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Abstract—Spurred by the recent advances in deep learning to
harness rich information hidden in large volumes of data and
to tackle problems that are hard to model/solve (e.g., resource
allocation problems), there is currently tremendous excitement in
the mobile networks domain around the transformative potential
of data-driven AI/ML based network automation, control and
analytics for 5G and beyond. In this article, we present a
cautionary perspective on the use of AI/ML in the 5G context
by highlighting the adversarial dimension spanning multiple
types of ML (supervised/unsupervised/RL) and support this
through three case studies. We also discuss approaches to mitigate
this adversarial ML risk, offer guidelines for evaluating the
robustness of ML models, and call attention to issues surrounding
ML oriented research in 5G more generally.

Index Terms—5G and Beyond Mobile Networks, Adversarial
Machine Learning, Security

I. INTRODUCTION

A considerable amount of industry and academic R&D
endeavors are currently paving the way toward 5G and Beyond
5G (B5G) networks. 5G networks, unlike their 4G coun-
terparts, are foreseen to be the underpinning infrastructure
for a diverse set of future cellular services well beyond
mobile broadband to span multiple vertical industries. To
flexibly and cost-effectively support diverse use-cases and to
enable complex network functions at scale, 5G network design
espouses several innovations and technologies such as artifi-
cial intelligence (AI) along with software-defined networking
(SDN), network function virtualization (NFV), multi-access
edge computing (MEC), and cloud-native architecture that are
new to the domain of mobile telecommunications.

Technical developments toward 5G and B5G of mobile
networks are quickly embracing a variety of deep learning
(DL) algorithms as a de facto approach to help tackle the
growing complexities of the network problems. However, the
well-known vulnerability of the DL models to the adversarial
machine learning (ML) attacks can significantly contribute
to broadening the overall attack surface for 5G and beyond
networks. This observation motivates us to deviate from the
on-going trend of developing a newer ML model to address
a 5G network problem and, instead, examine the robustness
of the existing ML models in relation to the 5G networks
under adversarial ML attacks. In particular, we focus on
representative use cases for deep neural network (DNN)-driven
supervised learning (SL), unsupervised learning (UL), and
reinforcement learning (RL) techniques in the 5G setting and
highlight their brittleness when subject to adversarial ML
attacks.

Through this article, we would like to draw the attention of
the research community and all stakeholders of 5G and beyond
mobile networks to seriously consider the security risks that
emerge from the rapid unvetted adoption of DL algorithms
across the wide spectrum of network operations, control, and
automation, and urge to make robustness of the ML models
a criterion before they are integrated into deployed systems.
Overall, we make the following two contributions.

1) We highlight that despite the well-known vulnerability of
DL models to adversarial ML attacks, there is dearth of
critical scrutiny on the impact of the wide-scale adoption
of ML techniques on security attack surface of 5G and
B5G networks.

2) We bridge the aforementioned gap through a vulnerability
study of the DL models in all its major incarnations (SL,
UL, and Deep RL) from an adversarial ML perspective
in the context of 5G and B5G networks.

II. BACKGROUND

A. Primer on 5G Architecture

A schematic diagram of the 5G network architecture is
depicted in Figure 1. Apart from the user equipment (UE), the
5G system features a cloud-native core network, a flexible and
disaggregated radio access network (RAN), and a provision
for multi-access edge (MEC) cloud for reduced latency. The
RAN comprises of gNodeB (gNB) access nodes, split into
distributed and centralized units (DU and CU), to efficiently
handle evolved network requirements. The gNB connects to
the MEC to significantly reduce the network latency for
selected applications by availing edge server computing at
the MEC cloud which is close to the radio service cells. For
instance, to cater to the ultra-reliable low-latency communica-
tion (URLLC) use-case of industry automation, the RAN radio
unit along with the DU, CU, and the MEC can be installed
onsite. Thus, 5G network architecture enables applications to
be deployed remotely (App 3 and App 4) or near the edge
(App 1 and App 2), latter when low latency is a requirement.
The provision of MEC also reduces the aggregated traffic load
on the transport networks responsible for connecting RAN
to the core network. The 5G core network (5G-CN) is a
cloud-native network that stores subscriber databases and hosts
essential virtualized network functions for network operations
and management. Although, the network management and
control functions are shown to be co-located with the core



