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Function Approximation Based Reinforcement

Learning for Edge Caching in Massive MIMO

Networks

Navneet Garg, Mathini Sellathurai, Vimal Bhatia, Tharmalingam Ratnarajah

Abstract

Caching popular contents in advance is an important technique to achieve low latency and reduced

backhaul congestion in future wireless communication systems. In this article, a multi-cell massive

multi-input-multi-output system is considered, where locations of base stations are distributed as a

Poisson point process. Assuming probabilistic caching, average success probability (ASP) of the system

is derived for a known content popularity (CP) profile, which in practice is time-varying and unknown in

advance. Further, modeling CP variations across time as a Markov process, reinforcement Q-learning is

employed to learn the optimal content placement strategy to optimize the long-term-discounted ASP and

average cache refresh rate. In the Q-learning, the number of Q-updates are large and proportional to the

number of states and actions. To reduce the space complexity and update requirements towards scalable

Q-learning, two novel (linear and non-linear) function approximations-based Q-learning approaches are

proposed, where only a constant (4 and 3 respectively) number of variables need updation, irrespective

of the number of states and actions. Convergence of these approximation-based approaches are analyzed.

Simulations verify that these approaches converge and successfully learn the similar best content place-

ment, which shows the successful applicability and scalability of the proposed approximated Q-learning

schemes.

Index Terms

Linear function approximation; massive MIMO; non-linear function approximation; Poisson point

process; Q-learning; wireless edge caching.

I. INTRODUCTION

With the continuous development of various intelligent devices such as smart vehicles, smart

home appliances, mobile devices, and various sized innovative applications such as news updates,
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high quality video feeds and software updates, wireless mobile communications has been experi-

encing an unprecedented surge in traffic with a lot of redundant and repeated information, which

limits the capacity of the fronthaul and backhaul links [1], [2]. To reduce the redundant traffic,

caching has emerged as an effective solution for reducing the peak data rates by prefetching the

most popular contents in the local cache storage of the base stations (BS). In the recent years,

caching at the BS is actively feasible due to the reduced cost and size of the memory [3]. In

wireless networks such as cache enabled macro-cell networks, heterogeneous networks, D2D

networks, etc. [3], for a given set of content library and the respective content popularity (CP)

profile, content placement and delivery have been investigated in order to optimize the various

performance measures like backhaul latency delay [4], server load [5] and cache miss rate [6], [7].

With the known CP profile, in [6], [7], the content placement in cellular networks is optimized to

maximize the cache hit rate, while authors in [8], [9] obtain optimal placement policy to maximize

the success probability and area spectral efficiency. On a similar note, the approaches in [10],

[11] relies on minimizing cache miss probability to get caching policy. However, in practice,

CP profile is not known in advance and needs to be estimated from the past observations of the

content requests. Deep learning based prediction are effective; however, require huge training data

in [12], [13]. In [14], auto regressive (AR) prediction is used to predict the number of requests

in the time series, whereas linear prediction approach is investigated for video segments in [15].

Transfer learning methods are used in [16] by leveraging content correlation and information

transfer between time periods. To learn CP independently across contents, online policies are

presented for cache-awareness in [17], low complexity video caching in [2], [18], user preference

learning in [19], etc.

In the literature [6], [7], [10], considering the network as a whole, geographical caching in

the Poisson point process (PPP) network is employed for multi-cell system to maximize cache

hit rate with respect to the content placement probabilities (CPPs), which represent availability

of contents at the BSs. Similarly, in [8], the area success probability and area spectral efficiency

are maximized for CPPs. In these works, PPP has been a useful tool to assess the performance

of a given network [20], [21]. Therefore, it is important to understand the caching performance

variations with respect to time [22]. Since the CP changes dynamically in both time and space

due to randomness of the user requests, placement strategies needs to be updated accordingly.

Recently, Q-learning based solutions [23]–[26] provide active caching solutions to dynamically
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changing content placements via modeling the popularity profile in different time slots as a

Markov process. Therefore, in context of PPP analysis, the timely updation of CPPs for time-

varying CPs need to be investigated for future wireless systems such as massive-MIMO.

