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GAUDIN ALGEBRAS, RSK AND CALOGERO-MOSER CELLS IN TYPE A

ADRIEN BROCHIER, IAIN GORDON, AND NOAH WHITE

Abstract. We study the spectrum of a family of algebras, the inhomogeneous Gaudin algebras,

acting on the n-fold tensor representation C[x1, . . . , xr]
⊗n of the Lie algebra glr. We use the work

of Halacheva-Kamnitzer-Rybnikov-Weekes to demonstrate that the Robinson-Schensted-Knuth cor-

respondence describes the behaviour of the spectrum as we move along special paths in the family.

We apply the work of Mukhin-Tarasov-Varchenko, which proves that the rational Calogero-Moser

phase space can be realised as a part of this spectrum, to relate this to behaviour at t = 0 of

rational Cherednik algebras of Sn. As a result, we confirm for symmetric groups a conjecture of

Bonnafé-Rouquier which proposes an equality between the Calogero-Moser cells they defined and

the well-known Kazhdan-Lusztig cells.

1. Introduction

1.1. Let glr = Matr(C) be the general Lie algebra. Any tensor product of locally finite dimensional

glr-representations, M = V1 ⊗V2⊗ · · · ⊗Vn, carries an action of an inhomogeneous Gaudin algebra,

A(z; q). This algebra depends on two sets of parameters z = (z1, . . . , zn) ∈ C
n and q = (q1, . . . , qr) ∈

C
r. It is commutative. Works of several authors prove that for many M and general values of the

parameters z and q its action has a simple spectrum. We will denote its spectrum by Ez,q(M).

1.2. We are interested in the behaviour of the sets Ez,q(M) as we vary the parameters z and q.

We shall investigate the case M = C[x1, . . . , xr]
⊗n, where glr acts on C[x1, . . . , xr] via differential

operators Eij 7→ xi∂j . For the rest of the introduction we fix M as this representation, and denote

Ez,q(M) by Ez,q.

1.3. We shall consider tuples z ∈ R
n
< = {(z1, . . . , zn) ∈ R

n : z1 < z2 < · · · < zn} and q ∈ R
r
< =

{(q1, . . . , qr) ∈ R
r : q1 < q2 < · · · < qr}. We will prove, with appropriate definitions for limits, that:

• as z → ∞, the set E∞,q identifies with Matr×n(N), the set of r-by-n matrices whose entries

are non-negative integers;

• as z → 0 and then q → 0, the set E0,0 identifies with
⊔

λ∈Part SSYTn(λ) × SSYTr(λ) where

SSYTr(λ) is the set of semistandard Young tableaux of shape λ with entries from {1, . . . , r}

and similarly for SSYTn(λ);

• tracking the sets Ez,q through the process of moving (z, q) in (an extension of) Rn
<×R

r
< from

the first limit to the second limit induces the Robinson-Schensted-Knuth correspondence

Matr×n(N) −→
⊔

λ∈Part

SSYTn(λ)× SSYTr(λ).

I.G. has been supported by EPSRC grants EP/R034826/1 and EP/G007632/1.
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1.4. Our proof of these results relies critically on [Hal+20] which endows the sets Ez,q(M) with the

structure of a glr-crystal. That the RSK-correspondence appears is then a common theme in the

theory of crystals.

1.5. Our interest in the above result stems from an application of a special case to confirm con-

jectures of Bonnafé-Rouquier, [BR17, Conjecture L and LR], in the theory of rational Cherednik

algebras of Sn which we now explain. To each complex reflection group (W, h) there is a family

of rational Cherednik algebras associated, [EG02]. These algebras depend on a pair of parameters,

usually denoted by t and c. When t = 0, the rational Cherednik algebras have a large centre whose

geometry controls much of their representation theory. The spectrum of this centre, a generalised

Calogero-Moser space, depends on the parameter c and is a ramified covering of the affine space

h/W ×h∗/W . Bonnafé and Rouquier, [BR17], have used the Galois theory of this covering to define

partitions of the elements of W into (left, right, two-sided) Calogero-Moser “cells”, depending on

c. When (W, h) is a Coxeter group it is conjectured that with appropriate choices these cells agree

with the Kazhdan-Lusztig cells of W , important objects in Lie theoretic representation theory and

algebraic combinatorics. Thus, conjecturally, Calogero-Moser cells generalise the theory of Kazhdan-

Lusztig cells from Coxeter groups to all complex reflection groups. In [BR17] the Bonnafé-Rouquier

conjecture is proved for rank 2 Coxeter groups.

1.6. At t = 0 the spectrum of the centre of rational Cherednik algebra of Sn (for c 6= 0) is

isomorphic to classical rational Calegero-Moser phase space

CMn = {(Z, Y ) ∈ Matn(C)×Matn(C) : [Z, Y ] + id = rank 1 matrix}/PGLn(C).

Sending the pair of matrices (Z, Y ) to their eigenvalues produces a ramified covering

Υ : CMn → C
n/Sn × C

n/Sn.

Any n-tuple of pairwise distinct complex numbers, z = (z1, . . . , zn) ∈ C
n
reg and n-tuple p =

(p1, . . . , pn) ∈ C
n give rise to a point in CMn:

Z =













z1 0 · · · 0

0 z2 · · · 0
...

...
...

0 0 · · · zn













, Y =













p1 (z1 − z2)
−1 · · · (z1 − zn)

−1

(z2 − z1)
−1 p2 · · · (z2 − zn)

−1

...
...

...

(zn − z1)
−1 (zn − z2)

−1 · · · pn













.

In this description Υ(Z, Y ) = ([z], [q]) where the unordered eigenvalues of the matrix Y depend on

p and z and are denoted by [q].

1.7. In this language the Bonnafé-Rouquier conjecture can be stated in terms of the behaviour of

z = (z1, . . . , zn) ∈ R
n
< and q = (q1, . . . , qn) ∈ R

n
<. For appropriate large values of z, the elements

in the fibre of Υ can be identified with the symmetric group, since the matrices Y above [q] are

close to diagonal matrices with distinct entries. The fibre above [z] = [0] can be identified with

the standard Young tableaux of n, [MTV12, Theorem 1.5]. Tracking the elements in the fibre as z

moves from infinity to zero sees them coalesce to tableaux. The conjecture is that these collisions
2



are determined by the Robinson-Schensted algorithm, and in particular that the element in the fibre

corresponding to w ∈ Sn tracks to the tableau given by the P -symbol of w.

1.8. To confirm this we use the work [MTV14] which identifies the fibres of Υ with a part of the

spectrum Ez,q(V
⊗n
̟1

) of the inhomogeneous Gaudin algebras for gln. Since V̟1 is a summand of

C[x1, . . . , xn], V
⊗n
̟1

is a summand of C[x1, . . . , xn]
⊗n and we are in the situation described above in

the introduction, with r = n. As a result we can use the limiting behaviour of the spectrum Ez,q to

interpret the behaviour of the fibres of Υ in terms of the Robinson-Schensted correspondence. This

allows us to confirm Bonnafé-Rouquier conjecture for Sn.

1.9. This paper is organised as follows. In the Sections 2 and 3 we recall a variety of constructions

which we will require: parallel transport of representations of algebras, the RSK correspondence,

inhomogeneous Gaudin algebras. We state our main theorem in Section 4. Sections 5–7 then prove

the theorem. In Section 8 we apply this to confirm the conjecture of Bonnafé-Rouquier.

1.10. Acknowledgements. We thank Cedric Bonnafé, Leonid Rybnikov and Sasha Veselov for

useful conversations. This paper was written while the authors visited several institutions. In

particular we would like to thank the Hausdorff Research Institute for Mathematics, ETH Zürich,

FAU Erlangen-Nürnberg.

2. Setup

In this section we introduce notation that we will use throughout the paper.

2.1. Spectra of Commutative Algebras. Let V be a k-dimensional vector space. Assume that

A is a commutative algebra that acts on V , meaning that we have a mapping A −→ End(V ). Since

A is commutative there will exist a set of distinct algebraic characters χ1, . . . , χℓ such that for each

i the generalised eigenspace

Vi =
{

v ∈ V
∣

∣

∣
(a− χi(a))

k · v = 0 for all a ∈ A
}

is non-zero. It follows that V = V1 ⊕ · · · ⊕ Vℓ is an A-stable decomposition. We denote the set of

all generalised eigenspaces for A acting on V by

EA(V ) = {V1, . . . , Vℓ}.

We say that A acts with a simple spectrum on V if for each i the space Vi above is one-dimensional.

In particular this means that ℓ, the number of characters, equals k.

2.2. Suppose U is an algebra and we have an algebra map U −→ End(V ). A family of commutative

subalgebras of U parametrized by a space X, denoted {A(x) : x ∈ X}, gives us a family of

subalgebras acting on V . Typically the images of these subalgebras in End(V ) are not all of the

same dimension nor do they all act semisimply. Nonetheless we will be interested in two different

situations.
3



(1) We will restrict X to some topological subspace Y ⊆ X such that for each y ∈ Y , A(y) acts

with simple spectrum on V . Then we get a covering space

E(V ) −→ Y

whose fibres are EA(y)(V ). In particular, if we have a path γ : [0, 1] −→ Y we get a parallel

transport map p : EA(γ(0))(V ) −→ EA(γ(1))(V ).