2

Fig. 1. A schematic diagram of 5G network architecture illustrating the disaggregated RAN architecture with distributed unit (DU) and centralized unit (CU)
components; the MEC for improved latency; and the cloud-native core network and system orchestration components.

in the figure, they can be flexibly deployed at the edge as
needed.

B. ML in 5G and B5G Networks

A wide spectrum of DL algorithms are being developed
for the broad context of wireless communications and 5G
networking to deal with problems that are either hard to solve
or hard to model. For instance, optimal physical network
resource allocation for NFV is an NP-hard problem and
so require exponential computational power with increasing
system size [1]. Deep RL (DRL)-based solutions are proposed
to efficiently address resource allocation problems [2]. Net-
work channel estimation for efficient beamforming is a hard
to model problem for which deep neural network (DNN)-
based SL solution offers an effective way to tackle it [3].
Moreover, in certain use-cases, conventional expert systems
become inappropriate due to real-world constraints, such as
limited availability of power, where AI can perform effectively.
For instance, deep autoencoder based systems can replace the
power-hungry RF chain hardware with small embedded sensor
systems enabling them to sustain longer on onboard power
supplies. DL algorithms generally outperform the conventional
approaches in solving mobile network prediction problems
such as physical layer channel prediction by SL, signal de-
tection problems such as recovering transmitted signals from
noisy received signals by UL, and optimization problems like
resource allocation by RL.

III. WIDENED ATTACK SURFACE IN ML-DRIVEN 5G AND
B5G NETWORKS

The security of the 5G networks is receiving great deal of
attention (e.g., [4]), but there is very limited focus on the
security of 5G and B5G networks in the face of adversarial ML

threat [5]. In this section, we briefly introduce the adversarial
ML in general, and subsequently outline the adversarial ML
risks in 5G and B5G networks.

A. Overview of Security Attacks on ML

The vulnerability of the ML algorithms, especially the DL
models, to the adversarial attacks is now well-established,
where adversarial inputs are small carefully-crafted pertur-
bations in the test data built for fooling the underlying ML
model into making wrong decisions. An adversary can often
successfully target an ML model with no knowledge of the
model (black-box attack), or some knowledge (grey-box at-
tack), or full knowledge (white-box attack) of the target model.
An adversary can attack the model during its training phase
and in its testing phase as well. The training phase attacks are
known as “poisoning attacks" and the test time attacks are
known as “evasion attacks". Evasion attacks are commonly
known as adversarial attacks in the literature [6].

More formally, an adversarial example G∗ is crafted by
adding a small indistinguishable perturbation X to the test
example G of a trained ML classifier 5 (.) where X is ap-
proximated by the nonlinear optimization problem provided
in equation 1, where C is the class label.

G∗ = G + arg min
XG
{‖X‖ : 5 (G + X) = C} (1)

In 2013, Szegedy et al. [7] observed the discontinuity in the
DNN’s input-output mapping and reported that DNN is not
resilient to the small changes in the input. Following on this
discontinuity Goodfellow et al. [8] propose a gradient-based
optimization method for crafting adversarial examples. This
technique is known as fast gradient sign method (FGSM). Pa-
pernot et al. [9] craft adversarial perturbation using a saliency
map-based approach on the forward derivatives of DNN. This
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Fig. 2. Applicability of ML across the 5G network architecture and a depiction of how ML models contribute to significantly enhance the attack vectors
beyond the traditional security risks [4] with new adversarial ML risks.

approach is known as Jacobian saliency map based attack
(JSMA). Carlini et al. [10] crafted three different adversarial
attacks using three different distance matrices (!1, !2, and
!∞). More details about adversarial ML attacks are described
in [6].

