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Abstract

Autonomous harvesting is becoming an important chal-

lenge and necessity in agriculture, because of the lack of

labour and the growth of population needing to be fed. Per-

ception is a key aspect of autonomous harvesting and is very

challenging due to difficult lighting conditions, limited sens-

ing technologies, occlusions, plant growth, etc. 3D vision

approaches can bring several benefits addressing the afore-

mentioned challenges such as localisation, size estimation,

occlusion handling and shape analysis. In this paper, we

propose a novel approach using 3D information for de-

tecting broccoli heads based on Convolutional Neural Net-

works (CNNs), exploiting the organised nature of the point

clouds originating from the RGBD sensors. The proposed

algorithm, tested on real-world datasets, achieves better

performances than the state-of-the-art, with better accuracy

and generalisation in unseen scenarios, whilst significantly

reducing inference time, making it better suited for real-

time in-field applications.

1. Introduction

Due to population growth and various social and eco-

nomical factors, the interest in automation of agriculture

has grown worldwide. Labour for harvesting is one of

the biggest challenges facing this industry. Building au-

tonomous system able to detect, analyse and pick crops is

rapidly becoming a necessity, both economically and so-

cially.

Perception for harvesting applications presents numer-

ous challenges characteristic to outdoor scenes, such as dif-

ficult lighting conditions and occlusions of the target crop

caused by the plant growth. In this paper, we focus on a per-

ception system for the detection and segmentation of broc-

coli crops. Such a system must be precise both in terms

of localisation and segmentation, and fast to allow rapid

analysis and real-time operation. We propose a 3D vision

approach, which is perfectly suited for tasks involving ob-

ject geometry. We present a novel approach using 3D infor-

mation for detecting broccoli heads based on Convolutional

Neural Networks (CNNs), and evaluate its performance on

publicly available datasets and compare the results with the

recent state-of-the-art methods.

Typical 3D vision systems have been successfully ap-

plied to numerous indoor scenarios featuring relatively large

man-made objects with distinguishable shapes such as fur-

niture, rooms or offices [15, 12, 7]. When applied to an agri-

cultural context in outdoor scenarios, however, these meth-

ods struggle to achieve satisfactory results [14], due to the

noisy and sparse character of the 3D data originating from

popular off-the-shelf RGBD sensors. In this work, we pro-

pose to overcome this limitation by exploiting the organised

nature of the RGBD point clouds, and employ a CNN-based

architecture to learn segmentation in a supervised manner.

The neural network learns shape and manifold information

in the point cloud by using the grid as a medium for group-

ing and sampling.

In particular, the contributions of this paper are as fol-

lows: 1) a novel technique and application of a CNN ar-

chitecture to organised 3D point clouds for the task of ob-

ject detection and segmentation; 2) improvement of the

generalisation capabilities through unique data augmenta-

tion techniques, including spatial translation and rotation;

3) experimental validation and comparison to state-of-the-

art engineered solutions on agricultural data collected from

real fields of broccoli. Our system achieves on par to bet-

ter performance in terms of accuracy, segmentation and lo-

calisation, with a better generalisation for the most diffi-

cult datasets. We also achieve very high inference speeds

(50∼60fps), making our approach more suitable for real-

world application. Section 2 presents related work whilst

the system overview and methodology is presented in Sec-

tion 3. We showcase quantitative and qualitative results, to-

gether with a comparison to the state of the art in Section 4,

before concluding the paper in Section 6.



2. Related Work

Autonomous robotic harvesting presents numerous chal-

lenges, such as identification of crops, localisation, seg-

mentation and analysis, which require fast operating speed.

2D vision has been the main focus in the literature so

far [3, 20]. 3D sensors, however, can provide better local-

isation, size estimation and other analysis related to shape,

while increasing computational requirements and algorith-

mic challenges. Recently, deep learning techniques have

been successfully used in various applications in agricul-

ture [8]. Bender et al. [1] used Convolutional Neural Net-

works (CNNs) for the detection of broccoli and cauliflower,

achieving good performance (0.95 Mean average Precision

or MaP), but for detecting the entire plant (leaves included)

from the ground, rather than just the head, as required for

harvesting applications as in this paper. Several studies

can be found on the detection of broccoli. Ramirez et al.

