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a b s t r a c t

Efficient and robust motion perception systems are important pre-requisites for achieving visually
guided flights in future micro air vehicles. As a source of inspiration, the visual neural networks of
flying insects such as honeybee and Drosophila provide ideal examples on which to base artificial
motion perception models. In this paper, we have used this approach to develop a novel method
that solves the fundamental problem of estimating angular velocity for visually guided flights.
Compared with previous models, our elementary motion detector (EMD) based model uses a separate
texture estimation pathway to effectively decode angular velocity, and demonstrates considerable
independence from the spatial frequency and contrast of the gratings. Using the Unity development
platform the model is further tested for tunnel centering and terrain following paradigms in order
to reproduce the visually guided flight behaviors of honeybees. In a series of controlled trials, the
virtual bee utilizes the proposed angular velocity control schemes to accurately navigate through a
patterned tunnel, maintaining a suitable distance from the undulating textured terrain. The results
are consistent with both neuron spike recordings and behavioral path recordings of real honeybees,
thereby demonstrating the model’s potential for implementation in micro air vehicles which have only
visual sensors.

© 2020 Published by Elsevier Ltd.
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1. Introduction

Executing delicate flight maneuvers using visual information
is challenging for micro air vehicles (MAVs). Due to their small
size and limited computing capabilities, it is difficult to install
a global positioning system (GPS) or inertial navigation system
(INS) onboard. Alternative solutions can be learned from the
study of flying insects like honeybees, which possess limited neu-
ral resources but can deal with very complex visual flight tasks.
The way insects visually detect motion has been a subject of study
for many decades. However, the neural mechanisms involved in
behaviors such as patterned tunnel centering (Baird, Srinivasan,
Zhang, Lamont, & Cowling, 2006; Srinivasan, Zhang, Lehrer, &
Collett, 1996) and textural terrain following (Portelli, Ruffier, &
Franceschini, 2010; Serres, Masson, Ruffier, & Franceschini, 2008;
Serres & Ruffier, 2017) are still not fully elucidated. According to
the results of behavioral experiments on honeybees, the key to
their extraordinary flight control is their ability to estimate and
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regulate angular velocity (Esch & Burns, 1995; Srinivasan, Poteser,
& Kral, 1999; Srinivasan, Zhang, Chahl, Barth, & Venkatesh, 2000).
In these studies, honeybees fly along the central path of a narrow
patterned tunnel with gratings of different spatial frequencies
on both walls. The flight trajectory shifts towards a wall that
is moving along the flight direction, whilst away from a wall
that is moving in the opposite direction. This behavior indicates
that honeybees adjust their positions by balancing the angu-
lar velocities estimated with both eyes (Srinivasan et al., 1996).
Electro-physiological experiments have also revealed that the
electrical activities of some descending neurons in the honeybee’s
ventral nerve cord increase as the angular velocity of the stimulus
grating movement increases (Ibbotson, 2001; Ibbotson, Hung,
Meffin, Boeddeker, & Srinivasan, 2017), and the responses are
largely insensitive to spatial frequency. Modeling of the honey-
bee’s ability to estimate angular velocity is now commonly used
in the design of flight control systems for MAVs that rely on visual
inputs.

The angular velocity here is defined by the angular displace-
ment ∆φ of the image motion during a small time interval ∆t ,
hat is ω = ∆φ/∆t . In tunnel centering and terrain following
cenarios, denoting v as the forward flight speed and d as the
ecoding neural networkmodel for visually guided flights. Neural Networks (2021),

x 39

https://doi.org/10.1016/j.neunet.2020.12.008
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:jgpeng@gzhu.edu.cn
mailto:syue@lincoln.ac.uk
https://doi.org/10.1016/j.neunet.2020.12.008


NN: 4669

H. Wang, Q. Fu, H. Wang et al. Neural Networks xxx (xxxx) xxx

d1
t2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
N

61
62
63
64
65
66
67
68
69
70

71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
istance to the surface, the angular velocity of image motion on
he retina can also be expressed as ω = vx/d. If the forward
speed is maintained by a suitable constant forward thrust, then
the distance to the surface will change automatically either by
balancing the lateral angular velocities on both sides in tunnel
centering (Srinivasan et al., 1996), or by regulating the ventral
angular velocity to a constant value in terrain following (Serres
& Ruffier, 2017). The question is, therefore, how do honeybees
estimate the angular velocity and further regulate it?

To extract the angular velocity of the image motion on the
retina, we have proposed an angular velocity decoding model
(AVDM). The model consists of three parts: firstly a set of elemen-
tary motion detection circuits, secondly, a wide-field texture esti-
mation pathway and thirdly, an angular velocity decoding layer.
By combining both texture and temporal information from the
input signals, the model estimates the angular velocity well when
tested by moving sinusoidal gratings. Furthermore, together with
the proposed control schemes, the model has reproduced visually
guided flight behaviors including tunnel centering and terrain
following activities of bees.

In summary, this work makes a threefold contribution:

• It is well known that the tunnel centering capability of
honeybees is barely affected by the spatial frequency of the
wall gratings (Baird et al., 2006). The proposed model com-
petently estimates the angular velocity of the retinal image
motion and demonstrates improved spatial frequency inde-
pendence when compared with previous angular velocity
detecting models (Cope, Sabo, Gurney, Vasilaki, & Marshall,
2016; Riabinina & Philippides, 2009), thereby explaining the
flight behaviors of honeybees more efficiently.

• The spatial and temporal resolutions have been considered
to obtain bio-plausible parameter settings in our simula-
tions. Using the angular velocity balancing strategy, our
model reproduces most of the tunnel centering and terrain
following behaviors of honeybees.

• Our code and demonstration videos are publicly available.1
These will help others to reproduce the simulations easily
and perform further visual flight research based on current
platform. In addition, the proposed model can be used in
MAVs for visually guided flights using only visual sensors.