It is important, however, to note that the adversary does
not need to have access to training or test datasets. Instead,
adversarial examples can also be generated using query effi-
cient gradient-based techniques [11], zeroth order optimization
techniques [6], and generative models [12]. In such methods,
the adversary uses query-response pairs to craft such adversar-
ial examples (inputs) and mislead the ML model. Such pairs
are not necessarily part of either training or testing datasets,
therefore, adversarial examples are not just the result of an
input data security issue.

B. Added Threat from Adversarial ML for 5G and Beyond

Figure 2 illustrates network problems from different net-
work segments of 5G, namely user devices, RAN, MEC, core
networks, and the network management and control layer that
have recently attracted ML-based solutions from all the three
categories of ML. However, in light of the above discussion
in §III-A, the DL-powered ML models gaining popularity
for 5G and B5G networks are vulnerable to the adversarial
attacks thereby further aggravating the security risks of future
generations of mobile networks.

To show the feasibility of adversarial ML attacks on 5G
systems we take three well-known ML models—one from
each of the three ML families of algorithms (UL, SL, and
DRL)—from wireless physical layer operations relevant to 5G
and B5G context and show the vulnerability that naive use
of ML brings to future mobile networks. We choose all the

three ML models for our case studies from the physical layer
network operations because of the maturity of ML-research in
the context of AI-driven 5G networking and the availability
of open-sourced ML models backed up with accessible data-
sets1.

IV. THREE CASE STUDIES HIGHLIGHTING ADVERSARIAL
ML RISK FOR 5G AND BEYOND

A. Attacking Supervised ML-based 5G Applications

Automatic modulation classification is a critical task for
intelligent radio receivers where the signal amplitude, carrier
frequency, phase offsets, and distribution of noise power
are unknown variables to the receivers subjected to real-
world frequency-selective time-varying channels perturbed by
multipath fading and shadowing. The conventional maximum-
likelihood and feature-based solutions are often infeasible due
to the high computational overhead and domain expertise that
is required. To make modulation classifiers more common in
modern 5G and B5G networked devices, current approaches
deploy DL to build an end-to-end modulation classification
systems capable of automatic extraction of signal features in
the wild.

We pick a convolutional neural network (CNN)-driven SL-
based modulation classification model in this case study to
illustrate the added dimension of vulnerability introduced in
the networks by it. We use the well-known GNU radio ML
RML2016.10a dataset that consists of 220000 input examples
of 11 digital and analog modulation schemes (AM-DSB, AM-
SSB, WBFM, PAM4, BPSK, QPSK, 8PSK, QAM16, QAM64,
CPFSK, and GFSK) on the signal to noise ratio (SNR) ranging

1https://mlc.committees.comsoc.org/research-library/

https://mlc.committees.comsoc.org/research-library/
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from -20 dB to 18dB [13]. However, we exclude the analog
modulation schemes from our study and consider only the
eight digital modulations from the data set because from 2G
onward all mobile wireless standards are strictly digital com-
munications. Figure 3 depicts the classification performance
of the CNN model in the multi-class modulation classification
for the signals between -20dB to 18dB of SNR.

Fig. 3. Accuracy of the CNN-based automatic modulation classifier before
and after the adversarial ML attack. A clear drop in the accuracy of the
classifier with the increasing SNR indicates the success of the adversary in
compromising the integrity of the modulation classifier that is seen as viable
in the 5G and B5G networks.

To show the feasibility of an adversarial ML attack on
the CNN-based modulation classifier we make the following
assumptions:
• We consider the white-box attack model where we assume

that the adversary has a complete knowledge about the
deployed modulation classifier.

• Goal of the adversary is to compromise the integrity
of the CNN classifier leading to a significant decay in
the classification accuracy which is the measure of the
success of the adversary.