[16], developed a contrast-based algorithm on a set of 13

colours images and Blok et al. [2] proposed a new method

based on colour and texture filters. In more recent work,

Kusumam et al. [10] proposed the detection of broccoli us-

ing RGBD sensors, making use of 3D information by com-

bining Euclidean clustering and a Viewpoint Feature His-

togram (VFH) descriptor as input to a Support Vector Ma-

chine (SVM). They report an average precision of 0.952 and

0.845 for two broccoli varieties, but with a processing time

of around 6 s per frame.

The most popular approaches for 3D object segmenta-

tion and detection were designed around processing un-

ordered point clouds, such as in PointNet++ [15] or

PointCNN [12]. The methods rely on sampling and group-

ing of points to learn surfaces, manifolds and shape. Such

an approach, however, struggles with noisy, cluttered and

complex 3D information characteristic to agricultural ap-

plications [14]. The alternative is to make use of the grid

structure offered by the organisation of the data resulting

from RGBD sensors. This can be achieved either by seg-

menting directly in 2D and projecting the values into 3D

space as in [19], or by directly processing 3D information

in a grid. [11] chose to represent the information from the

point cloud in a grid and encoded occupancy with a simple

Boolean value. Using a standard CNN architecture, they

achieved good performance in objection detection with the

KITTI dataset (a standard benchmark for 3D vision in au-

tonomous driving).

In contrast to the prior work, we propose a new ap-

proach to organised point cloud processing, using a CNN

directly applied on the points and normals, placing a big-

ger emphasis on localisation, shape, and object structures.

This approach addresses the problem encountered with un-

organised approaches [15], with a faster inference time and

better feature extraction with facilitated grouping of points.

The proposed approach improves on the current state of the

art using classical methods for broccoli head detection [10]

in terms of speed, generalisation and segmentation accu-

racy.

3. Method

Our approach for the segmentation and detection of broc-

coli heads uses organised point clouds originating from

RGBD sensors. We train a CNN autoencoder for the task

of semantic segmentation using 3D information. To avoid

over-fitting and improve generalisation between different

varieties and field conditions, we use several data augmen-

tation techniques. The resulting segmentation results are

transformed into instances using the connected components

algorithm. Figure 1 provides a general overview of the sys-

tem and indicates the core components described in detail

in the following sections.

Figure 1. An overview of the system for detecting broccoli heads

from the organised point clouds.

3.1. Processing organised point clouds

Typical methods for un-ordered point clouds such as

PointNet++ [15] make use of 2D convolutions to learn lo-

cal features from sampled and aggregated points. The spa-

tial information and correlation is highly dependent on the

sampling and grouping algorithms, which is an active area

of research [12, 7]. For RGBD sensors, however, the data is

captured from a single point of view and results in a spatial

organisation and grouping of points through the image grid.

Based on these preliminary assumptions, we can directly

make use of 2D convolutions and traditional CNN architec-

tures directly applied to a point cloud through its grid. We

argue that surface and manifold can be retrieved success-

fully from the points in the grid with the use of convolutions

and pooling functions.

Surface and manifold properties are often derived from

normal information. Processing points using convolutions

should lead to filters dedicated to computing these normals

and extracting relevant information from them. Such infor-

mation is easy to compute in a grid, however, and using it

as an input on top of spatial information should improve the

learning of local and shape features by the neural network.



Figure 2. Data collection from real fields of broccoli, taken

from [10] (row 1) and resulting RGBD data together with seg-

mented annotations collected in Spain (row 2) and UK (row 3 and

4).

As our work is focused on detection and segmentation

using 3D information, we use only the points and normals

as input, organised in the image grid. Figure 3 depicts an

example organised point cloud and the associated normal

map. Note that colour is only used for visualisation and all

of the presented methods work with 3D point data only. For

normal calculation, we use integral images, making use of

the grid organisation of the points as presented in Hozier et

al. [5]. We restrict ourselves to a low number of neighbours,

making the computation time overhead insignificant (44ms

per frame on average).

3.2. Neural Network

For the semantic segmentation task, we chose a classic

auto-encoder architecture inspired by U-net [17], with the

Figure 3. An example organised point cloud and the associated

normal map.

encoder part responsible for extracting relevant features and

the decoder part for transforming them into the correct class

prediction. As presented in Figure 4, we use skip connec-

tions between the encoding and decoding part of the archi-

tecture to make use of multi-scale features in the segmenta-

tion process. The input is composed of 6 features (XYZ po-

sition of each point and their 3-component normals), which

are compressed into a 512 ∗ W ∗ H feature map in the la-

tent space of the network, before being decoded into the

segmentation mask. We use a standard VGG16 architec-

ture, saving the feature maps and pooling indices at the end

of four different convolution blocks. We use these indices

in the decoder part of the network to up-sample the feature

maps. The saved feature maps are added to decoded fea-

ture maps in the decoder, to introduce multi-scale features

and improve the extraction of point clusters corresponding

to broccoli heads. Due to the compact nature of the CNNs,

the inference time exceeds real time.

