Zang, Zhang, & Bolot, 2012). Indeed, several studies found peaks in the distribution of

travel behaviour and waiting times that corresponded to the typical workday schedule.

Periodicities that occurred at various frequencies correspond to a typical schedule on a

workday (Alessandretti, 2018). Peaks at around 4 hours, at around 8 hours, at around

12, and at around 24 hours mapped to part-time work, full-time employment, spend-

ing a day at home, and to daily routines respectively (Alessandretti, 2018; Hasan et al.,

2013; Schneider et al., 2013; Sun et al., 2013). Given the observed regularities of indi-

vidual patterns of mobility, unsurprisingly aggregate mobility patterns followed a similar

distribution with peaks at 8, 12, and 24 hour intervals (Sevtsuk & Ratti, 2010).

Another possible driver of travel regularity were meetings with pre-existing friends and

acquaintances (Cho et al., 2011). Social activities were after all responsible for a significant

portion of all trips by individuals (van den Berg, Arentze, & Timmermans, 2009; van den

Berg, Kemperman, & Timmermans, 2014). About half of all face-to-face interactions

happened outside the work or the home and thus required travel to other places (van

den Berg et al., 2014) While social interactions exhibited clear periodic patterns, it was

unclear from the existing literature how much exactly of the observed social regularity was

due to underlying periodic mobility behaviour and how much pre-existing social relations

shaped the regularity of travel behaviour.

Last, leisure activities might affect periodic travel patterns. While leisure travel was

arguably less stable than commuting to work, there still existed a high level of repetition

for leisure travel (Schlich, Schoenfelder, Axhausen, & Hanson, 2004); especially on a
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weekly level leisure travel might have significantly contributed to the periodicity of travel

behaviour.

2.4 Interplay of Social Ties & Human Mobility

As both social networks and mobility are key aspects of human life, unsurprisingly they

are not independent of each other. Social networks were embedded in geographic space

and travel behaviour was shaped by social networks. Around 80% of an individual’s trips

were within just 20km of a peer’s home location and this decreased to just 10km for dense,

urban areas (Phithakkitnukoon et al., 2012). Moreover, the size of a person’s geographic

activity space on the one hand and the amount of interactions and size of network on

the other hand were correlated (Alessandretti et al., 2018; Puura, Silm, & Ahas, 2017;

Scellato, Noulas, Lambiotte, & Mascolo, 2011; Berg, Arentze, & Timmermans, 2012;

Carrasco, Hogan, Wellman, & Miller, 2008; Yuan, Raubal, & Liu, 2012). Even in online

communities, physical distance between individuals was negatively associated with the

likelihood of a tie between them (Huang et al., 2013; Takhteyev et al., 2012).

Furthermore, people travelled to meet their social others leading to the observed pat-

tern of mobile homophily, where friends were having highly similar mobility behaviour.

The more similar two people’s trajectories were the higher the likelihood that they were

close in the social network (Bapierre et al., 2015; Toole et al., 2015). Not only were people

that call each other more likely to be co-located in space (Calabrese, Smoreda, Blondel,

& Ratti, 2011), but network proximity, friendship, and tie strength were all influenced by

distance and by the similarity of one’s trajectory (Cho et al., 2011; Grabowicz et al., 2014;

Shi, Wu, Chi, & Liu, 2016; Toole et al., 2015; Wang et al., 2011). And social ties and

mobility behaviour co-evolved over time (Dong, Lepri, & Pentland, 2011; Alessandretti,

2018).
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While the interplay between social networks and mobility was influenced by mediating

variables such as age, gender, and the built environment (Puura et al., 2017; Yuan,

Raubal, & Liu, 2012), the two main mechanisms that facilitated the connection between

social networks and human mobility were mobility shaping friendships and simultaneously

friendships shaping mobility.

On the one hand, face-to-face contact was still highly valued and essential for main-

taining social ties (Burke & Kraut, 2014; Larsen et al., 2006; Vlahovic et al., 2012). The

chance of interacting and meeting with others was highest for those physically close to

us (Preciado, Snijders, Burk, Stattin, & Kerr, 2012; van den Berg et al., 2009; van den

Berg et al., 2014). Recent advances in communication technologies seemed not to have

decreased the need for corporeal interactions (Mok, Wellman, & Carrasco, 2010). In

other words, our mobility shaped our social network. Spatial distance in general played

an important role for friendship formation, because individuals were more likely to form

ties with those who lived close by (Liben-Nowell, Novak, Kumar, Raghavan, & Tomkins,

2005; Preciado et al., 2012). The probability of being friends decreased dramatically with

distance; about two thirds of all friendships were contingent on geography (Liben-Nowell

et al., 2005), where medium to longer distances played a more discriminatory role for

friendships than short distances (Backstrom, Sun, & Marlow, 2010). Studies confirmed

this effect for CDR (Krings et al., 2009; Lambiotte et al., 2008), online social networks

(Liben-Nowell et al., 2005; Nguyen & Szymanski, 2012; Takhteyev et al., 2012; Volkovich

et al., 2012), and simulation studies (Shi et al., 2016).

However, in dense urban environments distance played less of a pronounced role. The

denser the urban environment was the shorter the average distance travelled due to social

ties were (Phithakkitnukoon et al., 2012). What was more salient in dense environments

were shared sets of locations as there usually existed a variety of destinations for each

travel need (Noulas et al., 2012; Shi et al., 2016; Toole et al., 2015; Wang, Kang, Betten-
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court, Liu, & Andris, 2015); especially locations other than the home or work place were

frequently associated with social interactions (Picornell et al., 2015). Consequently the

more similar users were with respect to their travel history, the more likely they were to

be friends and the stronger their connection (Toole et al., 2015). Shared locations most

likely increased the likelihood of “bumping” into each other and the opportunities pro-

vided by overlapping routines could then foster friendship formation (Verbrugge, 1977). It

is noteworthy to point out that co-occurrence alone did not automatically lead to friend-

ships. Individuals might co-occur many times but not become friends (Sun et al., 2013)

and co-occurrences might be more important for strengthening existing friendships than

forming new ones (Shi et al., 2016).

Distance further mediated how people maintained their social relationships and the

structure of their social network. The closer people were, the more likely they were to see

or contact each other (Carrasco, Miller, & Wellman, 2008; Mok et al., 2010), a fact that

was useful for predicting missing links and/or future interactions (Crandall et al., 2010;

Wang et al., 2011). Geographic closeness also increased the probability that users belonged

to the same tightly connected community (Volkovich et al., 2012) and the probability for

triadic closure decreased with distance (Lambiotte et al., 2008).

On the other hand, a considerable amount of a person’s mobility was motivated by

social ties; that was the social dimension was a key reason for travel (Belot & Ermisch,

2009; Carrasco, Miller, & Wellman, 2008; Cho et al., 2011; Larsen et al., 2006; Eagle &

Pentland, 2009; Nguyen & Szymanski, 2012). Once ties were established, spatial distance

played less of a pronounced role for maintaining friendships than for forming friendships

(Cho et al., 2011; Preciado et al., 2012). In fact, our social network actively altered our

mobility behaviour. People dedicated a significant amount of their mobility behaviour

to maintaining existing ties. Even long trips were not uncommon to meet existing ties

(Larsen et al., 2006). Roughly 15% to 30% of all trips could be attributed to meeting
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others (Cho et al., 2011; Grabowicz et al., 2014; Toole et al., 2015) and having close friends

living close by significantly reduces the observed travel distance (Belot & Ermisch, 2009).

Furthermore, a significant factor for intra-urban moves of households was proximity

to local ties, or in other words people moved to where there friends were already living

(Metcalf, 2013). As a salient part of human mobility was motivated by social interactions,

it was unsurprising that knowing the mobility patterns of your friends could improve the

predictions of where you will be next (Cho et al., 2011; Grabowicz et al., 2014; De

Domenico et al., 2013; Beiro et al., 2016). And distinct social groups exhibited distinct,

shared patterns of mobility (Eagle & Pentland, 2009); it seemed as if, social groups

imposed their own pattern of shared mobility onto their members.

2.5 Mediating Factors Shaping Mobility & Social
Ties

New sources of data enabled the study of human behaviour on a scale hitherto not imag-

inable. The statistical patterns of how individuals socialised and moved around space are

now fairly well established (Section 2.2 and 2.3). In short, humans were inherently social

beings that were faced with a trade off to balance limited resources and followed routines

operating on different time scales. Human mobility and social ties were also intrinsically

linked as social relationships determined a big part of human mobility and geographic

space shaped who becomes friends with whom.

What is more, human mobility and social behaviour were not a closed nor mono-causal

system. A variety of mediating and contextual factors could influence the observed out-

comes. I would like to point out that while for certain attributes such as age, gender

or attractiveness, there was a clear causal direction, for other variables such as economic

behaviour it was much harder to attribute a definitive causal direction. What is more,
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these mediating factors might interact and influence the observed behaviour simultane-

ously making it even harder to assign causality to observational data alone. Hence, it

is important to account for the “context”, ranging from the attributes of the individuals

to the environment they were in, within which we can observe both mobility and social

behaviour.

2.5.1 Social Networks

Studies found evidence for how gender, age, economic resources, attractiveness, personal-

ity, geography, the type of places individuals socialise, and temporal factors shaped social

networks.

Gender

Males and females tended to have different social network structures. Dunbar and Spoors

(1995) found that both genders had significantly more ties to the same gender than the

opposite gender, or in other words gender was a driver of homophily. In particular, women

had a larger amount of ties to female friends and relatives, whereas men had more ties to

male friends and kinship relationships play less of a role for them.

What was more, females tended to invest significantly more resources in their personal

networks both qualitatively and quantitatively. Females usually had not only larger per-

sonal networks (Moore, 1990) but formed larger groups within their networks (Igarashi

et al., 2005), interacted more with their alters in their networks, gave and received more

support through their network (Hays & Oxley, 1986), had more face-to-face contacts (van

den Berg et al., 2009), and used more media mediated messaging to groom their ties than

men (Igarashi et al., 2005).
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Age

Age was another mediating factor shaping an individual’s network. There is evidence

that with age the size of personal social networks and the frequency of interaction with

non-family members decreased (Carstensen, 1992; Wrzus et al., 2013; Miritello et al.,

2013; Sander et al., 2017; Shaw, Krause, Liang, & Bennett, 2007; Zhaoyang et al., 2018).

Moreover, personal networks tended to become older with age (Ajrouch et al., 2005). In

contrast, familial ties did not seem to be negatively influenced by age, even though familial

ties were usually geographically more spread out than friendships (Carrasco, Miller, &

Wellman, 2008). One group of researchers (Sander et al., 2017; Shaw et al., 2007; Wrzus

et al., 2013) found stable levels of interactions with family members, whereas Zhaoyang

et al. (2018) found increased levels of interactions. Interestingly life course events such

as moving residence and the birth of a child did not necessarily influence the life span

trajectory of contact frequency (Sander et al., 2017).

Economic Resources

Economic success and behaviour were also correlated with network structure. At the

individual level job opportunities were linked to the social network. Whom one knew

significantly altered salary negotiations (Seidel, Polzer, & Stewart, 2000) and changes in

CDR data could predict layoffs as well as who was affected by them (Toole et al., 2015).

Furthermore, economic inequality was mirrored in the network position of individuals

(Campbell et al., 1986; Decuyper et al., 2014; Yannick, Eric, Alvarez-Hamelin, Carlos,

& Karsai, 2016; Luo, Morone, Sarraute, Travizano, & Makse, 2017) and individuals in

professional occupation had less proximial personal networks (Ajrouch et al., 2005). On a

broader level, economic development of a region was linked to the amount and diversity of

communication ties of its inhabitants (Eagle, Macy, & Claxton, 2010; Mao, Shuai, Ahn,

& Bollen, 2015).
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Attractiveness

As humans preferentially formed ties to nodes they viewed as attractive, health, fitness

and attractiveness were also mediating factors shaping social networks. For example,

obese adolescents had fewer friends and were less well socially integrated (Ali et al., 2012)

and obese people were regularly mistreated by others (Carr, Jaffe, & Friedman, 2008).

Conversely, attractiveness was positively correlated with satisfaction with interactions

(Reis et al., 1980).

Personality

Personality traits were also shown to shape social network dynamics (Wehrli, 2008). Mon-

tjoye, Quoidbach, Robic, and Pentland (2013) found that openness was related to the

diversity with whom an individual calls and texts. Individuals that scored high on open-

ness also tended to have higher levels of network turnover and larger variations among

their peers (Centellegher et al., 2017). Extraversion was strongly linked to the number

of friendships, although extroverts were not necessarily emotionally closer to others in

their network (Kalish & Robins, 2006; Quercia, Bodaghi, & Crowcroft, 2012; Pollet et al.,

2011). Moreover, Selfhout et al. (2010) discovered that individuals that scored high on

agreeableness were more likely to be selected as friends by others. Personality also ap-

peared to be related to the network position individuals inhabit (Oliveira, 2011; Kalish

& Robins, 2006). Individuals, who felt vulnerable to external forces tended to favour

closed networks of weak connections, whereas individualists tended to seek stronger ties

to others that were themselves not connected (Kalish & Robins, 2006).
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Geography

Geography was a consequential factor for social networks as well. The spatial context,

within which social networks were embedded in, could significantly affect social networks

themselves (Adams, Faust, & Lovasi, 2012). Previous research suggested that spatial

factors such as population density, diversity of land uses, and design were important for

the number of an individual’s social ties and where they were located (Boessen et al.,

2017). Population density acted as an important driver of local network characteristics

and spatial heterogeneity, especially at smaller scales, was reflected in heterogeneous net-

work characteristics (Butts, Acton, Hipp, & Nagle, 2012). Similarly, Wang et al. (2015)

showed that dense downtown areas act as a hub for many heterogeneous social groups

and many high-degree individuals.

In addition, the distribution of POIs within an area played a role for the spatial dis-

tribution of ties (Xu et al., 2017). Commercial buildings, shopping malls, education, and

community centres were associated with an increased bonding potential for existing ties

(Xu et al., 2017). What is more, the characteristics of individual places seemed to influ-

ence social networks as well. The diversity of individuals visiting a certain location was a

strong indicator of potential future connections between individuals with less popular and

diverse locations being especially conducive to tie formation (Scellato, Noulas, & Mascolo,

2011). Categories of venues such as food, night life, and residence on Foursquare also had

a far greater probability for co-located individuals to be friends than all other categories

(Brown, Noulas, Mascolo, & Blondel, 2013). Overall this suggested that certain types of

places and areas played an important role for fostering social ties.

Temporal Factors

While the temporal evolution of social networks (for a review see Holme and Saramaki,

2012 and Holme, 2015) and other dynamics such as burstiness (Section 2.2.8) were ex-
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tensively studied there is also evidence that other temporal factors play a role for social

networks as well. For one, the size of an individual social network stayed remarkably

stable over time (Alessandretti, 2018) even though there was a constant change in net-

work composition (Centellegher et al., 2017; Miritello et al., 2013; Arnaboldi et al., 2013),

suggesting that while individuals adapted their networks over time they had a limited

capacity for the amount of social interactions (Dunbar, 1998). Furthermore, with whom

people socialised unsurprisingly changed over the course of the week (Sekara et al., 2016).

2.5.2 Mobility

Mobility was shaped by a similar set of mediating factors than social networks; in particu-

lar gender, age, socio-economic status, culture, ethnicity, the built environment, temporal

factors, personality all seemed to influence observed patterns of mobility.

Gender

Gender was a significant variable forming travel behaviour. Females were significantly less

likely to be multi modal (Dill et al., 2015) and poorer women faced significant barriers to

mobility (Salon & Gulyani, 2010). Interestingly the movement radius and the travelled

distances of females could be larger than (Yuan, Raubal, & Liu, 2012), smaller than

(Lenormand et al., 2015), or equal to (Kang et al., 2010) that of men. Notwithstanding

the contradictory results for travel radii, women generally encountered more fixed out-

of-home activities in their everyday lives irrespective of their employment status and

travelled further to work than men (Kwan, 2000).
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Age

In general mobility was heavily tied to the commute (Xu et al., 2015), and thus unsur-

prisingly, young employed, and active people were the most mobile group (Puura et al.,

2017; Yuan, Raubal, & Liu, 2012; Lenormand et al., 2015). Whereas for children and

teenagers as the grew older independent mobility increased (Fyhri, Hjorthol, Mackett,

Fotel, & Kyttä, 2011; Kang et al., 2010), the older adults became the less they travelled,

not only due to retirement but also to an increasing share of individuals with impairments

that make travel harder (Tacken, 1998).

Socio-Economic Status

There exists also a large body of literature linking socio-economic indicators and travel

behaviour. Socio-economic indicators of both individuals (Carrasco, Miller, & Wellman,

2008; Frias-Martinez & Virseda, 2012; Frias-Martinez, Soto, Virseda, & Frias-Martinez,

2013; Soto, Frias-Martinez, Virseda, & Frias-Martinez, 2011; Pappalardo, Pedreschi, et

al., 2015) and regions (Marchetti et al., 2015) were correlated to travel behaviour. In short,

the richer a person the further and more frequently they travelled (Etminani-Ghasrodashti

& Ardeshiri, 2015; Murakami & Jennifer, 1997; Prendergast & Williams, 1981). Available

income also shaped mode choices as poorer individuals walk much more frequently than

richer individuals (Klinger & Lanzendorf, 2016; Murakami & Jennifer, 1997).

Culture & Ethnicity

Another factor shaping mobility behaviour were cultural and ethnic differences. While

there was no clear consensus on how culture might shape mobility, what was clear was

that different cultural or ethnic groups had different patterns of mobility. For example

intra-tribal mobility was much more pronounced than inter-tribal mobility (Amini et al.,
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2014), the heterogeneities of mobility patterns in China could be explained by dialect

communities (Wu et al., 2016), Russian speakers in Estonia had significantly altered

travel patterns, especially with respect to longer distances, compared to the majority

population (Puura et al., 2017; Silm & Ahas, 2014), and race influenced travel behaviour

of individuals in Chicago (Luo et al., 2016). Cultural travel choices were, however, not

fixed but amenable by the local context an individual lived in (Klinger & Lanzendorf,

2016).

Built Environment

Unsurprisingly the built environment also shaped people’s mobility, but it was not just

density (Clark et al., 2013; Noulas et al., 2012) or the scaling properties of the street

network (Jiang et al., 2009) that affected travel behaviour. Density, diversity, and design

of the built environment were all found to have an impact on a person’s mobility. In a

meta-analysis, Ewing and Cervero (2010) found that the denser an area, the closer ameni-

ties, and the more mixed areas the more people walked. Denser and more diverse areas

also had a positive effect on transit usage. Conversely, less accessible neighbourhoods

with fewer transit stops and further away from the city centre were related to an increase

in automobile usage. However, Ewing and Cervero (2010) cautioned to take their findings

at face value due the often small sample sizes and the lack of control for attitudes and

residential preferences. Nevertheless, more methodologically sound research still corrobo-

rated the finding that denser and more mixed neighbourhood led to more walking and less

driving (Handy, Cao, & Mokhtarian, 2005; Hong, Shen, & Zhang, 2014). For an overview

of qualitative reviews I refer the reader to Ewing and Cervero (2001).

Furthermore, the type of places people visited and thus the purpose of a trip informed

behaviour as well. In fact, the observed mobility behaviour and the purpose of a trip

were so interwoven that passively collected trip data were often enough to successfully
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infer a trip’s purpose (Lu & Zhang, 2015). As trips to work places and homes were fairly

regular (Section 2.3.2), these trips were more predictable than trips undertaken to meet

with others or to go shopping (Krause & Zhang, 2018). As commuting was for most

people the dominant part of their everyday mobility (Xu et al., 2015), the home and work

locations were of particular importance for determining travel behaviour. Whereas other

frequently visited places that were not an individual’s home or work, were associated with

travel induced due to social ties (Picornell et al., 2015).

