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Abstract 

 Microcephalic primordial dwarfism (MPD) is a group of rare single-gene 

disorders characterised by extreme reduction in brain and body size from 

early development onwards. Proteins encoded by MPD-associated genes 

play important roles in fundamental cellular processes, notably genome 

replication and repair. Here we report identification of four MPD individuals 

with biallelic variants in DNA2, which encodes an ATP-dependent 

helicase/nuclease involved in DNA replication and repair. We demonstrate 

that the two intronic variants (c.1764-38_1764-37ins(53) and c.74+4A>C) 

found in these individuals substantially impair DNA2 transcript splicing. 

Additionally we identify a missense variant (c.1963A>G), affecting a residue of 

the ATP-dependent helicase domain that is highly conserved between 

humans and yeast, with the resulting substitution (p.Thr655Ala) predicted to 

directly impact ATP/ADP binding by DNA2. Our findings support pathogenicity 

This article is protected by copyright. All rights reserved. 



 
A

cc
ep

te
d 

A
rt

ic
le

 
of these variants as biallelic hypomorphic mutations, establishing DNA2 as an 

MPD-disease gene. 

Graphical Abstract 

We report identification of biallelic DNA2 variants in four unrelated individuals with 
Microcephalic primordial dwarfism (MPD). Using cellular splicing assays and 
molecular modelling we provide evidence that these variants result in partial loss of 
function of DNA2, an ATP-dependent helicase/nuclease with functions in DNA 
replication and repair, supporting their pathogenicity and establishing DNA2 as an 
MPD-disease gene. 

 

Keywords: DNA2, growth, microcephalic primordial dwarfism, DNA 

replication, DNA repair  

Main text 

Microcephalic primordial dwarfism (MPD) is an umbrella term for a 

group of rare monogenic disorders of extreme growth failure, characterised by 

marked microcephaly and short stature. MPD has been operationally defined 
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in terms of both occipito-frontal circumference (OFC) and height being at least 

4 standard deviations (SD) below the age- and sex-matched population mean 

(Faivre et al., 2002; Klingseisen & Jackson, 2011), although less restrictive 

criteria to encompass individuals with milder growth restriction have also been 

used (Shaheen et al., 2018). MPD encompasses several phenotypically-

distinct Mendelian disorders, such as Seckel syndrome (Majewski, Goecke, & 

Opitz, 1982; Seckel, 1960), microcephalic osteodysplastic primordial dwarfism 

type 1 and type 2 (Majewski, Ranke, Schinzel, & Opitz, 1982; Majewski, 

Stoeckenius, Kemperdick, & Opitz, 1982) and Meier-Gorlin syndrome (Gorlin, 

Cervenka, Moller, Horrobin, & Witkop, 1975). A phenotype continuum 

between primary microcephaly (MCPH) and MPD is also established for a 

number of genes (Shaheen et al., 2018; Verloes, Drunat, Gressens, & 

Passemard, 1993). 

Proteins encoded by MPD disease genes participate in essential 

cellular processes, including DNA replication (Bicknell, Bongers, et al., 2011; 

Bicknell, Walker, et al., 2011; Burrage et al., 2015; Fenwick et al., 2016; 

Guernsey et al., 2011; Logan et al., 2018; Vetro et al., 2017), DNA damage 

response signalling and DNA repair (Harley et al., 2016; Murray et al., 2014; 

Murray et al., 2015; O'Driscoll, Ruiz-Perez, Woods, Jeggo, & Goodship, 2003; 