A. Motivation and Contributions

In this paper, a multi-cell massive-MIMO system is considered, where the locations of both

the BS and the users are distributed as homogeneous PPPs. In this system, content requests are

characterized using a global CP profile, while cache placements are defined via CPPs. Each

BS is assumed to simultaneously communicate with multiple users, which makes the success

probability more difficult to analyze as compared to the analysis for the case of single antenna

BS with single user in [27]. Towards that, first, we derive the success probability, followed by

the average success probability (ASP) as a function of CPs and CPPs. For interference limited

system, it is shown that the ASP is independent of the density of BSs, since transmissions

from BSs depend on the cached contents. If the density of BSs is increased while keeping

caching probability fixed, then both the desired and interference signals get stronger, resulting

in minor change in the SINR (signal to interference plus noise ratio) and the ASP. Further,

since CP is time varying, CP is modeled as a Markov process and the cache placement problem

is formulated in terms of conventional Q-learning framework, where the number of Q-updates

are proportional to the number of states and actions, incurring large space time complexity for

updation. To reduce the computation and updation requirements of Q-learning and to make it

scalable with the content library and sizes of state and action sets, two Q-learning approaches

are proposed based on linear and non-linear function approximations. In these approaches, only

a few variables needs to be updated instead of whole Q-matrix. Furthermore, the convergence

of these proposed approaches are analyzed and verified via simulations. The contributions of the

paper can be summarized as follows.

1) ASP analysis: For a PPP based multi-cell multi-user massive MIMO system, the ASP

expression is derived using stochastic geometric tools. For interference limited systems, it is

found that ASP does not depend on the density of BSs. These observations are verified via

simulations.

2) Q-learning framework: For time-varying CPs, the problem of dynamically learning the

content placement strategies is formulated in terms of Q-learning framework, where the objective
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is to maximize the long-term discounted ASP and cache refresh rate. The drawback of Q-learning

is the update requirement of a large number of variables proportional to the number of states

and actions, which is not feasible and scalable in practice.

3) Function approximation based Q-learning: To improve the Q-learning, Q-function is

approximated such that only a few variables needs to be updated. The linear function approxi-

mation requires four variables, while the non-linear one needs three. Moreover, we analyze the

convergence of the linear and non-linear approximated approaches, and verify their performances

through simulations.

Organization: The paper is organized as follows: Section II describes the system model.

In Section III, ASP has been derived. Section IV describes the framework of Q-learning, while

Section V presents the proposed Q-learning approaches with function approximations. Simulation

results are provided in Section VI. Section VII concludes the paper.

II. SYSTEM MODEL

We consider a cache-enabled multi-cell system, where each BS, equipped with an array of

large number of antennas M , serves multiple single antenna users. The locations of BSs and

users are independently distributed as homogeneous PPPs ΦBS and Φu, with the corresponding

densities λBS and λu respectively as shown in Figure 1.

A. Caching Model

We consider a time slotted model [26], where the structure of each time slot is depicted in

Figure 2. At the beginning of the time slot, the content placement takes place, which is based on

the content popularity and cache information in the previous time slot. The next phase pertains

to content delivery, where the cached content is delivered as users’ requests arrive. Subsequently,

in the information exchange phase, each BS shares the local content requests information to a

central station or a designated BS, which forwards back the global popularity profile, computed

based on simple averaging or weighted averaging.

Each BS is equipped with a cache storage Lt of L units at time t, which is filled in the

placement phase with a subset of the content library F = {1, 2, . . . , f, . . . , F}. For simplicity,

we assume each content has the same size of one unit [19]. In the information exchange phase

of time slot t, based on the number of user requests, the revealed popularity profile is denoted by
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Figure 1. BSs and users distributed as independent homogeneous PPPs. Users color indicate the requesting content. Voronoi

region is based on BSs with the requesting file cached (red points).

CD IECPL CD IECPL

︸ ︷︷ ︸︸ ︷︷ ︸
tth time slot (t + 1)th time slot

p(t)p(t)
(unknown)

q(t) p(t + 1)
(unknown)
p(t + 1)q(t + 1)

Figure 2. A typical time slot structure in edge caching (CD: Content Delivery, CPL: Content placement, IE: Information

Exchange) [26].

pTt = [p1,t, . . . , pF,t] with pf,t ≥ 0 and
∑

f∈F pf,t = 1. Let qf,t = Pr (f ∈ Lt) denote the cache

placement probability of the f th content in the tth time slot, which represents the probability

of the f th content being cached at a typical BS using the probabilistic caching as in [6]. These

caching probabilities qTt = [q1,t, . . . , qF,t] satisfy the cache constraint
∑

f∈F qf,t ≤ L. In the

following to derive the ASP, we temporarily drop subscript t and resume in Section IV.