The work in this paper is a substantial extension of our previ-
ous conference work (Wang et al., 2019; Wang, Fu, Wang, Peng,
& Yue, 2019). Advances reported in this paper are summarized as
follows. First, a Lipetz transform (Shoemaker, O’carroll, & Straw,
2005) and an indicator of spatial dependence have been intro-
duced to show that our model outperforms other models in
testing spatial independence of the gratings. Second, in moving
grating experiments, the robustness of the model in relation to
various visual contrasts and noise levels have been examined.
These are important criteria for model verification which pre-
vious research has not considered. Third, in tunnel centering
simulations, a series of new experiments including an X-shape
tunnel, a tunnel with gratings of different spatial frequencies,
and wall movement at various speeds, have been designed to
demonstrate the capability of the model to reproduce numerous
flight behaviors of bees. Finally, in terrain following simulations,
the model performance has been improved significantly. A series
of controlled trials to check the influence of initial height, flight
speed, and terrain pattern, have also been discussed to verify the
feasibility of the proposed model across a range of scenarios.

1 Code for all modeling is available at https://github.com/skyhouse123/
VDM_Unity. Demonstration videos can be found at https://youtu.be/gNvtaSq
jdIand https://youtu.be/l3SAnmOrgfk.
2

The rest of this paper is organized as follows. First we present
related work in Section 2. The formulation of the model is de-
scribed in Section 3. The control schemes for tunnel centering
and terrain following are described in Section 4. In Section 5, the
results of synthetic grating experiments are exhibited to show the
model’s independence of both the spatial frequency and contrast
of the grating. In addition, the model is tested behaviorally using
a virtual bee for tunnel centering and terrain following in a series
of controlled simulations. Finally, we discuss the research further
and draw together our conclusions in Section 6.

2. Related work

Due to the limited computation resources provided by the tiny
insect brain, traditional computer vision methods, such as differ-
ential techniques, feature detection and matching, deep learning
approaches are restricted here in explaining insects’ visual mo-
tion detections (Fleet, 2012; Zhu, Isaacs, Fu, & Ferrari, 2017).
Biological models usually correlate the light intensities of neigh-
boring photoreceptors using temporal filters rather than calculate
the spatial or temporal gradient of images (Borst & Euler, 2011).
Hassenstein and Reichardt (1956) proposed the first correlation
motion detector, HR detector, which uses the temporal delay
signal from a left arm to multiply a non-delayed signal from
a right arm to detect motion. In a modified version, the HR-
balanced detector has been proposed which, consists of two
mirror-symmetrical subunits in conjunction with a balance pa-
rameter (Zanker, Srinivasan, & Egelhaaf, 1999). The HR-detector
based angular velocity sensor (Ruffier & Franceschini, 2005) has
been successfully used in enabling flight control tasks in visually
guided aircraft by Franceschini and Ruffier (Franceschini, Ruffier,
& Serres, 2007; Ruffier & Franceschini, 2015). However, both the
HR model and the HR-balanced model are tuned for a partic-
ular temporal frequency (number of gratings passed over the
photoreceptor per second) rather than angular velocity (Zanker
et al., 1999). Therefore, the output of their sensors show a large
variance for flights tested against patterned ground (Ruffier &
Franceschini, 2005).

Based on their numerical analysis, Zanker et al. (1999) suggest
that the ratio of outputs from two HR-balanced detectors can
produce a response tuned for angular velocity. Following this
idea, Cope et al. (2016) proposed a model for estimating angu-
lar velocity using the ratio of two HR-balanced detectors with
different temporal delays. However, the spatial independence of
their model decreases as the velocity increases. Riabinina and
Philippides (2009) have also built a model using a channel fully
dependent on temporal frequency as the denominator to obtain
an angular velocity tuned response. However, the spatial inde-
pendence weakens as the motion speed increases. Being inspired
by the neural structure of Drosophila’s visual system, Wang et al.
(2018) proposed a new motion detector with three inputs to
produce a partially spatial independent response. Nevertheless,
the model still does not show enough spatial independence to
explain the flight behaviors of honeybees.

The three models previously mentioned (Cope et al., 2016;
Riabinina & Philippides, 2009; Wang et al., 2018) each use the
ratios of two channels to tune a response for angular velocity.
This approach may cause a problem in the form of high outputs
when the denominator is very small. It is also one of the reasons
why their models do not perform well when the angular velocity
of the moving grating is low or high. This limitation has inspired
us to build a model that avoids using the ratio of two channels,
but which combines the spatial and temporal information from
the moving gratings, based on the assumption that there are
mechanisms that combine both environmental texture and optic
flow information in insect brains (Egelhaaf, Kern, & Lindemann,
2014; Li, Lindemann, & Egelhaaf, 2017).
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Fig. 1. Illustration of the honeybee’s compound eye structures. The ommatidia are arranged hexagonally with an angular separation ∆ϕ (interommatidial angle) and
ach has its own small receptive field ∆ρ (acceptance angle).
43
44

45

w 46
t 47
t 48
t 49
d 50

51

52
53
54
55

56

57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
Since insect compound eyes normally have thousands of om-
matidia and a much higher temporal resolution than human
eyes, it is possible to obtain textural information from wide-field
neurons and temporal frequency information from spatially dis-
tributed HR-balanced detectors. We find that under a biologically
high sampling rate, the temporal frequency of grating movement
can be approximated by a nonlinear function when it is less than
50 Hz. Building on this idea, we propose an angular velocity
decoding model, and implement it into tunnel centering (Wang
et al., 2019) and terrain following (Wang, Fu, Wang, Peng, &
Yue, 2019) simulations to successfully reproduce behaviors of real
bees. However, only preliminary ideas have been presented in
previous work. A series of systematic experiments need to be
performed to verify the effectiveness of the model.

3. Methods

3.1. Input signal simulation

To explain the flight behaviors of honeybees, the spatial and
temporal resolutions of honeybees have been initially investi-
gated to obtain bio-plausible parameter settings. The ommatidia
of their bilateral compound eyes are arranged hexagonally, sep-
arated by the interommatidial angle ∆ϕ (approximately 2◦, but
they vary in different regions, Seidl, 1982) and each ommatidia
corresponds to a visual column with an acceptance angle ∆ρ

approximately 2.5◦, Laughlin & Horridge, 1971), as shown in
ig. 1. As for temporal resolution, the critical fusion frequency
beyond which honeybees show no response to the flickering
ight source in an electroretinogram test) is 165–300 Hz (Autrum
Stoecker, 1950). However, behavioral experiments indicate that
oneybees can detect light fluctuations only when the stimuli are
oving at temporal frequencies of less than 200 Hz (Srinivasan &
ehrer, 1984). Therefore, we set the sampling rate as 200 Hz, in
ccordance with the high temporal frequency image processing
apability of the honeybee. Our proposed model is designed to
eal with this high rate of data sampling. The performance in
stimating angular velocity is improved by using such a high
ampling rate.
The input signals are simulated using two-dimensional image

equences of sinusoidal gratings moving across the field of view.
f λ and ω are the spatial period and the angular velocity of
he grating movements respectively, then the temporal frequency
nd angular frequency can be computed as ω/λ and 2πω/λ.