Ogi et al., 2012; Qvist et al., 2011; Reynolds et al., 2017). Collectively, 

variants in these genes are thought to cause disease by prolonging the cell 

cycle, with reduced cell proliferation resulting in a smaller number of cells 

throughout the body and brain, and therefore a smaller person (Klingseisen & 

Jackson, 2011).  
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The ATP-dependent helicase/nuclease DNA2 is a multi-functional 

enzyme, involved in various aspects of DNA replication and repair, including 

Okazaki fragment maturation during lagging strand synthesis (Ayyagari, 

Gomes, Gordenin, & Burgers, 2003; Bae, Bae, Kim, & Seo, 2001; Gloor, 

Balakrishnan, Campbell, & Bambara, 2012), DNA end resection during 

double-strand break repair (Cejka et al., 2010; Karanja, Cox, Duxin, Stewart, 

& Campbell, 2012; Nimonkar et al., 2011; Niu et al., 2010; Sturzenegger et al., 

2014), degradation of reversed replication forks to promote replication restart 

after genotoxic stress (Thangavel et al., 2015) and regulation of replication 

checkpoint activation (Duxin et al., 2012). Additionally, DNA2 has been 

implicated in mitochondrial DNA replication and repair (Duxin et al., 2009; 

Zheng et al., 2008). Most of the cellular functions of DNA2 have been 

attributed to its nuclease activity, whereas the role of DNA2 helicase activity 

long remained unclear. However, recently it was shown to act as an ATP-

dependent translocase to promote rapid DNA degradation during DNA end 

resection (Levikova, Pinto, & Cejka, 2017; Miller et al., 2017). Unsurprisingly, 

because of its importance for genome replication and stability, DNA2 is 

essential for mammalian embryonic development (Lin et al., 2013). A 

homozygous intronic DNA2 variant was previously reported as the likely 

causal variant for two related individuals diagnosed clinically with Seckel 

syndrome. This variant was shown to cause aberrant splicing and reduced 

DNA2 protein levels in patient cells, with cellular phenotypes rescued by 

transient wildtype DNA2 expression (Shaheen et al., 2014). Here, we report 

the identification of additional biallelic DNA2 (NM_001080449.2; MIM# 

601810) variants in four unrelated MPD patients. Using cellular splicing 
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assays and molecular modelling we provide evidence that these result in 

partial loss of function of the essential DNA replication/repair protein it 

encodes. Our work, alongside the findings of Shaheen et al. (2014), therefore 

establishes a causal link between DNA2 deficiency and impaired growth. 

From WES sequencing of 192 MPD patients without a molecular 

diagnosis, we identified three unrelated patients (P1, P3 and P4) with biallelic 

variants in DNA2 (Fig. 1A, Supp. Table S1 and S2), with a fourth 

phenotypically similar patient (P2) identified through targeted re-sequencing of 

DNA2 in our cohort. No likely causative variants in other genes were evident 

in WES datasets from P1, P3 and P4 (Supp. Table S3 and S4). The two 

novel intronic variants (NM_001080449.2:c.1764-38_1764-37ins(53) and 

NM_001080449.2:c.74+4A>C) and single missense variant 

(NM_001080449.2:c.1963A>G, p.Thr655Ala) were validated using Sanger 

sequencing (Fig. 1B). Parents of the affected individuals were heterozygous 

for these variants, and segregation in unaffected siblings from P1 and P3 

consistent with an autosomal recessive inherited disorder. None of the 

variants were present in the gnomAD (genome aggregation) database (Lek et 

al., 2016), establishing these alleles to be very infrequent in the general 

population, in keeping with a rare Mendelian disorder. All variants were 

submitted to the LOVD Global Variome database 

(https://databases.lovd.nl/shared/genes/DNA2). 

The patients exhibited severe microcephaly with OFC ranging from 

−5.7 SD to −9.6 SD, as well as markedly reduced height, ranging from −4.6 

SD to −11.1 SD (Supp. Table S1, Fig. 1C). Three out of four patients with 
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DNA2 variants were noted to have prominent, large upper incisors and a high 

frontal hairline, however a common facial gestalt was not otherwise apparent 

(Supp. Table S2, Fig. 1D). No significant health problems were noted, aside 

from P3 who had severe thoracic kyphoscoliosis and recurrent chest 

infections (Supp. Table S2). All had normal intellectual development, with P3 

and P4 now adolescents and P2 healthy when last met aged 46. Normal 

cognition, lack of a sloping forehead and proportionate OFC to height 

reduction led us to clinically classify these patients as MPD, rather than 

Seckel syndrome. Given the overlapping clinical phenotypes, we concluded 

that these variants were likely to be pathogenic, despite their predominantly 

intronic nature, and we next investigated the consequences of these variants 

on DNA2 mRNA splicing. 