B. Received Signal Model

From the Slivanyak-Mecke theorem, for stationary and homogeneity of PPPs, we consider a

typical user at the origin o for evaluating the performance. A typical user connects to the nearest

BS who has the desired content. If the requested content is not available in any of the caches
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at the BSs, it is considered as a failure and the required file must be fetched from the content

server via the backhaul link. Let the kth BS serves Kk users indexed by Kk ⊆ Φu. The received

signal at the typical user requesting the f th content from the kth BS can be given as

yfk = h̄Toksk +
∑

j∈ΦBS\{k}

h̄Tojsj + nfk, (1)

where h̄Tok = R
−α/2
ok hTok; Rok and hok are distance and the CSI vector from the kth BS to

the typical user; α is the path loss exponent; sk = Wkxk =
∑

u∈Kk wukxuk is the precoded

transmitted signal of the kth BS with E
{
xjx

H
j

}
= IKj ; and nfk ∼ CN (0, σ2) is additive white

Gaussian noise. The first term in the above equation corresponds to the desired signal with

intra-cell interference, the second term pertains to the inter-cell interference from the other BSs

that may have the f th content transmitting to other users.

Transmit Power Constraint: Assuming the total transmit power constraint PT , we can write

E
{
sks

H
k

}
= ‖Wk‖2

F =
∑

u∈Kk ‖wuk‖2
2 ≤ PT . Let puk denote the per user allocated power.

Then, ‖wuk‖2
2 = puk and

∑
u∈Kk puk ≤ PT .

Thinning of BSs: Based on the f th content availability, the PPP for BSs can be divided into

two PPPs: ΦBS(f) with density qfλBS , and Φc
BS(f) with density (1− qf )λBS . The BSs with the

f th content, indexed by ΦBS(f)\{k}, are located at distance Roj > Rok,∀j 6= k with Rok being

the distance of the connected kth BS to the typical user, while the BSs in Φc
BS(f) have distance

Roj > 0,∀j ∈ ΦBS from the typical user. Thus, the summation in the inter-cell interference can

be divided as

ΦBS \ {k} = {ΦBS(f) \ {k}} ∪ Φc
BS(f).

SINR Expression: The downlink SINR for the typical user can be obtained as

Γfk =
E
{∣∣h̄Tokwok

∣∣2
}

∑
l∈Kk\{o} E

{∣∣h̄Tokwlk

∣∣2
}

+ Ifk + Icf + σ2
, (2)

where in the denominator, the first term, Ifk =
∑

j∈ΦBS(f)\{k} E
{∥∥h̄TojWj

∥∥2

2

}
and Icf =

∑
j∈ΦcBS(f) E

{∥∥h̄TojWj

∥∥2

2

}

correspond to the intra-cell interference and the inter-cell interference strengths from the BSs

based on the presence of the f th content respectively. The value of these interferences are decided

by the BS’s transmission strategy.
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Maximal Ratio Transmission (MRT): Let Hk = [hk,1, . . . ,hk,Kk ] be the concatenated channel

vectors for Kk users connected to the kth BS. The presence of massive MIMO BSs allows

to utilize the channel hardening effect [28], 1
M
HH
k Hk → IKk , which acts like the expectation

operator i.e. E
{
HH
k Hk

}
= MIKk . Utilizing MRT, the precoder at the kth BS can be written as

Wk = 1√
M
HkP

1/2
k , that is, wuk = huk

√
puk
M
, where Pk = D (p1k, . . . , pKkk) is a diagonal power

allocation matrix such that E {‖wik‖2} = pik. From (2), the respective downlink SINR can be

simplified as1

ΓMRT
fk =

R−αok pokM

R−αok
∑

l∈Kk\{o} plk + PT
∑

j∈ΦBS\{k}R
−α
oj + σ2

(3)

=
R−αok

pok
PT
M

R−αok

(
1− pok

PT

)
+
∑

j∈ΦBS\{k}R
−α
oj + σ2

PT

. (4)

