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1. Introduction
Winter widespread persistent extreme cold events (WiPECEs) have important socioeconomic impacts in 
China (Peng & Bueh, 2011). In the past few decades, these events have caused great destruction to health, 
agriculture, and social amenities (Peng & Bueh, 2011; Zhang & Qian, 2011; Qian et al., 2017). For example, 
the 2008 and 2016 cold surges in eastern China caused heavy freezing rain and icy conditions that led to 
power outage in many regions as a result of damaged electricity transmission lines (Sun & Zhao, 2010). 
The impact of extreme cold events on winter wheat yields is also significant (Powell & Reinhard, 2016). 
Health impacts of cold temperatures are well known (Chen et al., 2017; Luo et al., 2018; Ma et al., 2013). Wu 
et al. (2013) showed, for four subtropical cities in China, that longer exposure to cold events had larger im-
pact than similar duration hot events. A case study for Shanghai from Ma et al. (2011) indicated that during 
a cold spell hospital admission related to cardiovascular and respiratory problems increased by 32%–38%, 
versus an increase of 2%–8% during a similar duration heat wave. Chen et al. (2017) found an association 
between extreme low temperature and hemorrhagic stroke admission. Cold effects are also linked to a sig-
nificant increase of patients with fracture (Du et al., 2013).

A large part of the research community has focused much attention on the variability and spatial distri-
butions of trends in extreme hot temperature events in China as a result on the ongoing anthropogenic 
warming, while less effort have been devoted to widespread persistent extreme cold temperature events 
(Qian et  al.,  2017; Zhou et  al.,  2009). Most of these studies and the references therein focused on case 
studies without reference to the climatology of such events. Although Peng and Bueh (2011) examined the 
extensive and persistent extreme cold events for the period 1951–2009, these authors only used a station ob-
servational dataset and did not examine the large-scale circulation features of their classified extreme cold 
events. Recently, Liao et al. (2020) highlighted the different dynamical configuration for the events of 2008 
and 2016. Zuo et al. (2015) also indicated that cold surges were more likely to be persistent during February. 
The recently released European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis version 
5 (ERA5, Hersbach, 2018) data set opens a further opportunity to examine WiPECE over China. In addi-
tion, the sixth phase of the Coupled Model Intercomparison Project (CMIP6) also provides updated climate 
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model outputs to evaluate past and future trends of WiPECE, to be compared with the previous versions of 
the models (CMIP5).

South-East China (defined here as 22–35  N/105–121  E, black box in Figure  1) is heavily populated (Li, 
Tian, et  al.,  2018) and highly vulnerable to impacts of climate extremes (e.g., Freychet et  al.,  2020; Li, 
Tian, et al., 2018; Sparrow et al., 2018). In this region, winters are usually characterized by low-to-mild 
temperatures with average daily temperature of 7.5°C for 1979–2017. Populations in this region are poorly 
acclimatized to cold weather and so not well prepared to endure severe cold surges. The Elderly population 
is especially vulnerable to long persistent cold surges (Chen et al., 2019). Adaptation measures at house-
hold and community levels to such cold events are poor with, for example, a lack of efficient heater and 
poor insulation, especially in old buildings, which may amplify the vulnerability of the population (Wang 
et al., 2016). In addition, the healthcare system is usually less prepared for the surge of demand for emer-
gency services during the cold spells with, for example, a high nonresponse rate in the 2008 cold spell in 
South China (Xiong et al 2010).

The objective of this study is to understand the mechanisms driving WiPECE, how these events have 
changed and are expected to change over the 21st century, combining observation, reanalysis, and model 
outputs. The reliability of models to simulate correctly the dynamics of cold events and their trend is also 
investigated. This study is organized such that methodology and data are presented in Section 2. Results are 
exposed in Section 3, and concluding remarks provided in Section 4.

2. Materials and Methods
2.1. Datasets

For this study, two-model ensembles from the fifth and sixth Coupled Model Intercomparison Project are 
considered (CMIP5, Taylor et al., 2012; and CMIP6, Eyring et al., 2016) and evaluated using two reference 
datasets: The reanalysis ERA5 and an observational station network (OBS). The large ensemble from the 
Community Earth System Model (CESM, Hurrell et al., 2013) is used to compute the model internal varia-
bility for attribution methods. Each data set is described below.

2.1.1. Observational Network (OBS)

A network of 756 stations across China (Li & Yan, 2009) from the China Meteorological Administration 
is used. It provides daily mean surface temperature at 2 m (T2M) from 1950 to 2017. Reliability of records 
between 1950 and 1960 is questionable as this corresponds to a transition period when the network in-
creased from less than 100 stations to more than 700 (see Figure 2 in Li et al., 2009). Thus, only T2M for the 
1960–2017 period is used in this study. Measurements have been carefully homogenized to remove biases 
due to instrument changes or station relocation. OBS is gridded to the same grid as ERA5 by averaging all 
stations available at each grid cell (and masking points without stations, Figure 1a) so both reference data-
sets can be compared.