◦
upposing the angular separation between pixels is ϕ (set to 2

3

in accordance with the honeybee’s spatial resolution), the input
images can be expressed as follows:

I(x, y, t) = (sin(2πω/λ(t − ϕ(y − 1)/ω)) + 1/Ct )/(1/Ct + 1) (1)

here (x, y) denotes the location of the ommatidium, t indicates
he time and Ct ∈ (ξ, 1] is a parameter for tuning the contrast of
he gratings. Regarding our moving grating setting, Ct happens
o be the image contrast at time t under Michelson contrast
efinition:

Imax(t) − Imin(t)
Imax(t) + Imin(t)

=

2Ct
1+Ct

2 −
2Ct
Ct+1

= Ct (2)

where the Imax(t) and Imin(t) (Imax(t), Imin(t) ≥ 0) indicate the
highest and the lowest light intensities of the input signal at time
t . For simplicity, we set the contrast of the grating as 1, except
when considering the contrast invariance of the model.

3.2. Angular velocity decoding model

The model contains three parts: the texture estimation path-
way for extracting spatial information, the motion detection path-
way for extracting temporal information extraction, and the de-
coding layer for estimating angular velocity. The structure of the
proposed model is shown in Fig. 2. The spatial frequency and
image contrast information are estimated by the texture estima-
tion part, and the motion information is processed by motion
detectors. The angular velocity is then decoded by combining
both sets of information.

3.2.1. Texture estimation pathway
The simulated input signals received by the retina are first

processed by the texture estimation pathway where the image
contrast and the spatial frequency of the grating are estimated
by the light intensities at different locations. This is based on a
hypothesis that insects sense the complexity of textures. This is
especially the case for honeybees, which can discriminate pat-
terns by visual cues including edge orientation, size, and dis-
ruption (Roper, Fernando, & Chittka, 2017). Tunnel experiments
also indicate that honeybees can distinguish the contrast on the
wall at levels as low as 3%, and that flight speed in a tunnel
is little affected by contrast, provided that the contrast is larger
than 3% (Chakravarthi, Rajus, Kelber, Dacke, & Baird, 2018). One
possible neural mechanism involves estimating the contrast and
eliminating its effect in the final response by the estimated value.
Following this idea, the texture estimation pathway is proposed
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Fig. 2. The structure of the proposed Angular Velocity Decoding Model. The visual information of grating movement is received by the ommatidia. The textural
nformation and the motion information across the whole vision field are combined in the angular velocity decoding layer.
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o establish the image contrast and spatial frequency using simple
omputations.
Following the setting that every ommatidium covers 2◦ (ϕ)

iew (Seidl, 1982), with 60 vertical (M) by 66 horizontal (N)
eceptors per eye covering the view of 120◦ by 132◦, we can
stimate the image contrast Ĉ and the spatial period λ̂ of the
ratings according to the light intensities across the visual field.
irst the image contrast is estimated dynamically by the highest
nd lowest intensities, that is

(t) =
Imax(t) − Imin(t)
Imax(t) + Imin(t)

. (3)

The input image is then transferred into a binary image IB(t)
with the intensity threshold Ithre(t) = (Imax(t) − Imin(t))/2. The
spatial period is estimated by counting the number of boundary
lines of the binary image within the whole visual field, which can
be expressed as

λ(t) =
2MNϕ∫∫

|IB(x, y + 1, t) − IB(x, y, t)|dxdy
. (4)

This is a very computational efficient method to estimate
the spatial frequency of sine-wave and square-wave gratings
in our simulations. For more complex and detailed background,
the method can also indicate the complexity of the textured
background to some extent. A bank of linear spatial filters such
as Gabor filters may help in this situation to extract texture
information better.

3.2.2. Motion detection pathway
(1) Ommatidia: We denote I(x, y, t) ∈ R3 as the input image

sequences, where x, y, t are spatial and temporal positions. The
visual information is first processed in the retina where the light
intensities are captured and smoothed by ommatidia which can
be simulated using a Gaussian spatial filter (Fu, Wang, Hu, & Yue,
2019). The output is given by

P(x, y, t) =

∫∫
I(x − u, y − v, t)G(u, v)dudv (5)

where G(u,v) is a Gaussian kernel defined as

G(u, v) =
1

exp(−
u2

+ v2
). (6)
2πσ 2 2σ 2

4

(2) Lamina layer: To facilitate motion detection, the visual
system of honeybees is more sensitive to changes in intensity
than to absolute intensity. Therefore, in our model the input
image frames are processed by the lamina layer where the light
intensity changes are computed to obtain primary visual motion
information (Yue & Rind, 2006). Each photoreceptor computes the
luminance change as follows:

L(x, y, t) =

∫
P(x, y, t − u)H1(u)du +

∫
L(x, y, t − u)H2(u)du

(7)

where L(x, y, t) corresponds to the luminance change of pixel
(x, y) at time t . H1(u) is a temporal filter defined as the subtraction
f two impulse functions H1(u) = δ(u) − δ(u − τ ), where the
mpulse function is

(u) =

{
+∞ u = 0,
0 u ̸= 0.