Zero Forcing (ZF) based transmission: Optional to MRT, to mitigate the intra-cell inter-

ference with ZF precoding, we compute Wk =
√
MHk

(
HT
kHk

)−1
P

1/2
k such that wuk =

Hk

(
HT
kHk

)−1
eupuk

√
M and E

{
wH
okwok

}
= E

{
eTo
(
HT
kHk

)−1
eo

}
Mpok = pok, where eu

is a uth column of identity matrix. Thus, the resultant SINR can be written as2

ΓZFfk =
R−αok

pok
PT
M

∑
j∈ΦBS\{k}R

−α
oj + σ2

PT

. (5)

It can be seen that the SINR expression for MRT in (4) is more general than that for ZF in

above. Thus, MRT based SINR will be analyzed which can also provide insights about ZF based

SINR.

III. SUCCESS PROBABILITY ANALYSIS

In this section, considering MRT based SINR expression, success probability is derived,

followed by different use cases.

1SINR terms for MRT precoding are simplified as

E
{∣∣h̄Tokwok

∣∣2}= R−αok
pok
M

E
{
‖hok‖4

}
= R−αok

pok
M

(
M2 +M

)
≈ R−αok pokM , E

{∣∣h̄Tokwlk

∣∣2} = R−αok
plk
M

E
{∣∣hTokhlk∣∣2} =

R−αok plk and

E
{∥∥h̄TojWj

∥∥2
2

}
=
∑
u∈Kj

E
{∣∣h̄Tojwuj

∣∣2} = R−αoj
∑
u∈Kj

puj = R−αoj PT .

2For ZF precoding, SINR terms are given as E
{∣∣h̄Tokwok

∣∣2} =

R−αok pokME
{∣∣∣hTokHk

(
HT
kHk

)−1
eo

∣∣∣2}=R−αok
pok
M

E
{∣∣hTokHkeo

∣∣2}= R−αok
pok
M

E
{
‖hok‖4

}
≈R−αok pokM and

E
{∥∥h̄TojWj

∥∥2
2

}
=

∑
u∈Kj

E
{∣∣h̄Tojwuj

∣∣2} = R−αoj
∑
u∈Kj

pujME
{∣∣∣hTojHk

(
HT
kHk

)−1
el

∣∣∣2} =

R−αoj
∑
u∈Kj

puj

M
E
{∣∣hTojHkel

∣∣2} = R−αoj PT .
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Due to concurrent transmissions, the interference at the typical user becomes a dominant

factor. From the user’s perspective, to maintain a quality of service and to evaluate the caching

performance, the success probability measure is considered and is defined as the probability that

the achievable rate of a typical user exceeds the rate threshold R0 for the f th content in a typical

time slot as

g(qf ) = Ek∈ΦBS {Pr (W log2 (1 + Γfk) ≥ R0)} , (6)

with W being the transmission bandwidth. For the whole content set F , the ASP can be written

as

P (p,q) = Ef {g(qf )} =
∑

f∈F

pfg(qf ). (7)

Since the success probability is difficult to analyze with respect to the PPP of BSs ΦBS and

the SINR model in (4), we focus on analyzing another point process with a more tractable SINR

model as long as both the point processes have statistically equivalency, which is defined as

follows.

Definition 1. Two stochastic point processes Φ1 and Φ2 with SINR models Γ1 and Γ2 are said

to be statistically equivalent if the SINR distribution at the typical user is same for both the

processes, i.e. Pr (Γ1 > T ) = Pr (Γ2 > T ) [29].

Since the evaluation of success probability is not straightforward with ΦBS for the SINR

model in (4), we focus on analyzing another PPP for a tractable SINR model as long as both

the PPPs are equivalent.

Lemma 2. The 2D-homogeneous PPP ΦBS and SINR model in (4), is statistically equivalent

to another 1D-point process Φeq with density function λeq(d) = Cd, where C = 2πλBS
Γ(1+ 2

α)
. The

equivalent SINR model for Φeq is given as

ΓMRT
fk,eq =

ξokd
−α
ok

pok
PT
M

ξokd
−α
ok

(
1− pok

PT

)
+ Ifk + Icf + σ̄2

, (8)

where Ifk + Icf =
∑

j∈ΦBS\{k} ξojd
−α
oj and σ̄2 = σ2

PT
.