Since the neural architecture employed for this work was

developed for the task of semantic segmentation, we use a

connected component algorithm over the points in the im-

age grid, processed as a binary mask. We remove clusters

too small to be broccoli heads (lower than 200 points) and

drop segmented values with a probability < 0.5.

3.3. Data augmentation

Training the network only on point coordinates leads

to fast learning with a quick convergence toward dataset-

specific over-fitting. Training only on one dataset leads to

excellent results (∼ 0.99 Mean average Precision) but offers

little to no generalisation when applied to unseen scenarios.

As the position of broccoli heads in each dataset is chang-

ing linearly, the network tends to learn their position and

change in position. To counteract this, we first add the nor-

mal information on top of the points coordinates, and chose

to apply various data augmentation techniques during the

training phase. Since the data is contained in a 2D grid,

we can easily apply rotations in this grid to avoid localisa-

tion over-fitting. Similar rotations also need to be applied

to the points and normals to avoid discrepancies between

the grid and the spatial coordinates and orientation. We can

also add translations over the points, adding more diversity



Figure 4. The neural architecture (NN) employed for segmentation in organised point clouds.

Dataset Name Spain UK1 UK2

#Point clouds 300 300 300

Overlapping 94% 95% 90 %

Average Width 1.10m 0.60m 0.60m

Average Height 0.86m 0.80m 0.80m

Average Distance 0.81 0.75 0.75

Broccoli Species Titanium Ironman Ironman

Table 1. Summary of the dataset characteristics. All datasets share

the same resolution (512x424) and are annotated following an in-

stance segmentation format.

to the object positions. These three augmentations allows

us to add more diversity to the object locations. For every

frame in the training set, we rotate the points in space and

in the grid by a random angle between −180 and 180 de-

grees. We also translate the point cloud by a random value

between its minimum and maximum on every axis.

3.4. Baseline Method

We use the method published by Kusumam et al. [10]

as a baseline method to compare and contrast our results.

To this end, we have implemented a more efficient version

of this method called here Fast Euclidean Clustering (FEC).

The detection pipeline from [10] includes: 1) statistical out-

lier removal, 2) depth-range filtering, 3) Euclidean cluster

extraction, 3) normal estimation, 4) feature extraction, 5)

classification, and 6) a temporal filter to further improve

the classification results. In the FEC pipeline, the statistical

outlier removal and the temporal filter steps were discarded.

Removing outliers is computationally expensive and the fil-

tered points have a negligible effect, while the temporal

filter improved classifier predictions by only 0.5%. FEC

works by first filtering out points which are too close or too

far away from the sensor. Clusters are then formed by iter-

atively grouping points together within a predefined radius,

i.e., for every point added to a cluster, its neighbours are

also checked for the distance restriction until no more new

points can be added. Each cluster is then added to the list of

clusters if they are within a valid size. Normal vectors are

then computed for each point using the much faster integral

images normal estimation method [6]. The algorithm uses

the inherent grid structure of the point clouds as collected

by the RGB-D sensors we used. This allows to quickly

create rectangular areas over which the normals are com-

puted without the need for costly euclidean space searches.

For each extracted cluster, a Viewpoint Feature Histogram

(VFH) descriptor [18] is computed. The VFH is a global

3D feature descriptor that uses the surface normal directions

to encode the underlying geometry of an object. Finally,

these descriptors become the samples to be predicted as ei-

ther positive (broccoli) or negative (leaf, soil, etc.) using a

Support Vector Machine (SVM) classifier.

4. Evaluation setup and data collection

Our project aims at providing reliable computer vision

algorithms for the detection, segmentation and analysis of

broccoli heads in 3D. Capturing and annotating 3D data is

a very challenging task. This leads to a lack of available

data in agriculture and in general. Often with RGBD sen-

sors, the RGB picture is annotated and the masks generated

transposed to the aligned depth image. However in case

of wrongly aligned frames, spatial information in the point

cloud is wrongly annotated and miss-leading.