P1 and P2, not knowingly related, were homozygous for the same 

variant, a 53 bp insertion in the middle of the small (78 bp) intron 11 of DNA2 

(c.1764-38_1764-37ins(53), Fig. 1A, Supp. Table S1). SpliceSiteFinder-like, 

MaxEntScan, and Human Splicing Finder algorithms (Alamut Visual) 

predicted the creation of a new splice donor site after the first four bases of 

inserted sequence, suggesting that DNA2 transcript splicing could be affected 

by this variant. As patient-derived cell lines were not available and attempts to 

generate a lymphoblastoid cell line from P1 peripheral blood leukocytes 

(PBLs) were not successful, we employed a minigene-based splicing assay to 

study the consequences and establish the pathogenicity of this variant. 

Minigene splicing reporters (Singh & Cooper, 2006) containing the genomic 

region covering DNA2 exon 11 to exon 13 from a healthy control and P1 were 

constructed (Fig. 2A). While the splicing control with a disrupted acceptor 
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splice site of intron 11 (c.1764-1G>A) demonstrated complete abrogation of 

correct splicing, the c.1764-38_1764-37ins(53) variant resulted in marked, but 

partial loss of correct splicing (Fig. 2B). DNA2 transcript analysis using RNA 

isolated from P1 PBLs also demonstrated altered splicing (Fig. 2C), 

confirming that partial loss of correct DNA2 splicing occurs as a result of this 

intronic variant. Capillary sequencing of RT-PCR products demonstrated 

correctly spliced mRNA for the wild-type control, with DNA2 exons 11, 12 and 

13 included (Fig. 2B-D), while for P1, the majority contained full-length exons 

11 and 13, but lacked exon 12 (Fig. 2B-D), in keeping with the c.1764-

38_1764-37ins(53) insertion causing substantial skipping of exon 12. Absence 

of exon 12 causes a frameshift leading to a premature termination codon in 

exon 13 (p.Ser588ArgfsTer4), which would promote degradation of such 

transcripts by nonsense-mediated decay and/or lead to the translation of a 

severely truncated protein missing the majority of the helicase domain, 

including the ATP binding site. Both would result in marked reduction of 

cellular levels of functional DNA2 protein.  

P4 was homozygous for a putative splice site variant in intron 1 

(c.74+4A>C) (Fig. 1A, Supp. Table S1), predicted to be potentially 

deleterious (CADD score = 16.4). Furthermore, splice prediction analysis 

suggested that this variant would weaken the donor splice site of intron 1, and 

therefore result in aberrant splicing of DNA2. This was confirmed 

experimentally using another minigene assay (Fig. 2E). Here, the c.74+4A>C 

mutant exhibited two RT-PCR products that corresponded to correctly spliced 

and incorrectly spliced transcript lacking canonical exon 1, respectively. 

Nevertheless, as a result of residual levels of correct splicing for both the 
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c.74+4A>C and c.1764-38_1764-37ins(53) variants, low levels of wildtype 

transcript and protein would still be produced, in keeping with DNA2 function 

being essential for mammalian development (Lin et al., 2013). 