2.1.1.1. ERA5 Reanalysis

The latest version of the European Centre for Medium-Range Weather Forecasts, ERA5 (Hersbach, 2018), 
provides hourly output at 0.25° resolution, currently during the satellite period (1979 to present). Based 
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Figure 1. T2M winter means (in °C) during the 1979–2017 period for (a) OBS, (b) ERA5, and (c) difference OBS-ERA5. Black box in (c) indicates the South-
East China domain used for this study.
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on these outputs, daily mean surface temperature is computed and then spatially masked where gridded 
observation is not available to match OBS grid points (Figure 1b). OBS and ERA5 have similar winter tem-
peratures patterns and small differences, especially over South-East China (Figure 1c). ERA5 dynamical 
variables are also used to analyze the circulation during cold events.

2.1.1.2. CMIP5/CMIP6 Model Ensembles

Ensembles of CMIP5 and CMIP6 are selected, based on the availability of daily T2M outputs during the 
historical period using all forcings (ALL). This leads to a selection of 27 CMIP5 and 10 CMIP6 individual 
models, with some having several members (Table 1).

Models outputs are first considered for the 1960–2016 historical period to compare with the same period 
from OBS (and ERA5 during the 1979–2016 period). As the historical simulations stop in 2005 (2014) 
for CMIP5 (CMIP6), it is extended using results from the RCP4.5 (SSP245) projection scenario. WiPECE 
(see below) is computed for each individual model and members. When computing the multimodel en-
semble mean, models with several members are first averaged so each model has the same weight in the 
multimodel mean. WiPECE long-term trend projections (to 2,100) are analyzed using RCP4.5 (SSP245) 
for CMIP5 (CMIP6). These are considered as medium-emission scenarios, thus results should be in the 
range of what one can reasonably expect from the current policy decisions to reach Paris agreement +2 
°C target.

Similar to ERA5, dynamical variables are also extracted from the models to analyze their ability to repro-
duce the right circulation patterns associated with WiPECE.

For the attribution part of this study, two other scenarios are used: Natural forcing only where the anthro-
pogenic impact is removed (NAT, with 13 and 8 individual models for CMIP5 and CMIP6, respectively) and 
Greenhouse Gases only where only the anthropogenic historical changes in GHG are considered (GHG, 
with 11 and 8 individual models for CMIP5 and CMIP6, respectively). Table 1 summarizes the models used 
for each scenario.

2.1.2. CESM Large Ensemble

Simulations from the Community Earth System Model (Hurrell et al., 2013) are used to quantify the in-
ternal variability of the models. T2M is extracted from 35 members from the historical (all forcings) large 
ensemble (CESM-LE; Kay et al., 2015). WiPECE is computed for each individual member for the 1960–2005 
period and the covariance of this multimember ensemble is used to quantify internal variability.

2.2. WiPECE Index Computation

There are several definitions of extreme cold events in China (e.g. Peng & Bueh, 2011; Qian et al., 2017; 
Zhang & Qian, 2011). This study adopts the following definition. The 9-days window running mean (cen-
tered on a calendar day) of the 2-m temperature (T2M) is first computed (Rx9D_T2M). Second, the daily 
winter 10th percentile threshold index (RX10P_T2M) is computed from Rx9D_T2M at each grid point and 
for each calendar day, using the 1981–2010 baseline period. Finally, WiPECE is defined when Rx9D_T2M 
is lower than the daily RX10P_T2M for at least 50% of land points in South-East China domain. The 50% 
threshold criterion ensures that large-scale events are accounted for. With these combined criteria, both 
temporal and spatial persistences are considered, thus focusing on the most damaging events at regional 
scale.

One would expect about 10% of winter days to be below the 10% threshold, so if all persistent cold extremes 
in southern China were widespread one would expect 342 days using our criteria (10% of winter days). Of 
the 3,420 winter days for the 1979–2017 period, there are 273 days that satisfy the selection procedure using 
ERA5 reanalysis mean temperature. This accounts for about 80% of the events, suggesting the majority of 
cold extremes in south China are widespread events. Applying the same identification procedure to the 
OBS, we identify 267 (78%) WiPECE days, which is very close to the ERA5 value and confirms the good 
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CMIP5 ALL NAT GHG OA ANT