Temporal Factors

External rhythms such as the weekday/weekend schedule and business hours (Sec-

tion 2.3.2), seasonal changes (Isaacman et al., 2011), or travel around holidays (Wu

et al., 2016) also significantly impacted travel behaviour. People unsurprisingly travelled

less in colder months (Isaacman et al., 2011) as adverse weather had a negative impact

on travel (Clark et al., 2013).

Personality

Personality traits were also proposed to explain the heterogeneities in observed travel

behaviour (Alessandretti, 2018; Montjoye et al., 2013; Chorley, Whitaker, & Allen, 2015).

In particular, there is evidence that both openness to experience (Montjoye et al., 2013)

and conscientiousness (Chorley et al., 2015) were associated with a larger variety of visited

locations. Conversely, neurotic users appeared to visit significantly fewer locations (Noe,

Whitaker, Chorley, & Pollet, 2016).
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2.6 Summary

A burgeoning number of studies used new sources of digital traces of behaviour to look

at both social networks and mobility behaviour. They found that human behaviour was

characterised by a large degree of variety and shaped by various trade-offs humans have

to make between re-visiting previous locations and ties and exploring new places and

relationships (Section 2.2 and 2.3). Furthermore, there is clear evidence that a variety of

mediating and contextual factors played an important role for the observed dynamics for

both social networks and human mobility. Nevertheless, studies using digital traces of be-

haviour that looked at mediating factors were still relatively rare, at least compared to the

vast trove of studies that dealt with social network analysis or human mobility in general.

While the most obvious mediating factors such as age, gender, socio-economic status, race,

ethnicity, cultural background, and personality were researched (Section 2.5), relatively

little was known about how other factors influence the observed statistical patterns.

Several potential mediating factors are currently not well studied. A non-exhaustive

list of not well studied topics includes the role places play for future co-occurrences, how

longer term dynamics shape the interplay between mobility and social ties, how person-

ality traits shape the previously established regularities of behaviour in the social realm

and in geographic space, how neighbourhoods might facilitate certain kinds of social and

travel behaviour, how parenting styles predispose the trade-off between exploration and

exploitation strategies, how cliques and communities are both influenced by homophily,

social contagion as well spatial and temporal constraints simultaneously, and how mobile

homophily co-evolves and shapes the personal social network.

As discussed in Section 1.2, for this thesis I have decided to focus on the role of places

for future co-occurrences, how longer term dynamics affect the interplay between mobility

and social networks, how personality shapes regularity of spatial and social behaviour,

and what role neighbourhood effects play for digitally observed behaviour.
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Errors using inadequate data are much less than those using no

data at all.

Charles Babbage

3
Data & Methods

This chapter briefly reviews the data I used for my PhD thesis as well as several method-

ological concepts utilised throughout the thesis.
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3.1 Data

3.1.1 Description

The data I used for my thesis consisted of the dataset collected by the Copenhagen Net-

work Study (Stopczynski et al., 2014). The dataset tracked 847 students at the Danmarks

Tekniske Universitet (Technical University of Denmark, hereafter DTU) for a couple of

years using smartphones provided by the researchers. Around 22% of the students in the

study were female and around 78% male. The research subjects were typically between

19 and 21 years old.

The dataset contained call and text logs, GPS traces, scans of WiFi access points,

as well as scans of nearby Bluetooth devices of the students. The scale of the dataset

provided an unprecedented level of detail and at the same time breath of the daily life of

a cohort of students. For the first time a significant portion of participants’ “everyday”

peers was covered by a study.

While data were collected for 24 months from September 2013 to September 2015,

the study was initially designed to only collect data for one year. Consequently the first

academic year provided the highest sample rate of behaviour and I focused my analysis

on the first academic year. As can be seen in Figure 3.1 there was a noticeable drop off

in the amount of location as well Bluetooth traces collected after the first academic year.

Furthermore, additional information about the students was collected via question-

naire including the Big Five personality traits (Goldberg, John, Kaiser, Lanning, &

Peabody, 1990). The data collection was approved by Datatilsynet (the Danish Data

Protection Agency) and all participants provided informed consent to the data collection.

I would like to point out that the dataset had a clear bias as many other sources of

digital data about human behaviour (Arribas-Bel, 2014). First, the dataset was heavily

imbalanced with respect to both the socio-demographic variables age and gender as most
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Figure 3.1: Number of Observations

The figure shows the two-week moving average of the total number of observations for
the whole study period. There was a clear and pronounced drop off after the second term
of the first academic term in the number of observations for term three and four, which I
therefore excluded.
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participants in the CNS were male and between 19 and 21 years old. This bias clearly

limited my ability to accurately account for both the effects of age and gender within

the dataset (Section 2.5). Second, the dataset only included students at one particular

university, the DTU, in Copenhagen. Students in fact might have a very different social

and mobility behaviour than other social groups. Their day to day schedule is typically

organised around lectures on campus; arguably heavily influencing both with whom they

socialise and where they travel to. Thus, extrapolating my findings to a wider population

should either be only undertaken with caution or might very well not be possible at all.

However, the relatively unique background and life situation of the students on the other

hand provided a relatively large sample of relatively homogeneous individuals to study

the effects of various mediating factors.

3.1.2 Pre-Processing

I used the Bluetooth traces of the students to infer, which other students they encountered

over the course of the study. As I had the MAC addresses of each of the student’s

smartphones I could easily map the Bluetooth scans to individual students. However, I

could not reliably map the MAC address of other devices to individuals external to the

study, as I did not know what type of device the other addresses represents. Thus, I only

considered the Bluetooth data of the other participants of the study and further only

traces that had a signal strength of -80 dBm or stronger. Sekara and Lehmann (2014)

showed this to be a reliable cut-off value for close and unobstructed physical proximity

for this dataset.

For location traces I focused my analysis on stop locations and discarded any GPS

traces for which I detected movement (that included movement on buses or trains and with

bikes or cars). I further adopted the convention of (Cuttone, Lehmann, & Larsen, 2014)

that a user must spend at least ten minutes at a location to be a meaningful location. I
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also enhanced the spatial and temporal resolution and fidelity of my location traces by

adding information about a user’s proximity to geo-located WiFi hotspots as described

in in (Sapiezynski et al., 2015)1 and merged locations that were very close together via

DBSCAN (Pedregosa & Varoquaux, 2011) with ε = 5 and the minimum number of points

in a cluster set to five to avoid classifying noise as a shared location, and using the

Haversine distance (see Figure 3.2 for choosing an appropriate value of ε).

For chapter 6 I also used the social context a student resided in as a dependent variable.

Sekara et al. (2016) noted that there was a distinctive difference in how a certain set of

individuals participated in a physical gathering. The core individuals of a gathering

participated significantly longer in the gathering than other individuals. To derive the

social context a students was in, I first hierarchically clustered all physical encounters

between students to find all gatherings in the data. In a second step, I found the maximum

gap in the distribution of participation rates for each gathering. If the gap was significantly

larger, then I could expect to occur by chance, all individuals before the gap formed the

social core, or in my case the social context.

As the meetings of the core individuals were also fairly regular and consistent (Sekara

et al., 2016), they allowed me to label each gathering an individual is part of via its core

members. Thus, I could observe which social cores or groups a student encountered over

the course of the study. For the details of how I inferred the social cores, I refer the reader

to Sekara et al. (2016).

1I however only enhanced the data for Chapter 5 and 6 as the method was not published when
I worked on Chapter 4. As Chapter 4 deals with the comparative performance of different prediction
setups this should not affect the results.
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Figure 3.2: Distance to the Four Nearest Neighbours
I used the data for the first term to determine the appropriate value for DBSCAN. It is generally
recommended that ε is chosen where the above plot shows an “elbow” (Schubert, Sander, Ester,
Kriegel, & Xu, 2017). While the most suitable range for ε was between 5 and 15 meters, when
zooming in there was no clear “elbow” visible any more. As smaller values of ε are generally
preferable to larger ones (Schubert, Sander, Ester, Kriegel, & Xu, 2017), I thus decided to set ε
to five meters.
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3.2 Methods

I used a wide variety of methods ranging from applied machine learning over time series

analysis to local indicators of spatial association for each chapter. The relevant method-

ology was thus only discussed when needed in each chapter. However, several key metrics

were used in more than one chapter. I briefly review these in this chapter.

3.2.1 General

The Shannon entropy of a random variable X is defined as (Mezard & Montanari, 2009):

H(X) = −
N−1∑
i=0

pilog2pi (3.1)

where pi in my case is the empirical probability of observing state i of X. In case, I am

dealing with time series data, p(i) is the temporary uncorrelated probability that the time

series is in state i (Song, Qu, et al., 2010).

The important properties of H that make it useful as a measure of information content

are (Mezard & Montanari, 2009):

1. H(X) ≥ 0.

2. H(X) = 0 if and only if the random variable X is certain. This means that X only

has one state with probability one.

3. H(X) is maximum when all M events i of X are equi-probable with p(i) = 1/M .

The entropy is then H(X) = log2M .

4. If X and Y are two independent random variables, then H(X, Y ) = H(X) +H(Y ).

5. For any pair X, Y of random variables in general H(X, Y ) ≤ H(X) +H(Y ).
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6. Additivity for composite events. H(X, Y ) = H(Y ) +H(X|Y ) = H(X) +H(Y |X).

Intuitively, the Shannon entropy gives a measure for the uncertainty of a random

variable, or how much information one could learn by knowing the particular state of a

random variable. The larger the entropy the less information one has a priori about the

random variable (Property 2 and 3). Entropy, however, also lends itself as a measure

of the diversity of a discrete random variable. The higher the entropy the higher the

diversity; in other words the less certain one is about the state of a random variable a

priori the more diverse it is. For the rest of the thesis, I used entropy as a measure of

diversity of a discrete random variable, where I used the empirical probability distribution

to calculate H(X).

Directly related to H(X), is the concept of mutual information (I). At its core I(X, Y )

measures how much one random variable Y can tell us about another random variable X

(Latham & Roudi, 2009). Mutual information is defined as (Latham & Roudi, 2009):

I(X, Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (3.2)

where H(X|Y ) is the conditional entropy, that means the average uncertainty about X

after observing a second random variable Y (Latham & Roudi, 2009). Thus, I(X, Y ) is

the reduction of H(X) after observing Y , or how uncertain I am about X after knowing

the state of Y .

3.2.2 Social Network

Since its inception modern Social Network Analysis made heavy use of graphs to represent

ties between actors (Freeman, 2001). In this framework social relationships between

individuals are viewed as an edge in a graph G = (V,E), where V represents the set of

vertices or individuals and the set of edges E. For each pair of individuals u, v ∈ V the
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graph G has an edge e ∈ E if and only if one observes a relationship between u and

v. Analogously the connections can also be represented as an adjacency matrix, where

its elements are non-zero for each corresponding edge. For example, given the adjacency

matrix A the element Au,v represents the relationship between u, v.

In a time-invariant graph a common metric to measure the connectedness of vertices

is degree centrality defined as

CD = deg(v) = |Ev| (3.3)

where Ev is the set of all edges incident to v.

For my thesis I was however dealing with temporal data. This meant that instead of

having only one G, I had a time-ordered set of several G or one time-varying graph Gt.

A time-varying graph Gt = (Vt, Et) has a different set of vertices and edges at each time

point t. Alternatively Gt can be represented as a three dimensional tensor A, where Au,v,t

represents the relationship between u and v at t.

In a time-varying graph Gt, one can still calculate CD for each time slice

CDt = deg(vt) (3.4)

to derive a time series of CD and then analyse the time series.

However, CD does not account for the variety of social relationships an individual

might have. To account for the diversity of the set of peers of an individual, I calculated

H(φv), where φ are all observed relationships with alters for v over a set of time slices

{ti+1, ti+2, ..., ti+n}.
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3.2.3 Mobility

To assess the average travel distance of individuals I calculated the radius of gyration

(González, Hidalgo, & Barabási, 2008b). It is defined as follows:

rg(t) =
√√√√ 1
nc(t)

nc∑
i=1

(ri − rcm)2, (3.5)

where ri represents the i = 1, ..., nc(t) position on the Earth’s surface recorded for an

individual and rcm = 1/nc(t)
∑nc
i=1 ri is the centre of mass of that individual’s trajectory.

In other words the radius of gyration is the square root of the average squared distance

between each visited location and the centre of mass of a user’s trajectory, or the linear

size occupied by a user’s mobility pattern. The radius of gyration is conceptually very

similar to the standard deviation (Agresti & Barbara, 2009):

s =

√√√√ 1
N − 1

N∑
i=1

(xi − x̄)2 (3.6)

where {x1, x2, ..., xn} are the sampled values of a distribution. Intuitively both describe

the deviation of sampled values from a centre; the Radius of Gyration then indicates

how far an individual deviates from their centre of mass (i.e. they size of their typical

geographic activity space). Note that similarly to the sample mean the Radius of Gyration

does not take multi-modality of the data generating process into account.

However, the Radius of Gyration does not account for the diversity of the visited

locations. I again calculated H(ρv) where ρv is the set of all visited locations of the

individual v for a given time period to account for the variety of locations.
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’Somewhere’ is always critically tied to the ’somewhere’ of a mo-

ment earlier.

Torsten Hägerstrand

4
Predicting Future Co-occurrences

4.1 Introduction

Few would doubt that space, time and the social realm are intrinsically linked. Geography

has always been interested in the role spatial, temporal, and social factors play in shaping

human behaviour. However, it can be rather difficult to separate the effect an individual

factor has on human behaviour from other dynamics. After all, human behaviour is

inherently interwoven with space and time. As Hägerstrand (1970, p. 10) emblematically

stated “’somewhere’ is always critically tied to the ’somewhere’ of a moment earlier”.
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Several studies tried to disentangle space, time, and social factors in recent years.

Backstrom et al. (2010) showed that the probability of friendship between people de-

creases with distance. Scellato, Noulas, Lambiotte, and Mascolo (2011) studied the prop-

erties of location-based social networks and found that about 40 percent of all links in

location-based social networks were shorter than 100km. Lambiotte et al. (2008) con-

cluded that the likelihood of a tie in a mobile communications network followed a gravity

model (i.e. the likelihood of a tie between two users decreased exponentially with dis-

tance). Toole et al. (2015) employed the coupling of social ties and mobility behaviour

to build a mobility model that included choices based on social contacts. They showed

that the ratio of acquaintances, co-workers, and friends/family in a person’s ego network

shaped their mobility behaviour. Studying the mobility patterns and virtual interactions

of people, Larsen et al. (2006) argued that nearby strong ties were crucial for a individ-

ual’s network as they found that phone calls, texting, and face-to-face meetings became

less regular with distance.

Recently researchers also called attention to how space itself could influence personal

relationships (Adams et al., 2012). Boessen et al. (2017) discovered that the built environ-

ment had a significant effect on how people socialised. They highlighted the potential role

the built environment could have for fostering the formation of social ties. Both Doreian

and Conti (2012) and Butts et al. (2012) showed that the structure of social networks

could be partly explained by spatial factors.

Noulas, Shaw, Lambiotte, and Mascolo (2015) and Scellato, Noulas, and Mascolo

(2011) both utilised the social and spatial properties of location-based social networks to

propose a link-prediction model. Brown et al. (2013) developed a model for the evolution

of city-wide location-based social networks, which demonstrated that friends tended to

meet at specific—more “social”—places. De Domenico et al. (2013) used the mobility

data of friends to improve user movement prediction. Last, Cho et al. (2011) built a
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mobility model incorporating both periodic movement of individuals as well as corporeal

travel induced by social ties.

An extensive amount of research has already been conducted on the interplay between

the social realm, place, and time. However, studies so far were either limited to a very

specific type of network or did not jointly deal with all three factors. On the one hand,

several studies that accounted for spatial and temporal features focused on a narrow set of

social interactions such as online social networks or encounters in face-to-face networks.

One group of research projects studied very topical online social networks such as the

Foursquare network (Scellato, Noulas, & Mascolo, 2011) or the Flickr network (Crandall

et al., 2010), while another group focused on studies of face-to-face encounters solely in

highly structured and defined settings such as a museum, a conference, or a primary

school (Isella et al., 2011; Stehle et al., 2011; Zhao et al., 2011). Whereas Noulas et al.

(2015) analysed spatial, temporal, and social features but focused on networks of places

instead of individuals.

On the other hand, studies that analysed more broadly defined social networks did not

assess spatial and temporal features at the same time. Although Yang et al. (2013) used

information about when and in which network configuration people have met as features

for their link-prediction algorithm, they did not incorporate spatial features. Sekara et

al. (2016) utilised the regularity of social group structures to predict missing members

of the group. However, place did not play a role in their subsequent prediction task.

While Wang et al. (2011) successfully employed the similarity of trajectories of users for

predicting phone calls between users, they did not take any other temporal or spatial

features into account.

In short, I believed that a joint assessment of spatial, temporal, and social features is

crucial for understanding the true dynamics behind social encounters as human interac-

tions might be spatially, temporally, and/or socially confounded with each other.
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Consequently, my contribution consisted of three parts:

1. ascertaining whether geographic places themselves hold discriminatory power,

2. assessing the “simultaneous” predictive information of geographic,temporal, and

social features for a changing network of encounters, and

3. understanding if different types of social encounters networks influence the overall

predictability.

Overall, I tried to better understand what factors drive the evolution of a human social

encounter network, and how I could use salient features for predicting future encounters.

4.2 Problem Definition

A common way of dealing with social relations within populations is to view social ties—in

my case social encounters—as edges (hereafter also links and ties) in a graph. Concep-

tualising social relations as edges in a graph had the advantage that analysing social

relations as graphs was fairly well studied problem and allowed me to rely on state-of-the-

art methods for predicting future encounters (Peng, Baowen, Yurong, & Xiaoyu, 2015).

Furthermore, viewing the problem as a time-varying graph enabled me to account for

social network dynamics. In particular, I phrased the problem of predicting an encounter

as a link prediction problem in a time-varying graph Gt that represents encounters.

4.2.1 Encounter

For my study I defined an encounter as physical proximity as measured by a smartphone

via a Bluetooth measurement. I used a Bluetooth signal of -80 dBm or stronger to

indicate encounters as Sekara and Lehmann (2014) showed this to be a reliable cut-off
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value for close and unobstructed physical proximity for this dataset. Given that I was

only interested in time spent at stop locations, this meant an encounter in my study

represented either the physical co-location of two students in the same room or in close

proximity outdoors. Sekara et al. (2016) used this definition of face-to-face encounter to

study the evolution and structure of dynamic social networks.

However, I was not interested in predicting short encounters that are only due to

chance but rather in more meaningful, longer encounters. Thus, I adopted the convention

of the Rochester Interaction Record (RIR) for meaningful encounters, where they were

defined to last at least ten minutes (Reis & Wheeler, 1991).

4.2.2 Social Encounter Graph

To construct the time-varying, undirected social encounter graph Gt = (Vt, Et), where V t

are the set of students at t and E t the set of all meaningful encounters between them, I first

discretised my data into intervals of 30 minutes. I chose an interval of 30 minutes to be

able to account for the irregularity of the Bluetooth measurements and still be able to find

meaningful encounters between students. In case, a meaningful encounter of at least ten

minutes was not represented in the resulting graph due how I discretised the time steps,

I assigned it to the period t with which it had the biggest overlap; I broke ties between

intervals randomly. As the majority of interactions in the dataset were either shorter than

ten minutes or significantly longer than ten minutes, this did not significantly alter the

resulting graph (Figure 4.1). To summarise, any edge e ∈ Gt represents a meaningful

encounter between students that was at least ten minutes long as observed by at least

one student.
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Figure 4.1: Distribution of the Encounter Lengths Between Students
The figure shows the distribution of inferred lengths of for the shortest 90% of encounters in

seconds Note that most encounters were either shorter than 10 minutes or considerably longer
and that the distribution was heavily skewed with a heavy tail.
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4.2.3 Link Prediction

As I conceptualised social encounters as edges in a graph, the problem of predicting

future encounters between any two students became equivalent to predicting whether an

edge between nodes in the graph exists. More formally, in a human encounter network

Gt, the link prediction task is to predict whether e at time t + n exists for the vertices

u, v ∈ Vt. Effectively, I was trying to predict who will meet whom for ten minutes or

more during period t+ n. This is equivalent to predicting all the new ties that form, the

ties that do not change, and all the ties that will dissolve from time period to the next,

or in other words predicting the network structure of Gt+n. Formulating the problem

this way had the advantage of including link dissolution—a not well studied problem in

link-prediction (Peng et al., 2015)—quite naturally in the problem definition.