(2) We will restrict X to some topological subspace Y ⊆ X such that for each y ∈ Y , A(y) acts

with simple spectrum on V with the exception of a single distinguished point ỹ ∈ Y where

A(ỹ) acts semisimply, but without a simple spectrum. Then we get a branched covering

space

E(V ) −→ Y.

In this case, if we have a path γ : [0, 1] −→ Y with γ(t) = ỹ if and only if t = 1, then we get

a degenerated parallel transport map p : EA(γ(0))(V ) −→ EA(γ(1))(V ).

2.3. Tensor Embeddings. Let U be an algebra and x ∈ U . Let n ∈ N and 1 ≤ a ≤ n. We have

an embedding

ιa : U −→ U⊗n, x 7→ id⊗a−1 ⊗x⊗ id⊗n−a

which places x in the ath tensorand. We use the notation x(a) = ιa(x) for this. If a = (a1, a2, . . . , ak)

is a sequence of distinct integers between 1 and n, we use ιa : U⊗k −→ U⊗n to denote the map that

embeds the ith factor into the ath
i factor, i.e. ιa(x1 ⊗ x2 ⊗ · · · ⊗ xk) =

∏k
i=1 x

(ai)
i .

2.4. If U is a bialgebra with coproduct ∆ : U −→ U⊗U , we use ∆n to denote the map U −→ U⊗n

defined inductively by ∆n = (∆n−1 ⊗ id) ◦ ∆ with ∆1 = id. Note this means ∆2 = ∆. For

a = (a1, a2, . . . , ak) as above, let #a = k. If a1, a2, . . . , am are sequences of distinct integers

between 1 and n, such that the underlying sets are disjoint, we let ∆a1,a2,...,am : U⊗m −→ U⊗n be

the map defined by ∆a1,a2,...,am =
∏m

i=1 ιai ◦ ∆#ai . If A ⊆ U⊗m is a subalgebra we also use the

notation Aa1,a2,...,am = ∆a1,a2,...,am(A). For example, if A ⊆ U⊗2 we think of A(23)(1) ⊆ U⊗3 as

the algebra obtained from A by spreading its first leg over the second and third tensor factors, and

placing the second leg into the first tensor factor.

2.5. The Robinson-Schensted-Knuth correspondence. A thorough account can be found in

[Ful97, Chapter 4]. Let Matr×n(N) be the set of r × n matrices with nonnegative integer entries.

Let k, t ∈ N. We set Part(k) to be the set of partitions of k and the set of all partitions is denoted

Part =
⊔

k≥0 Part(k), and we let Part≤t be the set of partitions with at most t parts.

2.6. We define a map

RSK : Matr×n(N) −→
⊔

λ∈Part

SSYTn(λ)× SSYTr(λ).

via the following algorithm. For a matrix A = (aij) ∈ Matr×n(N) we form a sequence of pairs of

integers (i1, j1), (i2, j2), . . . , (ik, jk) where k is the sum of the entries of A. The number of times
4



the pair (i, j) appears in the sequence is aij. The sequence is ordered in lexiographic order, giving

preference to the first entry in each pair. For example,

A =

(

0 2 1

1 0 1

)

7→ (1, 2), (1, 2), (1, 3), (2, 1), (2, 3).

Now we insert the sequence j1, j2, . . . , jk into a tableau to form a semistandard tableau P (A) and

a standard tableau Q′(A) (the recording tableau). To create the semistandard tableau Q(A) we

replace the number m in Q′(A) by im. So in the above example

P (A) = 1 2 3 3
2

, Q′(A) = 1 2 3 5
4

, Q(A) = 1 1 1 2
2

.

By definition RSK(A) = (P (A), Q(A)).

2.7. Transposing the matrix A coincides with swapping the order of P and Q.

Theorem ([Ful97, pp.40-41]). The map RSK is a bijection. Moreover RSK(At) = (Q(A), P (A)).

2.8. Crystals. We let SSYTr(λ) be the set of semistandard tableaux of shape λ ∈ Part with en-

tries in {1, 2, . . . , r}. Recall that the set SSYTr(λ) carries a natural glr-crystal structure. The set

Matr×n(N) is given the structure of a glr-crystal as follows. Let N
r(k) be the set of vectors in N

r

with the sum of entries equal to k. We can identify N
r(k) with the natural basis of monomials in

the irreducible glr-representation C[x1, x2, . . . , xr]k, giving N
r(k) the structure of a glr-crystal. If

k = (k1, k2, . . . , kn) ∈ N
n, then let Matr×n(N, k) be the set of matrices with column sums k. This

identifies Matr×n(N, k) with
∏n

i=1 N
r(ki), and so gives Matr×n(N, k) a glr-crystal structure as a ten-

sor product of crystals. Finally, Matr×n(N) =
⊔

k∈Nn Matr×n(N, k) is the direct sum (i.e. disjoint

union) of crystals.

Proposition ([BS17, Corollary 9.2]). The map RSK is an isomorphism of glr-crystals, where SSYTn(λ)×

SSYTr(λ) is taken to be #SSYTn(λ) many copies of the crystal SSYTr(λ).

2.9. The following is an important property of the RSK correspondence which we will exploit later.

If 1 ≤ i ≤ r and S ∈ SSYTr(λ) we set S|i to be the tableau obtained by removing all boxes containing

numbers strictly larger than i.

Proposition. Suppose f : Matr×n(N) −→
⊔

λ∈Part SSYTn(λ) × SSYTr(λ), f(A) = (S(A), T (A)), is

an isomorphism of glr-crystals. If, for every A ∈ Matr×n(N), f has the property that S(A)|n−1 =

P (A)|n−1, then f = RSK.

Proof. The fact that f and RSK are both crystal isomorphisms means that Q(A) = T (A). For

T ∈ SSYTn(λ), define sh(T ) = λ and observe therefore that

sh(S(A)) = sh(T (A)) = sh(Q(A)) = sh(P (A)).

Thus we know that S(A) and P (A) are semistandard tableaux of the same shape. By hypothesis

they are identical semistandard tableaux once all boxes containing n have been removed. This

means S(A) = P (A). �
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3. Inhomogeneous Gaudin Algebras

We will introduce the algebras whose spectrum we will be interested in studying and some of

their limits.

3.1. Definitions. Let ĝlr− = t−1glr[t
−1]. For any non-zero complex number w, there is an eval-

uation map ĝlr− → glr which sends g ⊗ t−s to gw−s. It is a Lie algebra homomorphism and

induces a morphism of algebras φw : U(ĝlr−) −→ U(glr). For any z = (z1, . . . , zn) ∈ C
n and

w ∈ C \ {z1, . . . , zn}, there is a Lie algebra homomorphism:

ĝlr− −→ gl⊕n
r , g ⊗ t−s 7→ (g(w − z1)

−s, g(w − z2)
−s, . . . , g(w − zn)

−s).

This induces an algebra morphism

φw(z) = φw−z1 ⊗ φw−z2 ⊗ · · · ⊗ φw−zn ◦∆n : U(ĝlr−) −→ U(gl⊕n
r ) = U(glr)

⊗n.

There is also an evaluation at ∞ mapping, ĝlr− → (glr)ab, given by extracting the coefficient of t−1.

This Lie algebra homomorphism gives rise to an algebra morphism

φ∞ : U(ĝlr−) −→ U((glr)ab) = S(glr).

3.2. Now fix q = (q1, . . . , qr) ∈ Cr which we identify with an element of diag(glr), the Cartan

subalgebra of glr. Using the trace form we can identify q with a functional on glr which extends to

a character of the symmetric algebra S(glr), denoted by χq. We then define the mapping

φw(z; q) = (id⊗n⊗χq) ◦ (φw(z)⊗ φ∞) ◦∆ : U(ĝlr−) −→ U(glr)
⊗n.

Alternatively,

φw(z; q) = φw−z1 ⊗ φw−z2 ⊗ · · · ⊗ φw−zn ⊗ (χq ◦ φ∞) ◦∆n+1.

3.3. We now describe how this map behaves when some of the parameters z ∈ C
n coincide. Let

u = (u1, u2, . . . , uk) be a complete and irredundant list of the complex numbers appearing in z and

let Ai = { j | zj = ui }, the set of indices that record where ui appears in z. Fix an ordering of

the elements of Ai and let ai the sequence obtained in this way. For example, if z = (α, β, α, γ, γ)

for three distinct α, β, γ ∈ C, then one possibility is u1 = α, u2 = β and u3 = γ, with a1 = (3, 1),

a2 = (2) and a3 = (4, 5).

Lemma. With the above notation, φw(z; q) = ∆a1,a2,...,ak ◦ φw(u; q).

Proof. We check the identity on generators g ⊗ ts ∈ U(ĝlr−). First

φw(z; q)(g ⊗ ts) =
n
∑

a=1

g(a)(w − za)
s + δs,−1χq(g)1

⊗n.

On the other hand,

∆a1,a2,...,ak ◦ φw(u; q)(g ⊗ ts) = ∆a1,a2,...,ak

(

k
∑

b=1

g(b)(w − ub)
s + δm,−1χq(g)1

⊗k

)

=

k
∑

b=1

∑

a∈Ab

g(a)(w − ub)
s + δs,−1χq(g)1

⊗n.

6



Since A1, A2, . . . , Ak partitions {1, 2, . . . , n} and since ub appears in z precisely #Ab times, the claim

follows. �

3.4. There is a commutative subalgebra A ⊆ U(ĝlr−), the universal Gaudin algebra, that is free

commutative on an infinite set of generators. The generators are described in [Ryb06, Corollary 2],

and arise from taking repeated derivatives of a set of homogeneous generators for a copy of S(glr)
glr

in U(ĝlr−). We define the inhomogeneous Gaudin algebra

A(z; q) := φw(z; q)(A).