BCC-CSM1-1 1 1 1 1 1

BCC-CSM1-1-M 1 - - - -

BNU-ESM 1 1 1 1 1

CMCC-CM 1 - - - -

CMCC-CMS 1 - - - -

CNRM-CM5 1 6 6 1 1

ACCESS1-0 1 - - - -

ACCESS1-3 1 - - - -

CSIRO-MK3-6-0 10 5 5 5 5

EC-EARTH 1 - - - -

INMCM4 1 - - - -

IPSL-CM5A-LR 4 3 3 3 3

IPSL-CM5A-MR 1 3 1

IPSL-CM5B-LR 1 - - - -

HadGEM2-CC 1 - - - -

HadGEM2-ES 1 4 4 1 1

MPI-ESM-LR 3 - - - -

MPI-ESM-MR 3 - - - -

GISS-E2-R 2 - - - -

CCSM4 3 3 2 2 2

NorEMS1-M 1 1 - - -

GFDL-CM3 3 3 3 3 3

GFDL-ESM2G 1 - - - -

GFDL-EMS2M 1 1 1 1 1

CESM1-BGC 1 - - - -

CESM1-CAM5 1 1 - 1 -

Total 47 32 26 20 18

CMIP6 ALL NAT GHG OA ANT

CanESM5 10 10 10 10 10

CNRM-CM6-1 6 3 3 3 3

CNRM-ESM2-1 3 - - - -

EC-EARTH3-VEG 1 - - - -

IPSL-CM6A-LR 1 6 6 1 1

HadGEM3-GC31-LL 1 4 4 1 1

UKESM1-0-LL 5 - - - -

MRI-ESM2-0 1 3 3 1 1

CESM2 1 3 3 1 1

CESM2-WACCM 1 - - - -

Total 30 29 29 17 17

The total indicates the total of individual simulation for each category.

Table 1 
Individual Model Names for CMIP5 and CMIP6 Ensemble Along With the Number of Members Available for Each Individual Forcing (All Historical Forcings, 
ALL, Natural Forcing Only, NAT, Greenhouse Forcing Only, GHG, Other Anthropogenic Forcing, OA, and All Anthropogenic Forcing, ANT)
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agreement of these two reference datasets. Models indicate a mean of 235 cold days during the same period 
(ranging from 184 days to 277 days for the lowest and highest numbers, respectively). This is slightly lower 
than in OBS and ERA5, indicating that models produce less clustered cold days.

2.3. Detection-Attribution Method

To analyze the role of anthropogenic activity on the recent trend in WiPECE (1960–2005) the detection–attri-
bution (DA) method of Ribes et al. (2017) is used. Software is available at https://github.com/rafaelcabreu/
attribution and is explained in the study by De Abreu et al. (2019). This method combines different sources 
of uncertainties (such as internal variability, model uncertainty, and observational uncertainty) to attribute 
the role of different forcing to explain the observed changes. Individual forcing experiments considered in 
this study are GHG, NAT, and ALL. Two other cases are derived from these three forcings: Other anthropo-
genic forcing (OA) corresponding to ALL-NAT-GHG (mainly anthropogenic aerosols); and anthropogenic 
forcing (ANT) corresponding to ALL-NAT. Finally, 45 years from preindustrial forcing simulations (piCon-
trol) are used to estimate the internal variability of CMIP5 and CMIP6 trends.

For this method, WiPECE trends are based on 5-year means for the 1960–2005 period (as most of the NAT 
simulations stopped in 2005 for CMIP5).

To estimate observation uncertainties, here, we simply use the mean difference between ERA5 and OBS 
during the 1979–2005 period and consider this error constant (i.e., we assume observation error to be 
time-independent).

2.4. Trends in OBS and Models

2.4.1. Estimating the Trends

Least-square linear regression is often used to analyze how a signal is changing with time but the high in-
terannual variability of WiPECE leads to large uncertainties when using this method, especially because it 
can be more sensitive to extrema of the time-series as WiPECE frequency is non-Gaussian. Here, another 
method is used, based on Theil-Sen (1968). The mean estimate of the trend with this method is expected to 
be less sensitive to outliers of the time-series and the 5%–95% confidence interval also provides an accurate 
estimation of uncertainties. For model ensemble mean trends in Figures 6 and 9, the confidence interval is 
computed by bootstrapping the ensemble (thus providing an estimate of the uncertainty related to the sam-
pling). Finally, uncertainties in trends for the best estimates from the DA method (Figure 8) are computed 
by generating a 1,000 multivariate normal random time-series based on the best estimates and covariance 
matrix from the DA.