4.3 Predicting Future Encounters

After defining my problem in the previous section, I specify how I implement my approach

for predicting links between nodes. In particular, I describe which algorithm I used for

prediction, which features I used for predicting future encounters, and how I built my

models.

4.3.1 Random Forests

Random forests consistently performed well in link-prediction tasks (Peng et al., 2015).

I thus opted to use them for my prediction task as well (Pedregosa & Varoquaux, 2011).

At its core, random forests are an ensemble learning algorithm for classification built

upon decision trees. However, decision tress are sensitive to initial conditions (Altmann,

Tol Si, Sander, & Lengauer, 2010) and can easily over-fit the data (Ho, 2002). To deal
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with these problems Breiman (2001) proposed to use a set of decision trees. He defined

a random forest as a classifier that consists of a collection of tree-structured classifiers

{h(x,Θk), k = 1, ...}, where {Θk} are independent identically distributed random vectors

and each tree casts a vote for the most popular class at input x. To protect against over

fitting each split of a decision tree only considers a random subset of all features.

Recall that I was trying to predict future social encounters between u, v ∈ Vt. Thus,

for each individual u, I trained a separate random forest classifier R. R can be understood

to be a mapping from my input space (the features I used for prediction) to the output

space (encounters of students at Gt+n). Thus, each R tried to learn for each user u their

individual function of whether u and v would encounter each other in the next time

period. Conditional probabilities can be estimated by simply counting the fraction of

trees in the forest that vote for a certain class, which usually delivers good probability

estimates (Olson & Wyner, 2018). The probability of an edge e between u and v could

then be seen as the average fraction of trees that voted for e between u and v. Note as

each user u had its own R the estimated probability of the edge e from u to v, might be

different from the edge e from v to u.

4.3.2 Features

I generally used features that had been used in the literature for my link-prediction task.

All my features accounted for the general likelihood of an encounter occurring, for the

various contexts an encounter could take place in, or were derived from the encounter

graph of the students. The three contexts I was particularly interested in understanding

their role for encounters were time, space, and social factors and thus most of my features

were related to them. In order to assess the predictive information of each of those

contexts, I created the following five sets of features:
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Baseline Features

Baseline features accounted for the idea that two students that met each other often and

frequently were more likely to meet each other in the future than two students who hardly

ever met. I constructed as baseline features for all my models whether the two nodes met

in the previous time period or in other words whether I could observe a tie between them

(edge), the amount of elapsed time since the last meeting (recency), and the total amount

of time I observed two nodes together (time spent together) as described in Yang et al.

(2013).

Temporal Features

The time related features captured variations in temporal behavioural patterns as when

two students met could in itself be an important clue for the type of relationship between

two students. For example, if two students only ever meet during normal working hours

then they are most likely just colleagues at university, but if they also meet after work or

on the weekend then their relationship should be qualitatively different. Let M now be the

set of all meetings between two nodes u, v in the training period. I built a feature vector

(hour-of-day(M)) of length 24, that counted the total amount of the encounters between u

and v at every hour of the day as well as feature vector (day-of-the-week(M)) of length 7,

that counted the total amount of encounters between students at every day of the week.

If an encounter occurred in more than one bucket, I distributed it proportionally for both

hour-of-the-day as well as day-of-the-week. I also included the current hour of the day as

well as the current day of the week as a feature, so that each R could keep track of when

and where the current encounter occurred.
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Spatial Features

I observed that there was a difference in whether two people meet at a place a lot of people

visit and thus with high place entropy or at “quieter” place with low place entropy. Or

in other words, if two student met at the university, a very popular place for students,

the information content of that meeting was relatively low, but if two people met at their

respective homes then this was a much more unlikely and more noteworthy event. I thus

derived the minimum place entropy of the set of all observed locations of meetings between

any u, as as feature as well (Scellato, Noulas, & Mascolo, 2011).

I also inferred the relative importance of each venue for each user u by measuring the

amount of time a user spent there. I then ranked the venues by the relative importance for

each user. Arguably the more time a student spent at a location the more important that

location was for that student; encounters at more important locations as measured by the

time students spent there could thus signify a more important social relationship as well.

I thus also included the maxRank(relativeImportance(u, v)) of any meeting between u, v.

Based on Oldenburg’s seminal paper (Oldenburg & Brissett, 1982), I derived geo-

graphic contexts in which encounters occurred as features as well. For a graphical overview

of the derived aggregated behaviour of the students in each setting, see Figure 4.2. Old-

enburg argued that in order for communities to thrive they needed places away from the

home (“first place”) and the workplace (“second place”); hence they needed “third places”.

Examples of third places were cafes, clubs, and parks. Several studies used Oldenburg’s

concept of “third places” to highlight the importance they played for social encounters

(for examples see among others Glover and Parry, 2009; Mair, 2009 and Rosenbaum,

Ward, Walker, and Ostrom, 2007). Others used a classification similar to Oldenburg’s

to understand and predict human mobility on a larger scale (Cho et al., 2011; Eagle &

Pentland, 2009).

Analogous to Oldenburg I distinguished between several different geographic settings
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a student could be in: the home, the university, a third place, and other. I inferred the

locations as follows:

First, I found the home location for each student by clustering all his or her location

measurements between 11PM and 4AM using DBSCAN (Ester, Kriegel, Sander, & Xu,

1996)1 into the set of spatial clusters C. I used DBSCAN as I did not have to specify the

amount of clusters beforehand as I do not know how many clusters each individual might

have. Each cluster c ∈ C then represented an area where a lot of locational measurements

were taken for that user. I then selected max(|c|) as a student’s home location.

Second, for assigning students to the university context I mapped the campus of their

university and checked whether students were within 50 meters of the campus. As some

students lived in dormitories on campus I gave precedence to the home location when

assigning location measurements to their respective contexts.

Third, to infer third places I adopted the approach of Sekara et al. (2016) for inferring

significantly more important contexts given a distribution of observed times in a given

context. For each student, I constructed the set of all the stop locations S a student

visits. For each s ∈ S, I could also observe the amount of time t(s) a student spent there

and rank the resulting distribution of stop times in descending order, giving one T (s). I

observed that for most students there was a clear gap in T (s); this implied that students

visited some locations very often and some locations very rarely. I defined as third place

any location s that appeared before the biggest gap in T (s), where the biggest gap in

T (s) was significantly larger than I would expect by random sampling of stop times from

a uniform distribution, that was neither home nor university. This way, I could ensure

that third places were only places where students spent significantly more time than at

all other locations they visit.

Fourth, any other s ∈ S was classified as other.

1I used the implementation of DBSCAN from Pedregosa and Varoquaux (2011).
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Let context(u, v) now be the function that counts the amount of time two nodes

u, v ∈ G have spent together at the different geographic contexts: Home, work/university,

third place, and other. I included the amount of time spent at each spatial context as a

feature. The reasoning was that the amount of time two nodes spent together in different

geographic settings should contain information about the type of their relationship. I used

the current spatial context—home, university, third place, or other—of the encounter as

a feature as well. It seemed reasonable to expect that two students, who met regularly in

a certain setting were more likely to meet should one of them currently be in that setting.

Last, I included the Jaccard similarity, J(A,B) = |A∩B|
|A∪B| , where A and B are the set

of visited locations (Ranjan et al., 2012). There is evidence that the more similar two

individuals were with respect to their mobility the more likely they were to be friends

as well (Bapierre et al., 2015; Toole et al., 2015) and thus might be indicative of future

encounters.

Social Features

I also accounted for the social setting an encounter occurs in. If two students met at

the university during a course this was nothing extraordinary in my dataset, but if two

students met alone on the campus there was a higher likelihood that they were socialising.

Let now Pu,v be the distribution of the number of other people from the study that are

present when two nodes u, v ∈ G meet. I then used avg(Pu,v) as a feature.

What is more, the social configuration two students met in could also play an important

role for predicting future encounters. Building upon the concept of triadic-closure, that

is the phenomenon in social network that friends of friends are likely to become friends

themselves, Yang et al. (2013) proposed to use triadic periods as a feature for predicting

encounters. The main idea was to count the different possible arrangements of triads in

the encounter graph, or in other words the different possible configurations of co-locations
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Figure 4.2: Weekly Aggregated Observations by Geographic Context
The figure counts the total amount of observations at each hour of the week for each of the

inferred geographic contexts: Home, work/university, third place, and other and thus provides
an aggregate view of the activity of the students. I could observe that students in aggregate
mostly followed a diurnal pattern. During weekdays students left their home in the morning,

then attended university before going to an other location. The observed pattern for third
places mirrored that for the home setting indicating that third places in my dataset were places

were students would spend the night (possibly at a partner’s home location). On the
weekends, the sutdents could not be observed at the university often but could regularly be

found at other locations. Overall, the aggregated patterns of activity of the students for each
context were in line with what I expected. Interestingly, students seemed to spend nights at

third places, thus further highlighting the importance of those places.
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Figure 4.3: Triadic Periods
The figure shows all possible configuration of triadic periods or in other words all possible

configuration of edges in a (sub)graph G with only three nodes.

at a particular location (for all possible configurations of triadic periods see Figure 4.3).

This is equivalent to accounting for the immediate neighbourhood of every u in Gt.

Interestingly Bianconi et al. (2014) showed that triadic closure was a leading driver

in how social networks evolve. And triadic periods likely accounted for the dynamic of

triadic closure in the encounter graph as well.

Network Topology Features

In previous studies on link-prediction features derived from the wider network topology

of the social graph were used extensively. The core idea of all network metrics is that

friends of friends are likely to become friends themselves. However, they differ in how

they formulate this idea mathematically. In particular, I included preferential attachment

(PA), weighted prop flow (weighted PF ) and Adamic-Adar (AA) (Peng et al., 2015) after

seeing favourable performance for those three metrics when designing my experiments.

The PA metric indicates that new nodes will more likely attach to nodes that already
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have a high degree. It is defined as PA(u, v) = |Γ(u)| · |Γ(v)|, where Γ(v) is the set

of neighbours of node v and |Γ(v)| be the number of neighbours of node v. PF is the

probability that a restricted random walk starts at node u and ends at node v with no

more than s steps. Weighted PF uses the weights of links (in my case how much time

two students spent together in the previous time period) as transition probabilities. AA

is defined as the inverted sum of the logarithmic degrees of neighbours shared by the two

nodes A(u, v) = ∑ 1
log |N(u)| , where N(u) is the set of nodes adjacent to u.

4.3.3 Evaluating Temporal Prediction Models

I used the first academic term for building and validating my model, whereas I tested my

hypotheses on the second academic term of the dataset, where each term consisted of 13

weeks. As I was dealing with time series data, I used one-step forecasts with re-estimation

as described in Hyndman and Athanasopoulos (2013) to make sure my models did not

have access to training data from the future, where a step was 12.5% of the data and I

used at least 50% of the available data to train each model. In other words, I evaluated

my model at four different time points for the second half of the available data, where I

retrained my model for each time point with all available data at that time point.

4.3.4 Search Space

Every u ∈ Gt has N potential candidates for encounters at Gt+n as every node can

meet every other node. Thus, the unrestricted search space is N ∗ (N − 1). This was

impractically large as in my data I would need to predict more than twelve billion potential

edges for each term. A common strategy to deal with the huge search space is to only

consider as potential candidates for a new tie nodes that are thought of to be more

likely to become connected in the first place. It is known that in social networks friends
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of friends are more likely to become friends than by chance alone and this property

could be exploited for a prediction task (Scellato, Noulas, Lambiotte, & Mascolo, 2011).

To limit the computational complexity, I adopted the convention of Scellato, Noulas,

Lambiotte, and Mascolo (2011) for my work, where I restricted the prediction space

to alters that a student had either encountered before or whom a student’s alters had

themselves encountered before (i.e. friends of friends).

4.3.5 Feature Preparation Interval

I had to decide on how many temporal slices of Gt I used to construct my features.

However, several of the features I was interested in representing longer term dynamics

between students such as the places they usually met and how similar their trajectories

were, whereas several other features such as the other people present at a current meeting

represented shorter term dynamics. I thus opted to introduce a longer term feature

preparation interval 4τ and a shorter feature preparation interval 4T that I used to

generate the appropriate features.

Yang et al. (2013) showed that the length of the feature preparation interval has

an impact on the performance of the resulting link prediction. To determine the most

appropriate hyper-parameters for my model, I tested the performance of my model with

various values of 4T and 4τ for the first academic term (Figure 4.4 and Table 4.1). In

particular, I was interested if values of 4τ that corresponded to longer periodicities such

as two and four weeks and longer intervals for 4T might improve the performance of

my models. I found that a 4T interval of 30 minutes and a 4τ interval of one week

respectively had the best performance and I used those values for training and evaluating

the remaining models for the second academic term.
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Figure 4.4: Performance Hyper-Parameters
The plot shows the effect of various values of 4τ and 4T had on the performance of my

link-prediction task, where the error bars represent the 95% confidence intervals. While the
overall differences between the models were relatively small, the model with 4τ of 30 minutes
and 4T of one week clearly performed best. Thus, I have used those values for building and

evaluating my models for the second term.

Mean CI 95%
∆T 30 min. ∆τ 1 week 0.42 (0.40,0.42)
∆T 30 min. ∆τ 2 weeks 0.40 (0.39,0.41)
∆T 30 min. ∆T 3 weeks 0.39 (0.38,0.40)
∆T 30 min. ∆T 4 weeks 0.39 (0.38,0.40)
∆T 40 min. ∆τ 1 week 0.37 (0.36,0.38)
∆T 50 min. ∆τ 1 week 0.36 (0.36,0.37)
∆T 60 min. ∆τ 1 week 0.36 (0.35,0.37)

Table 4.1: Cross-Validation Precision-Recall AUC Scores
The tables lists the effect of various values of 4τ and 4T had on the performance of my
link-prediction task, where the 95% confidence intervals are reported in the column to the

right of the scores.
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4.3.6 Model Construction

In order to test the importance of each domain for predicting future encounters, I con-

structed several different models. Each of the models I built has access to a different set

of features. Should the context of an encounter have played a role than my contextual

features should have also been relevant for predicting future encounters. Table 4.2 lists

each model and its corresponding features and also indicates, if the feature was derived

using 4T or 4τ as a feature preparation interval.

As a benchmark to test my predictions against I first developed a null model for a

time-evolving weighted encounter graph with dissolving ties. My null model was adapted

from Newman and Girvan (2004), where the edges of the graph were randomly rewired

under the constraint that the expected degree matches the original degree distribution. In

my case, this meant that the expected amount of encounter of each node u ∈ Gt followed

the original distribution of meetings, but the encounters between any two nodes u, v ∈ Gt

were chosen at random.

Besides the null model, I constructed a base model that only contained the baseline

features. I further built a temporal model, a social model, a spatial model and a network

topology model by adding to the base models the feature set that pertains to that domain.

The context model consisted of the baseline features as well as the temporal, spatial, and

social features. The full model consisted of all features. I also, after my experiments,

constructed a refactored model based on top five features of the full model.

Sometimes one however might not have access to the whole network and might only

be in possession of node level data. Hence, one is unable to calculate or reliably estimate

the features that utilise the wider network topology I described above. I simulated such

a scenario by building node model that only incorporated features that could be obtained

from the ego-network of a node. In particular, the features for the node model were: The

baseline features, and all the spatial, temporal, and social features with the limitation
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that “triad 4” could not be distinguished from “triad 1” and “triad 5” not from “triad 3”.
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4.4 Findings

To compare the performance of my different models I chose to report the precision, the

recall, the precision-recall curve, and the area under the precision-recall curve (PR AUC),

where precision is plotted on the y-axis and recall on the x-axis (Davis & Goadrich, 2006).

Precision and recall are defined as follows (Davis & Goadrich, 2006): In a binary clas-

sification task, true positives (TP ) are instances correctly labelled as positives, whereas

false positives (FP ) are incorrectly labelled as positives. Conversely, true negatives (TN)

are examples correctly labelled as negatives and false negatives (FN) refer to positive

examples erroneously labelled as negatives. Recall is then TP
TP+FN and precision TP

TP+FP .

The area under the PR curve can then be directly used to compare the performance

of different models (i.e. the bigger the area the better the model) and is suited to evaluate

the performance of an algorithm if there is a large class imbalance as in my data (Davis

& Goadrich, 2006).

4.4.1 Performance of the Link-Prediction Algorithm

First, all models performed significantly better than the null model, however only the

network model had a higher PR AUC score than the base model (Figure 4.5 and 4.6 as

well as Table 4.3). Unsurprisingly, nodes are not randomly interacting with other nodes

but exhibit learnable patterns (at least to a certain degree).

Second, the models that had the highest PR AUC score were the network and the base

model, even though they have access to a lot fewer features than other models. Thus,

initially it looked like only a sub-set of features seemed to be important for the prediction

task and some features appeared to even be detrimental for predicting future encounters.

The network topology of the social encounter graph G appeared to be very discriminative

on its own.
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Figure 4.5: Model Scores
The figure depicts the precision, the recall, and the area-under-the-curve scores for the

precision-recall curves of the different models. While the base and network model had the
highest PR AUC score, both the social and full model had the highest precision. The recall

scores were relatively high in comparison to the precision score for all models.

xPrecision CI 95% xRecall CI 95% xPR CI 95%
Null 0.00 (0.00,0.00) 0.00 (0.00,0.00) 0.00 (0.00,0.00)
Base 0.13 (0.12,0.13) 0.69 (0.68,0.70) 0.41 (0.40,0.42)
Network 0.20 (0.20,0.21) 0.71 (0.70,0.72) 0.38 (0.37,0.39)
Time 0.08 (0.08,0.08) 0.74 (0.73,0.74) 0.42 (0.42,0.43)
Node 0.14 (0.14,0.15) 0.71 (0.70,0.72) 0.36 (0.34,0.36)
Place 0.07 (0.07,0.08) 0.65 (0.64,0.66) 0.30 (0.28,0.30)
Social 0.03 (0.04,0.04) 0.77 (0.76,0.77) 0.32 (0.32,0.34)
Context 0.20 (0.20,0.21) 0.71 (0.70,0.72) 0.38 (0.37,0.39)
Full 0.13 (0.12,0.14) 0.60 (0.58,0.60) 0.27 (0.27,0.29)
Refactored 0.13 (0.17,0.19) 0.69 (0.68,0.70) 0.34 (0.33,0.35)

Table 4.3: Model Scores
The tables lists the precision, the recall, and the area-under-the-curve scores for the

precision-recall curves of the different models with the 95% confidence interval always in the
column to the right of reported scores. While the base and network model had the highest PR

AUC score, both the social and full model had the highest precision. The recall scores were
relatively high in comparison to the precision score for all models.

86



Figure 4.6: Precision Recall Curves
The figure depicts the precision-recall curves of the different models. As I fitted a separate tree
R for each student, these curves were built by averaging the individual PR curves of each R.
The network model performed best, while the base model was only slightly worse overall; in

particular those two models managed to keep a relatively high precision score for higher recall
values. The social and full model had relatively high precision scores as well.
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Third, the social and full model had a significantly higher PR AUC score than all

models except the base and network model. In particular with respect to precision both

the social and the full model performed much better than any other model, which became

apparent not only in the model scores (Figure 4.5) but also in the PRC curves (Figure 4.6).