To craft the adversarial examples to fool the CNN classifier,
we use the Carlini & Wagner (C&W) attack [10] for each mod-
ulation class by minimizing the !2 norm on the perturbation X,
such that when the perturbation X is added to the input G and
sent to the CNN-based modulation classifier � it misclassifies
the input G. More details on the C&W attack are available in
[10]. The performance of the CNN-based modulation classifier
before and during the adversarial attack is depicted in Figure 3.
A distinct drop in the accuracy of the modulation classification
after the adversarial attacks indicates the brittleness of deep
supervised ML in 5G and B5G applications. Moreover, our
results show that the adoption of unsafe DL models in the
physical layer operations of the 5G and B5G networks can
make the air-interface of the future networks vulnerable to
adversarial ML attacks.

B. Attacking Unsupervised ML-based 5G Applications

In 2016, O’Shea et al. proposed the idea of channel au-
toencoders which is an abstraction of how an end-to-end
radio communication module functions in real-world wireless

systems [15]. Such a deep autoencoder-based communication
model is seen as a viable alternative to the dedicated radio
hardware in the future 5G and beyond networks [16]. Figure
4(a) depicts the conceptual design of the channel autoencoder
that we choose as a deep UL model for this case study.
We assume the model is subjected to an additive white
Gaussian noise (AWGN) channel and apply the parameter-
configurations provided in [14]. To perform the adversarial ML
attack on the channel autoencoder we consider the following
threat model and compare the performance of the model with
and without attack.
• We assume a white-box setting, where the adversary has

complete knowledge of the deployed ML model. We
further assume that the autoencoder learns a broadcast
channel. The proposed adversarial attack on channel
autoencoder can be converted into a black-box adversarial
attack, where the adversary has zero knowledge of the
target ML model, by following the surrogate model
approach provided in [11].

• The goal of the adversary is to compromise the integrity
of channel autoencoder and the success of the adversary
is measured by the elevated block error rate (BLER) with
improving SNR per bit (�1/#0).

We take the following two-step data-independent approach
to craft adversarial examples for the channel autoencoder:

1) Sample the Gaussian distribution randomly (because the
channel is AWGN) and use it as an initial adversarial
perturbation X;

2) Maximize the mean activations of the decoder model
when the input of the decoder is the perturbation X.

This produces maximal spurious activations at each decoder
layer and results in the loss of the integrity of the channel
autoencoder. Figure 4(b) shows the performance of the model
before and under the adversarial attack. Moreover, the figure
suggests that adversarial ML attack often outperforms the
traditional jamming attacks.

Since the idea of channel autoencoder in a wireless device
is to model the on-board communication system as an end-
to-end optimizable operation, the adversarial ML attacks on
channel autoencoder show that the application of unsupervised
ML in the 5G mobile networks increases its vulnerability to
adversarial examples. Hence, we argue that deep UL-based 5G
networked systems and applications need to be revisited for
their robustness before being integrated into the 5G, IoT, and
related systems.

C. Attacking Reinforcement ML-based 5G Applications

In the final case study, we performed the adversarial ML
attacks on an end-to-end DRL autoencoder with a noisy
channel feedback system [17]. Goutay et al. [17] take the same
architecture we consider in the previous case study §IV-B and
add a noisy feedback mechanism to it, as shown in Figure
5(a). The end-to-end training procedure involves:

1) The RL-based transmitter training by a policy gradient
theorem [17] to ensure that the intelligent transmitter
learns from the noisy feedback after a round of com-
munication.
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Fig. 4. (a) Architecture of channel autoencoder for 5G and future networks proposed in [14]; (b) Performance of the channel autoencoder before and under
the adversarial ML attack and traditional jamming attack. The Block Error Rate (BLER) versus �1/# 0 curves indicates that adversarial ML attack does not
only deteriorate the model’s performance but also leads to similar or worse performance than with a known jamming attack.