2.4.2. Removing the Effect of Mean Temperature Changes

To investigate the role of mean temperature changes on the trend of WiPECE, and eventually to isolate the 
role of dynamical change, an approach similar to Freychet et al. (2017) is used as follows. First, at each grid 
point, the winter mean T2M is removed from daily temperatures for each individual year. Then the 10th per-
centile is computed based on these anomalies and all the processes described in the WiPECE index compu-
tation part are repeated using this detrended temperature. The result indicates how WiPECEs are changing 
or not if the yearly T2M was constant. This is an indirect way to detect a potential change in circulation, or 
temperature variability that could lead to changes in WiPECE.

2.5. Taylor Diagram Uncertainties

To evaluate model performance in reproducing the spatial pattern associated with WiPECE, Taylor di-
agrams are used (Taylor, 2001) which allow a quick comparison of the spatial correlation and standard 
deviation of the signal between models and the reference ERA5. To consider the model uncertainties due 
to their internal variability, we used an autocorrelation test as followed. An individual model (CMIP6 
CanESM5) with 10 members (only for surface temperature and sea level pressure) is selected. One of 
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the members is used as a reference (instead of ERA5) and all other members are plotted against it. The 
process is then repeated with another member as a reference, and so on until looping through all the 
ensemble. Finally, the maximum error from this test is retained as being the range of internal variability 
of a model (i.e., the reasonable error a model could get and still be considered as consistent with the 
reference).

3. Results
3.1. Dynamics of Cold Events

3.1.1. Mean Dynamical Patterns

The dynamics related to WiPECE events are analyzed by compositing: for each WiPECE event, the circula-
tion composite is computed by removing the corresponding calendar day 1981–2010 9-day running mean 
climatology. Then composites are averaged over the 1979–2017 period for each individual member and 
model, and for ERA5. Due to limitation of daily dynamical outputs for models and to analyze as many mod-
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Figure 2. Composites of anomalies during WiPECE events for: (left) T2M (shading, in °C) and surface shortwave 
radiation (contours, in W.m−2, with an interval of 10 W.m−2); (right) sea-level pressure (shading, in hPa) and 500 hPa 
geopotential height (contours, in m, by step of 15 m). The same scale is used for both MSL and T2M although units are 
different. Solid (dashed) contours indicate positive (negative) anomalies. CMIP5 and CMIP6 plots show the ensemble 
mean of individual model-mean composites. Strippling (for MSL and T2M) or red contours (for Z500 or SSR) indicate 
where 90% of the cases agree on the sign of the anomaly (either 90% of cold events for ERA5, or 90% of mean individual 
composites for CMIP5 and CMIP6).
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els as possible, only three variables are considered: sea-level pressure (MSL), 500 hPa geopotential height 
(Z500), and net shortwave surface radiation (SSR).

In ERA5, WiPECE are associated with a large mid-troposphere trough extending all over China and a sur-
face high pressure indicating an advance of cold air from Siberian regions (Figure 2), confirming previous 
findings such as Bueh et al. (2011) or Song et al. (2016). Changes in SSR indicate a decrease in solar radia-
tion especially over the South China Sea, likely due to an increase in cloud cover from the advection of con-
tinental cold air over the sea where it rapidly saturates and forms clouds. This pattern is however changing 
rapidly during the events (Figure 3). Before the event, the SSR anomalies cover all South-East China do-
main, indicating more cloudy condition, in relation with the decreasing temperatures. But during the event, 
this anomaly is pushed toward the coastal area, and a positive anomaly tends to develop over the region 
after the middle of the cold spell, indicating that this part of the domain is under clear sky conditions (i.e., 
drier conditions). This corresponds to the advance of the cold-dry air from the North. Both model ensembles 
reproduce the observed patterns well, although their magnitudes are slightly larger for MSL and Z500. They 
have the correct SSR signal over the South China Sea. This signal is less clear over land, and nonsignificant 
for both ERA5 and models.

Individual model performances are analyzed with Taylor diagrams (Figure 4). Most individual models are 
able to capture the right pattern signals in Z500 and MSL, with correlations above 0.8, although the magni-
tude of this signal for Z500 is less well-captured compared with MSL. SSR patterns have lower correlations 
due to the inability of models to simulate its decrease over land. There is no clear improvement between in-
dividual CMIP5 and CMIP6 models for the dynamics fields although the CMIP6 ensemble mean is slightly 
closer to ERA5. T2M correlations are also improved in CMIP6 models, indicating a better representation of 
WiPECE temperature spatial features in the new generation of models. If a specific dataset (model) was per-
fectly consistent with the observations then the correlation would be one and the standard deviation identical to 
that observed. However, because of internal variability, the signal cannot be expected to be perfectly consistent. 
To evaluate whether any discrepancy could be explained by internal variability an autocorrelation test was 
performed (see methods), although only on the T2M and MSL results due to data availability. Thus, based on 
this test (red dashed lines in Figure 4), ensemble means are found consistent with observation (i.e., they are in 
the range of the internal variability).