2(u) denotes the temporal filter representing the persistence of
he luminance change which is

2(u) = (1 + eµu)−1. (8)

(3) ON and OFF layer: Inspired by the visual system in the
ly (Fu, Hu, Peng, & Yue, 2018), the luminance changes are sepa-
ated into two pathways: the ON and the OFF pathways. Specif-
cally, the ON pathway deals with light intensity increments;
hilst the OFF pathway processes brightness decrements (Pinto-
eixeira et al., 2018). Denoting f +

= max(0, f ) and f −
=

in(0, f ), then we can express the outputs of the cells in ON
nd OFF pathways as L+(x, y, t) and L−(x, y, t) respectively. Hav-
ng two parallel processing pathways ensures that honeybees
avigate efficiently in a complex environment. We adopt these
athways in our model.
(4) Delay-and-correlation layer: Denoting D+(x, y, t), D−(x,

, t) as the outputs of the ON and OFF detectors and τ as the
emporal delay in HR-balanced detectors, we have the following
xpression according to the structure of motion detectors in
ig. 3, where each pairwise neighboring ON/OFF cells correlate
ith each other as:

D+(x, y, t) = L+(x, y, t − τ ) · L+(x, y + 1, t)
+ +

(9)

− αL (x, y, t) · L (x, y + 1, t − τ )
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here α is chosen as 0.25 to form a partial balanced model
Zanker et al., 1999). D−(x, y, t) can be expressed similarly.

.2.3. Angular velocity decoding layer
A honeybee’s compound eyes contain thousands of ommatidia,

ach of which has its own angular orientation and acceptance
ngle (Stürzl, Böddeker, Dittmar, & Egelhaaf, 2010). In our model,
here are many parallel detectors corresponding to all the vi-
ual columns. However, due to their various spatial positions,
heir responses differ slightly. We assume that different detectors
ake diverse contributions towards the final response according

o their spatial positions (Fu, Wang, Peng, & Yue, 2020). We use a
eighted matrix to compensate for these differences. The outputs
f all ON and OFF detectors are combined to obtain a response
(ω, λ, t) which encodes the temporal frequency:

R(ω, λ, t) =
1
2

∫ t

t−ξ

∫∫
w(x, y) × [D+(x, y, t)

+ D−(x, y, t)]dxdydt
(10)

where w(x, y) is a weight matrix simulating the honeybee’s per-
spective, which is defined below:

w(x, y) =
1

cos θx,y + 1
. (11)

where θx,y ∈ (0, π/2) represents the view angle of the pixel
biased from center.

However, it is hard to derive angular velocity directly from
(10). Therefore, we take one detector initially in order to analyze
how the response is affected by the input signals. If SA, and SB
respectively denote the luminance changes of ommatidium A
(left) and B (right), and SDA , SDB respectively denote the temporal
delayed luminance changes of A and B, then according to the
structure of HR-balanced detector, the response of the detector
R0 can be expressed as SDA · SB − αSDB · SA, where the overline
eans that the response is averaged over a period T to remove

luctuations caused by an oscillatory input. For simplicity, we
ssume the image contrast is constant during this period. Thus
he response of one detector R0 to a moving sinusoidal grating
an be roughly expressed (Zanker et al., 1999) using the following
quation:

R0 ≈
C2

2(1 + C)2
[sin(

2π (ϕ + τω)
λ

) − α sin(
2π (ϕ − τω)

λ
)]. (12)

By analyzing how the response R0 changes as ω varies when
resented with gratings of different spatial periods, we decode
he angular velocity information from the response R(ω, λ, t)
sing an approximation method. Though there is an inevitable
itting error, we can decrease it into an acceptable level if the
itting function is chosen well. One decoding function can be
hosen to approximate the actual angular velocity:

(t) = âλb(t)(1 + 1/̂C(t))
√
R(ω, λ, t) (13)

where ω̂ denotes the decoded angular velocity, Ĉ(t) is the av-
eraged estimated spatial period, and λ̂(t) is the image contrast
over a short time, derived from the texture estimation layer, a is
scale parameter and b is used to tune the spatial independence.
Here, a(1+1/̂C)

√
R can be seen as an estimation of the temporal

frequency and has a little fitting error. The decoding function
can then be explained as the ratio of the temporal frequency
to the spatial frequency, which represents angular velocity. Note
that Ĉ(t) is not zero. When Ĉ(t) approaches zero, R goes to
5

Fig. 3. The AVDM-based closed loop control scheme for tunnel centering. The
horizontal position controller is triggered by the difference ε between angular
velocities estimated by left and right eyes.

zero, thereby preventing the decoded angular velocity reaching
infinity.

4. Constant angular velocity flight control

4.1. Control scheme for tunnel centering

By utilizing the physics engine of the Unity development plat-
form, the AVDM has been embodied in a virtual honeybee to
simulate the bee’s tunnel centering behavior. A honeybee can
center itself in a narrow tunnel by balancing the angular velocities
perceived by both eyes (Srinivasan et al., 1996). Following this
visual flight strategy, an AVDM-based control scheme is required
to reproduce this behavior. The performance of the model can
then be investigated by checking whether the virtual bee can
center itself in a tunnel in the same way as a real bee.

The control scheme for tunnel centering is described in Fig. 3.
For simplicity, the forward flight speed is held constant, and we
have focused on centering using only the horizontal position con-
troller, exploiting the difference between the angular velocities
estimated by the AVDM on both eyes. Only the lateral rather
than the frontal visual field is utilized in our simulation. We also
assume that the orientation of the head is roughly parallel to
the central path of the tunnel and is seldom affected by body
movement. Interestingly, honeybees actually achieve this by per-
forming gaze stabilizations in flight by using head yaw in advance
of body yaw to cancel out rotation (Boeddeker, Dittmar, Stürzl, &
Egelhaaf, 2010).

Following the scheme, the virtual bee can adjust its position
in a tunnel automatically using visual information only, in real
time. The distance to the left wall will increase if the difference
ε is positive and vice versa. With little modification, the scheme
can be additionally used to simulate situations when one of the
walls is moving along or against the flight direction. The control
algorithm is also given in Algorithm 1 to summarize the tunnel
centering procedure of the proposed scheme.