Proof: Please refer to Appendix-A.

The above result transforms the homogeneous PPP into an inhomogeneous PPP, along with

the transformation of SINR expression from (4) to (8) with a planar distance path loss, multiplied
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by auxiliary random variables, representing the small scale fading. In the following, it will be

shown that the above statistical equivalent transformation can significantly simplify the analysis

of success probability, owing to exponentially distributed auxiliary random variables ξoj .

Remark (Equivalent thinning based on caching): Based on the f th content availability, the

equivalent point process Φeq can also be divided into two processes Φeq(f) and Φc
eq(f) with

densities qfλeq and (1− qf )λeq.

Nearest BS Distribution: The cumulative density function of the random distance dok, which

represents the distance to the closest BS having f th file, can be obtained from [30]

Pr(dok ≤ d) = exp

(
−
∫ d

0

qfλeq(z)dz

)
, (9)

yielding the probability density function of dok as

fdok(z) = qfCz exp

(
−qfC

z2

2

)
. (10)

Remark (Inactive probability): For a typical BS, the inactive probability is the probability that

it has no users scheduled and is inversely proportional to the relative density of the users per BS

[31]. We assume the inactive probability to be negligible, since the relative density is considered

to be large.

Based on the statistical equivalent SINR model in (8), the success probability of a typical user

is given in the following result.

Theorem 3. For the MRT transmission, the success probability at a typical user for the f th file

can be expressed as

g(qf ) = Edok∈Φeq

{
exp

(
−d2

okwf − Tokdαokσ̄2
)}
, (11)

where wf = C (qfA+ (1− qf )B), A = α−1T
2/α
ok I(0),

B = α−1T
2/α
ok I(T−1

ok ), Tok = TPT
Mpok

· 1

1− T
M

(
PT
pok
−1

) ,

T = 2
R0
W − 1 and I(x) =

∫∞
x

c2/α−1dc
1+c

.

Proof: Proof is given in Appendix-B. For ZF based transmission, Tok = TPT
Mpok

.

Corollary 4. (Path loss exponent case): When α = 2, the value of success probability reduces



10

to

g(qf )

∣∣∣∣∣
α=2

= Edok∈Φeq

{
exp

(
−d2

ok

(
wf + Tokσ̄

2
))}

(12)

=
qf

2B + qf (2A− 2B + 1) + Tokσ̄2
. (13)

Corollary 5. (Linear approximation): With exponential approximation (e−x ≈ 1−x), the success

probability is reduced to

g(qf ) ≈ 1− Edok∈Φeq

{
d2
okwf + Tokd

α
okσ̄

2
}

(14)

= 1− 2Γ(2)

qfC
wf − TokΓ(1 + α/2)

(
2

qfC

)α/2
σ̄2. (15)

The above approximation yields the resultant ASP as

P (p,q) ≈ 1− 2A+ 2B − 2B
∑

f

pf
qf

− Tok
Γ(1 + α/2)

(0.5C)α/2
σ̄2
∑

f

pfq
−α/2
f . (16)

Corollary 6. (Interference limited case): For the interference limited case (σ2 → 0), the success

probability is computed as3

g0(qf ) = g(qf )

∣∣∣∣∣
σ2→0

= Edok∈Φeq

{
exp

(
−d2

okwf
)}

(17)

=
qf

2B + qf (2A− 2B + 1)
. (18)

From the above equation, it can be seen that for interference limited regime, the success

probability is independent of the density of BSs and users, and dependent on the caching prob-

abilities and the threshold. The reason behind is that the power of both desired and interference

signals increase with the increase in the density of BSs, causing minor change in the signal-

to-interference ratio for interference limited system and yielding the density-independent ASP.

Further, for the f th content, to maximize the success probability, caching probability qf should

be chosen according to the popularity, the threshold and the cache size. For interference limited

3g0(qf ) =
∫∞
0

exp
(
−z2wf

)
fdok (z)dz = qfC

∫∞
0
z exp

(
−z2wf − qfC · z

2

2

)
dz =

qfC

2wf+qfC

∫∞
0

exp (−t) dt =
qf

2(qfA+(1−qf )B)+qf
.
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networks, the resulting ASP for the content library F can be written as

P0(p,q) = Ef {g0(qf )} =
∑

f∈F

pfg0(qf ). (19)

In practice, the popularity is not known in advance. Based on the CP profile in the previous

time slots, content is cached ahead of time, when needed i.e. requested by a user. To achieve

that, Q-learning approaches are presented in the next sections.