This algebra is independent of the choice of w ∈ C.

Theorem ([Hal+20, Lemma 9.3]). The inhomogeneous Gaudin algebra A(z; q) is commutative. Let

zglr(q) ⊆ glr be the centraliser of q ∈ glr. Then A(z; q) commutes with ∆(n−1)(zglr(q)) ⊆ U(glr)
⊗n.

3.5. There is one case that will be of particular interest to us and we will use a special notation.

This is when n = 1, so there is one variable z = (z1). In this case, the algebra A(z; q) ⊆ U(glr) does

not depend on z1 and we shall denote the algebra by A(q). When q is regular this algebra contains

the abelian Lie subalgebra {Gh : h = (h1, . . . , hr) ∈ diag(glr) ⊆ glr} where

Gh :=
∑

i<j

hi − hj
qi − qj

EijEji ∈ U(glr),

see [Hal+20, Proposition 9.5]. It also contains the Cartan subalgebra diag(glr) of glr, [Hal+20,

loc.cit.].

3.6. Using the notation from Section 3.3, we can describe the algebras A(z; q) when some of the

parameters in z coincide.

Proposition. For z ∈ C
n, A(z; q) = A(u; q)a

1,a2,...,ak . In particular, if z = (z, z, . . . , z) then

A(z; q) = A(q)(1,2,...,n) = ∆n(A(q)) and if z = (0, 0, . . . , 0, z) then A(z; q) = A(0, z; q)(1,2,...,n−1)(n).

Proof. This follows immediately from the definition and Lemma 3.3. �

3.7. Limits of inhomogeneous Gaudin algebras. If q ∈ diag(glr) is reqular, then by [Ryb06,

Theorem 2], we have

lim
t→∞

A(tz; q) = A(q)⊗n ⊆ U(glr)
⊗n.

3.8. In fact, we can strengthen the above result slightly to include small deformations of the path

tz. This will be useful when we consider homotopies of paths.

Proposition. Let z(t) : [1,∞) → C
n
reg be a path such that limt→∞ zi+1(t)− zi(t) = ∞. Then

lim
t→∞

A(tz; q) = A(q)⊗n ⊆ U(glr)
⊗n.

Proof. The proof of [Ryb06, Theorem 2] applies word for word to the above statement. �
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3.9. It will also be desirable to understand a particular limit as z → 0. Consider a path z(t) :

(0, 1] → R
n
< such that limt→0 zi(t)/zi+1(t) = 0. Define JMn = limt→0 A(z(t); 0) (the notation

comes from the fact that on (V r
̟1

)⊗n this algebra coincides with the algebra of Jucys-Murphy

operators).

Proposition. The limiting algebra limt→0 A(z(t); q) contains and is generated by ∆n(A(q)) and

JMn.

Proof. This is a generalisation of [Hal+20, Proposition 10.16 (1)] and the same proof works here. �

A very similar argument will be used in Lemma 6.5 in a more complicated situation.

3.10. The family of algebras A(q) with q ∈ C
r
reg are constant under the action of C⋊C

∗ on C
r
reg by

affine shifts and dilations. We thus have a family of algebras over Cr
reg/C⋊C

∗ = P
1(C)r+1

reg /PSL(2,C),

where we have added the point at infinity to realise the right hand side of this equality. By [AFV11,

Theorem 2.5] and [Hal+20, Theorem 10.8] this can be extended to a flat family of maximally com-

mutative subalgebras of U(glr) over M0,r+1, the moduli space of r + 1 points on genus 0 curves.

We wish to describe one particular limit point.

3.11. We embed glr−1 ⊂ glr as the set of matrices with zero final row and column. The Gelfand-

Tsetlin subalgebra GTr = 〈ZU(gl1), ZU(gl2), . . . , ZU(glr)〉 ⊂ U(glr) is the commutative subalgebra

generated by the successive centres of these embedded general linear Lie algebras.

Proposition ([Ryb06, Lemma 4]). Let q = (q1, q2, . . . , qr) ∈ C
r
reg and q(t) = (q1t

r−1, q2t
r−2, . . . , qr).

Then limt→0 A(q(t)) = GTr, the Gelfand-Tsetlin subalgebra.

4. Statement of Main Theorem

In this section we work with z = (z1, z2, . . . , zn) ∈ R
n
< and q = (q1, q2, . . . , qr) ∈ R

r
<.

4.1. Notation. We are going to be interested in the spectrum of inhomogeneous Gaudin algebras.

Recall from the introduction if M is a A(z; q)-module, we will write Ez;q(M) instead of EA(z;q)(M).

When n = 1 we will denote the spectrum of A(q) on M by Eq(M). For a weight λ, let V r
λ be the

corresponding irreducible glr-module. Usually we will drop the superscript and write Vλ, however

occasionally we will include it for clarity. If M = Vλ(1) ⊗Vλ(2) ⊗· · ·⊗Vλ(n) for some tuple of weights

λ = (λ(1), λ(2), . . . , λ(n)) then we will simplify notation further by writing Ez;q(λ) and finally, if

λ = (k1̟1, k2̟1, . . . , kn̟1) we will write Ez;q(k).

4.2. Combinatorial Description. The Lie algebra glr acts by left multiplication on C[Matr×n],

polynomial functions on the space of complex matrices. The spectrum of the inhomogeneous Gaudin

algebras on this space is the main object of our story. We can give an alternative description

as follows. The algebra glr acts on C[x1, x2, . . . , xr] by differential operators where Eij acts by

xi∂j . The submodule of homogeneous degree k polynomials is isomorphic to Vk̟1 . There is an

isomorphism

C[Matr×n] −→ C[x1, x2, . . . , xr]
⊗n;xij 7→ x

(j)
i .
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4.3. A weight basis for C[Matr×n] is given by the monomials xA =
∏

i,j x
Aij

ij , where A = (Aij) ∈

Matr×n(N). In other words, this weight basis is labelled by Matr×n(N). We now construct a

bijection

α : Ez;q(r × n) := Ez;q(C[Matr×n]) −→ Matr×n(N).

4.4. The weight spaces of C[x1, x2, . . . , xr] are spanned by the monomials and so one dimensional.

Since A(q) contains the Cartan subalgebra, it thus acts with simple spectrum. It follows that A(q)⊗n

has simple spectrum on C[Matr×n]. Recall from 3.7 that limt→∞A(tz; q) = A(q)⊗n. We can thus

conclude that A(z; q) has simple spectrum on C[Matr×n] for generic z (alternatively this can be

deduced from [FFR10, Corollary 6 and proof of Corollary 4]). Following 2.2, parallel transport

along the line {tz : 1 ≤ t ≤ ∞} therefore gives a bijection

p∞ : Ez;q(r × n) −→ E∞;q(r × n).

Since the weight spaces in C[Matr×n] are one dimensional, they coincide with the spectrum of

A(q)⊗n, that is E∞;q(r × n) = {CxA | A ∈ Matr×n(N)}. We thus have a bijection

combr×n
∞;q : E∞;q(r × n) −→ Matr×n(N); CxA 7→ A.

After composition with p∞, this produces a labelling of the spectrum Ez;q(r× n) by a non negative

integer matrices:

α = combr×n
∞;q ◦ p∞ : Ez;q(r × n) −→ Matr×n(N).

4.5. We now construct a mapping

β : Ez,q(r × n) −→
⊔

λ∈Part≤r

SSYT(λ)

4.6. Choose a path z(t) ∈ R
n
< for t ∈ (0, 1] such that z(1) = z and limt→0 zi(t) = 0. By construction,

A(z; q) is the image of the algebra A under the mapping

φw(z; q) = (φw,z ⊗ (χq ◦ φ∞)) ◦∆ : U(ĝlr−) → U(glr)
⊗n.

Therefore, limt→0 A(z(t); q) contains the image of A under (φw,0 ⊗ (χq ◦φ∞)) ◦∆, which is ∆nA(q)

(see 3.3). Thus, by parallel transport along z(t) (and restriction to ∆nA(q)) we obtain a map

pz=0 : Ez;q(r × n) −→ Eq(r × n)

where Eq(r × n) = Eq(C[Matr×n]), the spectrum of A(q) acting diagonally on C[Matr×n]. Since

A(q) contains ZU(glr) and the finite dimensional irreducible glr-modules are determined by their

central character, an eigenspace E ∈ Eq(r× n) is contained in an isotypic component of C[Matr×n].

This produces a map ξ : Eq(r × n) −→
⊔

λ Eq(λ). For any q ∈ R
r
<, Proposition 3.11 and parallel

transport along the path q(t) = (tr−1q1, t
r−2q2, . . . , qr) gives an identification κ : Eq(λ) −→ E0(λ).