Based on this analysis, it is reasonable to conclude that models can reproduce WiPECE for the right dy-
namical reasons. Difference in SSR estimate over land could be due to the way models parametrize clouds 
(especially because of changing conditions from increased cloud cover to clear sky, illustrated in Figure 3), 
but this is a specific question that would require independent work. It is also found that CMIP6 ensemble 
mean is overall slightly better than CMIP5 mean. However, given the limited number of models for CMIP6, 
the observed improvement should not be considered as a meaningful conclusion.

3.1.2. Heat Budget

To complete the dynamical analysis, a heat budget is performed with ERA5. Composites are computed in 
the same way as described above but are also calculated for each day before and after each WiPECE (up to 
15 days after and before the center of WiPECE event). Several radiation and heat transport variables are 
used and depicted in Figure 5. There are two important processes controlling the temperature drop. First, 
anomalous negative heat flux convergence, due to the advection of cold dry air from the North, is visible up 
to 8 days before (relative to the center of WiPECE). Second, as mentioned before, a decrease in net short-
wave radiation, indicating an increased albedo (either change in cloud cover or snow), is also visible before 
WiPECE, although it is partly compensated by an increase in longwave radiation. The sum of these terms 
leads to a sharp decrease in the total energy budget and thus in temperature. This negative energy budget 
persists long enough that temperature drops below its climatological 10th percentile for several days. Tem-
perature starts rising slowly after the center of WiPECE, when both radiation and heat transport reverse to 
normal or even slightly positive and the total energy budget becomes positive. Changes in surface latent and 
sensible heat fluxes are small. The change in P-E budget is also negligible in terms of heat budget (corre-
sponding to a maximum anomaly of 0.026 W.m−2).

This analysis highlights the importance of dynamical cold air transport and shortwave reduction, with both 
playing an important role in triggering and maintaining cold anomalies.
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3.2. Recent Trends and Attribution

The mean frequency and trend in WiPECE is now analyzed, first using the period 1979–2017 as it is com-
mon to ERA5 and other datasets. The mean number of cold days per year during this period is about 7 days 
in OBS and ERA5 (Figure 6a). It can vary from 0 to more than 25 days but more than half of the years have 
less than 10 WiPECE days. There is a good agreement between ERA5 and OBS for the mean and variability 
of WiPECE days per year, confirming the reliability of the reanalysis to reproduce the observations. This 
average frequency is less than our minimum threshold of 9 days. This is due to the spatial extent criteria: 
Even if at each grid point, there is a persistent cold (9 days or more), the number of days where these events 
overlap at a large spatial scale may be shorter (here typically 7 days). It is also noticeable that the distribu-
tion is highly asymmetric around the mean, with a hard limit on the low side (0 days) and long tail on the 
high side.

Model ensembles are close to observed datasets and within the range of variability although the multimodel 
mean is closer to 6 days per year. There is no clear difference between historical CMIP5 and CMIP6 ensem-
bles. Individual models from both ensembles show more variable results. They are all able to capture the 
asymmetry of the distribution but some models underestimate the mean by 3 days and most of the models 
tend to have shorter tails, that is, they simulate shorter events compared with observation.
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Figure 3. Anomalies of SSR (W.m−2) from 10 days before (Lag−10) to 4 days after (Lag+4) the center of a cold wave 
(Lag 0).
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The evolution of WiPECE days per year is now analyzed (Figure 6b). ERA5 and OBS have a very good agree-
ment during their common period (1979–2016). They both show large peaks in 1983 (almost 40 days) and 
2005 (about 30 days). Before 1979, OBS shows several high WiPECE frequency years, indicating an overall 
colder period. Based on these time-series, the mean trend is a decrease of about 1 day per decade (Figure 6c, 
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Figure 4. Taylor diagrams for sea-level pressure (MSL), 500 hPa geopotential height (Z500), shortwave solar radiation 
(SSR), and 2m atmospheric temperature (T2M), based on composites of anomalies during WiPECE events. CMIP5 
(blue) and CMIP6 (green) individual models are displayed by black contoured circles and ensemble means are shown 
by red contoured circles. Reference is ERA5 (black dot). Dashed green lines show the Root Mean Square Error with 
an interval of 0.4, and red dashed line indicates the internal model variability based on an autocorrelation test from a 
model with 10 individual members (see Method).