4.2. Control scheme for automatic terrain following

Honeybees will adjust their flight altitudes to restore a pre-
ferred ventral angular velocity if a grating moves along the flight
direction. This angular velocity regulating strategy helps honey-
bees navigate safely through tunnels (Portelli et al., 2010). This
visual strategy is also used in aircraft automatic terrain following
experiments (Ruffier & Franceschini, 2015). The proposed model
can be inspected in this flight task to see if it can improve the
accuracy of angular velocity regulation. Using the AVDM, we
can estimate the angular velocity in flight. By regulating it to a
constant value, the altitude will change automatically regardless
of the prior knowledge of the exact altitude and forward flight

speed. 97



NN: 4669

H. Wang, Q. Fu, H. Wang et al. Neural Networks xxx (xxxx) xxx

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

21

2223

24
25

26
27

28
29
30

31

32
33
34
35

36

37
38
39
40
41
42
43
44
45
46

47

48
49
Algorithm 1: Tunnel centering algorithm
Input: initial distance to left wall d0, initial distance to

entrance x0, integer history size m = 10, iteration
index i = 1, max iteration number n;

Output: the trajectory of the virtual bee
T = ((d0, x0), (d1, x1), ..., (dn, xn))

1 while i < m do
2 Receive Image from left IL(i) and Image from right IR(i);
3 Update di+1 = di, xi+1 = xi + ∆x;
4 end
5 while m ≤ i < n do
6 Receive Image IL(i) and calculate angular velocity ωL(i)

using AVDM;
7 Receive Image IR(i) and calculate angular velocity ωR(i)

using AVDM;
8 Update di+1 = di + ∆d ∗ Sign(ωL(i) − ωR(i)),

xi+1 = xi + ∆x, i = i + 1;
9 Discard image frame IL(i − m), IR(i − m) from memory

storage;
10 end
11 Return the trajectory T;

Table 1
Parameters of the model and the control schemes.
Eq. Parameters

(4) ϕ = 2◦ , M = 60,N = 66
(6) σ = 1.5
(8) µ = 1
(9) τ = 0.005 s, α = 0.25
(10) ξ = 0.05 s
(13) a = 100 s−1 , b = 1
(14) k = 0.1 kg/s, g = 9.81 m/s2

(15) ρ = 0.04 kg · m/s
(17) p = 1

The closed loop control scheme for terrain following is given
in Fig. 4. For simplicity, we assume the forward flight speed
is maintained by a constant forward thrust. This assumption is
reasonable, since honeybees tend to adjust their flight height
rather than speed to regulate the ventral angular velocity (Portelli
et al., 2010). Thereby, the proposed AVDM can adjust the ver-
tical lift according to the difference between the preset angular
velocity and the consecutive estimated values (Gemerek, Ferrari,
Wang, & Campbell, 2019). Here, the preset angular velocity is also
estimated by the AVDM in the initial phase when the vertical lift
is set to the same value of gravity and where the ground is flat.
Subsequently, when the ventral angular velocity varies because of
terrain undulations, the vertical lift controller will change the lift
according to the difference ε between estimated ventral angular
velocity and the preset value. If the difference ε is positive, the
lift will increase and vice versa.

During terrain following, the vertical speed vz is relatively
small, and the air resistance can be approximated as f = kvz .
The vertical dynamics can then be described using the following
differential equations:

m
dvz

dt
= F − kvz − mg (14)

F = ρ(ωest − ωini) (15)

vz =
dz
dt

(16)

where m is the mass of the virtual bee, g is the gravity accel-
eration and F is the vertical lift, ρ is a gain control parameter.
6

Fig. 4. The AVDM-based closed loop control scheme for terrain following. The
vertical lift controller is triggered by the difference ε between preset angular
velocity ωini and the estimated angular velocity ωest .

Algorithm 2: Terrain following algorithm
Input: initial height to ground h0, initial horizontal position

x0, integer history size m = 10, iteration index i = 1,
max iteration number n; preset angular velocity

Output: the trajectory of the virtual bee
T = ((h0, x0), (h1, x1), ..., (hn, xn))

1 while i < m do
2 Receive Image from ventral camera IV (i) ;
3 Update hi+1 = hi, xi+1 = xi + ∆x;
4 end
5 while m ≤ i < n do
6 Receive Image IV (i) and calculate angular velocity ω(i)

using AVDM;
7 Adjust the vertical lift according to (14); Calculate the

vertical position change ∆h according to (15) and (16);
8 Update hi+1 = hi + ∆h, xi+1 = xi + ∆x, i = i + 1;
9 Discard image frame IV (i − m) from memory storage;

10 end
11 Return the trajectory T;

Given the initial conditions, the flight trajectory can be computed
step by step. This process can be achieved in real time using the
physics engine of the Unity development platform.

4.3. Parameter setting

Parameters of the proposed model and the control scheme are
shown in Table 1. Parameters are mainly tuned manually based
on empirical knowledge and remain constant in the following
simulations unless stated otherwise.

5. Results

Within this section, we present the experiments and results.
To demonstrate its spatial independence and robustness to con-
trast and noise, the proposed model is initially tested in Matlab
( c⃝ The MathWorks, Inc.) using synthetic grating stimuli. The
model is then implemented in the form of an agent within the
Unity real-time development platform ( c⃝ Unity Technologies) to
reproduce the tunnel centering and terrain following behaviors
of honeybees in virtual environments. Unity software permits
a virtual environment to be modeled, and for algorithms to be
readily attached to objects.

5.1. Angular velocity decoding results

To inspect the spatial frequency independence of the proposed
model, sinusoidal gratings of a wide range of spatial periods (12◦

◦
to 72 ) are chosen as the visual inputs. The results of estimated 50
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able 2
he adjusted R-squared values of angular velocity decoding curves of different
patial periods.
Spatial period 12◦ 19◦ 38◦ 54◦ 72◦

Adjusted-R2 0.8685 0.9962 0.9995 0.9981 0.9974

Fig. 5. The angular velocity decoding results. The estimated angular velocity
curves under different angular velocities when tested by moving gratings of
different spatial periods (12◦ , 19◦ , 38◦ , 54◦ and 72◦), demonstrating the spatial
requency independence of the model.

ngular velocities are shown in Fig. 5. The proposed model de-
odes the angular velocity well with little variance, except when
ealing with a narrow grating (12◦) that moves at a high angular
elocity (larger than 700 ◦/s). Honeybees tend to maintain a
onstant angular velocity of 300 ◦/s (Baird, Srinivasan, Zhang, &
owling, 2005), around which our proposed AVDM fits well and
epresents large spatial independence.