IV. Q-LEARNING

In this section, we first describe in brief about the dynamics of the Q-learning system, followed

by defining the elements of Q-learning. Thereafter, using Bellman’s equations, the algorithm for

Q-learning is presented.

A. Dynamics

At the first content placement phase of the time slot t as shown in Figure 2, the content is

placed in BS caches via caching action based on the information in the previous time slot. After

content delivery phase takes place, it is followed by the information exchange phase, where the

next state of the system is revealed in terms of the CP pt. This observation is used to compute

the reward, which is used to update the Q-values, and the next state is updated before the end

of the time slot t. Note that caching action is taken, before pt is observed.

B. System States, Actions and Reward

1) States: At time slot t, the state of the system can be captured in terms of the popularity

in the tth time slot, and the content status in the cache. Thus, the state in IE phase of the time

slot t is revealed as

st = (pt,qt) ∈






 p

q


 ∈ [0, 1]2F :

pT1 = 1

qT1 = L



 , (20)

where 1 is a column vector of ones, and qt denotes the content placement decided based on

pt−1. Therefore, the state contains one length history, defining the present state of the system at

the end of time slot t.
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2) Actions: A caching action is taken at the beginning of the time slot t, and is defined as

the content placement qt,

at = (qt) ∈
{
q ∈ [0, 1]F×1 : qT1 = L

}
. (21)

In state st, the action at+1 is decided. In other words, the action qt+1 is selected based on the

history (pt,pt−1), since qt (in st) was chosen based on pt−1 in the similar way.

3) Transition probability: The probability of transition from states st to st+1 via the action

at+1 can be defined as

Pr(st+1|st, at+1) = Pr




 pt+1

qt+1



∣∣∣


 pt

qt


 ,qt+1




= Pr(pt+1

∣∣∣pt,qt) = Pr(pt+1

∣∣∣pt),

where the last equality is obtained from the fact that the popularity varies as a Markov process

i.e. the popularity at time t depends on that of time t − 1. Since qt is chosen based on pt−1,

pt+1 is independent of qt.

4) Reward: Our objective is to maximize the long term discounted ASP and the cache refresh

rate. After observing the popularity pt+1, the reward in the IE phase of the time slot t is defined

as a function of ASP and cache refresh rate as

r (st, at+1, st+1) = P (pt+1,qt+1)− νqTt+1 (1− qt) , (22)

where ν is the weight controlling the preferred objective. It can be noted that the next state is

random. Thus, the average reward per state can be computed as

R (st, at+1) = Es {r (st, at+1, s) |st, at+1}

= Ep {P (p,qt+1) |pt} − νqTt+1 (1− qt)

= g (qt+1)T Ep {p|pt} − νqTt+1 (1− qt) ,

where gT (q) = [g(q1), . . . , g(qF )]. The above reward is composed of two terms. The first term is

the ASP, which has been considered as a measure of caching. The better is the content placement,

the better is the ASP and the reward. In the second term, (1−qf,t) denotes the not-cached portion

of the f th content among BSs, while qf,t+1 denotes the portion being cached in the next time

slot. Thus, (1− qf,t) qf,t+1 implies the portion of the f th content being updated, and so, the term

qTt+1 (1− qt) represents the average cache refresh rate.
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In the above, the term Ep {p|pt} represents the conditional mean estimate of the popularity

at time t+ 1, given the previous CP information pt. In other words, it suggests that the caching

problem can also be solved using one-step prediction methods for Markov popularities, when

ASP is the only objective. However, cache refresh rate depends on the choice of actions in the

previous time slot, and hence cannot be optimized via prediction methods.