Figure 5. Time-lag energy budget during WiPECE displayed as composites of anomalies averaged over the studied region. Energy budget is decomposed as: 
net top of the atmosphere shortwave (ToA SW) and longwave (ToA LW) radiations, total vertically integrated energy flux divergence (Div.HF), surface sensible 
(SSHF), and latent (SLHF) heat flux. The sum of all previous flux is displayed in red as Total Energy Budget. All the fluxes are expressed in W.m−2 (left scale). 
The evolution of T2M (in °C, right scale) and precipitation minus evaporation (P − E, mm.d−1, right scale) are also displayed in black.
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either for 1979–2016 or the whole 1960–2016 period), close to the value of 
0.9 day per decade found by Shi et al. (2018) for their cold spell duration 
index. The large uncertainties are due to the high interannual variability. 
It is noticeable that the recent 2016 winter event (Qian et al., 2017) does 
not appear in the WiPECE index as it lasted less than 9 days in most of 
the places. Some parts of China also experienced more severe reductions 
in cold events, as for example, Guangzhou where a decreasing trend of 
1.77 days per decade was found (Zhang et al., 2017) although there defi-
nition of cold spells was different.

Model ensemble means are not expected to reproduce the same varia-
bility as the averaging process removes internal variability. Moreover, 
CMIP models are fully coupled, thus the ocean signal is not expected 
to correspond year to year to the actual observed signal. Despite these 
aspects, both ALL model ensembles are within the range of observation 
and are able to reproduce the decreasing trend over the 1960–2016 pe-
riod. Individual models interannual variability is consistent with OBS 
and ERA5 and model trends are in the range of observation errors. The 
high interannual variability leads to large model spread and observa-
tional error on trends. This internal variability is greatly influenced to 
the variability of the East Asia winter monsoon, which experienced a 
weakening in the late 1980s and a reamplification in the early 2000s 
(Wang & Chen, 2014; Wang et al., 2009), consistent with the WiPECE 
signal.

To analyze the role of anthropogenic forcing in model ensembles, 
WiPECE signals are analyzed with the different scenarios described in 
the methodology. Here trends are based on 5-years mean values and for 
the 1960 to 2005 period to cover the same period for each ensemble (NAT 
ending in 2005 for CMIP5). The multiyear averaging reduces variability 
and allows more focus on the long-term changes and forced variability. 
It also leads to visually more Gaussian-like distributions (shown in Fig-
ure  7), a requirement for the attribution method. However, the model 
distribution, on the basis of a K-S test, is not consistent with a Gaussian 
distribution (tested with the CESM large ensemble, with a p-value result 
close to 0 leading to reject the null hypothesis that the two samples were 
drawn from the same distribution). This remains a challenge to apply 
attribution methods to extreme events (Hegerl et al., 2006) and results 
below are discussed with caution.

Based on 5-years mean time-series, the OBS trend is highly uncertain 
(Figure 8, compared to Figure 6c). Temporal smoothing leads to less in-
terannual variability but also less sampling over the period, thus similar 
uncertainties to evaluate the trends. This is echoed by model internal 
variability (evaluated from piControl runs). The spread between models 
encompass the observed trend and is of the same order as the observa-
tional uncertainty. Simply based on these facts, it cannot be ruled out that 
the recent observed trend in WiPECE is simply due to internal variability. 
This is confirmed by DA results (Table 2), with about a 10% probability 
that the observed signal is explained by internal variability.

Individual forcing results bring more insight on the contribution from 
different factors. GHG trends are the closest to the observed signal and 
show the most confident results with almost all models having negative 
trends, although most of those are weaker than the observed best esti-
mate. Results are less clear for ALL and ANT, especially for the CMIP6 
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Figure 7. (a) as Figure 6a but based on 5-years mean anomaly time-series. 
(b) distribution of cold days per year (anomalies relative to the 1960–2005 
mean) for the CESM large ensemble where individual member results are 
pooled to compute the distribution.

Figure 6. (a) Mean (dots) number of WiPECE days per year with the 25–
75th and 5–95th percentiles (horizontal solid and dashed bars respectively) 
computed from the 1979–2016 period, for ERA5 (red), OBS (gray), CMIP5 
(light blue) and CMIP6 (dark blue) models. For models with multiple 
simulations, simulations are pooled together to compute the mean and 
percentiles. CMIP5 and CMIP6 ensemble means are indicated by darker 
symbols and are computed by pooling together all WiPECE events from 
each individual member. (b) Time-series of number of cold days per year 
for ERA5, OBS and CMIP5 and CMIP6 ensemble means (thick lines) and 
individual models (thin lines). (c) Theil-Sen (Sen, 1968) trend estimates 
(in days per decade) in the number of cold days per year computed from 
1960 to 2005 (circle symbols) or 1979–2005 (square symbols) time-
series displayed in (b). For ERA5 and OBS, error bars show the 5%–95% 
confidence interval. For CMIP5 and CMIP6 individual model trends are 
shown by contourless circles and ensemble mean by black contoured 
circle. Errors in the ensemble mean trends show the 5%–95% confidence 
interval and are computed by bootstrapping the ensembles (see Methods). 
Finally, empty circles in (c) indicate trends after removing the interannual 
changes in T2M (see Methodology).
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ensemble. This indicates that other contributions in the models, such as 
anthropogenic aerosol emissions, tend to mask or counter act GHG ef-
fects (as displayed with OA trends).