This indicated that while social features might not have been overall as important as the

network topological features, they were still relatively important for correctly predicting

whether an encounter occurred.

However, all models had a low precision score compared to the recall scores. This indi-

cated that all models suffered from a relatively large amount of false positives. Given the

relatively sparse nature of the social encounter graph G, this finding was not unexpected

as there were many more opportunities for false positives than for false positives.

Feature importance

I also investigated the relative importance of the features for predicting future encounters

for the full model (Figure 4.7). Interestingly the top five features—average amount of peo-

ple, weighted prop flow, triadic closure 0, triadic closure 3 and max(relative importance)

accounted for roughly 50% of the expected contribution to the final prediction.

The relative importance of the features was consistent with the low scores for the

models that did not include network topological features. Interestingly the social features

triadic closure 0 and triadic closure 3 were also important highlighting the process of

triadic closure in my dataset and partly explained the comparatively good performance of

the social and full model. Triadic closure was consistently shown to be a driving feature

of tie formation in networks (Bianconi et al., 2014). This makes sense as when triadic

closure occurred, students were already spatially close to each other and thus more likely

to encounter each other.
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Figure 4.7: The Importance of the Different Features for the Full Model
The plot shows how important each feature of the full model was for predicting e at time

t+ n. It only depicts features whose importance was bigger than 0.01. Both triadic closure 0
and number of people were among the most important features indicating the importance of
knowing the social context of where encounters took place. Furthermore, weighted prop flow

was important as well, highlighting the role the wider social encounter graph played for
predicting encounters. In total the top five features accounted for about 50% of the expected

contribution to the final prediction.
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Mean CI 95%
Gall 0.38 (0.37,0.39)
Gsocial 0.34 (0.33,0.35)
Guni 0.49 (0.48,0.49)

Table 4.4: Precision-Recall AUC Scores for Different Link Types
The tables lists the performance difference for the various definitions of G, where the 95%

confidence intervals is reported in the column to the right of the scores.

4.4.2 Predicting Different Types of Links

I was also interested in whether the type of relationship (i.e. whether the students were

just colleagues, or also socialised outside of university) between nodes affected the pre-

dictability of encounters. In order to explore this question, I constructed two new en-

counter graphs. Recall that Gt was based on all spatial encounters between students

regardless of where and when these encounters took place (hereafter Gall
t ). I constructed

Gsocial
t based on all the encounters that took place between nodes u, v ∈ Gsocial

t before

9AM or after 6PM local time on weekdays, on the weekend, or in a spatial context other

than university. In other words, I was trying to capture the non-university/work related

encounters only that happened either after the normal “working” hours, or in a different

place than the university. I, furthermore, constructed Guni
t that was derived only from

encounters between nodes u, v ∈ Guni
t that happened between 9AM and 6PM on weekdays

and whose spatial context was university.

As I can see in Figure 4.8 and Table 4.4, the performance for the models based on

Gsocial
t was worse than for the models based on Gall

t . An explanation could be that

“social” encounter are less regular than other encounters; meetings between friends are

usually varied in time and place.

Unsurprisingly, the performance for the models based on Guni
t was significantly better

than for those based on Gall
t . Unsurprisingly students were interacting and meeting reg-

ularly; quite likely at the university itself as students from the same year had a similar
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Figure 4.8: Model Scores
The plot visualises the performance difference for the various definitions of G, where the error

bars represent the 95% confidence intervals. Unsurprisingly the prediction for Guni had a
higher PC AUC score reflecting the potential higher regularity of meeting one’s “colleagues” at

university.

schedule for lectures.
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4.5 Discussion

The main finding of my research was that features about whom one meets and the wider

network topology of the social encounters significantly improved my predictions, while

information about when and where one meets did not seem to play an as important role

for my prediction task. Furthermore, and in contrast to previous research that information

about where individuals meet did not seem to play a pronounced role for predicting future

encounters between individuals in my dataset of students (Scellato, Noulas, & Mascolo,

2011; Yang et al., 2013). It appeared that almost all information was already contained in

the network topology of G and the social context rather than in the spatial and temporal

setting.

One possible explanation for the relatively low importance of spatial and temporal

features could be that as people move through their daily lives, the information of where

they are is already embedded in who else is physically close. For example, one is with

their partner there is a high chance that one is either at home or at the partner’s home;

if one is with their friends from university then there is a high chance that one is meeting

them at university. In a sense the social contexts individuals (Sekara et al., 2016) inhabit

might intrinsically be linked to spatial places.

Thus, and while out of scope for this work, one interesting route to explore would be to

not only map but also conceptualise human behaviour not in the traditional dimensions

of time and space as in time-geography (Hägerstrand 1970) but in a reference frame of

time, social, and spatial dimensions.

Last, the performance of my link-prediction algorithm was significantly better when

considering all ties rather than just social ties but worse than when considering just uni-

versity ties. I believe that a better understanding the role different types of relationships

play for encounters could be a fruitful avenue for future research and whether potential

other factors can help improve the prediction of social ties.
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However, one has to be careful when generalising from my sample of students to the

whole population. While I was not aware of any reason my findings should not also hold

for a wider population, the dataset in my study represented after all just one sample of a

network. Furthermore, my classification of geographic places was rather broad and did not

allow for a detailed analysis of those factors. I believe that a more fine-grained analysis

of the role of geographic place is an interesting prospect for future research, especially in

conjunction with an expanded analysis of the predictability of different types of ties.
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I couldn’t tell you why, because I never had any why.

Marcel Duchamp

5
The Interplay of Long-Term Social &

Mobility Behaviour

5.1 Introduction

As discussed in Section 2.4, travel behaviour is intrinsically linked to social networks.

People regularly visit their friends or undertake joint activities at various places. Human

mobility behaviour and social networks were so intertwined that Wang et al. (2011) were

able to use mobility networks as proxy for social networks and vice versa. Urry (2002)
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reminded us that co-presence is obligatory for many forms of social life. Corporeal travel

constitutes one of the cornerstones of modern societies. In our modern life “[m]obility has

become a central aspect of social integration” (Viry et al., 2009). However, maintaining

social ties to far flung peers is not without its costs. One not only has to have the resources

to travel but one also needs to be able to spare the time.

As social networks and mobility behaviour are so co-dependent, a lack of access to

either has clear implications for the other domain. If one cannot visit their friends, it is

hard for them to sustain their social ties. Conversely, if one does not have a lot of social

ties, there are fewer reasons to travel. Several empirical studies looked at the relationship

between social relationships and travel behaviour and what role inequality in one domain

played for the other domain. However, most modern quantitative studies did not used

longer time frames as units of analysis. Previous studies either used a static snapshot

(see for example Carrasco and Cid-Aguayo 2012; Brown et al. 2013; Viry et al. 2009 and

Frei and Axhausen 2007) or focused on shorter time frames for analysis (see for example

Cho et al. 2011; De Domenico et al. 2013 and Nguyen and Szymanski 2012), although

some few studies (Alessandretti, 2018; Scellato, Noulas, & Mascolo, 2011) accounted for

longer term dynamics. This is noteworthy as long-term dynamics might be considerably

different than short term interactions between social ties and mobility behaviour as social

networks and mobility behaviour might evolve at different timescales (Chapter 2).

And while previous researchers found ample evidence for potential relationships be-

tween social factors and mobility, previous results did not necessarily paint a coherent

picture. For example, an individual’s high mobility might be at the same time beneficial

and detrimental for maintaining their social ties. It is thus unclear from theory alone

which potential relationships between social variables and mobility behaviour to study. I

dealt with this problem by using data driven models for uncovering potential relationships

in my data. In particular, I adopted the concept of Granger-causality (Granger, 1969) to
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test for relationships between various social network and mobility variables with a vec-

tor autoregressive (VAR) model. While Granger-causality was originally developed in the

context of economic time series data, several recent studies dealing with transportation is-

sues also successfully adopted the concept of Granger-causality. They studied a variety of

transport related topics ranging from the substitution effect of transport modes (Castillo-

Manzano, Pozo-Barajas, & Trapero, 2015) over the relationship between air transport and

economic growth (Hakim & Merkert, 2016) to trade and air travel (Hakim & Merkert,

2016).

Furthermore, previous studies often did not explicitly try to simultaneously model

relationships between travel behaviour and social variables. Last, I did not simply pre-

suppose a best estimator for my system of equations but empirically tested several possible

ways to infer causal pathways for my specific problem. My main contribution, thus,

consisted of studying at the same time possible the causal relationship between social ties

and the propensity to travel in a data driven way.

5.2 Background

While there is evidence that mobility as well as social ties co-evolve over longer time

periods (Alessandretti, 2018), most studies did not try to account for longer-term inter-

actions between the two spheres. On the one hand, studies that were purely interested in

predicting future behaviour usually did not account for changing temporal patterns over

a longer timescale (Cho et al., 2011; Wang et al., 2011; De Domenico et al., 2013). On

the other hand, studies that linked mobility to social networks usually did not study the

co-evolution of the two spheres as they did not deploy a longitudinal design (Berg et al.,

2012; Grabowicz et al., 2014; Shi et al., 2016).

What is more, the relationship between social ties and mobility was not clear cut.
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In certain circumstances mobility could have a positive effect on a person’s social net-

work, while in other the need to travel a lot might be detrimental for maintaining social

ties. While better access to mobility allowed people to maintain a stronger social net-

work, a long and solitary commutes or geographically spread out social networks reduced

opportunities for socialising.

At the same time social ties allowed access to more “social” resources and life opportu-

nities and could allow people to travel more. Being able to gain more resources from one’s

social network should have facilitated access to better means of transportation, especially

ridesharing, and freed up resources to travel in the first place.

Schwanen et al. (2015) posited that mobility and social ties were entwined processes.

“[I]n any given locality, for any person, community and/or social group, there likely exists

a range of overlaps and pathways through which these processes affect, and are affected by,

each other” (Schwanen et al., 2015). There are several possible causal pathways for how

mobility could affect social networks and for how social networks might affect mobility

behaviour. While Schwanen et al. (2015) focused on social exclusion and transportation

disadvantage, they nevertheless provided an exhaustive overview of how social ties might

influence mobility and how mobility might shape an individual’s social network. I thus

followed their overall classification of causal pathways from social networks to mobility

and vice versa but abridged and adapted them for my particular research questions.

5.2.1 Causal Pathways From Mobility to Social Networks

As face-to-face interactions were still an essential part of building and maintaining social

ties, it was necessary for individuals to travel to maintain old social ties or form new

ties. Even today in our internet permeated lives, one could observe that the likelihood

of a friendship between two people decreased with distance (Preciado et al., 2012). Urry

(2002) even considered corporeal travel to be “necessary and appropriate for a rich and

97



densely networked social life for different social groups”. A higher capacity for mobility

might be beneficial for social ties in various ways and there were several ways how an

individual’s capacity for mobility might help form new and maintain old ties.

First, mobility might directly affect the amount of practical, material, informational,

and emotional support a person might receive from their social network (Schwanen et

al., 2015). For example, Carrasco and Cid-Aguayo (2012) studied two neighbourhoods

with different income levels in a Chilean city and showed that individuals with a car

receive more emotional, monetary and informational resources from their social networks.

Although they cautioned that car ownership and income levels might be confounded and

overall contact frequency between individuals was not affected by car ownership.

Second, one’s capacity for mobility might affect a persons level of travel, activities

and interaction with others, and through that their social networks (Schwanen et al.,

2015). The number of trips a person could undertake was found to significantly, negatively

correlate with the risk of being socially excluded (Stanley et al., 2011). Being able to

move from A to B generally allowed individuals to maintain more spread out and larger

social networks. Viry et al. (2009) used data about the social networks of commuters in

the largest Swiss agglomeration—Zurich, Geneva, and Basel—to study the relationship

between social ties and the potential for mobility. They found that a high mobility

allowed individuals to maintain or even widen their social network, as commuters could

benefit from being at the intersection of spatially separated social circles. In another

study, Frei and Axhausen (2007) noted that car ownership and with it the increased

potential for automotive travel had a positive effect on the geography of a person’s social

network. Being less anchored to a particular locality was positively associated with an

increased geographic size of a person’s social network. Moreover, the ability to use public

transportation seemed to be have wider positive social impacts. Green, Jones, and Roberts

(2014) reported that a free bus pass for elderly citizens in London not only increased their
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physical well-being but also improved their social life and opened up a new sphere for

socialization, the shared space of the bus. Utsunomiya (2016) showed that local bus

services were positively correlated with various positive outcomes in an neighbourhood

such as trust, amount of social ties, and participation in local activities.

Nonetheless, a more geographically spread out social network could increase the cost

for maintaining such a network and hence the need for more mobility might lead to a

sparser social network overall. Putnam (2000) suggested that travelling alone by car had

negative consequences for the formation of social relationships as this time was essentially

lost to form social ties via corporeal interactions. And indeed Mattisson, H̊akansson, and

Jakobsson (2014) found that the longer people were commuting by car in the south of

Sweden the lower their participation in social activities. Furthermore, for already disad-

vantaged groups of people such as single women with children, migrants, less educated

people, and people with special needs an increased expected mobility made it more dif-

ficult for them to maintain significant social ties. Having no access to a car, living far

away from accessible transport or social meeting places such as shops and bars, and lack-

ing the organizational and temporal resources to maintain social ties over a distance all

contributed to this (Jiron, 2007; Viry et al., 2009).

Third, the knowledge and skills a person had regarding transport options and op-

portunities had implications for the total knowledge regarding transportation that was

available within social networks (Schwanen et al., 2015). While the empirical evidence for

this particular pathway between mobility and social networks was rather limited (Schwa-

nen et al., 2015), various other empirical studies existed that highlighted the importance

of social networks for knowledge sharing (for an overview see Nieves and Osorio, 2013).
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5.2.2 Causal Pathways From Social Networks to Mobility

Social ties were an important factor for determining access to mobility. Access to and

opportunities for travel might all be influenced by the amount of resources and support

one is able to get from one’s social network.

First, social networks could have an effect on the level of practical, material, informa-

tional, and emotional support an individual receives (Schwanen et al., 2015). This in turn

might influence their access to and their knowledge about transportation resources and

opportunities. Larger and wider personal networks had clear benefits in how many social

connections an individual could access for support. For example, Lovejoy and Handy

(2011) described how Mexican immigrants relied on their social networks for enabling

access to automotive transportation. Individuals in the study frequently got a lift or bor-

rowed the car of someone else. Consequently, having larger and wider networks made it

easier for individuals to access cars. However, there is evidence that not just the size of an

individuals social network but also the diversity of (Agneessens, Waege, & Lievens, 2006)

and activity within (Silvis & Niemeier, 2009) a person’s personal network determined

access to inter-personal resources. Silvis and Niemeier (2009) found that they more active

seniors are in their social network the more likely they were to ride share regularly, while

the size of an individual’s personal network did not play an important role. Moreover, so-

cial ties did not just allow better access to automotive transport. A larger social network

allowed individuals to determine which destinations are worthwhile to visit in the first

place (Agosto & Hughes-Hassell, 2005) and to gain better access to formal and informal

markets relevant for transportation (Oviedo Hernandez & Titheridge, 2015).

Second, social networks might impose various space-time constraints on an individ-

ual’s activity and travel pattern (Schwanen et al., 2015). Di Ciommo, Comendador,

López-Lambas, Cherchi, and Ortúzar (2014) studied travel behaviour among residents

in a suburb of Madrid for one working week. Besides traditional variables such as age,
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gender, income, and car ownership, the authors also included receiving help and participa-

tion in voluntary activities as explanatory variables for modelling travel behaviour. They

reported that individuals that received help with various domestic tasks such as childcare

or housekeeping were more likely to walk or use public transport. Conversely, individuals

that participated in voluntary activities were more likely to use automotive transport. In

the authors’ view people participating in voluntary commitments had less uncommitted

time available to them than people receiving help with various tasks. Thus, people who

participated in voluntary activities tried to save time by using individual modes of trans-

port. Schwanen et al. (2015) pointed out that these findings concured with the idea that

resources gained from social networks are conducive to more social modes of transport.

5.2.3 Research Questions

The above mentioned studies all highlighted potential causal pathways between an indi-

vidual’s social network and an individual’s mobility; nonetheless, it was far from clear

which causal pathways were not only generalizable but applicable to my specific dataset.

For example, high mobility might enable individuals to foster more diverse social ties.

At the same time, a high mobility might lead to a lack of time to maintain those ties

(Section 5.2.1). While a wider social network was generally associated with a higher po-

tential for mobility (Section 5.2.2), it was unclear whether a higher potential for mobility

not only led to more corporeal travel but also enabled individuals to explore more varied

places.

Moreover, the benefits individuals could accrue from their networks or through their

mobility were not just dependent on the total amount of social ties nor the total amount

of an individual’s mobility. The variety of social ties or the variety of places one visits

constituted an important role. Granovetter (1973) highlighted the importance of having a

varied social network and the role weaker ties can play for information transfer. Similarly
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Seibert, Kraimer, and Liden (2001) showed that network structure and not just the total

number of ties was directly related to social resources. Furthermore, Kaufmann, Bergman,

and Joye (2004) stressed the importance of how options and conditions regulated the

access to means of mobility, thus highlighting the importance of variety for mobility.

Consequently, I was also interested in the variety of a person’s social network.

Last, most empirical studies cited above in Section 5.2.1 and 5.2.2 did not explore the

drivers and effects of both social networks and mobility at the same time. They tended

to focus on either social networks or mobility in their analysis. However, given the ample

empirical evidence for different causal pathways between the two spheres, there was the

possibility that the two are intertwined.

Given access to temporal data of the movement patterns as well as the social encoun-

ters and virtual interactions of 847 students in Copenhagen (Chapter 3), I attempted to

untangle the entwined processes of social networks and mobility. I tried to answer the

questions of to what extent social networks “caused” mobility and to what extent mobility

“caused” social networks with a particular focus on longer-term dynamics. While, there

is ample empirical evidence for causal pathways between both social networks towards

mobility and vice versa, it was unclear how previous findings exactly related to mobility

and social networks.

Thus, I opted for the following overarching approach: First, instead of confirming

hypotheses I explored possible causal pathways in my data. I therefore used a data-

driven approaches for uncovering “causal” relationships instead of confirming theoretically

derived relationships with my data. Second, I focused on long-term dynamics not only

because there is relatively little research dealing with long-term interactions between social

networks and mobility. Third, I attempted not only to capture the total amount of social

ties and the total amount of the distance travelled by any individual, but I also tried

to account for the variety in social ties as well as for the variety in places individuals
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visit in my analysis. Fourth, I opted to study the potential drivers and effects of both

social networks on mobility patterns, and of mobility on social ties contemporaneously.

Therefore, I treated both the social network as well as mobility as both independent and

dependent variables in my analysis.

5.3 Methodology

5.3.1 Problem Definition

I argued in Section 5.2.3 that both social networks and mobility were more than just

the sum of a person’s social ties or respectively the total distance they travelled. Hence,

to assess the social network of an individual, I measured not only the total amount of

physical encounter between peers but also their overall virtual interactions and the entropy

of the set of peers they had interacted with (hereafter peer entropy). Similarly, I captured

different aspects of an individual’s mobility by not only measuring an individual’s radius

of gyration but also the entropy the places they had visited (hereafter location entropy).