C. Value functions

For the above model with the long term expected discounted reward, the state-value function

can be written as

V ({at} , s) = E{st}

[
∞∑

t=0

γtR (st, at+1)
∣∣∣s0 = s

]
(23)

= E{pt}

[
∞∑

t=0

γtg (qt+1)T Ep

{
p
∣∣∣pt
} ∣∣∣p0 = p

]

+ ν
∞∑

t=0

γtqTt+1 (1− qt) (24)

The above value function can be maximized with respect to the actions {at} as

V ∗ (s) = max
{at}

V ({at} , s) (25)

= max
{at,t>0}

E{st}

[
R (s0, a1) +

∞∑

t=1

γtR (st, at+1)
∣∣∣s0 = s

]

= max
{a1,at,t>1}

R (s, a1) + γE{st}

[
∞∑

t=1

γt−1R (st, at+1)
∣∣∣s
]

= max
a1

R (s, a1) + γ max
{at,t>1}

Es1|sE{st,t≥1}

[
∞∑

t=1

γt−1R (st, at+1)
∣∣∣s1, s0 = s

]

= max
a1

R (s, a1) + γ max
{at,t>1}

Es1|s [V ({at} , s1)] (26)

= max
a1

R (s, a1) + γEs1|s [V ∗ (s1)] , (27)

which is known as the Bellman’s equation. Similarly, the optimal state-action Q-function is

defined as

Q∗ (s, a) = R (s, a) + γEs1|s [V ∗ (s1)] , (28)
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representing the expected total discounted reward along a trajectory starting at state s, obtained

by choosing a as the first action and following the optimal trajectory afterwards. The optimal

action set can thus be obtained as

a∗t+1 = arg max
a
Q∗ (st, a) , (29)

which is optimal in the sense that V
({
a∗t+1

}
, st
)

= V ∗ (st) and it leads to a mapping π∗ :

S → A, known as the optimal policy, determining the optimal decision rule for a given Markov

process.

D. Update in Q-learning

A Markov policy is any mapping πt defined over S × A generating an action process {at}

such that πt (st, at+1) = Pr (at+1|st). A policy πt is stationary if it does not depend on t and

deterministic if it assigns probability 1 to a single action is each state. Notice that the optimal

policy can be obtained from Q∗ by an iterative method such as fixed point iteration [32]. However,

it has two requirements. First, the transition probabilities should be known. Second, for large

number of states and actions, Q∗ is a huge sized matrix, which has large storage and computation

requirements. To solve the first problem, Watkins [33] proposed Q-learning algorithm, which

proceeds as follows. Consider the Markov process tuple M = (S,A, PT , r, γ) and let {st} be

an infinite sample trajectory of the underlying Markov chain obtained with a policy πt, yielding

actions {at} and rewards {rt}. Given any initial estimate Q0, Q-learning successively updates

this estimate using the rule

Qt+1 (st, at+1) = Qt (st, at+1) + βt∆t, (30)

where {βt} is a step-size sequence and ∆t is the temporal difference at time t,

∆t =
[
rt + γmax

a′
Qt (st+1, a

′)
]
− γQt (st, at+1) , (31)

with rt = r(st, at+1, st+1) being the instantaneous reward in time slot t.

If both S and A are finite sets, each estimate Qt is simply |S| × |A| matrix. In that case,

the convergence of Q-learning and several other related algorithms has been thoroughly studied

in [34]. However, if either S or A are infinite or very large sets, explicitly representing each

element of Qt becomes infeasible to compute, update and store, and thus, some form of compact

representation is needed. In this work, we present the function approximation with Q-learning,

which also attains convergence.
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V. Q-LEARNING WITH FUNCTION APPROXIMATION

In this section, first Q-function is linearly approximated and then non-linear based approxi-

mation is presented, along with the corresponding convergence analysis.

A. Linear function approximation (LFA)

Linear function approximation is a popular method for making Q-learning applicable to real-

world settings [26]. A linear approximation in our setup is inspired by the additive form of the

instantaneous costs in the ASP approximation in (16). Specifically, we propose to approximate

instantaneous Q(st, at+1) to Qθ(st, at+1) in the time slot t+ 1 as

Qθ(st, at+1) = θ1 (1− 2A+ 2B)− 2θ2B
∑

f

pf,t
qf,t+1

− θ3Tok
Γ(1 + α/2)

(0.5C)α/2
σ̄2
∑

f

pf,tq
−α/2
f,t+1 − θ4νq

T
t+1 (1− qt) (32)

=
4∑

i=1

ui (st, at+1) θi = uT (st, at+1)θ. (33)

where θT = [θ1, . . . , θ4] are the coefficients and uT = [u1, . . . , u4]. Note that four linear

coefficients comes from the fact that there are four terms in the ASP expression in (16).