Lastly, patient P3, who has the most severe reduction in height and the 

smallest head circumference (Supp. Table S1), was found to be compound 

heterozygous for the same c.74+4A>C variant in trans with a missense 

variant, c.1963A>G (p.Thr655Ala, p.T655A). P2 and P3 were phenotypically 

similar and not knowingly related, thus providing additional evidence to 

support pathogenicity of the c.74+4A>C variant. Likewise, there was strong 

evidence for the pathogenicity of the p.T655A substitution: the CADD score 

was 28.2, and given that threonine residue 655 is conserved to yeast and 

forms part of the ATP-binding motif of the DNA2 helicase/translocase domain 

(Fig. 1A, Fig. 2F), it was likely to be functionally critical. Furthermore, 

substitution of the neighboring lysine 654 residue (corresponding to lysine 671 

in older literature based on previous nomenclature) abolishes DNA2 ATPase 

activity, reducing the speed of ssDNA degradation (Levikova et al., 2017; 

Masuda-Sasa, Imamura, & Campbell, 2006). Therefore substitution of the 

adjacent p.T655 might also be expected to affect hydrolysis of ATP, reducing 

the rate of translocation of DNA2 along DNA, consequently diminishing 

nuclease-dependent degradation of ssDNA, and negatively impacting on DNA 

end resection. To investigate this possibility further, the crystal structure of 

mouse DNA2 (80% overall sequence identity to human DNA2; 100% in the 

ATP-binding motif) bound to the ATP hydrolysis product, ADP, (Zhou, 

Pourmal, & Pavletich, 2015) was examined. 
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Molecular modelling of the p.T656A variant (the mouse equivalent of 

human p.T655A) with FoldX (Guerois, Nielsen, & Serrano, 2002; 

Schymkowitz et al., 2005) predicted a negligible effect of the variant on 

intramolecular protein stability (ΔΔG = -0.15 kcal/mol). However, the affected 

threonine residue forms substantial intermolecular contacts with ADP, burying 

25.1 Å2 of solvent-accessible surface area, supporting modulation of this 

interaction as the basis for pathogenicity of this substitution. Notably, analysis 

with mCSM-lig (Pires, Blundell, & Ascher, 2016) predicted that the p.T656A 

variant weakens the interaction with ADP (by ~20%). This change in affinity 

would be expected to reduce DNA2 helicase activity and processivity. 

However, as the DNA2 structure does not contain the magnesium 

divalent cation required for ATPase activity, we next examined homologous 

structures that contained both Mg2+ and ADP. For this we used crystal 

structures of human UPF1 (Chakrabarti et al., 2011) and Saccharomyces 

cerevisiae SEN1 helicases (Leonaite et al., 2017), both of which are highly 

homologous to DNA2 around the ATP-binding site, at the amino acid and 

structural level (Supp. Fig. S1A,B). Here, a substantially stronger reduction in 

ADP binding affinity as a result of the threonine to alanine change was 

predicted (2.6 to 3.1-fold), likely due to contacts between the threonine 

residue and Mg2+ at the ATPase site (Supp. Fig. S1B,C). Furthermore, 

molecular modelling of substitutions at the adjacent lysine residue predicted 

these to similarly weaken the interaction with ADP (Supp. Fig. S1C). Notably, 

substitution of this lysine residue in DNA2 has previously been shown to 

abrogate ATPase activity (Levikova et al., 2017; Masuda-Sasa et al., 2006). 

Therefore, while structural modelling of mutational effects on protein-ligand 
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interactions has limitations, this molecular modelling, in conjunction with the 

direct physical contact of this threonine residue with ADP/Mg2+, suggests that 

p.T655A negatively affects cellular DNA2 enzyme function in the same 

manner as p.K654E/R, reducing processivity during DNA end resection. 