As I had time ordered data I also wanted to preserve the information about the order-

ing of events in time as temporal information can hold important clues for understanding

complex systems. Consequently, I was interested in studying the dynamics of a mul-

tivariate time series composed of my variables physical encounter, virtual interactions,

peer entropy, radius of gyration and location entropy. As I excluded contemporaneous

dependencies between the variables, Vector Autoregressive Models (VAR) models were a

natural fit for my multi-variate time series data (Luetkepohl, 2005). Let X(t) ∈ Rd × 1

for t = 1, ..., T be a d-dimensional multivariate time series and L the maximum included
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lag in the model. I could then fit the following VAR model with L lags:

X(t) =
L∑
τ=1

AτX(t− τ) + ε(t) (5.1)

where Aτ is a matrix of coefficients for every τ and ε(t) are a white Gaussian random

vector (i.e. the residuals). Given two time series Xi and Xj the coefficient A(j, i)τ can be

seen as the lagged effect of Xi on Xj at τ .

Formally, I wanted to minimise my prediction error as well as to maximise the sparse-

ness of the matrix A, representing all coefficients for all time points τ . In words, I

attempted to find the coefficients of A that are salient for estimating future states of the

system. One straightforward way to define this notion of predictive causality is Granger

causality.

5.3.2 Granger Causality

Granger causality, named after Granger (1969), as a concept of causality is based on

prediction and conditional dependence. The idea is that if a signal Xi ”granger-causes” a

signal Xj, then knowledge of the past values of Xi should help to improve the prediction

of Xj (Seth, 2007). Underlying this definition is the notion that the cause should precede

the effect as well as that the knowledge of the cause should measurable improve one’s

predictions.

More formally, let I(t) be the information set that includes all information at point

t and I−Xi
(t) the information set that includes all information except information about

the signal Xi. Then Xi does not granger-cause Xj if

(Xj(t+ 1) ⊥⊥ I(t))|I−Xi
(t) (5.2)
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which is equivalent to

P (Xj(t+ 1)|I(t) ∩ I−Xi
(t) = P (Xj(t+ 1)|I−Xi

(t)) (5.3)

In words, if Xj(t+ 1) is conditionally independent of the information about signal Xi,

then Xi does not granger-cause Xj(t+ 1) (Eichler, 2012). Conversely, if I am estimating

Xj(t+ 1) and if one of the coefficients A(j, i) for τ = 1, ..., L is significantly different from

zero, then Xi is said to granger-causes Xj (Luetkepohl, 2005).

For the rest of the chapter I followed Granger’s definition of causality. I would like to

highlight here that Granger-causality is not irrefutable proof that a causal relationship

exists between two variables as it only uses observational data. Furthermore, I want

to point out that the set of possible confounding variables is for all practical purposes

always bigger than what I could physically observe if there is not a randomised control

trial. Last, Stokes and Purdon (2017) showed that using finite order VAR, noting that

infinite VAR processes are not practical to compute nor to obtain sufficient data for—to

estimate “causal” relationships could introduce significant bias in the “causal” estimates.

5.3.3 Estimating the VAR process

While empirical evidence suggested a causal relationship between social networks and

mobility, it was not clear how well previous findings generalised (especially since some

previous findings were contradicting each other).

Traditionally VAR models to test Granger-causality were estimated using the ordinary

least squares estimator (OLS) (for empirical examples see among others Narayan and

Smyth, 2005, 2009 and Tselios, 2014). While the Gauss-Markov theorem states that in

linear regression models in which the errors have expectation zero, are uncorrelated and

have equal variance, the OLS estimator is the best linear unbiased estimator (BLUE),
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other estimators such as the James-Stein estimator, LASSO, or ridge regression with

lower variance exist (Chipman, 2014). All the alternative estimators rely on some form

of finding a parsimonious set of coefficients of A that are not zero, while at the same

time minimising the MSE on the training set. Prominent choices are regularization of the

OLS cost function or shrinkage to learn significant causal relationships (see among others

Burge, Lane, Link, Qiu, and Clark 2009; Chen, Resnick, Davatzikos, and Herskovits 2012;

Prinzie and Van Den Poel 2011).

It thus not a priori clear which estimator for my VAR system of equation was best

suited for my problem at hand. Consequently, I split my data into a training and a test set

and evaluated the performance of the various models on the test set. In particular, I used

a rolling-window forecast on the last three months of my data. The idea was that the true

causal structure should be better for predicting future values than models that included

more false positive or false negative “causal” relationships. I furthermore restricted my

model space to linear models as I could then use the within transformation to account

for individual time invariant covariates in my panel data without introducing additional

covariates (Bruederl & Ludwig, 2015).

In the end I decided to compare the following five estimators for my VAR process:

1. The standard estimator for Granger-causality—OLS with Wald test (Luetkepohl,

2005),

2. S3L (Rahmadi et al., 2018; Rahmadi, Groot, Heins, Knoop, & Heskes, 2017),

3. LASSO regression with cross-validation (Nagarajan, Scutari, & Lebre, 2013),

4. LASSO regression with stable specification search (Meinshausen & Bühlmann,

2010),

5. James-Stein shrinkage estimator (Opgen-Rhein & Strimmer, 2007).
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While this list did not represent all possible estimators, I believed that it stroke a reason-

able balance between well established estimator such as OLS as well as LASSO regression

and newer estimators such as S3L and the James-Stein shrinkage estimator.1 All of those

approaches are able to infer “causal” relationships from the data alone. Furthermore,

all algorithms try to find the most parsimonious set of variables that explains future

observations.

5.3.4 Operationalisation

Defining the Temporal Aggregation Interval

Recall that I was particularly interested in longer-term dynamics as they had been studied

relatively sparingly before. Using a longer temporal window to aggregate my data fur-

thermore avoided fluctuations due to weekly periodicity of human behaviour (Williams,

2013) as well as smoothened breaks in the academic year such as the Christmas holidays

or the term break.

To find an appropriate temporal level of aggregation that captured the stability that

studying more aggregate, longer-term dynamics implied, I calculated the aggregate rate

of change R for each variable over all users for time windows ranging from 1 to 90 days

(Figure 5.1). However, as the plot was relatively hard to inspect visually I also calculated

the mean of the five different R as well as the standard deviation. Figure 5.2 showed

that while other window lengths resulted in slightly lower average rate of change, using

one month (i.e. 30 days) as window length not only resulted in a very low average rate

of change but also a low standard deviation indicating that all variables were relatively

stable at this level of aggregation.

While other intervals such as 43 days have an overall lower mean and standard devi-

1For a more detailed description of the various estimators see Appendix A.1.1.
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Figure 5.1: Standardised, Aggregate Rate of Change per Window Length
The figure shows the z-standardised aggregated rate of change R for each of the variables for
different time windows. In other words, it shows how much the change depends on the length
of the window of observations. However, the figure was relatively hard to interpret visually as
five different variables are overlapping, thus I also calculated the mean and standard deviation
of R in Figure 5.2.
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Figure 5.2: Mean and Standard Deviation of R per Window Length
The figure depicts the average as well as the mean of z-standardised rate of change R for different
window lengths. One can see that at 30 days the average score of R for all variables was relatively
low as indicated by a low average and standard deviation. The spike for R at around 70 days
for both physical encounters and virtual interactions can be explained by the fact that at this
aggregation level several users had at least one period with a very low count of observations
followed by a period with thousands of observations thus increasing the average overall.
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ation for R, I nevertheless decided to use 30 days for two reasons: First, the differences

between the aggregation intervals were rather small and, second, an aggregation inter-

val of 30 days was not only more easily interpretable as monthly behaviour but aligned

with previous research into the stability of both social networks and mobility patterns

(Alessandretti, 2018; Krings et al., 2012). Krings et al. (2012) showed that social network

are most similar to themselves at the 30 day interval and Alessandretti (2018) found that

the cardinality of the set of visited locations stays relatively constant at a monthly level.

Measuring the Social Network

In order to assess the social network of a student, I measured their overall physical en-

counters with other students, their virtual interactions with all their peers, and also the

entropy of the set of peers they were meeting. I utilised the Bluetooth scans of the

phones to derive the total amount physical encounters between students. Sekara et al.

(2016) showed this to be a reliable way to estimate physical co-location of students.

I used the amount of phone calls as well as the texts as indicators for virtual interactions

between peers. To capture the variety of social behaviour of students I calculated the peer

entropy for each student. Peer entropy is defined as the Shannon entropy (Equation 3.1)

for each time-period for the set of all social encounters as well as interactions of a student.

Measuring Mobility Behaviour

In order to measure the mobility of a student, I computed the radius of gyration for each

student for each time period. I also included the location entropy as a measure for the

variety of places a student visits. Location entropy is defined as in Equation 3.1, where pi

in the case of location entropy represents the relative probability of observing a student

at location i. The location entropy should tell us whether a person is just going to the

same places or is actually also exploring a variety of different places.
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Figure 5.3: Distribution of Variables
The figure depicts the distribution of all the variables for my VAR system of equations. Radius
of gyration, physical encounters and virtual interactions were all heavily skewed with long right
tail. This means that for these three variables most students had relatively low values, whereas
for some students I could observe values significantly larger. A heavily skewed distribution was

common for both social networks (Section 2.2.1) and observed patterns of mobility
(Section 2.3.1).111



Figure 5.4: Log Transformed Variables
After log transforming the variables radius of gyration, physical encounters and virtual

interactions, there distributions were much less skewed and were much better suited for an
analysis with linear models.

I transformed my discrete variables physical encounters, virtual interactions, and ra-

dius of gyration as they are heavily skewed with log(x + 1) (Figure 5.3 and Figure 5.4).

Furthermore, I also dropped data points for individuals, where I observed no movement

at all. As those observations were most likely missing observations rather than actually

measuring that a student has not moved for a month.

Confounding Variables

However, several other unobserved confounding factors might influence either my vari-

ables related to the social network, mobility behaviour, or both. For example, a more

extroverted student might meet more people, while at the same time being more likely

to travel in the first place. Or an overall economically less well off student might not be

able to afford to travel as much and thus meet fewer people.

While the absence of latent variables is essential for learning the true causal structure

(Nagarajan et al., 2013), this assumption is hard to verify in a real-world non-experimental

setting as the set of all possible confounding variables is usually not known. While I knew

several confounding variables for each student such as gender, age, and personality, I
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did not know various others such as their socio-economic background. I thus decided

to demean my data for each student by subtracting the mean for each student from

their respective observations (also referred to as within transformation in the literature)

and thereby to account for all unobserved time-invariant covariates (Bruederl & Ludwig,

2015). I would like to caution the reader however that as in a Fixed Effects model this

did not account for time varying latent variables.

VAR Pre-Requisites

Before I estimated my VAR process, I had to make sure my VAR process is stationary and

that I picked a sufficient number of lags. First, I used the Maddala and Wu (1999)1 test of

stationarity for panel data to make sure that my multi-modal time series was stationary.

The Maddala and Wu test for my time series significantly rejected the hypothesis that

my time series was not stationary. Second, I used the OLS estimator and the commonly

used Bayesian Information Criterion (BIC), which penalised overly complex models to

determine the “optimal” amount of lags that I should include in my model (Seth, 2007).

I compared BIC scores for the full VAR models containing up to to five lags. I found that

the optimal order of the VAR process is one.

5.4 Findings

5.4.1 Evaluating the Different VAR Estimators

To evaluate the relative performance of the different ways to estimate my VAR system of

equation, I combined a rolling window forecast with bootstrap sampling.

First, I created three tuples of temporally ordered training and test data

1I used the implementation of Croissant and Millo (2008).
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Model Loc. ent. R. of gyr. Phys. enc. Virt. int. Peer ent.
Full 0.21 0.31 0.99* 0.25 0.99*
OLS 0.22 0.28 0.99* 0.25 0.99*
LASSO CV 0.42 0.13 0.40 0.08 0.31
LASSO Stable 0.21 0.31 0.99* 0.15 0.99*
Shrinkage 0.21 0.31 0.99* 0.25 0.99*
S3L 0.40 0.20 0.67 0.00 0.99*

Table 5.1: ζ Model Scores
The table shows how often a model performs strictly better than the null model for predicting
each dependent variable. The statistic ζ based on 10,000 bootstrapped samples of the test set.
Interestingly the only two variables where the models performed better than the null model

wehre physical encounters and peer entropy. *: p < 0.05

(trainT−1−i, testT−i), i ∈ {0, 1, 2}, where the first T − 1 − i observations were the

training data and the corresponding time slice at T − i formed the respective test set.

Second, for each tuple of training and test data I compared the performance of each

model to a null model that for each variable just used the mean of that variable as its

prediction. In other words, the null model had a bias of one and zero variance. In OLS

parlance, I only fitted the intercept for each variable for the null model. I also defined a

full model that includes all possible variables as independent variables.

I defined my test statistic ζ as the difference of the MSE of the prediction of the

null model and the prediction of the model m ∈ {OLS, S3L,LASSO − CV,LASSO −

Stable, Shrink} for each variable of my VAR process. Next I bootstrapped ζ from 10,000

samples drawn from the current test set at T − i, i ∈ {0, 1, 2}.

Third, I summed ζ over all tuples of training and test data. I say that a model m

performed better than the null for variable y if it performed so in at least 95% of all

bootstrapped samples.

See Table 5.1, for the relative performance of each model in comparison to the null

model and Table 5.2 for how parsimonious each model was by averaging the amount

of coefficient each type of models uses for predicting the different dependent variables;
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Model Loc. ent. R. of gyr. Phys. enc. Virt. int. Peer ent.
Full 5 5 5 5 5
OLS 1.33 1 1 0 3
LASSO CV 3.33 3.66 4.33 4 5
LASSO Stable 4 4.66 4.33 5 4
Shrinkage 1.33 0.33 2.33 0.33 2.33
S3L 1.33 0.66 0.66 0 1

Table 5.2: Average Amount of Coefficients
The table shows the average amount of coefficients for each model over the three tuples of
training and test data (excluding the coefficient for the intercept). Generally speaking the

fewer coefficients a model used on average the more parsimonious it was.

ceteris paribus if a model used fewer coefficients on average it was more parsimonious.

Interestingly, the full model performed at a similar level to the OLS, LASSO-Stable as

well as the Shrinkage model. For predicting both variables physical encounters as well as

peer entropy, the full, OLS, LASSO-Stable and Shrinkage model performed significantly

better than the null model.

As the total ζ scores were relatively similarly for the full, OLS, LASSO-Stable as well as

Shrinkage model, I wanted to ensure that the other models actually performed better than

the OLS model. In other words I wanted to only include additional “causal” edges if those

helped the models to predict the dependent variables better. I thus defined a new test

statistic ω as the difference of the prediction of the OLS model and the prediction of the

models m ∈ {Full, LASSO − Stable, Shrinkage}. I then repeated the testing procedure

outlined above. Table 5.3 shows that none of the other models performed better than the

OLS model in more than 95% of all bootstrapped samples. The additional coefficients

did not improve the performance of the other models as compared to the OLS model for

any of my independent variables.

Thus, I used the coefficients as estimated by the OLS model that had access to the

most temporal information for further discussion. Figure 5.5 depicts the coefficients of

the this final OLS model, whereas Table 5.4 lists all coefficients of the model in tabular
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Model Loc. ent. R. of gyr. Phys. enc. Virt. int. Peer ent.
Full 0.35 0.31 0.88 0.25 0.89
LASSO Stable 0.63 0.60 0.31 0.08 0.01
Shrinkage 0.37 0.31 0.88 0.25 0.63

Table 5.3: ω Model Scores
The table shows how often the other models perform better than the OLS model; in fact none

of the model performed better than the OLS model more than 95% of the time. The values
were again based on 10,000 bootstrap samples of the test set.

Loc. ent.t R. of gyr.t Phys. enc.t Virt. int.t Peer ent.t
Intercept 0.03 0.06 −0.02 0.05 −0.03
Loc. ent.t−1 0.00 0.00 −0.19 0.00 −0.13
R. of gyr.t−1 0.00 0.00 0.00 0.00 0.00
Phys. enc.t−1 0.03 0.00 0.24 0.00 0.07
Virt. int.t−1 0.00 0.00 0.00 0.00 −0.09
Peer ent.t−1 0.00 −0.01 0.00 0.00 0.19

Table 5.4: OLS Estimated Coefficients
The coefficients for the final OLS model. Rows represent the independent variables at t1,

whereas the dependent variables at t are organised column wise. In contrast, to the graphical
representation of the Granger-causal relationships (Figure 5.5) the table also contains the

values for the intercept term.

form as well. Furthermore, the final OLS model seemed to be a decent fit for the data

as the normal Q-Q plots of the residuals and my dependent variables revealed that for

the most part the residuals followed a normal distribution (Figure A.1.1) and for the

most part I could only detect weak correlations between the dependent variables and

the residuals (Figure A.1.1). However, there were two noteworthy correlations between

physical encounterst and εPhys.enc. and Peer entropyt and εPeer ent., indicating that there

might possibly was an unobserved, confounding, “social” variable present.

5.4.2 Results of the OLS Model

Overall, I discovered evidence for several potential Granger-causal relationships in the

data. In particular, I found relationships from physical encounters, virtual interactions,
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Figure 5.5: OLS Estimated Significant, Causal Coefficients
The figure provides a graphical representation of the estimated Granger-causal relationships in
the dataset, where each edge represents the OLS model estimate for the respective coefficient.
Red coefficients were positive, while blue coefficients were negative in the model. Overall the
coefficients seemed to suggest that location entropy had a negative effect on social variables,

while social variables only positively affected other social variables, but the radius of gyration
negatively.
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and location entropy to peer entropy, from location entropy to physical encounters and

peer entropy, and from peer entropy to the radius of gyration.

Several of the other estimated, significant coefficients represented auto-regressive pro-

cesses. Physical encounters, and peer entropy were all positively associated with past

values of themselves; indicating that effects that might change either of those variables

might persist for several months for individual students.

In particular, physical encounters had a positive relationship with peer entropy,

whereas location entropy, virtual interactions, and peer entropy had each a negative

relationship with their respective dependent variables. This seems to suggest two

things: First, physical encounters led to a slight propensity to meet a variety of people

in the future and the variety of peers one met decreased the observed future travel

radius. Second, having a high variety of visited locations was detrimental to maintaining

social ties and led to an overall decrease in the amount and variety of observed social

connections. Conversely, meeting a variety of peers in the previous time period also

overall decreased the observed mobility.

5.5 Discussion

My results showed that longer term dynamics might indeed be shaping both mobility

and social dynamics. Both social and mobility behaviour thus might not only evolve at

shorter time frames but also longer ones. This has important implications for understand-

ing the interplay between both mobility and social behaviour as structural inequalities

might influence the observed behaviour significantly over long time periods. For example,

students that might have a high location entropy in one month might thus have a lower

rate of physical encounters the next month. As physical encounters were auto-regressive

the effects of the initial higher value for location entropy might persist for a substantial

118



amount of time.

I would like to point out, however, that the OLS model only performed significantly

better than the null model for the dependent variables physical encounters and peer en-

tropy (see Table 5.1). Thus, even though several coefficients of the OLS model for the

other dependent variables were significant, the results should be treated with caution as

the null model essentially just used the mean for estimating future states. One possible

explanation is that the relationship between the other variables might be better cap-

tured by a non-linear model or was not further observable with my choice of temporal

aggregation.

In fact, analysing the interplay between social ties and mobility on different time-

scales might be an interesting further research question. In particular, it is known that

social networks evolved at various short term timescales (Scellato et al., 2010). However,

relatively little was known about how the interplay between social networks and mobility

might evolved at various time scales and as my research shows longer term dynamics are

worth investigating.

In contrast to parts of the surveyed literature (Section 5.2.2), I did not find a strong

positive relationship between social variables and variables representing mobility. At least

for my study being socially well connected did not consistently lead to a higher radius

of gyration or in the case of location entropy only in a minor increase; or in other words

for students in Denmark being well connected to their peers did not automatically seem

lead to a higher mobility. Possible explanations for the lack of a positive relationship

between the social network and mobility were the similar socio-economic status of all

individuals in the study and the high availability of relative cheap forms of transportation

(i.e. public transport and excellent cycling infrastructure). Relatively low barriers to

mobility might possibly negate the added value of being socially close to someone that

has a higher potential for mobility (e.g. somebody that owns a car in highly car dependent
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city). What is more, peer entropy was a significant, negative coefficient for the radius of

gyration. Students that had a very diverse set of peers in one month significantly reduced

their overall mobility in the next month. Socialising within their peer group appeared to

actually discourage travel behaviour.