Fig. 5. (a) Architecture of DRL-based channel autoencoder with noisy feedback for 5G and B5G networks proposed in [17]; (b) Performance of DRL
autoencoder with noisy feedback before, during, and after the adversarial ML attack. A clear drop in the performance of the receiver during the attack
indicates the success of the adversary in compromising the DRL autoencoder-based end-to-end communication system in future mobile networks.

2) SL model-based receiver training to train the receiver as
a classifier.

More details on the design and training procedure are
available in [17]. The considered threat model for this case
study is given as:
• We choose a realistic black-box settings where the ad-

versary does not know the target model. We also assume
that the adversary can perform an adversarial ML attack
for “=”-time steps.

• The goal of the adversary is to compromise the perfor-
mance of the DRL autoencoder with noisy feedback for
a specific time interval. The success of the adversary
is measured by the degradation in the decoder’s perfor-
mance during the attack interval.

We exploit the transferability property of the adversarial
examples, which states that adversarial examples compromis-
ing an ML model will compromise other ML models with
high probability if the underlying data distribution is same
between two victim models. So we transfer the adversarial
examples crafted in case study (§IV-B) and measure the
average accuracy of the receiver. We run the DRL autoencoder

with a noisy feedback system for 600-time steps (one time-
step is equal to one communication round) and perform the
adversarial attack between 200 to 400-time step window. We
transfer 200 successful perturbations from the previous case
study (§IV-B). Figure 5(b) shows the performance of the
receiver (decoder) of the DRL autoencoder. It is evident that
the performance of the receiver degrades from 95% to nearly
80% during the adversarial attack window.

Our results, as presented in this section, confirm the fea-
sibility of adversarial ML attacks on DL-based applications
from all the three types of ML algorithms that are prevalent
in the 5G network systems, and highlight the additional threat
landscape emerges due to the integration of vulnerable DL
models to the 5G and B5G networks.

V. DISCUSSION

A. Towards Robust ML-Driven 5G and Beyond Networks

Robustness against adversarial ML attacks is a very chal-
lenging problem. We first note that there does not exist much
work on the recommendations and guidelines for evaluating
the robustness of ML in 5G applications. Moreover, to date,
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there does not exist a defense that ensures complete protection
against adversarial ML attacks. In our previous works [6],
[18], we have performed an extensive survey of the adversarial
ML literature on robustness against adversarial examples, and
showed that nearly all defense mechanisms proposed in the
literature take one of the following three approaches:

1) modifying data (e.g., adversarial training, feature squeez-
ing, input masking);

2) auxiliary model addition (e.g., generative model addition,
ensemble defenses);

3) modifying model (e.g., defensive distillation, model
masking, gradient regularization).

Although, our results in 5G related use-cases presented
in section IV indicate that the representative ML-based 5G
applications from physical layers are vulnerable to the adver-
sarial ML attacks, the threat models exploit the underlying
vulnerability inherent to known DL models in general. For
instance, we were able to attack the DRL auto-encoder by
exploiting the fact of transferability which is the root-cause
that enables a same perturbation to fool multiple models. Thus,
we draw attention to the security landscape of 5G and B5G
widening further from adoption of a plethora of DL-driven
components, substantiated through results from three specific
use cases related to 5G physical layer.

B. Recommendations for designing and evaluating defenses
against adversarial ML attacks

1) Designing a defense: Designing a defense against adver-
sarial examples is a very challenging task. Many approaches
for defending against these attacks are available in the lit-
erature but these techniques are shown ineffective against
newer variations of the attacks [6]. The following are a
few recommendations for designing a defensive intervention
against adversarial examples.
• A generic defense that can defend against any type of

adversarial attack is not possible. So the first logical step
is to understand the threat model of the system for which
the defensive intervention is needed.

• In many cases, the adversarial examples are gener-
ated/sampled from a distribution similar to the legitimate
data. A preemptive data generation process (by using
generative models) and aggressive labeling (labeling the
preemptively generated examples as false positives) can
improve the odds of detecting many adversarial attacks.
In our previous work [12], we have shown that this
procedure can help in making a better defense.