Our identification of four unrelated patients with biallelic DNA2 variants 

provides strong genetic evidence for DNA2 as an MPD-disease gene. As 

such, this substantively confirms the conclusions of Shaheen et al., who 

reported the homozygous c.3114+6delC intronic DNA2 variant, found within a 

region of homozygosity, as the likely cause of Seckel syndrome in an 

extended consanguineous Saudi Arabian family (Shaheen et al., 2014). The 

term ‘Seckel syndrome’ has frequently been employed to describe patients 

with a sloping forehead, prominent nose and intellectual disability, alongside 

disproportionate microcephaly (Hall, Flora, Scott, Pauli, & Tanaka, 2004; 

Kalay et al., 2011; Majewski, Goecke, et al., 1982). Individuals from the 

originally reported family were reported as having ‘Seckel-like’ facies 

(Shaheen et al., 2014); however, our cases do not have such an appearance. 

Consequently, we suggest employing the broader term ‘MPD’ to categorise 

the phenotype of individuals with biallelic DNA2 variants. 

Heterozygous missense variants in DNA2 have been associated with 

mitochondrial myopathy, with adult-onset autosomal dominant progressive 

external ophthalmoplegia and mitochondrial DNA deletions type 6 (PEOA6) 

(Ronchi et al., 2013). The level of DNA2 deficiency could account for the very 

different phenotype from that described here. Severe depletion arising from 

biallelic variants impairing nuclear genome replication and DNA repair would 

then cause MPD. Marked impairment in cellular DNA2 activity in MPD, 
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resulting from both non-coding and coding DNA2 variants, would be 

consistent with the necessity of adequate DNA2 protein levels during 

embryonic development, particularly during rapid cell proliferation, with a 

disruption in timely nuclear DNA replication/repair leading to fewer cells being 

generated, resulting in a smaller individual. In contrast, haploinsufficiency 

would be developmentally tolerated, but in the long term could result in 

mitochondrial DNA depletion and adult-onset myopathy. 

However, a simple model of differing levels of deficiency is difficult to 

reconcile with the lack of any features associated with mitochondrial disease 

in any of the six individuals with biallelic variants in DNA2 (our study and 

Shaheen et al., 2014) or their carrier parents. This argues against a simple 

DNA2 ‘dosage-effect’ model to account for distinct mitochondrial and growth 

phenotypes. Furthermore, heterozygous DNA2 truncating variants appear to 

be tolerated in the general population (gnomAD; Lek et al., 2016). Such 

population data seemingly runs counter to two case reports associating 

truncating variants with childhood myopathy (Chae et al., 2015; 

Phowthongkum & Sun, 2017), however both studies failed to assess parental 

variant status or demonstrate mitochondrial DNA deletions, rendering their 

findings inconclusive. Therefore, as proposed by Shaheen et al., the PEOA6 

DNA2 variants (Ronchi et al., 2013) may instead have an allele-specific effect. 

The biochemical findings of Ronchi et al were most consistent with decreased 

nuclease activity, whereas the p.T655A variant we identified in the helicase 

domain is expected to specifically impair end resection activity of DNA2 

(Daley et al., 2017). This raises the possibility that differing functional 

consequences on this multi-functional enzyme could account for the different 
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phenotypic outcomes in MPD and PEOA6. Notably, variants in RBBP8, which 

encodes CtIP, another DNA end resection factor, also lead to MPD (Qvist et 

al., 2011). 

In conclusion, our findings in conjunction with the work of Shaheen et 

al., establish DNA2 as an MPD gene. Future studies will be important to 

establish the molecular and cellular basis for the differing phenotypes of 

PEOA6-DNA2 and MPD-DNA2, with ascertainment of further cases, 

derivation of patient cell lines and development of relevant animal models, 

important to distinguish between potential disease mechanisms. 
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Figure 1. Identification of biallelic DNA2 variants in microcephalic 
primordial dwarfism patients.  

A: DNA2 variants c.74+4A>C, c.1764-38_1764-37ins(53) and c.1963A>G 

(p.Thr655Ala, p.T655A) identified in four MPD patients are indicated in red on 

a schematic of the DNA2 gene (NM_001080449.2), with the previously 

reported c.3114+6delC variant (Shaheen et al., 2014) shown in grey. Key 

domains and motifs are indicated on a cartoon model of the DNA2 protein 

(NP_001073918) structure. 