I also discovered a positive relationship between physical encounters and peer entropy.

Not surprisingly the more people one had met in the previous month, the more varied

the set of people one met was in the next month. Meeting more people in the previous

month appeared to allow people to form more new ties than they could have otherwise.

Interestingly, I did not find evidence for the reverse relationship: peer entropy did not

seem to lead to more physical encounters. One interpretation for the lack of a reverse

relationship is the limited amount of time people could use to socialise with other people.

Just because one potentially had access to more people to interact with as measured by

the peer entropy did not necessarily mean that one also had the temporal resources to

spend time with more people.

Furthermore, I found evidence for a negative relationship between location entropy

and both physical encounters and peer entropy. However, while I could not measure the

physical encounters of the students outside the group, I did not find a similar relationship

for my variable virtual interaction that accounted for all virtual ties of at student. As

suggested by others (Jiron, 2007; Mattisson et al., 2014; Putnam, 2000; Viry et al.,

2009) having to travel more and having to maintain a geographically diverse set of social

ties, limited a person’s ability to socialise rather than to maintain a wider set of social

relationships. However, a lack of encounters within the observed social network might

possibly be compensated by students with encounters outside the observed social network.

Last, virtual interactions did have a negative relationship with peer entropy. Students

did not seem to be able to compensate for either a lower mobility or other social indicators

with virtual interactions; rather virtual interactions led to a lower diversity of the peers of
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students as students possible substitute meeting in person with phone calls and/or text

messages.
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I see that time divided is never long, and that regularity abridges

all things.

Abel Stevens

6
Personality & Regularity of Behaviour

6.1 Introduction

The last decade saw an increasing number of studies analysing digital traces of human

behaviour ranging from data collected via online social networks, over Bluetooth and

GPS enabled devices to call data records of millions of people; especially data collected

in one way or another via phones was proven to be a fruitful avenue for research (Lazer

et al., 2009). These studies dealt with a wide array of topics such as mobility (González

et al., 2008a; Song, Qu, et al., 2010), the formation of social ties (Cho et al., 2011),
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the regularity of behaviour (Williams, 2013) and the influence of personality on human

behaviour (Lambiotte & Kosinski, 2014). Unsurprisingly personality influenced a variety

of behaviour ranging from sexuality (Bourdage, Lee, Ashton, & Perry, 2007) to academic

achievements (Connor & Paunonen, 2007). Past studies that used digital traces to study

the effects of personality on behaviour mainly focused on three areas: social media, social

networks, and mobility.

There is evidence that social media usage as well as language used on social media

was shaped by personality traits. Park et al. (2015) reported that the language used on

social media correlated with personality traits. Schwartz et al. (2013) used differential

language analysis to uncover a substantial variation of language driven by personality,

age, and gender. Last, Kosinski, Stillwell, and Graepel (2013) discovered that Facebook

likes alone were highly predictive of not only the personality traits of a person but also of

age, gender, intelligence, political and religious views, and sexual orientation.

What is more, how people socialised and their position in their social network was

shaped by their personality traits (Morelli, Ong, Makati, Jackson, & Zaki, 2017). Re-

search by Quercia et al. (2012) demonstrated that extroverts had larger networks, while

Friggeri et al. (2012) showed that introverts were part of fewer, but larger communities

and that extroverts acted as bridges between communities. Personality traits were also

an important driver of tie formation as people with similar personality traits were more

likely to be friends (Noe et al., 2016; Whitaker, Noe, Whitaker, & Allen, 2016).

Last, personality also affected the mobility patterns of people. Oliveira (2011) were

able to use features inferred from call data records and the call graph to predict an

individuals personality and Montjoye et al. (2013) managed to infer personality traits

from CDR alone. Furthermore, Staiano et al. (2012) showed that the network structure

of social interactions alone could be used to predict personality traits. Personality traits

could also explain differences in check-in behaviour of users in a location based social
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network (Chorley et al., 2015) and personality traits were further able to help to explain

variations in socio-spatial behaviour (Alessandretti, 2018).

Previous work clearly indicated that various aspects of behaviour captured by digital

traces were linked to personality traits. However, one salient feature, the regularity of

human behaviour, and how it was intertwined with personality traits had not been studied

before. While several studies established that human behaviour was to a relatively large

degree regular (see among others González et al., 2008a; Song, Qu, et al., 2010 and

Williams, 2013), to the best of my knowledge how personality could shape regularity

remained unclear.

My contribution thus lay in studying in how personality might be a driver of regularity

of behaviour as observed through digital traces. In particular, I tried to bridge the gap

between more computational oriented studies that analysed regularity of behaviour and

studies that focused on the effects of personality on behaviour. As a large degree of

human behaviour was shown to be regular, understanding regularity of behaviour might

have important implications for understanding behaviour in general.

6.2 Background

As I was interested in how personality traits potentially shaped the regularity of behaviour,

I briefly review other studies here that found effects of personality on behaviour using

digital traces and previous findings with regards to regularity of behaviour.

6.2.1 Personality

In psychology, trait theory posits that humans have relatively stable patterns of behaviour,

thoughts, and emotions (Allport, 1966). Furthermore, traits differ between individuals

and can influence behaviour. One of the most widespread models of personality is the
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five factor model (FFM). The five personality factors are openness to experience, con-

scientiousness, extraversion, agreeableness, and neuroticism. While how to best measure

personality was still an ongoing research question (Ashton & Lee, 2008; Lee, Ogunfowora,

& Ashton, 2005), studies of digital traces of behaviour predominantly used the FFM

(Lambiotte & Kosinski, 2014; Chorley et al., 2015; Noe et al., 2016). I followed that

convention for my work here.

Openness

People that score high for openness tend to be curious and creative. They are generally

open for new experiences. Conversely, people who score low on openness tend to be con-

servative (Noe et al., 2016). The entropy of visited places and the entropy of contacts

with whom an individual called and texted was a significant predictor for openness (Mon-

tjoye et al., 2013) Or in other words, the more diverse the set of visited places and the

more diverse the set of called friends was, the more likely somebody was to score high

on openness. While Chorley et al. (2015) found no correlation between the diversity of

visited places and openness, people who scored high on openness tended to visit social

and popular venues. Social venues might be popular, because more open people tended

to enjoy socialising and meeting new people.

Conscientiousness

Conscientious people tend to be disciplined and organised as opposed to easy-going and

inconsistent. They further are rather goal oriented and stay focused on their tasks (Noe et

al., 2016).While Chorley et al. (2015) discovered that conscientious users had significantly

more check-ins than less conscientious users, it was unclear whether more conscientious

users were really visiting more locations or were just more diligent in recording check-ins.

Furthermore, Amichai-Hamburger and Vinitzky (2010) found that conscientious users had
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more friends on Facebook.

Extraversion

Extroverts usually seek engagement with the external world. They tend to be more out-

going, talkative, and sociable; they generally have a larger circle of friends. In contrast,

introverts generally have a lower amount of friends and enjoy doing things on their own

(Noe et al., 2016).While extraversion was not associated with a particular check-in be-

haviour (Chorley et al., 2015), they tended to have a larger circle of friends (Pollet et

al., 2011; Lambiotte & Kosinski, 2014). Consequently, extraversion was the strongest

predictor for the number of friendships among personality traits (Quercia et al., 2012).

Very extroverted individuals tended to have on average twice as many friends as very

introverted individuals.

Agreeableness

Agreeable individuals value getting along well with others and are generally perceived to

be friendly and likeable. Disagreeable individuals tend to place self-interest above getting

along with others, are less likely to compromise, and less gullible (Noe et al., 2016).Bal-

maceda, Schiaffino, and Godoy (2014) reported that agreeable users of social networking

sites tend to communicate with extroverted and emotionally stable communication part-

ners. They also discovered that agreeable users were more likely to communicate between

themselves than disagreeable users. Furthermore, Selfhout et al. (2010) showed that in-

dividuals that scored high on agreeableness were mere likely to be selected as friends by

others. At the same time individuals that scored high on agreeableness had a higher num-

ber of check-ins Chorley et al. (2015). Yet, Chorley et al. (2015) did not find a significant

relationship between agreeableness and check-in diversity.
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Neuroticism

Neurotic people are sensitive and nervous, and have a tendency to experience negative

emotions such as anger, anxiety, and depression. The opposite of neuroticism is often re-

ferred to as emotional stability; and emotionally stable people tend be to calmer and more

self-confident (Noe et al., 2016).Conversely, neuroticism was linked to a low tolerance of

stress and adverse stimuli (Norris, Larsen, & Cacioppo, 2007). Neuroticism was negatively

correlated with the number of check-ins at social venues (Chorley et al., 2015). Moreover,

Noe et al. (2016) discovered that neurotic users might socialise less and check-in to fewer

locations than others. Last, Montjoye et al. (2013) found mobility features to be useful

for predicting neuroticism. The most important features for predicting neuroticism were

the daily travelled distance, the entropy of visited places, and the lagged time series of

phone calls and texts. However, the paper did not report the type of relationship between

the used features and neuroticism (i.e. it was unclear whether a high or low mobility was

indicative of neuroticism).

6.2.2 Regularity of Behaviour

Understanding recurring patterns of behaviour has clear implication for not only under-

standing individual human behaviour but also for how predictable a person’s behaviour is.

Several studies found a rather remarkable level of regularity in both individual’s spatial

as well as social behaviour. However, the concept of regularity comprises not just showing

up at the same place at the same time. Meeting the same people at the places one visits

and having stable patterns of behaviour over time are also important dimensions. In the

literature, I found three different types of regularity with respect to digital traces:

1. periodicity of events,

2. predictability, and
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3. regularity of behaviour with respect to settings and contexts.

First, periodicity is not only an important characteristic of human behaviour but also

a straightforward measure of how regular a person’s behaviour is. In short, the more

periodic behaviour is the more regular it is. Using various datasets, Williams (2013)

studied the periodicity of behaviour using the irregularity of an individual’s visits to a

certain location per week. They found that visits to academic buildings were the most

regular, while visits to outdoor locations were the least regular. Scellato et al. (2010)

showed that while network dynamics of human contact networks were non-stationary (i.e.

evolving over time) they were still relatively periodic with respect to the 4, 8 and 64 hour

interval, where 4 and 8 hours most likely relate to the work day and 64 hours roughly to

the weekday/weekend dichotomy. Furthermore, the cardinality of the set of places visited

in the last 30 days stayed more or less constant for most people (Alessandretti et al.,

2018). This indicated that for a given time period people were highly periodic in the

places they visited.

Second, given past observations, the overall predictability of behaviour was another

way to assess regularity of behaviour. An individual’s behaviour might follow very regular

patterns of behaviour but not necessarily be periodic. For example, an individual might

very regularly visit a coffeeshop after being done with university no matter at which time

their lectures finish. The more predictable a person’s behaviour is, arguably, the more

regular that person is, or otherwise one could not predict their future state.

González et al. (2008a) discovered that as individuals returned to a few highly fre-

quented locations, such as home or work, they overall displayed a large degree of pre-

dictability. Song, Qu, et al. (2010) used the entropy of location traces to estimate an

upper bound of the predictability of human mobility behaviour at about 93% of all mo-

bility traces. Lima et al. (2016) reported that motorists only used a small number of

possible routes for frequent trips and were thus relatively predictable in their daily rout-
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ing behaviour.

Third, I looked at the regularity of a student’s behaviour in different settings. The

underlying idea was that even when a student might not be regular in their temporal

patterns, they might still be very regular in what they did and with whom they inter-

acted in certain places. For example, they might always meet a group of friends for the

same amount of time or visit a certain place for set period of time. Or they might still be

regular with respect to whom they met at a certain locations, or with whom the virtually

interacted in certain social or spatial contexts. For example, Sekara et al. (2016) discov-

ered that during periods of high unpredictability with respect to their physical location

(i.e. on weekends), people nevertheless were highly predictable with respect to which

other people they met.

6.2.3 Data

Previous research concerning digital traces of behaviour mainly analysed three spheres

of human behaviour: spatial behaviour (Alessandretti et al., 2018; Chorley et al., 2015;

Song, Qu, et al., 2010; Williams, 2013), social behaviour (Morelli et al., 2017; Sekara et

al., 2016; Quercia et al., 2012) and virtually mediated interactions (Montjoye et al., 2013;

Kanai et al., 2011; Kosinski et al., 2013). By having access to data from the Copenhagen

network study (Chapter 3), I was able to study the effect of personality on all three spheres

of behaviour as the dataset includes data of 847 students and their psychological traits

as measured by the FFM. As can be seen in Figure 6.1, the distributions of the different

personality traits more ore less followed a bell curve for the dataset, but students were

slightly more agreeable and slightly less neurotic overall.

I could use these data to look at an individual’s spatial (which places they visited),

social (which social groups they interacted with), and virtual (whom they texted and

called) behaviour. In particular, I was interested in how personality traits derived from
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Figure 6.1: Distribution of the Big Five Personality Traits
Overall the personality traits of the students in the study were relatively equally distributed
and more or less followed a bell curve. The exception being that students were slightly more

agreeable and slightly less neurotic as a population.

130



the FFM mediated my three aspects of regularity. Thus, for each user, I constructed a

time series of stop locations, a time series of the core social group that was present, or

in other words in which social contexts the student was in, and a time series of calls and

texts describing the virtual interactions of each user.

Recall that a gathering of students usually consisted of a stable core of participants

(Section 3.1.2). In order to build the time series of social contexts, I used the social core a

student was co-located with to assign unique labels to each social setting. I note that the

methodology of Sekara et al. (2016) required me to bin the data into five minute buckets.

Various bucket widths were tested in the study, and the authors found that to detect

social groups reliably a five minute interval worked best. For consistency, I thus binned

my other time series into five minute wide buckets as well.

To construct the time series of stop locations, I followed the process as described in

Chapter 3 for processing location traces. In summary, an individual had to at least spend

ten minutes at a stop location for it to be a meaningful location.

I also assigned each unique phone number that a student interacted with a label and

binned the calls and texts into five minute wide buckets. Due to the relative sparsity

of the data, there were almost no collisions due to a student interacting with more than

one phone number within one bucket. Although in the handful of cases where a collision

occurs, I randomly selected a label to use for that bucket. In order to be able to estimate

my entropy based metrics faithfully, I created a secondary series of phone calls and texts

based on the labels that preserves the ordering of all calls and texts without binning.

6.3 Hypotheses

Previous studies clearly showed that various aspects of digitally captured behaviour were

linked to personality traits. Several other works also established that human behaviour
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was, to a relatively large degree, regular. However, not much is known about how per-

sonality traits shaped the regularity of digital traces of human behaviour. Thus, I tried

to answer the following question: What role did personality play for the regularity with

which individuals visited their stop locations, met with their social groups, and called and

texted each other?

Understanding how regular individuals were with respect to their behaviour could not

only inform predictions about future behaviour but also improve traffic models, business

decisions, and recommendations from digital assistants. Given the reviewed findings (Sec-

tion 6.2.1), I expected personality traits to play a small but statistically significant role in

shaping regularity. I assumed that people who scored high on openness to be less regular

and predictable in their behaviour; both with respect to their spatial, social as well as

virtual behaviour. As extroverts acted as bridges between communities (Friggeri et al.,

2012), extroverts potentially had to balance scheduling demands from a diverse set of so-

cial groups. Hence, I expected them to be less regular overall with respect to their social

behaviour, spatial, and virtual behaviour. There is some empirical evidence that conscien-

tiousness was correlated with a larger amount of friends, thus there was a higher a priori

chance of individuals being less regular in their behaviour. However, as conscientious-

ness is associated with high levels of organization and discipline, I nevertheless expected

high conscientiousness to be associated with a high spatial, social, and virtual regularity.

Fourth, agreeableness appeared to lead to a higher probability of forming friendships, and

I therefore assumed agreeable individuals to have a more varied social circle and thus a

lower regularity with respect to their social interactions. Fifth, as neurotic individuals

tended to interact more with other neurotic individuals and tended to have a smaller set

of friends, I expected them to be more regular with respect to their social behaviour.

In summary my hypotheses regarding regularity were:

– H1 Openness was correlated with less spatial and social regularity.
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– H2 Extraversion was correlated with less spatial and social regularity.

– H3 Conscientiousness was correlated with more spatial and social regularity.

– H4 Agreeableness was correlated with less social regularity.

– H5 Neuroticism was correlated with more social regularity.

6.4 Methodology

As interactions between students were relatively sparse and discrete, I could not use tra-

ditional measures of frequency analysis such as Fourier transform or wavelet analysis.

Furthermore, using auto correlation or in my case auto-mutual information was prob-

lematic as in the data short term lags dominate the auto-mutual information function

(Figure 6.2), where auto-mutual information is the mutual information (Equation 3.2)

of a time series with a lagged copy of itself. This was conceptually very similar to us-

ing an auto-correlation plot to estimate the auto regressive part of a time series, except

auto-mutual information is more suited to discrete values. Students that simply had

longer meetings or spent more time at a certain location had a higher overall auto-mutual

information without necessarily being more periodic in their overall behaviour.

6.4.1 Measuring Periodicity

One common and appropriate approach for relative sparse event based data is to focus

on the time between successive events. If the events happen periodically then the interval

between events should also be relatively stable over time. For each distinct set of events,

I can calculate the coefficient of variation (cv) of the inter-event intervals defined as the
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Figure 6.2: Average Auto-Mutual Information
The auto-mutual information averaged over all students measures how much mutual

information past values held about the context a student was situated in. It is noteworthy that
while how much the individual variables depended on past values differed by a couple orders of
magnitude, they all showed a similar periodic pattern. In particular, daily and weekly periods

were pronounced.
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Figure 6.3: Example Visit Trains
Three example visit trains (U1, U2, U3) and their corresponding master train (U∗) of length ω,

where each tick represents one event observed at time t within period ω.

ratio of the standard deviation σ to the mean µ (Abdi, 2010):

cv = σ/µ (6.1)

As the cv is a unit less measure I could use the average cv of all possible distinct sets of

intervals of events to judge the variation of an individual’s overall variation in inter-event

times. cv describes how regularly individuals re-visit locations, meet their peers, and call

and text their social ties.

While cv was a straightforward measure to assess the variation of inter-event data,

multi-modal distributions might have a higher cv without being intuitively less periodic.

For example, if one meets someone very regularly every two days as well as every seven

days, this would lead to a higher cv than if one just meets every two days without one

being necessarily more or less regular. Therefore, I also opted to quantify irregularity

by calculating the inter-event irregularity (IEI, Williams, 2013) as this metric was more

apt to deal with multi-periodicity. Williams (2013) used this metric to successfully study

event data quite similar to the data I used for this chapter.

The IEI is calculated by first constructing a separate ensemble of visit trains (Fig-

ure 6.3) with window size ω, where ω denotes the length of period one is interested in
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(e.g. daily, weekly, monthly, etc. bins of event data), for each distinct set of events (in my

case visits to a particular stop location, co-presence of a unique social group, or virtual

interaction with the same person).

Let now cv(u) = σ(u)/µ(u) be the cv at a particular offset u from the beginning of the

visit trains. IEI is then defined as:

IEI(U∗) = 1
ω

∫ ω

0
cv(u) du (6.2)

The intuition behind IEI is that it estimates regularity by assessing whether events happen

at the same time in all time periods ω irrespective of a particular offset u. This way IEI is

also able to deal with multi-periodicity better than just using the cv. By collapsing the visit

trains U1, U2, ..., Un of an individual into a master train U∗ (Figure 6.3), I could calculate

IEI in one single pass over U∗ by noting that cv(u) stays constant between subsequent

events in U∗ as the value of the integral only changes when an event occurs in U∗ (Williams,

2013). While the original metric had been proposed for instantaneous events, it was

straightforward to expand the metric to events that had an observed duration by adjusting

how inter-event intervals were calculated.