Here we use adjusted R-squared, a statistical indicator that
uantifies how well the data points fit the ground truth line, to
valuate the decoding errors. The adjusted R-squared values for
ifferent spatial periods are provide in Table 2. As can be seen,
ost of the decoding curves estimate the angular velocity well
ince the adjusted R-squared values are close to 1. This means
he AVDM performs in a stable manner and estimates the angular
elocity against a wide range of spatial periods, explaining how
oneybees navigate well in a cluttered environment.
In order to demonstrate the improved spatial independence

f the AVDM compared with the state-of-the-art angular velocity

stimation models, we contrast it with two other aforementioned

7

etection models, the R-HR model (Riabinina & Philippides, 2009)
nd the C-HR model (Cope et al., 2016). The original results of
hese models are re-plotted in Fig. 6 under the same metric.
he AVDM responses have also been rectified into (0, 1) by a
ipetz transformation (Shoemaker et al., 2005). The Lipetz trans-
ormation is specified by the following equation to introduce a
aturating nonlinearity:

= Rp/(Rp
+ R0), (17)

here R is the input response, p is an exponent in (0.5, 1], R0 is
parameter defining a middle response level.
Here, we introduce a new indicator, Averaged Spatial Inde-

endence Deviation, which uses the standard deviation of the
ormalized responses when tested by moving gratings of differ-
nt spatial periods. A comparison of spatial independence from
he three models is shown in Fig. 7. With the indicator, the spatial
ndependence of the model responses can now be evaluated at
ny angular velocity. In general, our model shows a stronger spa-
ial independence than the other models. The R-HR model shows
larger response variation when angular velocity increases. The
-HR model performs well at around 100 ◦/s, but shows a larger
eviation at low (less than 60 ◦/s) and high (faster than 300 ◦/s)
ngular velocities. Compared with the comparative models, our
roposed AVDM performs better to decode angular velocities in
larger range.
Honeybees can navigate proficiently in a tunnel with a range

f contrasting wall patterns (Chakravarthi et al., 2018). To eval-
ate the robustness of the model towards image contrast, we
est the proposed model by moving sinusoidal gratings of dif-
erent contrasts. As can be seen from Fig. 8(a), the results show
ittle variance when the image contrast varies from 1/5 to 3/5.
his outperforms previous models, especially when the angular
elocity is low or high (Cope et al., 2016). The proposed model
rocesses the texture estimation pathway where the contrast
s first estimated, and the decoding layer where the estimated
ontrast is used, to decode the angular velocity. The angular
elocity is estimated accurately despite the contrast dynamics of
nput stimuli, reminiscent of honeybee’s flights through dynamic
nd cluttered environments.
To demonstrate the robustness of the proposed model to noise,

e perform a test in which we incorporate differing levels of
aussian white noise into the input signals. The results are shown
n Fig. 8(b). The estimated image velocity curves show little
ariance when the signal-to-noise ratio (SNR) is larger than 40 dB.
he results demonstrate the reliability of the AVDM when being
mplemented into small robots since normal cameras usually
ave a SNR of 50 dB or higher.
Fig. 6. Comparison of normalized responses with two other published models. (a) The normalized responses of AVDM by a Lipetz transformation. (b) Response
urves of the R-HR model for different spatial periods at various angular velocities (Riabinina & Philippides, 2009). (c) The normalized responses of C-HR model show
large spatial independence around the velocity of 100 ◦/s (Cope et al., 2016).
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Fig. 7. Comparing spatial independence with two other models. The Averaged
Spatial Independence Deviation for three models have been given to show their
performance at various angular velocities. The proposed AVDM shows lower
deviations in a large range of angular velocities.

5.2. Tunnel centering simulation results

In real tunnel behavioral experiments, honeybees can fly along
the center of the patterned tunnel even when the walls are
covered with gratings of different spatial frequencies or con-
trasts (Srinivasan et al., 1996). Biologists suggest that honeybees
can estimate the background speed independent of the spatial
frequency and contrast, and adjust their positions by balancing
the angular velocity sensed by their two compound eyes. There-
fore, reproducing similar flight behaviors is one of the criteria we
can evaluate to check the model performance in this situation.
Lots of corridor experiments on centering and speed regulation
have been performed to demonstrate the navigation ability of
their bioinspired wide field optic flow integration model (Claw-
son, Stewart, Eliasmith, & Ferrari, 2017; Humbert & Hyslop, 2009).

To verify the effectiveness of the proposed model, we aim
to reproduce tunnel centering behaviors of honeybees as closely
as possible. The virtual environment is set up, again using the
Unity platform (see Fig. 9). A series of simulations have been
performed, including centering from different lateral positions,
a large independence towards spatial frequency of the gratings,
X-shape tunnel centering and lateral position adjustment with a
moving wall.

In the first kind of simulations, the virtual bee starts at differ-
ent positions in the patterned tunnel. We implement the AVDM
in both eyes of the virtual bee, and then assess if the bee can

perform a centering response in the same way as a real bee. In

8

one of the simulations, both walls are covered with patterns of
the same spatial frequency (46 cycles m−1) as shown in Fig. 10.
Although the virtual bee is released at different start points, it
can adjust its position using only visual information and will
eventually fly along the central path of the tunnel. The results
remain unaltered if the spatial frequencies are changed (15, 20,
30, 40 cycles m−1) so long as the two walls carry the same
pattern.

In the second kind of simulations, the spatial independence
of the proposed model is investigated by changing the spatial
frequency of one wall while keeping it constant in the other
wall. As can be seen in Fig. 11, though the spatial frequency of
the right wall varies considerably, the virtual bee still manages
to fly along the tunnel with little bias from the central path.
This is in accordance with the results of biological experiments
which showed that the centering response is barely affected by
the spatial frequency of the pattern (Srinivasan, 2010). The bias
may be caused by the difference between the estimated angular
velocities when tested with different patterns (see Fig. 6). This
means the model is not fully spatially independent. However,
behavioral experiments with real bumblebees reveal that similar
phenomenon can be observed in this situation (Dyhr & Higgins,
2010). This indicates that a large, rather than full spatial inde-
pendence might be implemented in the neural system of the real
bee.

In the third series of simulations, the virtual bee is further
evaluated using an X-shape tunnel of which the width first de-
creases and then increases. Real bees can not only perform cen-
tering, but also reduce speed as the tunnel gets narrower to
restore a preferred image velocity (Srinivasan, 2010, 2011) in this
situation. In order to reproduce the speed adjustment behavior in
an X-shape tunnel, a feedback control scheme is designed within
our simulation to regulate the sum of angular velocities estimated
by both eyes to a constant value. The results are shown in Fig. 12.
Though released at different start points, the bee adjusts its
lateral position to fly towards the central path. In addition, the
flight speed is altered as the width varies, further indicating the
practicality of the proposed model.