Now denote the spectrum of the Gelfand-Tsetlin algebra GTr, acting on Vλ by E0(λ). The set E0(λ)

is identified with the SSYTr(λ) as follows. Let E ∈ E0(λ). For each 1 ≤ i ≤ r E is contained in an

irreducible gli-submodule V i
λ(i) ⊂ Vλ. Thus to E we associate a sequence λ(1), λ(2), . . . , λ(r) = λ of

partitions, where λ(i−1) ⊂ λ(i) and the skew-shape λ(i) \ λ(i−1) does not have more than one box
9



in any column. From such a sequence, we produce a tableau by filling the boxes corresponding to

λ(i) \ λ(i−1) with i. The map

comb0 : E0(λ) −→ SSYTr(λ)

is a bijection. We will write combr0 for this map if we need to emphasise that it is induced by

GTr ⊂ U(glr). Together these mappings produce

β = comb0 ◦ κ ◦ ξ ◦ pz=0 : Ez,q(r × n) −→
⊔

λ∈Part≤r

SSYT(λ)

4.7. Combining the previous sections we obtain a mapping

S = β ◦ α−1 : Matr×n(N) −→
⊔

λ∈Part≤r

SSYT(λ).

4.8. Duality. The algebra gln acts on C[Matr×n] by transposed matrix multiplication. We can con-

sider the gln module C[y1, . . . , yn] where Eij acts by yi∂j and we obtain the following identifications

C[x1, . . . , xr]
⊗n ∼= C[Matr×n] ∼= C[y1, . . . , yn]

⊗r

all of which can be considered glr ⊕ gln modules (the actions commute). In addition, there are

actions of U(glr)
⊗n and U(gln)

⊗r (these actions do not commute). We will denote the relevant

maps by

πr : U(glr)
⊗n −→ End(C[Matr×n])

πn : U(gln)
⊗r −→ End(C[Matr×n]).

4.9. We now define a map analogous to 4.7 by sending q → 0. Choose a path q(t) ∈ R
r
< for t ∈ (0, 1]

such that q(1) = q and limt→0 qi(t) = 0. In this limit limt→0 A(z; q(t)) contains A(z; 0) ⊂ U(glr)
⊗n.

According to [MTV09, Theorem 6] we have that πr(A(z; 0)) = πn(∆rA(z)). This allows us to repeat

the construction from sections 4.5 to get a map β′, obtained by composing Ez;q(r×n) −→ Ez(r×n)

with the operation to then produce a semistandard tableau. Putting this all together gives us a

map

T = β′ ◦ α−1 : Matr×n(N) −→
⊔

λ∈Part≤n

SSYT(λ). (4.1)

4.10. Main Result. We can now state the main result of the paper.

Theorem. The assignment A 7→ (S(A), T (A)) agrees with the RSK correspondence. More precisely,

S(A) = P (A) and T (A) = Q(A) for all A ∈ Matr×n(N).

5. Crystal structures on Eq(λ)

5.1. Crystal structures from A(q). In order to prove Theorem 4.10 we will first understand

better the mapping of 4.6

comb0 ◦ κ : Eq(λ) −→ SSYTr(λ).

We know that SSYTr(λ) is an irreducible glr-crystal. Thanks to [Hal+20, Proposition 12.2], there is

a crystal structure defined directly on Eq(λ) through the representation theory of A(q) on Vλ.

Proposition. The mapping comb0 ◦ κ is an isomorphism of glr-crystals.
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Proof. We will proceed by induction on r, noting that for r = 2 the result is immediate since the

weight spaces of Vλ are all one-dimensional.

Recall from 4.6 the mapping that comb0 ◦ κ is defined using parallel transport along the path

q(t) = (tr−1q1, t
r−2q2, . . . , qr) ∈ R

r
< for t ∈ (0, 1]. Recall from Section 3.10, the mapping from C

r
reg to

the space of commutative subalgebras of U(glr) extends to a mapping from M0,r+1. For x ∈ M0,r+1

we denote the corresponding algebra by A(x). With this notation, A(q) is the algebra corresponding

to x = (q1, q2, . . . , qr,∞) ∈ M0,r+1. We now consider the path q(t) in this moduli space, and thus

include the limit point q(0). We will label the marked points in M0,r+1 by 1, 2, . . . , r,∞. Let

M(i, j) be the codimension one boundary component of M0,r+1 where precisely the marked points

i, i+1, . . . , j lie in the same irreducible component. We are going to consider a path q̃(t) in M0,r+1

that is homotopy equivalent to q(t). It is the composition of two paths, q̃1(t) and q̃2(t), which are

defined as follows.

• We let q̃1(t) = (tq1, tq2, . . . , tqr−1, qr) for t ∈ (0, 1]. The limit point q̃1(0) is the stable curve

in M(r,∞) where one component has marked points at qr and ∞ and a node at 0, while

the second component has marked points at q1, q2, . . . , qr−1 and a node at ∞.

• We let q̃2(t) ∈ M(r,∞) be the stable curve where the first component has marked points at

qr and ∞ and a node at 0, and the other component(s) has marked points at tr−2q1, t
r−3q2, . . . , qr−1

and a node at ∞.

We will first show that parallel transport along q̃1(t) and q̃2(t) both induce glr−1-crystal morphisms.

First we deal with q̃2(t). Let ι : U(glr−1) −→ U(glr) be the embedding induced by glr−1 ⊂ glr as

the matrices with zero final row and column. By [Hal+20, Corollary 10.12] the algebra, A(q̃1(0)) at

the initial point is generated by ιA((q1, q2, . . . , qr−1)) and A((0, . . . , 0, qr)) ⊂ U(glr)
glr−1 . Since the

decomposition of Vλ into glr−1 representations is multiplicity free, we have

Eq̃1(0)(λ) =
⊔

µ

E(q1,q2,...,qr−1)(µ),

where the union ranges over µ ⊂ λ such that λ\µ has at most one box in every column, see [Hal+20,

Corollary 10.13]. The induction assumption is that the mapping combr−1
(q1,...,qr−1)

(µ) is a glr−1-crystal

isomorphism for every µ. These are precisely the maps induced by parallel transport along q̃2(t).

Now we consider q̃1(t). The crystal operator ẽi in the crystal structure on Eq(λ) is defined using

parallel transport to any point on M(i, i+1). When 1 ≤ i ≤ r−2, we have that M(i, i+1)∩M(r,∞)

is nonempty. By the operadic nature of M0,r+1, we therefore see that parallel transport along q̃1(t)

is a morphism of glr−1-crystals since the parallel transport defining ẽi factors through the parallel

transport to q̃1(0).

It follows from these two paragraphs that that parallel transport along the composition of q̃1(t)

and q̃2(t) is a glr−1-crystal morphism. Since this composition is homotopic to q(t), this shows

combrq(λ) is a mapping of glr−1-crystals. This implies that this mapping sends glr−1 highest weights

to elements of SSYTr(λ) that are also glr−1 highest weights. But such semistandard tableaux are

uniquely determined by their weights as a glr-representation. Since comb0◦κ preserves weight spaces

by construction, it follows that it is a glr-crystal mapping. �
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6. Moduli of inhomogenous Gaudin algebras

For (z, q) ∈ C
n
reg×C

r
reg, the algebras A(z; q) ⊆ U(glr)

⊗n have constant Hilbert series with respect

to the PBW filtration (see [Hal+20, Section 9.4]). Thus if we fix q ∈ C
r
reg, then C

n
reg maps into

the space of subalgebras of U(glr)
⊗n with the same Hilbert series as A(z; q). Denote the closure

of the image of Cn
reg by Xq, the compactified moduli space of inhomogeneous Gaudin algebras. If

x ∈ Xq, we denote the corresponding algebra by A(x; q). The purpose of this section is to present

a homotopy of paths in the space of Xq. This will be the main technical ingredient in the proof of

Theorem 4.10.

6.1. We call a path z(t) : R>0 −→ C
n
reg a collision path if it satisfies the following four properties:

• ordered : z(t) ∈ R
n
< for all t ∈ R>0,

• monotonicity : the functions zi(t) are monotonic for 1 ≤ i ≤ n,

• limiting behaviour : limt→0 zi(t) = 0 and limt→∞ zi(t) = ∞ for all 1 ≤ i ≤ n,

• asymptotic ordering : limt→0 zi+1(t)/zi(t) = limt→∞ zi+1(t)− zi(t) = ∞ for all 1 ≤ i < n.

These conditions ensure that

• limt→∞A(z(t); q) = A(q)⊗n (see Section 3.7),

• limt→0 A(z(t); q) is the algebra generated by ∆nA(q) and JMn (see Section 3.9).

Example. An example of a collision path is zi(t) = tn−i+1(1 + t2)i−1. If we want this to pass

through a specific point (z1, z2, . . . , zn), at say t = 1 for example, we can take the path zi(t) =

21−izit
n−i+1(1 + t2)i−1.

Fix a choice of collision path. Let R
∞
≥0 = R≥0 ∪ {∞}. We can now define a path γ : R∞

≥0 −→ Xq

given by γ(t) = A(z(t); q) when t 6= 0,∞, and given by the limiting algebras at the start and end

points. This is the path whose parallel transport will be studied in Theorem 7.5.

6.2. Remark. When q is regular, the moduli space Xq is expected to be isomorphic to the moduli

space of framed, stable, genus zero curves with n+ 1 marked points (see [Hal+20, Remark 10.20]).

These are chains of genus zero curves, with points marked by 1, 2, . . . , n and ∞, and a choice of

nonzero tangent vector at ∞. Suppose that Xq is indeed isomorphic to this moduli space, then the

path γ corresponds to a path starting at the curve γ(0) with n − 1 components arranged linearly,

the labels 1, 2 on the first component, i + 1 on the ith component, and ∞ on the final component.