• Deploy all known procedures from the literature that is
in line with the threat model.

• Always design defenses considering adaptive adversaries.
2) Evaluating a defense: In the following, we have pro-

vided a few important evaluation guidelines for evaluating
the ML-based 5G applications against adversarial ML attacks.
These insights are extracted from the Carlini et al. [19] and
our previous works [6], [20].
• Many defenses are available in the literature against

adversarial attacks but these defenses are limited by the
design of the application. Using them without considering

the threat model of ML-based 5G applications can create
a false sense of security. So, for ML-based 5G applica-
tions, threat models must clearly state the assumptions
taken, type of the adversary, and the metrics used for
evaluating the defense.

• Always test the defense against the strongest known
attack and use it as a baseline. Evaluating for an adaptive
adversary is also necessary.

• Evaluate the defense procedure for gradient-based,
gradient-free, and random noise-based attacks2.

• Clearly state the evaluation parameters (accuracy, re-
call, precision, F1 score, ROC, etc.) used in evaluat-
ing/validating the defense, and always look for a change
in the false positive and false negative scores.

• Evaluation of the defense mechanism against out-of-
distribution examples and transferability-based adversar-
ial attacks is very important.

Although these recommendations and many others in [6],
[18]–[20] can help in designing a suitable defense against
adversarial examples but this is still an open research problem
in adversarial ML and ripe for investigation for ML-based 5G
applications.

C. Beyond Vulnerability to Adversarial ML Attacks

Apart from the vulnerability of the ML models to the
adversarial ML attacks, we underline the following drawbacks
that call into question the possibility of ML-driven solutions
getting integrated into the real-world 5G networks any time
soon.

1) Lack of real-world datasets: Due to the dearth of openly
available real network data from the telecom operators, a large
amount of ML research in the telecom domain still largely
depends on simulated/experimental data that often falls short
of truly representing real-world randomness and variations.
Thus, current state-of-the-art ML models in telecommunica-
tion applications are not yet ready to replace the domain-
knowledge based expert systems currently in operation.

2) Lack of explainability: In ML studies, the accuracy of a
model comes at the cost of explainability. The DL models are
highly accurate in providing output but lack an explanation of
why a particular output is achieved. Explanation of a decision
taken often would be a critical requirement in the 5G and B5G
network settings, especially because many critical services
such as transport signaling, connected vehicles, and URLLC
are expected to be realized over the 5G infrastructure.

3) Lack of operational success of ML in real-world mobile
networks: A plethora of ML models exist in the mobile
networking literature but use of ML models in operational
mobile networks currently is still quite limited. When we
perform attacks on the ML models running under the ideal
environment, simulated or in favorable lab conditions, and still,
the victim models cannot withstand the adversarial attacks, as
demonstrated through our case studies. In real-world mobile
networks, the ML models need to be deployed and stay
functional under unforeseen random environments, leaving

2https://www.robust-ml.org/

https://www.robust-ml.org/


7

them more vulnerable to adversarial attacks that are beyond
what they are designed to be robust against.

VI. CONCLUSIONS

Security and privacy are uncompromising necessities for
modern and future global networks standards such as 5G and
Beyond 5G (B5G), and accordingly fortifying it to thwart
attacks and withstand the rapidly evolving landscape of future
security threats is of vital importance. This article specifically
highlights that the unvetted adoption of deep learning driven
solutions in 5G and B5G networking gives rise to security con-
cerns that remain unattended by the 5G standardization bodies,
such as the 3GPP. We argue this is the right time for cross-
disciplinary research endeavors considering ML and cyberse-
curity to gain momentum, and enable secure and trusted future
5G and B5G mobile networks for all future stakeholders. We
hope that our work will motivate further research towards
“telecom-grade ML” that is safe and trustworthy enough to be
incorporated into 5G and beyond 5G networks, thereby power
intelligent and robust mobile networks supporting diverse
services including mission-critical systems.
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