All three kinds of tunnel simulations reproduce similar be-
haviors of real bees in a patterned tunnel. However, this is not
enough to show that the proposed model is able to effectively
estimate the angular velocity. For example, a model capable of
gauging distance to the walls using visual information can pro-
duce similar centering responses too. In tunnel experiments hon-
eybees will shift towards one wall if the wall moves along the
same direction of their flights, and shift towards the opposite side
if the wall moves in the opposite direction to balance the angular

velocities on both sides (Srinivasan & Zhang, 1997). This lateral 74
Fig. 8. Robustness of the proposed AVDM against contrast and noise. (a) The proposed model is tested by the moving sinusoidal gratings of 54◦ spatial period and
the image contrasts are set as 1/5, 1/3, 1/2 and 3/5. (b) The proposed model is tested by the moving sinusoidal gratings of 54◦ spatial period and the SNR of the
input gratings are set as 30 dB, 40 dB and 50 dB. The result of the input without noise is also given as a reference.
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Fig. 9. Unity simulation environment of the tunnel experiments. The virtual bee flies in a simulated tunnel with sinusoidal patterns on both walls. The images
received by two eyes can be processed separately in real time to regulate the route of the flight. A demo video can be found at https://youtu.be/gNvtaSqNjdI.
Fig. 10. Tunnel centering from different start points. Routes of the virtual bee with AVDM implemented are recorded when they fly through the patterned tunnel
from different start points. The flight paths are adjusted by the control scheme in Fig. 4.
Fig. 11. Tunnel centering with gratings of different spatial frequencies. The left wall is always carrying gratings of spatial frequency of 46 cycles m−1 while the
patial frequency of right wall grating varies from 23, 35, 46, 69 cycles m−1 . The trajectories show the robustness of the centering towards spatial frequency.
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position adjustment indicates that honeybees do adjust positions
by balancing the angular velocities rather than the distances to
walls.

In order to demonstrate that the proposed model works well
in this scenario, simulations with moving walls have been de-
signed. The results are shown in Fig. 13. The virtual bee moves
9

closer to the left wall if the left wall is moving along the flight
direction at a constant speed (much slower than the flight speed).
The lateral position shifts as expected to balance the angular
velocities estimated on both eyes. In contrast, the trajectory of the
virtual bee shifts to the right wall if the left wall is moving back-
ward. Both coincide with the results of behavioral experiments
 12

https://youtu.be/gNvtaSqNjdI
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Fig. 12. X-shape Tunnel centering simulations. The flight trajectories of the virtual bee, starting from different points, are shown in the same graph. The walls of
he tunnel are covered with sinusoidal gratings of spatial frequency of 46 cycles m−1 . The positions of the agent are marked by circles separated by a same time.
Fig. 13. Tunnel centering when one wall moving forward or backward at various speeds. The solid line indicates that one wall is moving forward, and the dot line
represents that the wall is moving backward. The agent flight speed is 30 cm/s.
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on honeybee visual control (Srinivasan & Zhang, 1997), indicat-
ing that the proposed model can explain the tunnel centering
behaviors of honeybees effectively.

5.3. Terrain following simulation results

The accuracy of the model in estimating angular velocity has
not been fully demonstrated by the tunnel centering experiments.
This is because the control scheme is triggered by the difference
between the angular velocities estimated by each of the two eyes.
The error in the estimation of angular velocity may be decreased
by subtraction. To further verify the effectiveness of the proposed
model, the AVDM is implemented in a virtual bee in terrain
following simulations where the ground is covered with gratings
(see Fig. 14). The performance of this visually guided flight task
depends more on the accuracy of angular velocity estimation,
providing an ideal opportunity to examine our proposed model.
A series of terrain following simulations have been designed. The
flight trajectories and the ventral responses have been recorded
to see if the virtual bee can perform automatic terrain following
using only visual information by estimating the angular velocity
of image motion and regulating it to a constant value.

The virtual bee with the AVDM is first tested on a regular ter-
rain covered with sinusoidal gratings. The virtual bee is released
at around a given height (25 cm) with a certain forward speed
(50 cm/s). Initially, the bee is set to fly forward without changing

its altitude (by setting the vertical lift equal to its gravity). The

10
preset angular velocity value is then estimated using the AVDM
after the first few frames. By regulating the consecutive angular
velocities to this preset value using the control scheme described
in the previous section (Fig. 5), the aim is that the flight altitude
will be adjusted automatically using only visual information. The
result is shown in Fig. 15.

As can be seen, the angular velocity estimated by the ventral
camera is accurate and remains constant when the bee flies over
flat terrain, except for during the first few frames. The ventral
response increases when the bee flies closer to the undulating
terrain, and vice versa. By changing the vertical lift according
to the difference between estimated angular velocities and the
preset value, the virtual bee always maintains a suitable distance
from textured ground. Information on the flight speed or the
flight altitude is unnecessary to perform this visually guided task.
In general, the proposed AVDM works sufficiently to navigate
the bee whilst flying over the patterned regular terrain. Similar
terrain following experiments have been performed using air-
craft (Ruffier & Franceschini, 2005, 2015). The main difference
is that they use the EMD sensor’s output rather than angular
velocity to regulate the flight course. Our proposed model directly
estimates the angular velocity to improve the accuracy of the
regulation in terrain following.

To inspect the robustness of terrain following under various
conditions, a series of controlled trials have been performed.
First, the virtual bee is released at different initial heights. The
terrain following trajectories are shown in Fig. 16(a). As can be
 52
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Fig. 14. Unity simulation environment of the terrain following experiments. The bee flies over an undulating terrain with nonuniform sinusoidal grating using only
entral visual information. A demonstration video is given at https://youtu.be/l3SAnmOrgfk.
Fig. 15. Terrain following flight trajectory and estimated angular velocities. The bee flight trajectory is recorded when flying over a terrain (black line) with sinusoidal
gratings (30 cycles m−1), and the angular velocities that are estimated by the ventral eye are also shown indicating how the trajectory is affected by angular velocity
regulation.
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seen, the virtual bee follows the terrain well by maintaining
distances according to the initial heights above the ground. The
presetting of the angular velocity ensures the bee follows the
terrain proficiently with dynamic initial heights. The lower the
initial height is, the better the flight trajectory follows the terrain.
When the initial height is 50 cm, the ventral angular velocity
varies less since the undulation of the terrain is relatively smaller
at this height than at lower heights.