Attribution results reflect these results with larger confidence on the role 
of GHG to explain observation. However, each individual forcing result 
also shows a potential contribution and none can be excluded with good 
confidence, including NAT. This is the major point from this analysis: 
Due to large internal uncertainties and intermodel spread, none of the 
individual forcing hypotheses can be rejected. Even in OBS, the signal 
is barely detectable if we consider the uncertainty (internal variability) 
associated with its trend.

The above considerations indicate that anthropogenic impact on WiPECE 
recent trend is still difficult to attribute as the signal barely emerges from 
the internal variability, consequently it is not possible to carry out a ro-
bust detection of a forced signal. Still, at least in the model simulations, it 
can be seen that forcing from GHGs reduces the occurrence of WiPECE 
(due to warmer temperatures) but will have been largely offset by other 
external forcings.

Finally, the question of potential changes in circulation is addressed 
as WiPECE trends could be due to either a change in the mean tem-
perature or a change in the frequency of the dynamics leading to these 
cold events (as analyzed in Section 3.1), or perhaps both. To do so, the 
mean winter temperature in each model and OBS is first detrended at 
each grid point and then WiPECE events are re-computed based on 
these detrended temperatures. Trends in WiPECE obtained with this 
methodology are almost zero (Figure  6c, empty symbols). Thus, the 
observed decrease in cold events, even if still hard to detect, has been 
mainly due to a change in mean temperature. Results from this indi-
rect method do not indicate a contribution from changing circulation. 
This point would require confirmation from a more careful analysis 
based directly on the analysis of circulation indices, which is beyond 
the scope of this study.

3.3. End-of-Century Projected Changes

Long-term evolution of WiPECEs are investigated for the end-of-century 
projection using RCP4.5 and SSP245 scenarios for CMIP5 and CMIP6 ensembles respectively. As expected 
in a warming world the frequency of cold events reduces (Figure 9). In opposition to recent trends analyzed 
previously, in future projections the forced signal becomes much stronger, and by the end of the century has 
emerged from internal variability leaving a clearly detectable signal. This corresponds to a dominant GHG 
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Internal variability NAT GHG ALL Combined NAT + GHG + OA OA ANT

CMIP5 0.12 0.31 0.49 0.65 0.89 0.42 0.47

CMIP6 0.12 0.32 0.69 0.37 0.84 0.07 0.33

Individual forcings correspond to: Natural forcing only (NAT), Greenhouse Gases only (GHG), all historical forcing 
(ALL) and residual forcing (OA, mainly aerosols). A test is also performed by combining GHG + NAT + OA models 
to re-create an ensemble similar to ALL but only with models available for both GHG and NAT and using errors from 
each sub-ensemble to compute the covariance matrix. The anthropogenic signal only is built with ALL-NAT.

Table 2 
Hypothesis Testing P-Value for Individual Forcings From CMIP5 and CMIP6 Ensemble Using De Abreu et al., 2019 
Method.

Figure 8. 1960–2005 trends estimate from Theil-Sen method and based 
on 5-years mean WiPECE values for OBS (black symbol) and different 
forcings of CMIP5 (circle symbols) and CMIP6 (square symbols). 
Ensemble mean trend is shown by the large dark symbol and individual 
model trends are displayed by light symbols. For OBS, the vertical black 
bar indicates the 5%–95% confidence interval from the Theil-Sen method. 
For each case, white star symbols indicate the Theil-Sen trends based on 
the best fit of the DA method and the gray bar is the 5%–95% confidence 
interval estimated from 1,000 resampling. Purple symbols show results 
from a 45 years section of PiControl simulations, indicating the internal 
variability of the models.

Figure 9. As Figures 6b and 6c but including long term projections 
for CMIP5 (with RCP4.5 scenario from 2006) and CMIP6 (with SSP245 
scenario from 2015). Trends are computed for the 2005–2065 period.
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signal on temperatures along with a potential decreasing impact of other 
forcing such as aerosols.