For 0 < t < ∞, the curve γ(t) is a single component with labels at the pointed determined by

z(t). For t = ∞, the curve γ(∞) is again n components, this time, all sharing a single nodal point

marked ∞. Now we would like to apply induction on n to this path later. The moduli space of

curves interpretation suggests how to do this. We use a different path γ0. We start at the same

stable curve γ0(0) = γ(0), but now move only the point marked by n. That is we move through

stable curves γ0(t) with n − 1 components, arranged linearly, the first marked by 1, 2 and the ith

marked by i + 1, but now the last component marked by n and ∞. We ask that the nth marked

point collides with ∞ when t = 1, that means, γ0(1) is the same stable curve as γ0(0) except that

∞ labels the node between the final two components, and n labels a point on the final component.

For 1 < t < ∞ we then inductively use a collision path to move the marked points 1, 2, . . . , n − 1
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to ∞ to arrive at γ0(∞) = γ(∞). In the moduli space of curves, it is clear these two paths are

homotopy equivalent. However since we do not know that Xq is indeed isomorphic to this space,

we cannot use this fact. The following proves that the corresponding paths in Xq are homotopy

equivalent directly.

6.3. The idea of a collision path is that it parametrises n particles that collide at zero and infinity

in a specified order, simultaneously. Our aim now, is to present a new path in Xq, where the nth

particle is sent from zero to infinity first, and then the remaining particles follow. This will allow us

to use induction when calculating the parallel transport along a collision path. We show below that

this new path is homotopy equivalent to γ. So the strategy can be summarised as writing down

what would be an explicit homotopy in the moduli space of curves and showing explicitly that it is

in fact a homotopy in Xq.

6.4. Define a deformation z : (0, 1]×R>0 −→ C
n
reg of our fixed collision path. For 1 ≤ i ≤ n−1 let

zi(s, t) =







zi(st) when 0 ≤ t ≤ 1,

zi(t− 1 + s) when t > 1,

and let

zn(s, t) =







2−t
1−t+s

zn(t) when 0 ≤ t ≤ 1,

s−1zn(t) when t > 1,

Lemma. Fix s ∈ (0, 1]. Then (zi(s, ·))i is a collision path.

Proof. We first observe that the path is continuous. Now we check the four properties defining

collision paths.

To see the ordering property, clearly zi(s, t) < zi+1(s, t) for any fixed s and t and 1 ≤ i ≤ n− 2.

What is left to observe is that zn−1(s, t) < zn(s, t). When t ≤ 1, we have

zn−1(s, t) = zn−1(st) ≤ zn−1(t) < zn(t) ≤
2− t

1− t+ s
zn(t) = zn(s, t)

where the first inequality follows by monotonicity, the second by the ordering, and the third since
2−t

1−t+s
≥ 1 when s ∈ (0, 1] and t ≤ 1. Now when t > 1, we have

zn−1(s, t) = zn−1(t− 1 + s) ≤ zn−1(t) < zn(t) ≤ s−1zn(t) = zn(s, t)

for similar reasons. Monotonicity follows from the observation that if t < 1 < t′ then st < t′− 1+ s.

The limiting behaviour and asymptotic ordering both follow from the corresponding properties of

z(t). �

6.5. Now we can define the path γ0 : R
∞
≥0 −→ Xq given by γ0(t) = lims→0Aq(z(s, t)) when t 6= 0,∞

and defined by the appropriate limiting algebras at these endpoints. While it is immediately clear

that z(s, t) is a homotopic to z(t) for any fixed s ∈ (0, 1], the same cannot be said for γ(t) and γ0(t).

To see this, we must show that γ0(t) is continuous and to do this we will explicitly calculate the

algebras corresponding to each point.
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Lemma. The algebra lims→0A(z(s, t); q)

(1) is equal to A(z1(t− 1), . . . , zn−1(t− 1); q)⊗A(q) when t > 1, and

(2) is generated by JMn−1 and A
(

0, 2−t
1−t

zn(t); q
)(1,2,...,n−1)(n)

when 0 < t < 1, and

(3) is generated by JMn−1 ⊗A(q) and ∆n−1A(q) when t = 1.

Proof. We imitate the method of proof used in [Ryb06, Section 5] and [Hal+20, Section 10]. In

particular, the algebra A(z; q) is generated by the coefficients of the principal parts of the Laurent

series of fl(w; z; q) = φw(z; q)(Sl) where Sl ∈ A are the free generators described in [FFR94]. We

also note that limw→∞ φw = ε, the counit map (see [Ryb06, Lemma 2]). First we deal with t > 1.

The generators of A(z(s, t); q) are the coefficients of the principal part of the Laurent series of

fl(w; z(s, t); q) = fl(w; z1(t− 1 + s), z2(t− 1 + s), . . . , zn−1(t− 1 + s), s−1zn(t); q),

so we have

lim
s→0

fl(w; z(s, t); q) = lim
s→0

φw−z1(t−1+s) ⊗ · · · ⊗ φw−zn−1(t−1+s) ⊗ φw−s−1zn(t) ⊗ (χq ◦ φ∞) ◦∆(n+1)(Sl)

= φw−z1(t−1) ⊗ · · · ⊗ φw−zn−1(t−1) ⊗ ε⊗ (χq ◦ φ∞) ◦∆(n+1)(Sl)

= fl(w; z1(t− 1), . . . , zn−1(t− 1); q)(1,2,...,n−1).

Thus A(z1(t − 1), . . . , zn−1(t − 1); q)(1,2,...,n−1) ⊆ lims→0A(z(s, t); q). Now consider the principal

part of the Laurent series of fl(w; z(s, t); q) at w = zn(s, t) = s−1zn(t). This is the same as the

principal part of the Laurent series of fl(w + s−1zn(t); z(s, t); q) at w = 0 and we have

lim
s→0

fl(w+s−1zn(t); z(s, t); q)

= φw+s−1zn(t)−z1(t−1+s) ⊗ · · · ⊗ φw+s−1zn(t)−zn−1(t−1+s) ⊗ φw ⊗ (χq ◦ φ∞) ◦∆(n+1)(Sl)

= ε⊗n−1 ⊗ φw ⊗ (χq ◦ φ∞) ◦∆(n+1)(Sl)

= fl(w; 0; q)
(n)

and so A(q)(n) ⊆ lims→0A(z(s, t); q). To see that A(z1(t− 1), . . . , zn−1(t− 1); q)(1,2,...,n−1) ⊗Aq =

lims→0A(z(s, t); q), we use [Hal+20, Proposition 9.10] to see that both are free polynomial algebras

of the same transcendence degree. Now consider the case when 0 < t ≤ 1. First of all, by taking

the limit and using Proposition 3.6, we see that

A

(

0,
2− t

1− t
zn(t); q

)(1,2,...,n−1)(n)

= A

(

0, 0, . . . , 0,
2− t

1− t
zn(t); q

)

⊆ lim
s→0

A(z(s, t); q).

According to [Hal+20, Lemma 9.2], A(z(s, t); q) = A(zn−1(st)
−1z(s, t); zn−1(st)q) and so the limit-

ing algebra contains the coefficients of the principal parts of the Laurent series of

lim
s→0

fl(w; zn−1(st)
−1z(s, t); zn−1(st)q) = lim

s→∞
fl

(

w;
z1(st)

zn−1(st)
, . . . ,

zn−2(st)

zn−1(st)
, 1,

zn(st)

zn−1(st)
; zn−1(st)q

)

= lim
s→∞

φ
w−

z1(st)
zn−1(st)

⊗ · · · ⊗ φ
w−

zn−2(st)

zn−1(st)

⊗ φw−1 ⊗ φ
w− zn(st)

zn−1(st)

⊗ (χzn−1(st)q ◦ φ∞) ◦∆n+1(Sl).
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By the fact that z(t) is a collision path,

lim
s→0

zi(st)

zn−1(st)
= 0 for 1 ≤ i < n− 1 and lim

s→0

zn(st)

zn−1(st)
= ∞

So lims→0 φw−
zn(st)

zn−1(st)

= ε. By the cocommutativity of ∆ we get,

lim
s→0

fl(w; zn−1(st)
−1z(s, t); zn−1(st)q) = lim

s→0
fl(w; z1(s, t), . . . , zn−1(s, t); 0)

(1,2,...,n−1)

and we thus have that JMn−1 ⊆ lims→0A(z(s, t); q). To see that the limiting algebra is generated

by these two subalgebras note first by a theorem of Knop [Kno94] the centraliser of (U(glr)
⊗2)glr⊕glr

embedded via ∆(1...n−1)(n) in U(gl⊕n
r ) = U(glr)

⊗n is isomorphic to

(U(glr)
⊗n)∆

(1...n−1)(n)(glr⊕glr) ⊗(U(glr)
⊗2)glr⊕glr ∆

(1...n−1)(n)(U(glr)
⊗2).

The algebra JMn−1 is contained in the first tensor factor and A
(

0, 2−t
1−t

zn(t); q
)(1,2,...,n−1)(n)

is

contained in the second. Thus

lim
s→0

A(z(s, t); q) ⊆ JMn−1 ⊗(U(glr)
⊗2)glr⊕glr A

(

0,
2− t

1− t
zn(t); q

)(1,2,...,n−1)(n)

.