In the second kind of controlled trials, the influence of the
flight speed on terrain following is investigated. The flight speed
is chosen from 20 cm/s to 60 cm/s, and the trajectories are
recorded in Fig. 16(b). The trajectories of all tested speeds follow
the terrain well using only visual information without any danger
of crashing. The differences among trajectories are mainly caused
by the control scheme. The trajectory follows the terrain very well
if the speed is 20 cm/s. It is harder to adjust the flight height
smoothly if the virtual bee flies faster. A better control scheme
may improve the performance of terrain following at different
speeds.

Finally, the spatial independence of the proposed model in ter-
rain following is evaluated by covering the terrain with different
gratings (see Fig. 16(c)). A wide range within spatial periods of
gratings are chosen. All flight trajectories follow the terrain well
given the same initial flight height and flight speed. It is clear
from the flight trajectories over gratings with different spatial
frequencies (Fig. 16(c)), that spatial frequency has a small effect
on terrain following performance. Again, it fulfills our expectation
of large rather than full spatial independence of the proposed
model.

To see whether the model is stable under more complex

scenarios, we also tested the virtual bee above a mountain shaped

11
terrain with irregular undulations and covered with sinusoidal
gratings. The result is shown in Fig. 17. The flight trajectories
show that the flight altitude changes automatically according to
the distance from the ground by regulating the angular velocity.
Whenever the bee gets closer to the ground, the increasing angu-
lar velocity estimated by the AVDM will trigger the controller to
provide a higher vertical lift to help the bee rise away from the
ground. The robustness of the model and control scheme have
been further verified using a carpet texture (see Fig. 18). Though
the terrain following of the mountain undulations in this situation
is not as good as the terrain following over sinusoidal gratings,
the bee still flies over the terrain successfully at slightly different
heights and speeds. This further verifies the effectiveness of the
proposed AVDM in the terrain following simulations, showing the
potential of applying in MAV’s flight control.

6. Discussion and conclusion

We have presented an angular velocity decoding model
(AVDM), which estimates the speed of visual motion by combin-
ing both textural and temporal information from input signals.
The model comprises three parts: elementary motion detection
circuits, a wide-field texture estimation pathway and an angu-
lar velocity decoding layer. When initially tested with moving
sinusoidal gratings, the model estimates angular velocity highly
effectively with improved spatial frequency independence when
compared with the state-of-the-art angular velocity detection
models. The model has been further evaluated for the ability to
reproduce tunnel centering and terrain following behaviors. We

https://youtu.be/l3SAnmOrgfk
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Fig. 16. Controlled trials showing the robustness of terrain following at different flight heights, speeds and terrain gratings. (a) The virtual bee is released at different
initial heights with a speed of 50 cm/s to fly over the terrain with a sinusoidal grating (30 cycles m−1). (b) The virtual bee is released with different flight speeds
at a height of 30 cm to fly over the terrain with a sinusoidal grating (30 cycles m−1). (c) The virtual bee is released with a flight speed of 40 cm/s at a height of
25 cm to fly over the terrain with different gratings.

Fig. 17. Multiple flight trajectories of terrain following over the mountain shaped terrain with sinusoidal gratings. The trajectories fit the undulation of the patterned
mountain well with slightly different initial heights and speeds which shows the robustness of the model and control scheme.
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Fig. 18. Multiple flight trajectories of terrain following over carpet texture. The successful terrain following over a mountain covered with natural carpet texture
shows the potential for application in flight control of MAVs.
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have considered the spatial and temporal resolutions of honey-
bees to obtain bio-plausible parameter settings for explaining
these behaviors. A previous model (Cope, Sabo, Vasilaki, Barron,
& Marshall, 2017) by Cope et al. fits the electrophysiological
data (Ibbotson, 2001) better. However, we have not tried to fit
data with large variances. We have focused on reducing the
spatial dependence with the aim of simulating the visual flight
behaviors more effectively. We consider that there is a trade-
off between biological plausibility and algorithmic efficiency. Our
approximation of the nonlinear relationship might not be the way
bees decode the angular velocity, but it functions sufficiently to
reproduce their visual flights behaviors.

Although the proposed model is designed primarily for esti-
mating angular velocity using sinusoidal gratings, it can be easily
generalized to deal with other patterns. In fact, even without any
modification, the AVDM works well enough to decode angular
velocity against patterns with clear edges such as a checkerboard
pattern with a range of spatial frequencies. The model has been
further tested against an irregular snow mountain terrain (Wang,
Fu, Wang, Peng, & Yue, 2019) and a carpet textured terrain. The
flight trajectory does not follow the terrain as well as it does
when the mountain terrain is covered with sinusoidal gratings.
However, trajectories of successful flights whilst avoiding crash-
ing indicate the considerable potential of the model to navigate
well in cluttered environments.

There are several potential impacts of our work. Most di-
rectly, our work may be used to research other visually guided
flight behaviors such as visual landing. Our code and demon-
stration videos are publicly available. The simulations can be
established easily on the same platform, though motion dynamics
and control schemes might be different for specific visual flight
tasks. Moreover, the model can also be employed in MAVs for
visual flight using visual sensors alone. Compared with traditional
methods, the computational effort of our proposed method has
been reduced significantly in two ways. Firstly, the image size
required to decode the angular velocity is small and secondly, the
computation is reduced by use of discrete integrals. It should be
noted that, neuromorphic sensing is often used in many insect-
like robots to reduce computation (Indiveri & Liu, 2015; Vanarse,
Osseiran, & Rassau, 2016).

In addition, the proposed model has the potential to simulate
other behaviors of honeybees. For example, maintaining a con-
stant angular velocity is also used in honeybee wall following
behavior (Roubieu et al., 2014; Serres et al., 2008). Integrating
the angular velocity can also provide odometric information. This
may help to explain how honeybees gauge flight distance (Esch
& Burns, 1995). As for the model itself, we provide motion de-
tectors only for the progressive and regressive directions. Motion
detectors for upward and downward movement could also be
incorporated to form a more complete visual detection system
for dealing with more complex and dynamic visual scenes.
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