In order to compute IEI, I needed to determine the appropriate length of the time

window ω. As a lot of behaviour follows a weekly rhythm and Williams (2013) opted

to focus on weekly periodicity in their analysis. However, longer periods might play

an important role for understanding periodicity. I judged the appropriate length of the

time by measuring how much the time series on average depends on past values. I used

the average auto-mutual information of student’s time series (Figure 6.2) to assess how

much current states of the system depend on past states. Figure 6.2 clearly shows a

strong daily as and a weak weekly component of spatial and social behaviour between a

student’s behaviour and their lagged time series. A Fourier transform of the auto-mutual
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information series, reveals a fairly strong daily period, but no periods longer than two

days (Figure 6.4). As I could not spot longer periods than one week in either plot, I

decided to set ω to one week.

6.4.2 Assessing Predictability

As I argued above, measuring periodicity alone might not be sufficient to determine

whether an individual’s behaviour is regular. I also wanted to assess how predictable

a student’s behaviour was or in other words how much uncertainty a student’s time

series contained. The idea is that even when a individual might not be periodic in their

behaviour, they might still be regular in the series of locations they visit, or with whom

they meet, or text and call.

If entropy is viewed as a measure of surprise, then one way to quantify the amount of

uncertainty of a time series is to estimate the entropy of said time series. Ceteris paribus,

a time series with a lower entropy is more predictable than a time series with a higher

entropy. I thus in a first step calculated the Shannon entropy (Equation 3.1) of a user’s

time series.

However, calculating the Shannon entropy does not take into account any temporal

dependencies. Other studies such as Alessandretti (2018) by using only the Shannon

entropy failed to account for the temporal ordering of observations, which is crucial for

understanding the temporal regularity of behaviour.

Several different metrics were proposed and used in the literature to estimate the en-

tropy of a time series and take temporal ordering into account. Among current approaches

were sample entropy (Tang, Lv, Yang, & Yu, 2015), permutation entropy (Tang et al.,

2015), diffusion entropy (Scafetta & Grigolini, 2002), and an entropy estimator based on

Lempel-Ziv complexity (Song, Qu, et al., 2010).1

1For a more detailed review see for example Tang et al. (2015)
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Figure 6.4: Frequency Plot of the Average Auto-Mutual Information Series
By applying the Fourier transform to the auto-mutual information series, I can visualise the

frequency spectrum of the data. It is noteworthy that while Figure 6.2 indicates weekly
periodicity, the longest period visible in this figure is 48 hours.
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While a comparison for the effectiveness of various estimators existed for other fields

(Hansen, Wei, Shieh, Fourcade, & Isableu, 2017), to my knowledge no such comparison

existed for the field of human behavioural dynamics. Thus, I decided to use the most

common one in the field of human behavioural dynamics, the Lempel-Ziv based entropy

estimator (hereafter HLZ). HLZ is defined as follows:

HLZ = −
∑
T ′⊂T

P (T ′) log2 P (T ′) (6.3)

where P (T ′) is the probability of finding a particular time-ordered subsequence T ′ in the

time series of the individual (Song, Qu, et al., 2010).

As discussed above the Shannon entropy does not account for temporal patterns and

indeed I found that for my data that the Shannon entropy significantly overestimated

the actual entropy of the time series (Table 6.1). Furthermore Song, Qu, et al. (2010)

showed that HLZ was robust to missing observations. Last, HLZ is directly related to the

predictability of the time series via the Fano inequality (Song, Qu, et al., 2010), where

the inequality relates to the information lost in a noisy information channel (Lu et al.,

2013).

Avg. H Avg. HLZ p

Virtual 4.2444 2.1610 <0.001
Social Contexts 6.3301 3.4300 <0.001
Stop Locations 4.3539 2.0546 <0.001

Table 6.1: Comparison of H and HLZ

p-values of whether µH is different from µHLZ
are estimated using 10,000 bootstrap samples,

where I follow the procedure for resampling for a hypothesis test as described by Boos (2003).
The key point is that one needs to make sure that the resampling is performed under the
appropriate null hypothesis. In my case, the null hypothesis for the pooled t statistic is

µH − µHLZ
= 0.
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6.4.3 Assessing Contextual Regularity

The last aspect of regularity, I was interested in was, whether a student’s observed be-

haviour stayed the same at the same locations and social settings. In particular, I was

looking at how regular the duration of visits as well as interaction with a student’s social

groups was. I could use cv of the duration of the visits to a student’s stop location and

meetings with a distinct social group, as a metric to judge the variation of event durations.

Furthermore, I was able to assess how consistent students were with whom they meet at

locations, and with whom they interacted virtually in different spatial and social settings.

By calculating I (Equation 3.2) between a user’s time series of stop locations, social

contexts, and virtual interactions, I could quantify how consistent a user’s behaviour in

one sphere was with the other sphere. In other words, how much did the entropy of the

behaviour in one sphere decrease by knowing the behaviour in the other sphere. While

several authors found evidence for a strong link between the spatial and social behaviour

(Section 2.4), little was known of how personality might mediate the link between spatial

and social behaviour.

6.4.4 Scale and Statistical Power

When studying the effects of personality traits on behaviour, small effect sizes were rel-

atively common due to the inability to perfectly map traits as well as heterogeneity of

behaviour (Butcher, Graham, & Ben-Porath, 1995). Consequently, sample size played an

important role for detecting the effects of personality on behaviour. A common approach

in the literature (Ross et al., 2009; Chorley et al., 2015) was to split the data into quantiles

(most commonly terciles) based on the personality traits and compare the differences in

behaviour for the top and bottom groups. However, I decided against this approach as

it is unclear how to best pick the number of quantiles to split the data in. Trivially, if
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there exists a linear relationship between the variables, the more quantiles one uses the

bigger the differences between the groups. Even though the Copenhagen network study

in total consists of 847 individuals, I only had personality traits for 508 students. With

this sample size I was however still able to detect effect sizes of about 0.1 at the 95%

significance level (Hulley, Cummings, Browner, Grady, & Newman, 2013).

6.5 Findings

6.5.1 Periodicity

As illustrated by Figure 6.2, on average, the periodicity of behaviour of the students

followed a rhythmic pattern. Overall, there was strong periodicity with respect to daily

and weekly patterns of behaviour; especially for the social context a student was in.

Observing that I calculated the cv for all distinct inter-event intervals for each student.

Table 6.2 depicts the correlation between cv and personality.

I found a significant positive relationships between agreeableness, conscientiousness,

and extraversion leading to a higher cv for virtual interaction. As theorised (H2 and

H4), both extraversion and agreeableness led to less virtual regularity. Unexpectedly, and

contradictory to H3 conscientiousness was also correlated with greater virtual irregularity.

Although, this might be partly explained by the fact that virtual communications were

not solely driven by the students themselves.

However, as discussed above, the cv might be misleading if the distribution of inter-

event intervals is multi-modal. I thus also calculated the IEI with a window length of

one week and again analysed the correlation between the metric and personality traits.

And indeed I could observe differences between the IEI and the cv. Unexpectedly, and in

contradiction to H1 and H2, individuals that score high on extraversion or openness were
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Virtuals Social Contexts Stop Locations
Extraversion 0.20* 0.00 0.07
Openness 0.04 0.01 0.04
Agreeableness 0.12* 0.03 0.08
Conscientiousness 0.11* 0.05 −0.03
Neuroticism −0.02 0.01 −0.07

Table 6.2: Correlation Between cv of the Inter-Event Intervals and Personality
Only cv of virtual behaviour seemed to be significantly correlated with personality traits.

*:p < 0.05

more regular with respect to how they visited stop locations. One possible explanation is

that people with either of those traits had more varied social ties and thus had to balance

more social appointments, which in turn led to relatively stable schedule with respect to

spatial locations. Furthermore, students that scored high on conscientiousness had again

a higher IEI score for virtual ties.

Virtuals Social Contexts Stop Locations
Extraversion −0.02 0.03 −0.11*
Openness −0.05 −0.04 −0.13*
Agreeableness 0.00 0.03 −0.07
Conscientiousness 0.10* 0.04 0.00
Neuroticism −0.01 0.02 0.01

Table 6.3: Correlation Between IEI and Personality
While stop locations seem to be significantly negatively correlated with both extraversion and

openness, conscientiousness was positively correlated with virtual behaviour. *:p < 0.05

6.5.2 Predictability

In a first step, I calculated the Shannon entropy for each student and the respective

sphere of behaviour. While the Shannon entropy was not the most apt metric to assess

the regularity of a time series (as shown in Table 6.1), it allowed me to compare the results

of my study with previous research that looked at H with respect to personality traits.
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Virtuals Social Contexts Stop Locations
Extraversion 0.20* 0.03 0.21*
Openness 0.01 0.02 0.01
Agreeableness −0.01 0.03 0.02
Conscientiousness −0.01 0.01 0.05
Neuroticism −0.01 −0.09* −0.05

Table 6.4: Correlation Between H and Personality
Only extraversion was significantly correlated with both less predictability for virtual

behaviour as well as the set of visited stop locations. *:p < 0.05

The results as reported in Table 6.4 were consistent with previous findings. I found

that more extroverted students have more varied social interactions via phone calls and

texts as well as visit a greater variety of stop locations as predicted by H2. These

findings suggested that indeed more extraverted students had more varied social ties and

thus might have indeed more social commitments. I also found that neuroticism was

negatively correlated with the variety of social contexts a student can be observed in.

This was in line with my original hypothesis (H5) that neuroticism leads to more social

regularity.

Virtuals Social Contexts Stop Locations
Extraversion 0.15* −0.03 0.15*
Openness 0.01 0.02 0.02
Agreeableness −0.04 0.02 −0.02
Conscientiousness −0.03 −0.01 0.00
Neuroticism 0.01 −0.07 −0.03

Table 6.5: Correlation Between HLZ and Personality
As discussed above (Table 6.1 and is apparent in this figure as well, H overestimates the

irregularity of a time series as it does not account for the temporal ordering of the
observations. *:p < 0.05

Next I looked at how predictable a student’s time series was by calculating HLZ (Ta-

ble 6.5). Recall that a higher HLZ can be interpreted as a lower overall predictability of

a time series. I was able to observe a significant positive correlation between extraversion
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Social Contexts Stop Locations
Extraversion 0.04 0.16*
Openness 0.09* 0.06
Agreeableness −0.04 0.09*
Conscientiousness 0.00 0.02
Neuroticism −0.03 −0.10*

Table 6.6: Correlation Between cv of the Event Durations and Personality
Mostly cv of event durations of the stop locations was correlated with personality traits and

not social contexts. Only openness was correlated with cv of the durations of the social
contexts. *:p < 0.05

and HLZ for both virtual communications as well as the stop locations and a negative

correlation between neuroticism and HLZ . Overall and in support of H2, I discovered

that more extroverted students had a significantly lower predictability for both the stop

locations they visited and their virtual interactions.

6.5.3 Regularity of Contextual Behaviour

Last, I analysed the regularity of behaviour of students at different locations and settings.

In particular, I looked at the duration of time spent at locations and with friends and

whether they socialised with the same friends online and in real life in the same settings.

To see how varied the distribution of durations of events was for students I could again

calculate the cv. However, in this case, I calculated the cv with respect to the distribution

of durations of social encounters and time spent at stop locations (Table 6.6). I found

that more extroverted and more agreeable students were significantly more varied in the

amount of time they spend at the locations they visited; further confirming H2 and

H4. In agreement with H1, individuals that scored high on openness were also more

likely to vary the amount they spent with different social groups. Furthermore, there was

also evidence for H5 as I could also observe a significant negative correlation between

neuroticism and the cv for event duration.
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Virt.-Soc. Con. Virt.-Stop Loc. Soc. Con.-Stop Loc.
Extraversion 0.26* 0.27* 0.18*
Openness 0.02 0.00 0.03
Agreeableness 0.10* 0.10* 0.05
Conscientiousness 0.13* 0.12* 0.13*
Neuroticism −0.05 −0.02 −0.08

Table 6.7: Correlation Between I and Personality
Interestingly both extraversion and conscientiousness had a relatively large correlation with all

possible variations of I. Whereas I hypothesised that conscientious students would be more
regular, the result is surprising for extraversion. *:p < 0.05

To assess how strongly behaviour was linked between different domains, I calculated I

between a student’s time series of virtual interactions, stop locations, and social contexts.

Interestingly individuals that scored higher on agreeableness, extraversion, or conscien-

tiousness all had an increased coupling between at least two different spheres than indi-

viduals that scored lower on those personality traits. I also found a negative relationship

between neuroticism and I(social contexts, stop locations).

While these findings suggested that the link between social, spatial, and virtual be-

haviour was indeed mediated by personality, the dynamics at play did not agree with

my original hypotheses. While I would expect conscientiousness to be associated with a

higher contextual regularity (H3), both extraversion and agreeableness were, in contrast

to H2 and H4, also associated with a higher contextual regularity. It is noteworthy that

extraversion, which had been mostly been associated with less social and spatial regularity

in my analysis, so far still had a significant bearing on the dependency between all types

of behaviour.
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6.6 Discussion

After a thorough search of the relevant literature I believe that my study is the first

to attempt to systematically assess the effect of personality traits on the regularity of

behaviour. With this study I tried to bridge the divide between more computationally

oriented studies that have focused on regularity of behaviour and work that has focused

on the effects of personality on behaviour. The two main finding of this chapter are:

First, while regularity was indeed influenced by personality characteristics, its effects were

relatively modest and only observable at a significant level for a subset of the personality

traits. Overall extroverted students seemed to be slightly less regular than introverted

students and more neurotic students slightly more regular. Second, there appeared to be a

strong relationship for both extraversion and conscientiousness with contextual regularity,

meaning that there was a lot of mutual information between virtual interactions, social

contexts, and stop locations.

However, my study did not constitute an experiment with randomly sampled test

and control groups, rather my study should be viewed of an analysis of digital traces

of behaviour and personality in the “wild”. As my data consisted of relatively sparse

events of interactions with social groups, visits at stop locations as well as texts and

calls, the findings of my study have thus to be viewed in this context. The regularity

of the behaviour of students could be more or less affected by personality traits than

the regularity of the general population is shaped by personality traits. Moreover, I my

study did not take into account individual characteristics of the students such as gender

as splitting the data would have further reduced the power of my study to find the small

effect sizes common for studying the effects of personality traits (Butcher et al., 1995).

Furthermore, while most variables were normally distributed, both the IEI and H of the

social contexts as well as I deviated from a normal distribution, which needs to be taken

into consideration when interpreting my results.

146



With respect to my hypothesis, I found the most support for H2, that means that

extraversion was linked to less social and spatial regularity. Furthermore, there was a

decent amount of evidence for H5, that neuroticism was correlated with more social

regularity. Students with higher scores for extraversion had less predictable time series

as well higher cv for both inter-event intervals as well as overall event durations. I also

discovered some evidence for H1 and H3 that openness and agreeableness were associated

with a lower virtual regularity.

While not all my results supported all my hypotheses and the effect sizes were generally

relatively small, I would like to point out that differences with respect to predictability

and various possible confounding variables are rather rare. For example, a much bigger

study (Song, Qu, et al., 2010) had not found any difference in regularity with respect to

gender, age, home location, language group, population density, and rural versus urban

environments.

Interestingly, the relationship between weekly periodicity and personality was, for

extraversion, openness, agreeableness, and conscientiousness, opposite to what I initially

theorised. Possibly, this was due to how a more varied social circle outside the study

imposes a higher constraint on scheduling meetings and visits to certain stop locations.

Last, I found that behaviour in different contexts was significantly affected by person-

ality. Although, it was known for a while that social and spatial behaviour of individuals

was intrinsically linked (Alessandretti, 2018), to the best of my knowledge my study was

the first that tried to understand how personality might play a role. In particular, I

discovered that extraversion, agreeableness, and conscientiousness were associated with a

higher degree of interdependence between spatial and social behaviour. Furthermore, as

there were deviations from a normal distribution for I and this might have affected my

findings partially.

To summarise, I found several significant relationships between regularity and person-
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ality. However, how exactly personality shaped regularity was clearly more complicated

than I initially theorised given my findings with respect to weekly periodicity as well as

mutual information between different spheres of behaviour. I believe that understanding

the precise dynamics of how personality affects regularity could be an interesting route for

future research. Especially since several studies also used digital traces of behaviour to

predict personality. My results suggest that personality traits have implications not only

for understanding human behaviour but also for models of human mobility and social

networks.
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I may not have gone where I intended to go, but I think I have

ended up where I needed to be.

Douglas Adams

7
Conclusion

Everyday lives have increasingly become mediated by digital technology. Internet en-

abled mobile phones allow virtual communication with almost anyone instantly, online

social networks shape how we socialise, and travel cards allow seamless trips on public

transportation networks. All those digitally mediated interactions leave digital traces of

behaviour behind. Studying those traces led to a deluge of new quantitative studies about

human behaviour (Chapter 2).

And while the results of those new studies were not always revolutionary—some were

re-discovering previous results on a grander scale—the fact that we could study the be-
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haviour of thousands if not millions of individuals at a granular scale was. The new torrent

of data was then not only leading to more detailed understanding of human behaviour,

but also to a more detailed grasps of how behaviour changes with time, how processes

spread, and how we can use regularities for prediction. The main dynamics of both social

and mobility behaviour were fairly well understood in the literature (Chapter 2), includ-

ing the influence of a variety of mediating factors such as age, gender, and socio-economic

status (Section 2.5).

7.1 Contribution

However, several other possible contextual and mediating factors were comparatively

purely understood. The contribution of this thesis consequently lay in studying three

mediating factors that shape the dynamics of social networks and mobility behaviour.

In Chapter 4, I tried to understand what role different factors such as when, where,

and with whom students met had for predicting future encounters between the students.

I phrased the problem as a link-prediction problem in a time varying graph and found

that who else was present at an encounter and the wider network topology were the most

salient features for understanding future encounters between students. While whom else

students met at the same time also improved my prediction, whereas when students meet

had only a negligible impact on my prediction.

In Chapter 5, I analysed the longer term aggregated patterns of social and mobility

behaviour of the students. In particular, I looked at the monthly pattern of a student’s

behaviour. I measured social behaviour with the set of a student’s encounters and the

entropy of said set and a student’s mobility behaviour via a student’s radius of gyration

and the entropy of their visited locations. By using Granger-causality as a framework,

I discovered that a student’s past mobility had only a very limited impact on future
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mobility as well as social behaviour. However, both the total amount of encounters and

the diversity of social connections with other students had a positive influence on future

social and mobility behaviour. Someone that was very social in one month, tended to

be very social the next month as well. In contrast, someone that met a lot of different

people appeared to travel less the next month. Interestingly, the entropy of physical

encounters was negatively associated with the diversity of locations a student visited the

month before. One possible explanation is that increased mobility was not necessarily

due to choice but due to higher fixed time commitments at other locations, which left less

time to socialise within the peer group.

In Chapter 6, I answered the question whether personality traits shaped the spatial

and social regularity of students. While evidence existed that personality shaped social

and spatial behaviour and that both social and spatial behaviour were to a certain extent

regular (Chapter 2), whether personality might mediate the regularity of behaviour was

unclear. Overall, I found that extraversion was linked to less social and spatial regularity,

whereas neuroticism was correlated with more social regularity. The effects were, however,

relatively modest.

In summary, I showed that the social and spatial behaviour of the students, in the

dataset I used, is to varying degrees dependent on mediating and contextual factors rang-

ing from places to personality. When analysing both social networks and mobility be-

haviour it is thus prudent to account for contextual, potentially confounding variables.