The tensor factors on the right are free polynomial algebras so to check equality we will show that the

right hand side has the same number of algebraically independent generators of the same degrees as

A(z(s, t); q). This can be seen by [Hal+20, Section 9.4 and Proposition 9.10] which implies there is a

degree preserving bijection between a set of algebraically independent generators of JMn−1 and the

principal parts of the Laurent expansions of fl(w; z(s, t); q) at w = z1, z2, . . . , zn−1, and similarly be-

tween generators of A
(

0, 2−t
1−t

zn(t); q
)(1,2,...,n−1)(n)

and the principal parts of the Laurent expansions

of fl(w; z(s, t); q) at w = ∞. Together, these principal parts form a set of algebraically independent

generators of A(z(s, t); q). Since the limit preserves the number and degree of generators (i.e. the

Hilbert polynomial) this shows that lims→0A(z(s, t); q) is generated by the desired algebras. Fi-

nally, we consider the case t = 1. We have z(s, 1) = (z1(s), z2(s), . . . , zn−1(s), s
−1zn(1)) and so the

same analysis of the principle parts of fl(w; zn−1(s)
−1z(s, 1); q) as above will show that JMn−1 ⊂

lims→0A(z(s, 1); q). Similarly, considering the principle parts of fl(w+s−1zn(1); z(s, 1); q) at w = 0

will show that (A(q)⊗2)(1,2,...,n−1)(n) ⊂ lims→0A(z(s, 1); q). The same analysis of generators shows

that the Hilbert series agree. �

6.6. By Proposition 3.9 and by [Ryb06, Theorem 2], Lemma 6.5 implies that limt→1− γ0(t) =

γ0(1) = limt→1+ γ0(t), which proves the following Proposition.

Proposition. The path γ0 is continuous and thus homotopy equivalent to γ in Xq.

7. RSK from Inhomogeneous Gaudin Algebras

In this section we produce the RSK correspondence using parallel transport along collision paths.

We freely use the notation from earlier sections of the paper.
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7.1. The case n = 2. For the time being, let n = 2. Let z(t) be a collision path and let γ(t) ∈ Xq

be the associated path. As noted in 6.1, the algebra at γ(∞) is A(q)⊗2 and at γ(0) is generated by

JM2 and ∆A(q). We consider the action of the inhomogeneous Gaudin algebras A(z(t); q) on the

tensor product Vλ ⊗ Vµ and the parallel transport induced along γ(t). The spectrum of A(q)⊗2 is

Eq(λ)× Eq(µ).

7.2. Since JM2 commutes with ∆U(glr), the algebra at γ(0), JM2 · ∆A(q), acts on isotypic

components of Vλ ⊗ Vµ which are of the form Vν ⊗ (Vλ ⊗ Vµ)
sing
ν . Here M sing

ν denotes the highest

weight vectors of weight ν in a module M . The subalgebra JM2 acts on the first tensor factor and

∆A(q) on the second. We denote the spectrum of JM2 on (Vλ ⊗ Vµ)
sing
ν by E(λ, µ)ν . Thus the

spectrum on this isotypic component is identified with Eq(ν) × E(λ, µ)ν . By parallel transport we

obtain a map

pγλ,µ : Eq(λ)× Eq(µ) −→
⊔

ν∈Part≤r

Eq(ν)× E(λ, µ)ν

Theorem ([Hal+20, Theorem 12.5]). The map pγλ,µ is an isomorphism of crystals.

7.3. The general case. Now return to the situation for general n. Identifying Vk̟1 with the space

of homogeneous degree k polynomials in C[x1, x2, . . . , xr] we have a decomposition

C[Matr×n] =
⊕

k=(k1,k2,...,kn)∈Nn

Vk1̟1 ⊗ Vk2̟2 ⊗ · · · ⊗ Vkn̟1

Fix a sequence k ∈ N
n. We will consider the action of the inhomogeneous Gaudin algebras on the

summand V (k) := Vk1̟1 ⊗Vk2̟2 ⊗· · ·⊗Vkn̟1 . Again, the algebra at γ(∞) is A(q)⊗n and at γ(0) is

generated by JMn and ∆nA(q). The algebra at γ(0) thus acts on isotypic components which are

of the form Vν ⊗ V (k)singν . We denote the set of eigenspaces of the Jucys-Murphy elements acting

on V (k)sing
ν by E(k)ν . Thus we obtain a map

pγk :

n
∏

a=1

Eq(ka̟1) −→
⊔

ν∈Part≤min{r,n}

Eq(ν)× E(k)ν .

7.4. The duality of Section 4.8 identifies V (k)singν with a copy of (Lν)k, the k-weight space in the

irreducible gln-module corresponding to the partition ν, denoted Lν . Furthermore πr(JMn) =

πn(∆rGTn) (see [CFR10, Theorem 2]). Together, these facts imply E(k)ν = E0(ν)k, the subset of

E0(ν) consisting of eigenspaces contained in the k-weight spaces. Restriction of combn0 to E0(ν)k,

produces a bijection E(k)ν −→ SSYTn(ν, k), the set of semistandard tableaux of shape ν and content

k.

7.5. The spectrum E∞;q(r × n) of A(q)⊗n acting on C[Matr×n] has a decomposition

E∞;q(r × n) =
⊔

k∈Nn

n
∏

a=1

Eq(ka̟1).

The restriction of combr×n
∞;q to

∏n
a=1 Eq(ka̟1) induces a bijection combr×n

∞;q (k) :
∏n

a=1 Eq(ka̟1) −→

Matr×n(N, k).
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Theorem. The map (combr0 ◦ κ, comb
n
0 ) ◦ p

γ
k ◦ combr×n

∞;q (k)
−1 is the RSK correspondence restricted

to Matr×s(N, k).

Proof. We proceed by induction. For n = 2 this is obtained by an explicit calculation or by applying

Theorem 7.2 and noting that Vk1̟1 ⊗ Vk2̟1 is multiplicity free and the RSK correspondence is

hence the unique morphism of crystals. For n > 2, we aim to prove the very outer square in

the following figure commutes. It is Figure 1 that displays how our induction will work. Let

∏n
a=1 Eq(ka̟1)

⊔

µ∈Part Eq(µ)× E(k)µ

∏n−1
a=1 Eq(ka̟1)× Eq(kn̟1)

(

⊔

λ Eq(λ)× E(k|n−1)λ

)

× Eq(kn̟1)
⊔

λ

(

⊔

µ Eq(µ)
)

× E(k|n−1)λ

Matr×(s−1)(N, k|n−1)×Matr×1(N, kn) (
⊔

λ SSYTr(λ)× SSYTn−1(λ, k|n−1))×Matr×1(N, kn)
⊔

λ

(

⊔

µ SSYTr(µ)
)

× SSYTn−1(λ, k|n−1)

Matr×n(N, k)
⊔

µ SSYTr(µ)× SSYTn(µ, k)

id

comb
r×s
∞;q

p
γ
k

⊔

µ combr0◦κ×combn0
id

comb
r×(n−1)
∞;q ×comb

r×1
∞;q

p
γ′

k|n−1
×id

(

⊔

λ combr0◦κ×comb
n−1
0

)

×comb
r×1
∞;q

τ23◦(
⊔

λ p
γ2

λ,kn̟1
×id)◦τ23

⊔

λ

(

⊔

µ combr0◦κ
)

×comb
n−1
0

id

RSK×id g

u

RSK

Figure 1. Induction diagram

k|n−1 = (k1, k2, . . . , kn−1). By Proposition 6.6, γ0 is homotopy equivalent to γ. If we let pγ0b,a be the

map induced by parallel transport along γ0 from t = a to t = b we thus have pγk = pγ00,∞ = pγ00,1 ◦p
γ0
1,∞.

Let z′(t) = (z1(t), z2(t), . . . , zn−1(t)) be the collision path given by only considering the first n − 1

points, and denote by γ′(t) the associated path in the moduli space. According to Lemma 6.5, the

path of algebras along γ0(t) for t ≥ 1 equals A(z′(t− 1); q)⊗A(q). Thus we have

pγ01,∞ = pγ
′

k|n−1
× id :

n−1
∏

a=1

Eq(ka̟1)×Eq(kn̟1) −→





⊔

λ∈Part≤min{r,n−1}

Eq(λ)× E(k|n−1)λ



×Eq(kn̟1).

We will apply the induction hypothesis to this factorisation and the map pγ
′

k|n−1
. We must also

consider the parallel transport map pγ00,1. This comes from moving just two particles, one at 0 and

the other at 2−t
1−t

zn(t) while the rest remain fixed. The path z2(t) = (0, 2−t
1−t

zn(t)) is not a collision

path, firstly t ∈ (0, 1) and secondly since the first coordinate does not tend to infinity. Shifting both

coordinates by zn−1(t) and reparametrising gives a collision path, without effecting the induced

path in the moduli space and the algebras involved. Let γ2 be the path in the moduli space induced

by z2(t). Let λ ∈ Part and l ∈ N. By the above parallel transport pγ
2

λ,l̟1
: Eq(λ) × Eq(l̟1) −→

⊔

µ Eq(µ)×E(λ, l̟1)µ arises from a collision path and is thus by Theorem 7.2 a morphism of crystals.

Let Part(λ, l) be the set of partitions formed by adding l boxes to λ, no two in the same column.

The Pieri rule states that the space (Vλ ⊗ Vl̟1)
sing
µ is zero unless µ ∈ Part(λ, l) in which case it is

one dimensional. Thus E(λ, l̟1)µ is a single point and we can identify the codomain of pγ
2

λ,l̟1
with

17



⊔

µ∈Part(λ,l) Eq(µ) where the union is over µ ∈ Part(λ, l). Using this fact and Lemma 6.5, we have

pγ01,0 = τ23 ◦

(

⊔

λ

pγ
2

λ,kn̟1
× id

)

◦ τ23 :





⊔

λ∈Part≤min{r,n−1}

Eq(λ)× E(k|n−1)λ



× Eq(kn̟1)

−→
⊔

λ∈Part≤min{r,n−1}





⊔

µ∈Part(λ,kn)

Eq(µ)



× Eq(kn̟1),

where τ23 is simply the map that swaps the second and third factors. This explains the second row

and the commutativity of the top square of Figure 1.