Captured on different crops from various countries, the

initial datasets were first reported in the previous work of

Kusumam et al. [10] (see Figure 2). The datasets were cap-

tured using the Kinect 2 sensor with two different resolu-

tions : 1920 × 1080 for RGB and 512 × 424 for depth.

When de-projecting the depth data into a point cloud, the



Figure 5. Precision-recall curves for the FEC (top) and the neural

network (bottom) trained and tested on the Spain dataset and the

range of IoU threshold [0.5 : 0.95].

RGB information is downsampled and aligned to the depth

map resolution. Enclosed in a box mounted on a farm trac-

tor with some additional LED lighting, the sensor pointed

downward toward the broccoli crops. The box helped to

create a more controlled environment as RGBD sensors use

the infrared spectrum, and suffer from exposure to sunny

environments. The datasets were first captured in Spain

on a variety called “Titanium” for about 300 frames with

around 94% overlap. The second part of the dataset was

captured in the UK, consisting of 600 frames of the broc-

coli variety “Ironman”, with around 95% overlap for half

of them and 90% for the rest. We present the dataset char-

acteristics in Table 1 and show some examples in Figure

2. The broccoli varieties in the two datasets are noticeably

different in terms of shape, size and localisation, but share

some common features. The two black bands at the top

and bottom of the captures are due to the alignment of the

RGB frame to the depth frame, and the RGB edge distor-

tion is also visible. Even if RGB information is missing on

the edges, depth information and their de-projected points

are still present. Here the usage of 3D vision over 2D ap-

proaches is clear. Due to miss-alignment of the RGB to the

depth information as seen in Figure 2, processing it directly

will lead to wrong localisation, shape and extraction of the

FEC NN FEC NN FEC NN

Tested

Trained
Spain UK1 UK2

Spain 0.65 0.87 0.56 0.79 0.61 0.81

UK1 0.94 0.76 0.96 0.95 0.92 0.93

UK2 0.93 0.76 0.92 0.91 0.92 0.93

Mean 0.84 0.80 0.81 0.88 0.82 0.89

Table 2. Comparison of the MaP for the instance detection masks.

We compare FEC and the neural network, with the dataset used

for training at the top, and the one used for testing on the left side.

We also show the average performances for each training set.

objects. There is also a slight variation in orientation of the

camera between the Spain and UK sets and the main differ-

ences between Spain and UK dataset lies in the Broccoli’s

heads sizes. The Spain dataset even though smaller offers

a greater challenge with smaller occluded crops. Also, bor-

ders of the point cloud present distortion due to the light

and sensor, which affect crops found in such areas. For

all datasets we have an instance segmentation annotation,

where each point has a class associated to it (background

and broccoli) and each object a different number identify-

ing it in the point cloud. The points are directly annotated

in the point clouds, making the annotation, a true 3D anno-

tation.

4.1. Training and evaluation

We separate each of the above datasets into two differ-

ent sets for training and testing our various algorithms. We

take 75% of each for training and 25% for testing. We

also test each algorithm on the 25% test set from the other

datasets, to analyse the generalisation performance of our

algorithms and their shortcomings. We use the Adam op-

timiser [9], with a starting learning rate 0f 0.0001. We re-

duce the learning rate by 0.7 every 200 epochs, and stop

the training when the loss stop decreasing significantly. We

use an NVIDIA 1080Ti GPU (Graphics Processing Unit),

for training and testing the neural network and an Intel i7

4790 for the CPU code which handles I/O operations and

pre-processing stage.

For the application of perception algorithms to harvest-

ing, we are mainly interested in the accuracy of our algo-

rithms, their precision, the generalisation between different

locations and crop species, and the inference speed. We de-

cide to evaluate both semantic segmentation and instance

segmentation for two main reasons. First we are aiming at

detecting broccoli heads for harvesting using instance seg-

mentation. We can reflect better on the quality of the de-

tection and their accuracy in terms of missing detection and

false detection. Secondly, the mask from detection and ex-

traction of the broccoli head from the background is very

important for harvesting. Evaluating the segmentation only



adds more nuance to this problem and our performances,

and allows us to assess the quality of the masks extracted.