Ensemble means indicate a downward trend in WiPECE days until the 
middle of 21st century, followed by a stabilization around 1 or 2 days per 
winter. If we consider that models tend to underestimate the observed 
trend (as mentioned previously) this reduction could occur even faster. 
After the middle of the century, individual models still show year to year 
variability with peaks up to 5 days. Expressed as a risk (Figure 10), this 
translates by a change from currently 6%–7% chance that a day belongs to 
a WiPECE to a 0%–2% chance at the end of the century.

Thus, even if WiPECE frequency is expected to strongly reduce, this type 
of event will still occasionally occur. According to model projections, cold 
surges will not disappear and temperatures in South-East China will still 
reach below their current 10% climatology coldest values for many days. 
To investigate the role of a potential long-term circulation change in the 
future, the same methodology as in the previous section was applied. Re-
sults (Figure 9b) indicate again that without changes in the mean temper-
ature the frequency of WiPECE stays fairly constant (empty symbols, to 
compare with filled symbols). Thus, as this detrend signal is close to zero, 
there is no clear indication that WiPECE long-term trend could be due 
to a circulation change although this is an indirect conclusion and more 
precise analysis on the circulation change would be needed.

4. Conclusions
In this study, we focused on persistent large-scale cold events (Winter 
widespread Persistent Extreme Cold Events, WiPECE) over South East 
China, investigating their dynamics and recent trends, with a focus on 

how well models can reproduce the observed signal.

We analyzed the dynamical pattern associated with these events using ERA5 reanalysis. We showed that a 
strong advection of cold air from the North and a decrease in shortwave radiation over South East China 
were both responsible for the persistent drop of temperatures.

Historical simulation of global climate models (CMIP5 and CMIP6) showed good skills to reproduce the 
dynamical patterns identified in ERA5 although the change in shortwave radiation is less well captured.

We then analyzed the frequency of WiPECE days in both ERA5 and an observational network (OBS). Both 
datasets indicate large interannual variability, ranging from 0 to 25 WiPECE days in a year. We found that 
models were able to reproduce correctly the asymmetry of the observed distribution and its variability.

From 1960 to 2005, observations and models suggested a decrease in WiPECE days of about 1 day per dec-
ade. However, we couldn't attribute this trend with good confidence due to a large internal variability (in 
models and observations). Models overall seemed to underestimate the magnitude of the observed trend. 
Our analysis indicates that greenhouse gases largely drive this decreasing trend while aerosol impact (and 
other residual factors) tends to mitigate it. Some models are more sensitive to aerosols leading to competing 
effects with GHG and unclear trends in WiPECE. Based on a DA analysis, we found that none of the single 
forcing results could be excluded with good confidence. Each single forcing shows at least some probability 
of explaining the observed recent trend largely due to the high degree of internal climate variability. This 
also shows the limit of DA methods to analyze extreme events over a limited period, when the signal-to-
noise ratio is low (in both observation and models).

We extended our analysis to long-term projections and confirmed, as many studies did, that the risk of 
WiPECE is expected to reduce by the end of the century but it should not disappear completely. We found 
that the main driver of change was the increase in winter-mean temperatures reducing the frequency of 
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Figure 10. Distribution of the WiPECE probability (%) of WiPECE 
per winter day based on 5-year running means, for CMIP5 (historical 
simulation extended with RCP4.5 after 2005) and CMIP6 (historical 
simulation extended with SSP245 after 2014) ensemble computed for 
three different periods: 1965–1984, 2000–2019, and 2075–2094. Density 
histograms are computed from pooling together each individual model 
during each specific period. The risk corresponds to the chance (in %) that 
each day and location belongs to a WiPECE.
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long-lasting cold temperatures below the historical values. This suggests, indirectly, that circulation chang-
es and changes in temperature variances are not significant drivers of projected change in WiPECE. Large 
dynamical advection of cold air should still occur at the same frequency. If the population is less prepared 
to endure cold surges, because more focus is made on adapting to warmer temperatures, this could lead to 
an increased vulnerability of the South-East China population.

Finally, we could not find clear differences between CMIP5 and CMIP6 ensemble performances to repro-
duce the observed signals though, in this study, the number of CMIP6 models was much lower than the 
number of CMIP5 models. Thus, as more CMIP6 model results become available, this lack of clear differ-
ences needs further verification.

Data Availability Statement
All data used in this study are publicly available. CMIP5 (Taylor et al., 2012) and CMIP6 (Eyring et al., 2016) 
can be downloaded for example from https://esgf-node.ipsl.upmc.fr/project/. CESM Large Ensemble (Kay 
et al., 2015) data are available at http://www.cesm.ucar.edu/projects/community-projects/LENS/data-sets.
html. Homogenized temperature data for China (Li & Yan, 2009) are available through the Chinese Meteor-
ological Administration website (https://data.cma.cn/en/).
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