Let A ∈ Matr×n(N, k). We can think of A as a pair (A≤r,≤n−1, A≤r,n) (the leftmost r × (n − 1)

submatrix and the final column). With this identification, Eq(r×n) = Eq(r×n−1)×Eq(r×1). The

map combr×s
∞;q factors through this identification via the map comb

r×(n−1)
∞;q × combr×1

∞;q which explains

the commutativity of the leftmost cell of Figure 1. The algebra JMn ⊂ U(glr)
⊗n is generated by

JMn−1⊗1 and JM
(1...n−1)(n)

2 . We also have that πr(JMn) = πn(∆rGTn) and πr(JMn−1⊗ id) =

πn(∆rGTn−1). Observe that a point in the spectrum of GTn is completely determined by a point in

the spectrum of GTn−1, and a highest weight. Thus we obtain an identification
⊔

µ∈Part≤min{r,n}

E(k)µ =
⊔

λ∈Part≤min{r,n−1}

⊔

µ∈Part(λ,kn)

E(k|n−1)λ.

In a similar fashion, if µ ∈ Part(λ, kn) then given T ∈ SSYTn−1(λ, k|n−1) there is a unique tableau

T ′ ∈ SSYTn(µ, kn) given by simply adding boxes containing n to T in the unique way determined

by the shape µ. This induces a glr-crystal morphism

u :
⊔

λ∈Part≤min{r,n−1}

SSYTr(µ)× SSYTn−1(λ, k|n−1) −→
⊔

µ∈Partmin{r,n}

SSYTr(µ)× SSYTn(µ, k).

The right hand square in the diagram commutes by the definition of combn0 and since this is

compatible with restriction to GTn−1. Recall the set Matr×1(N, kn) has the structure of a glr-

crystal corresponding to the module Vkn̟1 . By the Pieri rule, the tensor product of crystals

SSYTr(λ)×Matr×1(N, kn) is isomorphic to
⊔

µ∈Part(λ,kn)
SSYTr(µ). The unique crystal isomorphism

is given by sending a pair (T,A) to the result of inserting 1 into T exactly A11 times, then inserting

2 exactly A22 times, etc. This defines a crystal isomorphism

g :





⊔

λ∈Part≤min{r,n−1}

SSYTr(λ)× SSYTn−1(λ, k|n−1)



×Matr×1(N, kn)

−→
⊔

λ∈Part≤min{r,n−1}

⊔

µ∈Part(λ,kn)

SSYTr(µ)× SSYTn−1(λ, k|n−1).

The bottom most rectangle in Figure 1 commutes then by Proposition 2.9. Now we can note that

the middle left square commutes by induction, and the only remaining thing to show is that the

middle right square commutes. We note that everything in sight is a glr-crystal isomorphism by

Proposition 5.1. Thus the images in the first factor of the product agree. The fact that the images in

the second factor agree follows since projection of either map onto the second factor is combn−1
0 . �
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As a corollary, we obtain Theorem 4.10.

Corollary. For any A ∈ Matr×n(N), S(A) = P (A) and T (A) = Q(A).

Proof. First note that by definition S = combr0 ◦ κ ◦
⊔

k p
γ
k ◦
(

combr×n
∞;q

)−1
. Thus by Theorem 7.5,

S(A) = Q(A). To show that T (A) = Q(A) we swap the roles of r and n by appealing to (glr, gln)-

duality. By choosing a collision path q and fixing a weight l = (l1, l2, . . . , lr), we obtain from

Theorem 7.5 a map

pγl :
r
∏

i=1

Ez(li̟1) −→
⊔

ν∈Part≤min{r,n}

Ez(ν)× E(l)ν ,

such that P = combn0 ◦κ◦
⊔

l p
γ
l ◦
(

combn×r
∞;z

)−1
. On the other hand T = combn0 ◦κ◦

⊔

l p
γ
l ◦
(

combr×n
∞;q

)−1

Note however that by construction combr×n
∞;q ◦

(

combn×r
∞;z

)−1
(A) = At, the transpose map. Thus

T (A) = P (At) = Q(A) (by Theorem 2.7). This completes the proof. �

8. Cherednik algebras and Calogero-Moser cells

8.1. Let c be a variable. The rational Cherednik algebra of Sn is the quotient H of C[Sn] ⋉

C〈c, x1, . . . , xn, y1, . . . , yn〉 by the relations that c is central and

[xi, xj ] = 0, [yi, yj] = 0,

[yi, xj ] = c (i, j), [xi, yi] = −c

∑

j 6=i

(i, j),

where 1 ≤ i, j ≤ n and i 6= j. Let Z be the centre of H. There is an inclusion

ι : P := C[c]⊗ C[x1, . . . , xn, y1, . . . , yn]
Sn×Sn →֒ Z.

Let V = C
n and X = SpecZ. The inclusion ι induces a surjection

Υ : X −→ C× C
n/Sn × C

n/Sn

8.2. For c ∈ C let Pc, Zc,Hc and Υc be the specialisations of P,Z,H and Υ at c = c. For any

non-zero c ∈ C the preimage of {c} ×C
n/Sn ×C

n/Sn is identified with the Calogero–Moser space

CMn = {(A,B) ∈ gln × gln, rk([A,B] + id) = 1}/GLn

and Υc with the map that send pairs of matrices to their unordered set of eigenvalues. The preimage

at c = 0 is identified with equivalences classes of pairs of commuting matrices, hence with (Cn ×

C
n)/∆Sn where ∆Sn denotes the diagonal of Sn in Sn ×Sn.

8.3. The work of Mukhin–Tarasov–Varchenko relates the spectrum of a Bethe algebra to the ratio-

nal Cherednik algebra of type Sn. We recall this now. Let V = C
n and V = V ⊗n[z,q]. Let (V ⊗n)

1

be the (1, 1, . . . , 1) weight subspace of V ⊗n and V
1

= (V ⊗n)
1

[z,q]. The algebra U(gln[t])[q] acts

on V as explained in [MTV14, Section 2.4], varying in z.
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8.4. The universal Bethe algebra, Bn is a commutative subalgebra of U(gln[t])[q], see [MTV14,

Section 2.2]. Through the action of U(gln[t])[q] on V, Bn specialises to a commutative algebra Bn

in End(V
1

). In turn, this specialises for (z, q) ∈ C
n
reg × C

n
reg to the inhomogeneous Gaudin algebra

A(z; q) introduced in Subsection 3.4, see [Ryb08, Corollary 1].

8.5. The space (V ⊗n)
1

can be identified with C[Sn] via

w 7→ ew := ew(1) ⊗ . . .⊗ ew(n).

The PBW decomposition of H1, C[x1, . . . , xn]⊗C[Sn]⊗C[y1, . . . , yn] −→ H then induces a C-linear

isomorphism α : V
1

→ H1 given by

ewf(z1, . . . , zn)g(q1, . . . , qn) 7−→ f(x1, . . . , xn)⊗ w ⊗ g(y1, . . . , yn).

The key results of Mukhin-Tarasov-Varchenko that relate the rational Cherednik algebra to the

work in the earlier part of the paper are the following.

Theorem. (1) Under the map α, the action of the centre Z1 of H1 by left multiplication is

identified with the Bethe algebra Bn acting on V
1

, [MTV14, Theorem 2.8]. This induces an

algebra isomorphism

β : Bn −→ Z1,

[MTV14, Corollary 2.9].

(2) The subalgebra C[z,q]Sn×Sn of End(V
1

) is contained in Bn, [MTV14, Lemma 2.6], and the

isomorphism β restricts to the tautological one

C[z,q]Sn×Sn −→ P,

[MTV14, Theorem 4.3].

(3) The action of Bn on V
1

commutes with the scalar action of C[z,q], [MTV14, Lemma 2.3].

8.6. By the above, we have that

Υ1 : SpecBn −→ C
n/Sn × C

n/Sn.

Let σ1, . . . , σn be the symmetric functions such that

n
∏

i=1

(u− zi) =

n
∑

i=1

(−1)iσi(z)u
n−i.

Theorem. (1) Let z = (z1, . . . , zn) ∈ C
n
reg and q = (q1, . . . , qn) ∈ C

n
reg. The algebra Bn/〈σi(z)−

σi(z), σi(q)− σi(q) : 1 ≤ i ≤ n〉 is isomorphic to the image of A(z; q) in End((V ⊗n)1).

(2) The morphism Υ1 is unramified over the image of Rn
< × R

n
< in C

n/Sn × C
n/Sn.

(3) Let q = (q1, . . . , qn) ∈ R
n
<. The algebra Bn/〈σi(z), σi(q) − σi(q) : 1 ≤ i ≤ n〉 contains the

image of A(0; q) in End((V ⊗n)
1

).