To evaluate our algorithms we use two different metrics:

Mean average Precision (MaP) and Mean Intersection over

Union (MIoU). For MaP, we use the definition from MS

COCO [13], where it represents the average of the preci-

sion over all samples and classes for IoU thresholds in the

range of [0.5 : 0.95], with the definition of Precision being:
TP

TP+FP
(TP = number of True Positives, FP = number of

True Positives). MIoU is the average of the IoU defined as
Intersection

Union
of the segmentation masks, for all samples.

Figure 6. Examples of features extracted, with first the coloured

version of the point cloud given as an input to the network (we use

the colour of the point cloud for visualisation only)

5. Results

We compare our NN to a baseline solution (FEC) taking

into account point and instance segmentation, and appraise

the performance of both solutions on the collected data.

5.1. Instance segmentation

We present in Table 2 the different results obtained us-

ing the neural network and the improved FEC on the three

datasets. Overall both algorithms perform very well for all

training and testing scenarios. FEC achieves poor perfor-

mances for the Spain dataset. On the other hand, the neu-

ral network, while achieving good performances across all

datasets (MaP> 0.80), improves by a significant margin

FEC NN FEC NN FEC NN

Tested

Trained
Spain UK1 UK2

Spain 0.73 0.94 0.64 0.81 0.67 0.85

UK1 0.90 0.85 0.94 0.95 0.92 0.94

UK2 0.92 0.85 0.92 0.92 0.94 0.94

Mean 0.85 0.88 0.83 0.89 0.84 0.91

Table 3. Comparison of the Mean Intersection over Union (MIoU)

of the segmentation masks

(∼ 22% on average) the results on the Spain dataset and

seems to achieve better generalisation. Lower results from

the neural network overall are explained by missing or par-

tially detected broccoli heads on the upper and lower side of

the point cloud. With a lower IoU, they impact negatively

on the precision-recall metrics, being classified as false pos-

itives and false negatives. When trained on the Spain set and

tested on the UK set, the lower score obtained by the neural

network can be attributed to the extraction of small areas on

leaves similar in shape to the smaller Spain broccoli heads,

as seen in Figure 8.

The FEC clustering algorithm extracts more segments

that are then found in the detection predictions later on, as

seen in Figure 10. However they rarely have a probability

to be classified positive higher than 75%. The lower perfor-

mances from FEC on the Spain dataset but high when tested

on the UK sets, are due to the segment extraction strate-

gies of the algorithm, which struggles more on smaller and

more cluttered and occluded objects (Spain set), but per-

forms very well on big and separated objects (UK sets). We

illustrate this in Figure 8.

Also with a high precision and recall, the neural network

tends to be very selective in the choices for detection. This

results in good masks for the detected instances with high

probabilities, but it also gets rid of small detection in the

Spain set when trained on the UK one, as small objects

are rarely seen in the UK sets. We show in Figure 5 the

precision-recall curves for the neural network and FEC al-

gorithms when trained on the Spain set and tested on the

same set. As one can see, the neural network performs very

well for thresholds up to 85%, but achieves lower results af-

ter 95%. FEC starts to struggle earlier around 70% of IoU

and fails after 85%.

5.2. Semantic segmentation

To study the effectiveness of the segmentation of each

approach, we study them for the semantic segmentation

task. We present in Table 3 the results obtained by both

algorithms for the MIoU metric. The neural network for

this task shows significant improvements or similar results

compared to FEC. This offers several advantages such as

more accurate localisation, better shape estimation for phe-



Figure 7. Example predictions from the FEC (top row) and the neural network (bottom row) trained and tested on the ”Spain” dataset. The

colour overlay labels correspond to true positives (green), false positive (orange) and false negatives (purple).

Figure 8. Segment extraction when trained on the Spain set and

testing on UK set for FEC (left) and neural network (right).

notyping, and grasp prediction for harvesting. Furthermore

the results are consistent with Table 2, but we see some

increase for the methods tested on the Spain set. This is

due to the false positive detection now being evaluated for

their mask, and impacted less than as a whole object (for

a point cloud with 4 broccoli heads, 10 false positives im-

pact the score more than 400 points among 200k points).

Figs. 7 and 10 illustrate the differences in terms of mask

and point classification, and how the neural network per-

forms better. In Table 2 and Table 3, NN show similar dif-

ferences in performances with FEC. While performing bet-

ter or similarly well on most training/testing scenarios, NN

struggles to generalise when trained on Spain and tested on

UK. This comes from the broccoli heads size, creating more

False Positives on UK where the scale differs and Spain-like

broccoli shapes can be found on leaves and foliage (Figure

8).