B: Sanger sequencing chromatograms demonstrating DNA2 variants (marked 

in red) in MPD patients. 

C: Affected individuals exhibit extreme reduction in birth weight, postnatal 

height and OFC, reflecting global growth failure of prenatal onset and extreme 

microcephaly (this study: P1-P4; Shaheen et al., 2014: PD_F6-II:5, PD_F6-

III:1). Measurements plotted as Z-scores (standard deviation, SD, of 

measurement from population mean for age and sex). Black bars represent 

the mean. 

D: Photographs of P1. Written consent to publish photographs was obtained 

from the family. 
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Figure 2. Transcriptional and structural consequences of DNA2 variants 
identified in MPD patients. 

A: RHCglo minigene reporter constructs used in the minigene splicing assay 

to assess the effect of the DNA2 c.1764-38_1764-37ins(53) variant. A positive 

control for splicing disruption was generated by introducing a point mutation, 

abolishing the acceptor splice site of DNA2 intron 11. Arrows indicate primers 

used for RT-PCR analysis. 

B: c.1764-38_1764-37ins(53) affects splicing of DNA2 transcript. HeLa cells 

were transfected with minigene constructs, followed by RNA extraction, cDNA 

generation and RT-PCR analysis to assess DNA2 splicing patterns. RT-PCR 

products amplified from the HeLa cDNA of the minigene assay samples using 

F and R primers (see panel a) were separated by agarose gel 

electrophoresis. Sanger sequencing analysis of cloned PCR products 

revealed that the product with higher electrophoretic mobility represents 

transcript lacking exon 12, and the lower mobility product the correctly spliced 

transcript. 

C: The splicing defect caused by DNA2 c.1764-38_1764-37ins(53) is also 

detected in patient (P1) PBLs. PCR was performed using primers located in 

exon 11 and exon 13 of DNA2 (indicated by short black arrows) products 

using cDNA generated from minigene assay samples and from RNA extracted 

from P1 peripheral blood. Agarose gel electrophoresis and Sanger 

sequencing analysis of PCR products recapitulated the previous findings. 

D: Sanger electropherograms demonstrate that the c.1764-38_1764-

37ins(53) variant results in skipping of DNA2 exon 12. 

E: Top: RHCglo minigene reporter constructs used in the minigene splicing 

assay to assess the effect of the DNA2 c.74+4A>C variant. As a control, the 

c.74+1G>A point mutation was introduced, abolishing the acceptor splice site 

of DNA2 intron 1. Bottom: DNA2 c.74+4A>C variant affects splicing of DNA2 

transcript. PCR products amplified from HeLa cDNA of the minigene assay 

samples were separated by agarose gel electrophoresis. Sanger sequencing 

analysis of cloned PCR products revealed that the product with higher 
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electrophoretic mobility represents transcript lacking exon 1 and the lower 

mobility product the correctly spliced transcript. 

F: DNA2 threonine 655, mutated in MPD patient P3, is a highly conserved 

residue in the ATP binding motif (boxed in green) within the 

helicase/translocase domain. Alignment generated and visualised using 

Jalview multiple sequence alignment software (Waterhouse, Procter, Martin, 

Clamp, & Barton, 2009). 

G: DNA2 p.K654 and p.T655 are important for ATP/ADP binding. Top: DNA2 

protein domains (N-terminus, nuclease and helicase/translocase) are 

represented in different colours (PDB ID: 5EAW; (Zhou et al., 2015)). ADP is 

shown in cyan spheres; p.T655, shown in red, indicates mouse DNA2 p.T656 

(the equivalent of human p.T655). Below: this threonine residue contacts 

ADP, similar to p.K654 (p.K655 in mouse, indicated in blue = p.K654 in 

human DNA2). Substitution of K654 abolishes DNA2 ATPase activity. 
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