Proof. Part (1) is a consequence of [MTV14, Lemma 5.4] and (2) is proved by Mukhin-Tarasov-

Varchenko in [MTV08, Corollary 7.4]. For (3) the algebra A(0; q) acts via A(q) on (V ⊗n)
1

, by

Proposition 3.11. This action is semisimple, as explained in Subsection 4.6 and is generated by the
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’classical’ Hamiltonians, thanks to [MTV10, Corollary 3.4] and the duality of [MTV09, Theorem

3.1]. These elements are the evaluation at z = 0 of the dynamical Casimir Hamiltonians

∇i(z, q) =

n
∑

k=1

zkE
(k)
ii +

∑

j 6=i

κij
qi − qj

where κij = 2(EijEji + EjiEij) ∈ U(gln). Since these elements belong to A(z; q) = Bn/〈σi(z) −

σi(z), σi(q) − σi(q) : 1 ≤ i ≤ n〉 for z ∈ C
n
reg by [Hal+20, Proposition 9.5(3)], it follows that their

limit at z = 0 belongs to Bn/〈σi(z), σi(q)− σi(q) : 1 ≤ i ≤ n〉, as required. �

8.7. Now we move to the setup of [BR17, Chapter 6, and Appendix B]. Let K,L be the fraction

fields of P and Z respectively, and let R be the integral closure of Z inside a Galois closure F of

the extension L/K. We denote by ρ the projection

ρ : SpecR −→ SpecP.

Let p0 be the ideal in P generated by c and let r0 an ideal in R lying over p0. Fix an isomorphism

R0 = R/r0 → C[V × V ] that is the identity on Z0. Let (z, q) be a generic point in C
n × C

n and

let y0 be its preimage in SpecR0. Let ρ(y0) = ([z], [q]), the image of (z, q) in C
n/Sn ×C

n/Sn. We

obtain a bijection

Sn −→ Υ−1
0 (([z], [q]))

given by w 7→ (w(z), q)∆Sn. Let γ be a path in C×C
n/Sn ×C

n/Sn such that γ(0) = (0, x0) and

such that ρ is unramified over γ(t) for t ∈ [0, 1). For any w ∈ Sn there is a unique path γw in

SpecZ lifting γ and such that γw(0) = (0, (w(z), q)∆Sn).

Definition. [BR17, Definition 6.6.1] Two elements w,w′ are in the same Calogero-Moser γ-cell if

γw(1) = γw′(1).

8.8. Assume that z ∈ R
n
< and q ∈ R

n
<. Let γ̃ : [0, 1] → C × C

n × C
n be the path defined by

γ̃(t) = (t, (1−t)z, q). Let γ be the projection of γ̃ on C×C
n/Sn×C

n/Sn. By Theorem 8.6(2) above

and [BR17, Lemma 6.3.4], γ([0, 1)) lies in the unramified locus of SpecP = C × C
n/Sn × C

n/Sn.

Therefore we can use this path to define Calogero-Moser γ-cells. There is a unique lift γ̃ of γ in

SpecR such that γ̃(0) = y0. Since γ(1) is a general point in {1} × {0} × C
n/Sn, there is a unique

prime ideal r of R such that y1 = γ̃(1) lives in the irreducible component of ρ−1({1}×{0}×C
n/Sn)

determined by r. After perturbing z, we can assume y1 lives in the maximal open subset O of the

irreducible component whose points have stabiliser the inertia group Ir, the inertia group of r in

Gal(F/K). It then follows from [BR17, Proposition 6.6.2 and comments after Lemma B.7.2] that

the Calogero-Moser γ-cells are the same as the right Calogero-Moser cells (with respect to r) of Sn,

as defined at the beginning of [BR17, Part III].

8.9. We are now able to give the main application of our results.

Theorem. The right Calogero-Moser cells for Sn agree with the right Kazhdan–Lusztig cells for

Sn, both being described by w ∼R w′ if and only if P (w) = P (w′).
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Proof. Thanks to the above discussion, we must determine precisely when γw(1) = γw′(1). By

Theorem 8.6(3) the fibres of Υ : SpecZ → SpecP above the points in γ((0, 1)) are precisely the

elements in the (1, . . . , 1)-weight space in the sets Esz,q(1) where s = (1− t)/t. For any s ∈ C
∗ and

any (sz, q) ∈ C
n
reg × C

n
reg there are n! choices of (p1, . . . , pn) ∈ C

n such that matrices

Y =













p1 s−1(z1 − z2)
−1 · · · s−1(z1 − zn)

−1

s−1(z2 − z1)
−1 p2 · · · s−1(z2 − zn)

−1

...
...

...

s−1(zn − z1)
−1 s−1(zn − z2)

−1 · · · pn













, (8.1)

have eigenvalues [q]. The set {(Z = diag(sz1, . . . , szn), Y ) ∈ CMn : Y as in (8.1)} = Υ−1
1 ([sz], [q]).

As t → 0, s = (1−t)/t → ∞ and so the matrices tend to Y = diag(p1, . . . , pn) where [p] = [q]. In the

inhomogeneous Gaudin algebra description the matrix diag(qw−1(1), . . . qw−1(n)) corresponds to the

eigenbasis element xw =
∏

i,j x
A11
1 · · · xAr1

r ⊗· · ·⊗xA1n
1 · · · xArn

r ∈ (V ⊗n)
1

from 4.4, where Aij = δjw(i)

for 1 ≤ i, j ≤ n. If we identify these matrices then with Sn via w 7→ diag(qw−1(1), . . . qw−1(n)) we

therefore recover the labelling in 4.4 of the (1, . . . , 1)-weight space in E∞,q(1) by permutations. This

corresponds to (0, [z, w−1q]∆Sn) = (0, [w(z), q]) ∈ {0} × (Cn × C
n)/∆Sn, and so is labelled by

w in the Galois-theoretic labelling. Hence the two labellings, one from inhomogeneous Gaudin

algebras and the other from Galois theory, agree. The results of 4.6 and Theorem 4.10 describe

the continuation along the path γ of the elements xw ∈ E∞,q(1) for w ∈ Sn. In the limit at t = 1

xw and xw′ will have the same eigenvalues for the action of A(0, q) if and only if P (w) = P (w′).

On the other hand for general q ∈ C
n
reg, by [MTV12, Theorem 1.5], the subalgebra A(0; q) of

Bn/〈σi(z), σi(q) − σi(q) : 1 ≤ i ≤ n〉 determines all the distinct closed points of the fibre, with
∑

λ∈Part(n) |SYT(λ)| such points. Since q ∈ R
n
< is a general condition, this shows that w and w′

belong to the same Calogero-Moser γ-cell if and only if P (w) = P (w′). �

8.10. We can also describe the left CM-cells and the two-sided cells.

Corollary. (1) The left Calogero-Moser cells for Sn agree with the right Kazhdan–Lusztig cells

for Sn, both being described by w ∼L w′ if and only if Q(w) = Q(w′).

(2) The two-sided Calogero-Moser cells for Sn agree with the two-sided Kazhdan–Lusztig cells

for Sn, both being described by w ∼LR w′ if and only the partition underlying P (w) is the

same as the partition underlying P (w′).

Proof. (1) For the left cells we use the path λ̃ : [0, 1] → C×C
n ×C

n given by λ̃(t) = (t, z, (1− t)q),

with z and q as before. We can then repeat the argument of Theorem 8.9.

Alternatively let the projection of λ̃ to C × C
n/Sn × C

n/Sn be denoted by λ. As explained in

[BR17, Proposition 5.6.1] there is an automorphism σH of R which restricts to automorphisms of

P and Q, which are induced from the mapping

(c, q, z) 7→ (c,−q, z).

Note that −q is no longer an element of Rn
<, rather w0(uq) is, where w0 = (1n)(2n − 1) · · · ∈ Sn

is the longest word. The mapping σH ◦ λ is just the mapping γ introduced in 8.8.
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We need to understand when the lifts of λ to SpecP beginning at the points (0, (w(z), q)∆Sn)

and (0, (w′(z), q)∆Sn) collide at the endpoint. This happens if and only if it happens on applying

σH . In other words, this happens if and only if the lifts of γ to SpecP beginning at the points

σH((0, (w(z), q)∆Sn)) and σH(0, (w′(z), q)∆Sn) collide at the endpoint. But

σH((0, (w(z), q)∆Sn)) = (0, (−q, w(z))∆Sn)

= (0, (w−1(−q), z)∆Sn)

= (0, (w−1w0(q), z)∆Sn)

where, up to homotopy, we can assume that w0(q) = −q. Thus λw(1) = λw′(1) if and only if

γw−1w0
(1) = γw′−1w0

(1). By Theorem 8.9 this happens if and only if P (w−1w0) = P (w′−1w0).

Equivalently P ((w0w)
−1) = P ((w0w

′)−1). Since P (τ−1) = Q(τ) this is the same as Q(w0w) =

Q(w0w
′). By [Sta99, A2.1.11] Q(w0w) = (evacQ(w))t where evac is the evacuation procedure on

tableaux, a bijection. It follows that Q(w0w) = Q(w0w
′) if and only if Q(w) = Q(w′), as claimed.

(2) Choosing the path µ(t) = (t, (1−t)z, (1−t)q) ensures that the two-sided cells are unions of left

cells and also right cells. Thus if w and w′ give rise to the same partition, then we can find y ∈ Sn

such that P (w) = P (y) and Q(y) = Q(w′). It follows that w and w′ are in the same two-sided

call. On the other hand, thanks to [BR17, Theorem 14.4.1], the two-sided cells have cardinality

the squares of the dimensions of the irreducible representations of Sn. Hence they cannot have any

more elements in them, confirming the final claim. �
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