5.3. Qualitative analysis

We show in Figure 6 different feature maps decoded by

our network. They are obtained by passing the points and

normals through the network and visualising one of the di-

mensions of the feature map at the end of one of the decoder

de-convolution blocks. One can distinguish the contour fea-

Figure 9. Contour uncertainty, with in order: 1) the image of the

broccoli, 2) the predicted segmentation mask, 3) the true positive

(green) and false positive (orange) map, 4) the difference with

ground truth, 5) the ground truth annotation, and finally, 6) the

visualisation in 3D space of the prediction.

tures characteristic of the broccoli in the first feature map,

which can be related to Figure 9, allowing a better extrac-



Figure 10. Challenging examples for both algorithms with the prediction from FEC (top row) and the neural network (bottom row). The

colour overlay labels correspond to true positives (green), false positive (orange) and false negatives (purple).

tion of the object by the network. In the second and third

feature maps, features related to the shape of the broccoli

are extracted, with an emphasis on the texture for the sec-

ond one and on the normal features for the third one. The

fourth feature map let us see the leaf edges extracted from

the point cloud. The last feature map shows features which

seem to be more related to distances along the z-axis, with

an emphasis on vegetation above the ground.

We decide to a qualitative analysis of some Spain exam-

ples, as they offer a bigger challenge than the UK set, and

show the limitation of the baseline work and least perform-

ing results of our NN. Figure 7 presents some qualitative

results from our network on the different datasets. Both al-

gorithms were trained on the Spain set and tested on the

same set. As one can see, the neural network offers more

reliable results for the localisation and detection of the broc-

coli heads. On the other hand, FEC struggles to find small

instances and tends to cluster the broccoli heads with sur-

rounding leaves, reducing the precision of its segmentation.

Also, for bigger objects FEC tends to generate more false

negatives on the contours of the objects, while the neural

network tends to add a few more points to the mask.

We present in Figure 9 what the uncertainty in our net-

work represents for our detection. Using the softmax func-

tion, we can represent our prediction for each class (back-

ground and broccoli) using probabilities. With very low

probability noisy segmentation removed using a 0.5 thresh-

old, some uncertain areas remain surrounding the objects.

In Figure 9 we see for a broccoli example the lower prob-

ability surrounding the shape. These low probability con-

tours are most of the time true positive or false positive,

but are easy to get rid of using a higher threshold. How-

ever, even though not present in the annotation, they give

us some information about the surrounding of the broccoli

and its width for further analysis. We also show their rep-

resentation from a 3D perspective, where we can see that

such contours can be used to separate the broccoli effec-

tively from the more noisy ground points.

In Figure 10 we focus on challenging cases when train-

ing our algorithms on the first UK set and testing it on

the challenging Spain set. In this case the neural network

mostly fails to detect some of the broccoli heads with par-

ticular shapes and strong occlusions not present in the UK

set. On the other hand, FEC detects more of these challeng-

ing broccoli heads, but is not very discriminating and also

detects false positives on the leaves and other similar areas.

For the complete processing of a single point cloud

consisting of 217k points, our method’s inference time is

∼ 0.02 s compared to ∼ 6 s for FEC.

6. Conclusion

We presented a new method for processing 3D infor-

mation acquired through RGB-D cameras in the context of

robotic vision for agriculture. We chose the broccoli har-

vesting applications to evaluate our method and its implica-

tions, due to the availability of high quality data and a state-

of-the-art algorithm for processing it. Our method achieves

similar results on the baseline datasets and better results for

the challenging sets, while providing better segmentation

of the objects, competitive instance segmentation, better lo-

calisation, and faster inference by a factor of 300. All these

new aspects make it better suited for real-time applications

in selective harvesting, and open new possible applications

in online phenotyping, crop analysis and yield prediction.

However our method faces some challenges intrinsic to

the data. Difference in size between objects and datasets

leads to missed detection, especially on the upper and lower

boundaries where the distortion varies the most. Training

on intrinsically different object size than the test set (Spain

training to UK testing) also affect the results, yielding more

False Positives (Figure 8).

Future work will involve solving these challenges

through simple processes and experiments such as data nor-

malisation, un-distortion, data augmentation, etc. We also

plan to investigate the use of more advanced architecture

such as ResNet[4], to improve robustness to scale and shape

variation, occlusion and data diversity.
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