7.2 Limitations & Future Directions

I would however like to highlight that my study was conducted using a dataset with a

very specific subset of the population (Chapter 3). Moreover, the data I used for my

thesis was neither a randomly selected subset of the general population nor selected in
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a way to be either representative of the overall population. My research is likely not

directly transferable to a wider population and thus further research is needed before

extrapolating freely to a wider population.

Furthermore, while I discovered several statistically significant associations in the data,

I would like to stress that neither my analysis nor the data I used for my thesis provided ir-

refutable prove of causal relationships. Even though throughout my thesis I controlled for

a variety of possible confounding factors such as the individual characteristics of students

or the innate mobility pattern of individuals, the space of possible confounding variables

is for all practical purposes infinite (Nagarajan et al., 2013). While any unobserved con-

founding variable might affect the results, I followed the reasoning of Druckman and Kam

(2009) and believe that in the absence of any empirical or theoretical indication that

variance within my population might affect the results my findings can still be insightful,

when keeping the limitations of the sample and analysis in mind.

Given the limitations of my study the first avenue for future research is thus to repli-

cate the findings of this thesis with different and/or wider samples of data. A second,

straightforward extension of this thesis is to try and analyse other external factors that

might shape the social and mobility behaviour of individuals.

In Chapter 5, I showed that longer-term dynamics play a role in shaping behaviour,

however to the best of my knowledge a methodological assessment of how social ties and

mobility co-evolve over various time scales has not been done yet. Friendship formation

and dissolution is clearly not instantaneous. Some ties might exist for a much longer

period, whereas others are more fleeting. Similarly mobility is shaped by different time

scales: daily, weekly, or even longer patterns might vary considerably for the same indi-

vidual. Thus, another possible route for future work could be to study the co-evolution

of social ties and mobility at various timescales.
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A.1 The Interplay of Long-Term Social & Mobility
Behaviour

A.1.1 VAR Estimators

While the OLS estimator is guaranteed to be the best linear unbiased estimator in the

limit, the OLS estimator does not necessarily be the best estimator for my given VAR

problem as defined in Chapter 5. Here I present various other possible estimators for my

VAR system of equations.

OLS with Wald test

By using matrix notation I can succinctly write the ordinary least squares (OLS) estimate

for all Aτ as

ÂOLS = (Xpast>Xpast)−1Xpast>Xfuture (A.1.1)

where each column of Xpast represents a particular lagged observations and Xfuture rep-

resents the observations at time t.

Once I have estimated ÂOLS I can use standard statistical tests to assess individual

coefficients improve my prediction or not. In other words, I can test whether the inclusion

of a coefficient a ∈ ÂOLS significantly reduces my mean squared error (MSE).

Commonly a Wald test is performed to test whether the “full” model that has access

to all coefficients performs statistically better than a “restricted” model that is missing

information about a set of coefficients (corresponding to all lagged observations of one

variable, Luetkepohl, 2005). In a first step, I bootstrap the Wald statistics to determine

the distribution of the statistic following the approach of Boubtane, Coulibaly, and Rault

(2013). In a second step, I prune the ÂOLS to only include the set of coefficients whose

Wald score is in the top 0.95 of my bootstrapped Wald statistic.
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S3L

There exists a multitude of approaches for modelling longitudinal data with structural

equation models (SEM) as well. For a comprehensive review see Rosel and Plewis (2008) or

Newsom (2015), but common approaches include cross-lagged effects models (whose sys-

tem of linear equations can be expressed as VAR(1) models), time-series based approaches

such as autoregressive moving average (ARMA) models and growth curve models.

I decided against using SEMs directly for two reasons: First, SEMs are generally not

used in the context of prediction, but are rather used to build a model that fits the

data well based on theory. Recall that I am especially interested in testing my causal

models using prediction of unseen data. Second, the above mentioned approaches for

estimating SEM models have in common that they usually rely only a single run of

learning with regard to the model parameters, which can be unstable in regards to the

learned parameters. Small changes to the finite sample may lead to completely different

causal estimates (Rahmadi et al., 2018). This is especially problematic in the case of

small sample sizes or noisy data.

Thus, I have decided to use a novel approach for using SEMs to uncover causal struc-

tures, stable specification search for longitudinal data (S3L) instead of trying to apply

SEMs directly to model my problem (Rahmadi et al., 2018; Rahmadi et al., 2017). The

algorithm is based on stable specification search, that is given a population of models

regard only those model parameters as stable that occur in the majority of all models

(Meinshausen & Bühlmann, 2010) .

Not only does S3L avoid the problem of unstable causal estimates it also compares

favourably to other state-of-the-art structure learning algorithms for longitudinal data

such as FGES, PC-stable, CPC, CPC-stable, and PC-Max (Rahmadi et al., 2018). The

basic idea of S3L is to sub-sample the data D into subsets of size D/2, and then use those

subsets to find SEMs that are both parsimonious as well as have a high model fit.
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As finding pareto-optimal models SEMs for each subset D that have a high fit and

a low model complexity is a hard non-convex optimization problem, a genetic algorithm

NSGAII is used to optimise an initial population of models. The result of this op-

timization phase is the set M of pareto-optimal models. The causal models in set M

are represented as completed partially directed acyclic graphs (CPDAG), where directed

edges represent a causal relationship between A and B and undirected edges represent a

correlation between A and B, whose causal relationship cannot be reliable inferred from

the data alone.

In a next step all undirected edges and directed edges of all CPDAGs of M are pruned

according to two criteria:

1. To avoid false positives only stable edges over the model population are considered.

In other words the edge has to appear in at least πthr of all models. I err on the

side of caution and set πthr conservatively to 0.8.

2. In order to avoid over fitting only edges that appear in a model whose model

complexity is less than πBIC are considered to be parsimonious. πBIC is com-

puted by grouping all models according to their model complexity (i.e., how many

edges/coefficients the model has) and calculating the average BIC for each group

of models with the same complexity resulting in the set Ψ of average BIC model

scores. πBIC is then set to min(Ψ).

LASSO regression

I can also change the standard cost function of the OLS regression to find a parsimonious

set of coefficients. Recall that the standard cost function OLS regression tries to minimise

is the mean squared error (MSE) on the training data. Effectively LASSO regression

performs L1 regularization (i.e. it adds the sum of the absolute value of the coefficients
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to its cost function). Hence, LASSO regression tries to balance minimising the MSE with

finding a parsimonious set of independent variables. In a sense LASSO only keeps the

“important” coefficients and sets the less relevant coefficients to zero. It is the inherent

feature selection procedure of a LASSO regression that allows it to be used to infer

“causal” networks of variables (Nagarajan et al., 2013). One straightforward way to use

LASSO is to use cross validation to first find the value of λ that minimises the MSE for

the training set (Nagarajan et al., 2013), where λ is the weight of the L1 regularization

parameter. In a second step I can then use the CV-optimal value for λ to estimate my

VAR system of variables.

Another way to use LASSO regression for estimating my VAR model is to use the

stability selection procedure by Meinshausen and Bühlmann (2010). In a traditional

setting, I chose one element of the set of possible models given the regularization/hyper-

parameter λ

{Ŝλ;λ ∈ Λ} (A.1.2)

where Λ is the set of regularization parameters.

Instead of optimising λ directly stability selection picks a region of Λ based on pre-

defined error bounds on the number of false positives. Furthermore, the original data D

are perturbed many times (for example by sub-sampling) and one chooses all variables

that occur in a large fraction of the resulting selection sets based on the bounded region

of Λ. For details of how the error bounds are defined see Meinshausen and Bühlmann

(2010). Accordingly, the set of stable parameters is defined as:

Ŝstable = {k : maxλ∈Λ
∏̂λ

k
≥ πthr} (A.1.3)

The idea is again to sub-sample the data D into subsets that are usually of size D/2, fit

the LASSO model for the pre-selected region of Λ, and only include coefficients in the final
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model if they appear in at least πthr of all models. Meinshausen and Bühlmann (2010)

show that using stability selection in conjunction with LASSO considerably improves

the accuracy and precision in uncovering “causal” relationships than using LASSO with

cross-validation (especially for high-dimensional data).

James-Stein shrinkage estimator

Opgen-Rhein and Strimmer (2007) propose to apply James-Stein-type shrinkage to ef-

ficiently estimate the coefficients of a VAR system for which only data from a limited

amount of time points is available. The OLS estimates of the coefficients of a VAR sys-

tem can be obtained by Equation A.1.1. I can then rewrite Equation A.1.1 in terms of

the (n − 1) multiple of the empirical covariance matrix S = Φ>Φ, where Φ is the joint

matrix Φ = [XtrainXfuture]. I note that S has two sub-matrices S1 = Xtrain>Xtrain and

S2 = Xtrain>Xfuture, yielding

ÂOLS = (S1)−1S2 (A.1.4)

S can now be replaced by a James-Stein shrinkage estimate S∗, which allows us to deter-

mine the sub-matrices S∗1 and S∗2. Finally yielding the shrinkage estimate of the coefficients

of the VAR system,

ÂShrink = (S∗1)−1S∗2 (A.1.5)

It is unlikely that any of the components of ÂShrink are exactly zero. Thus, I need to

statistically test whether the entries of AShrink are vanishing. Instead of testing the

regression coefficients directly, Opgen-Rhein and Strimmer (2007) propose to test the

corresponding partial correlation coefficients as this facilitates smaller sample sizes as well

as allows to account for dependencies between the coefficients. Once I have computed the

partial correlation coefficients I can use the local false discovery rate approach as proposed

by Efron (2005) to determine salient coefficients.
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εLoc.ent. εR.ofgyr. εPhys.enc. εPeer ent. εV irt.int.
Loc. ent.t −0.04* −0.06* 0.11* 0.06* 0.01
R. of gyr.t −0.06* −0.03 0.00 −0.07* 0.00
Phys. enc.t 0.03 0.00 0.18* 0.13* 0.04*
Peer ent.t 0.0 −0.02 0.13* 0.19* 0.02
Virt. int.t 0.04* −0.02 0.06* 0.04* 0.10*

Table A.1.1: Correlation Between Xt and et

The table depicts the correlation between the dependent variables Xt and the residuals ε. While
several correlations were statistically significant, they were however mostly relatively small with
the exception of physical encounterst and εPhys.enc. and Peer entropyt and εPeer ent.. This might
indicate the existence of a possible social confounding variable driving both dynamics. *: p <
0.05

A.1.2 Validation OLS model
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Figure A.1.1: Normal Q-Q Plot Residuals OLS Model
The plot depicts the residuals of the final OLS model. While the residuals were for all

variables mostly normally distributed, for virtual interactions the smaller and larger residuals
did not follow a normal distribution.
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A.2 Personality & Regularity of Behaviour

This section shows the normal Q-Q plots of the all dependent ariables I used for assessing

regularity in Chapter 6. While most variables were normally distributed, both the IEI

and H of the social contexts as well as I were deviating substantially from a normal

distribution.

Figure A.2.1: Normal Q-Q plot of cv of the Inter-Event Intervals
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Figure A.2.2: Normal Q-Q plot of IEI

Figure A.2.3: Normal Q-Q plot of H

Figure A.2.4: Normal Q-Q plot of HLZ
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Figure A.2.5: Normal Q-Q plot of cv of the Event Durations

Figure A.2.6: Normal Q-Q plot of I
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Di Ciommo, F., Comendador, J., López-Lambas, M. E., Cherchi, E., & Ortúzar, J. d. D.
(2014). Exploring the role of social capital influence variables on travel behaviour.
Transportation Research Part A: Policy and Practice, 68, 46–55. (Cit. on p. 100).

Dill, J., Broach, J., Deutsch-Burgner, K., Xu, Y., Guensler, R., Levinson, D. M., & Tang,
W. (2015). Multiday GPS Travel Behavior Data for Travel Analysis. Federal High-
way Administration. (Cit. on p. 50).

170



DiMaggio, P. & Garip, F. (2011). How Network Externalities can exacerbate intergroup
inequality. American journal of sociology, 116 (6), 1887–1933. (Cit. on p. 27).

Dong, W., Lepri, B., & Pentland, A. ( (2011). Modeling the co-evolution of behaviors and
social relationships using mobile phone data. Proceedings of the 10th International
Conference on Mobile and Ubiquitous Multimedia - MUM ’11, 134–143. (Cit. on
p. 42).

Doreian, P. & Conti, N. (2012). Social context, spatial structure and social network struc-
ture. Social Networks, 34 (1), 32–46. (Cit. on pp. 25, 66).

Druckman, J. N. & Kam, C. D. (2009). Students as Experimental Participants: A Defense
of the ”Narrow Data Base”. SSRN, 1–33. (Cit. on p. 152).

Duck, S. (1999). Relating to Others (2nd) (O. U. Press, Ed.). Buckingham. (Cit. on p. 31).
Dunbar, R. I. M. (1993). Coevolution of neocortical size, group size and language in

humans. Behavioral and Brain Sciences, 16 (4), 681–735. (Cit. on pp. 2, 18, 21).
Dunbar, R. I. M. (1998). Theory of mind evolution language. In Approaches to the evolu-

tion of language (pp. 92–110). (Cit. on pp. 20, 21, 50).
Dunbar, R. I. M. & Spoors, M. (1995). Social networks, support cliques, and kinship.

Human Nature, 6 (3), 273–290. (Cit. on pp. 18, 46).
Dunbar, R. I. (2009). The social brain hypothesis and its implications for social evolution.

Annals of Human Biology, 36 (5), 562–572. (Cit. on pp. 2, 20, 21).
Eagle, N., Macy, M., & Claxton, R. (2010). Network diversity and economic development.

Science, 328 (5981), 1029–1031. (Cit. on p. 47).
Eagle, N. & Pentland, A. (2006). Reality mining: Sensing complex social systems. Personal

and Ubiquitous Computing, 10 (4), 255–268. (Cit. on pp. 10, 11, 15, 34).
Eagle, N. & Pentland, A. S. (2009, April). Eigenbehaviors: identifying structure in routine.

Behavioral Ecology and Sociobiology, 63 (7), 1057–1066. (Cit. on pp. 11, 44, 45, 74).
Efron, B. (2005). Local False Discovery Rate. Stanford University. (Cit. on p. 158).
Eichler, M. (2012). Causal Inference in Time Series Analysis. In Causality: statistical

perspectives and applications (pp. 327–352). Hoboken, NJ: Wiley. (Cit. on p. 105).
Ellegard, K. & Svedin, U. (2012). Torsten Haegerstrand’s time-geography as the cradle of

the activity approach in transport geography. Journal of Transport Geography, 23,
17–25. (Cit. on p. 5).

Elman, C. & O’Rand, A. M. (2007). The effects of social origins, life events, and insti-
tutional sorting on adults’ school transitions. Social Science Research, 36 (3), 1276–
1299. (Cit. on p. 28).

Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). Density-Based Clustering Methods.
Proceedings of KDD’96, 2, 226–231. (Cit. on p. 75).

Etminani-Ghasrodashti, R. & Ardeshiri, M. (2015). Modeling travel behavior by the
structural relationships between lifestyle, built environment and non-working trips.
Transportation Research Part A: Policy and Practice, 78, 506–518. (Cit. on p. 51).

Ewing, R. & Cervero, R. (2001). Travel and the Built Enviornment: A Synthesis. Trans-
portation Research Record, 1780 (1). (Cit. on p. 52).

Ewing, R. & Cervero, R. (2010). Travel and the Built Environment. Journal of the Amer-
ican Planning Association, 76 (3), 265–294. (Cit. on p. 52).

171



Fehr, E., Fischbacher, U., & Gaechter, S. (2002). Strong Reciprocity, Human Cooperation,
and the Enforcement of Social Norms. Human Nature, 13 (1), 1–25. (Cit. on p. 31).

Feld, S. L. (1981). The Focused Organization of Social Ties. American Journal of Sociol-
ogy, 86 (5), 1015–1035. (Cit. on pp. 3, 24, 25, 28).

Feld, S. L. (1982). Social Structural Determinants Of Similarity Among Associates. Amer-
ican Sociological Review. New York, 47 (6), 797–801. (Cit. on p. 28).

Finneran, L. & Kelly, M. (2003). Social networks and inequality. Journal of Urban Eco-
nomics, 53 (2), 282–299. (Cit. on p. 23).

Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486 (3-5), 75–174.
(Cit. on p. 26).

Fortunato, S. & Hric, D. (2016). Community detection in networks: A user guide. Physics
Reports, 659, 1–44. (Cit. on p. 26).

Freeman, L. (2001). The Effects of Sprawl on Neighborhood Social Ties. APA, 67 (1),
69–77. (Cit. on p. 62).

Freeman, L. (2011). The Development of Social Network Analysis - with an Emphasis
on Recent Events. In J. Scott & P. J. Carrington (Eds.), The sage handbook of
social network analysis (pp. 26–39). Los Angeles. London. New Delhi, Singapore.
Washington, DC: SAGE. (Cit. on pp. 2–4).

Frei, A. & Axhausen, K. W. (2007). Size and structure of social network geographies. IVT.
ETH. (Cit. on pp. 95, 98).

Frias-Martinez, V., Soto, V., Virseda, J., & Frias-Martinez, E. (2013). Can Cell Phone
Traces Measure Social Development? Third Conference on the Analysis of Mobile
Phone Datasets, NetMob. (Cit. on p. 51).

Frias-Martinez, V. & Virseda, J. (2012). On the relationship between socio-economic
factors and cell phone usage. Proceedings of the Fifth International Conference on
Information and Communication Technologies and Development - ICTD ’12, 76–84.
(Cit. on p. 51).

Friggeri, A., Inria, E. N. S. D. L., Lambiotte, R., Kosinski, M., Fleury, E., & Inria,
E. N. S. D. L. (2012). Psychological Aspects of Social Communities. Proceedings In-
ternational Conference on Social Computing/International Conference on Privacy,
Security, Risk and Trust, 195–202. (Cit. on pp. 123, 132).

Fyhri, A., Hjorthol, R., Mackett, R. L., Fotel, T. N., & Kyttä, M. (2011). Children’s active
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González, M. C., Hidalgo, C. A., & Barabási, A.-L. (2008a). Understanding individual
human mobility patterns. Nature, 453 (7196), 779–782. (Cit. on pp. 10, 34, 122, 124,
128).
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d’Ivoire. EPJ Data Science, 4 (1), 1–16. (Cit. on p. 47).

Marchetti, C. (1994). Anthropological Invariants in Travel Behavior. Technological Fore-
casting and Social Change, 47 (1), 75–88. (Cit. on p. 4).

Marchetti, S., Giusti, C., Pratesi, M., Salvati, N., Giannotti, F., Pedreschi, D., . . .
Gabrielli, L. (2015). Small area model-based estimators using big data sources.
Journal of Official Statistics, 31 (2), 263–281. (Cit. on p. 51).

Marsden, P. V. (1988). Homogeneity in Confiding Relations. Social Networks, 10, 57–76.
(Cit. on p. 27).

Marsden, P. V. (1990). Network Data And Measurement. Annual Review of Sociology, 16,
435–463. (Cit. on p. 11).

Mattisson, K., H̊akansson, C., & Jakobsson, K. (2014). Relationships Between Commuting
and Social Capital Among Men and Women in Southern Sweden. Environment and
Behavior, 47 (7), 734–753. (Cit. on pp. 99, 120).

McKinney, W. (2010). Data Structures for Statistical Computing in Python. In S. van
der Walt & J. Millman (Eds.), Proceedings of the 9th python in science conference
(pp. 51–56). (Cit. on p. 5).

McPherson, J. M. & Smith-Lovin, L. (1987). Homophily in Voluntary Organizations:
Status Distance and the Composition of Face-to-Face Groups. American Sociological
Review, 52 (3), 370. (Cit. on pp. 27, 28).

McPherson, M., Smith-lovin, L., & Cook, J. M. (2001). Birds of a Feather: Homophily in
Social Networks. Annual Review of Sociology, 27 (2001), 415–444. (Cit. on pp. 27,
30).
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