Similar to Q-updates, in the approximation settings, the underlying idea is to apply the gradient

descent to obtain the update rule for the approximated Q-learning

θt+1 = θt + αt∇θQθ (st, at+1) ∆t (34)

= θt + αtu (st, at+1) ∆t, (35)

where ∆t is the same temporal difference as defined in (31) with Q replaced by Qθ according

to (32).

To establish the convergence of the algorithm (35), the arguments based on an ODE (ordinary

differential equation) is adopted [35], establishing the trajectories of the algorithm to closely

follow those of an associated ODE with a globally asymptotically stable equilibrium point.

B. Convergence of Q-learning with LFA

Here, we identify the conditions that ensure the convergence of Q-learning with linear function

approximation as described in (35). To proceed, we first provide some definitions.
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Given an MDP M = (S,A, PT , r, γ) with compact state space S ⊂ R2F . Let (S, Pπ) be the

Markov chain induced by a fixed policy π. We assume the chain (S, Pπ) to be uniformly ergodic

with invariant probability measure µS and policy π to verify π (s, a) > 0,∀a ∈ A and µS-almost

all s ∈ S. We denote µπ as the probability measure defined for each measurable set S ⊂ S and

each action a ∈ A as

µπ (S × {a}) =

∫

S

π (s, a)µS (ds) . (36)

Since the functions ui are bounded and linearly independent, we define the covariance matrix

Σπ = Eπ
{
u (s, a)uT (s, a)

}
=

∫

S×A
uuTdµπ. (37)

For fixed θ and s, let the set of maximizing actions be denoted as

As,θ =
{
a∗θ
∣∣θTu (s, a∗θ) = max

a
θTu (s, a)

}
, (38)

which is also called the set of greedy actions. The corresponding θ-dependent covariance matrix

can be written as

Σ∗θ = Eπ
{
u (s, a∗θ)u

T (s, a∗θ)
}
. (39)

It can be noted that the difference between Σπ and Σ∗θ is that the former selects actions according

to π, while the latter select greedy policy depending on θ. With that, the convergence result is

stated in the following.

Lemma 7. GivenM, π and u with finite state space, if ∀θ, Σπ � γ2Σ∗θ and the step size sequence

verifies
∑

t βt = ∞ and
∑

t β
2
t < ∞, then the algorithm (35) based on linear approximation

converges w.p. 1.

Proof: Proof is based on a standard ODE argument [36, Th. 17] and can be found in [35].

To satisfy the condition on the step size sequence, βt is updated as βt = βt−1 (1− εβ), where

εβ < 1 is the decay factor, as presented in the Algorithm 1. The condition Σπ � γ2Σ∗θ is quite

restrictive, especially when γ is close to 1. This condition essentially requires that for every θ

and for state s, we should have

max
a∈A

uT (s, a)θ ≈ Eπ
{
uT (s, a)θ

}
.
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Therefore, such condition implies that the learning policy π is close to the policy that the

algorithm is meant to compute. In other words, the maximization above yields a policy close to

the policy used during learning. To satisfy this condition, the authors in [35] update the policy for

taking actions at every iteration. In the proposed approach, we explore and update policy based

on ε-greedy actions, where the exploration factor is updated at each epsiode, in turn updating the

policy. The exploration factor is updated as εt = εt−1 (1− εδ) , where εδ is the exploration decay

rate. It means as the iterations progress, the policy is close to optimum and less exploration is

needed.

Algorithm 1 Conventional, LFA and NLFA based Q-learning algorithms.
Input: Q(s, a) = 0, ∀(s, a), β0, ε0

Output: Q∗(s, a) for optimum policy.

1: for e = 1, 2, . . . ,max_episodes do

2: for t = 1, 2, . . . ,max_steps do

3: Take ε-greedy action selection:

at+1 =




U {1, . . . , |A|} , U(0, 1) < εt,

arg maxbQ(st, b), otherwise.

4: Observe next state st+1 = (pt+1,qt+1).

5: Obtain reward rt = r(st, at+1, st+1).

6: For Q-learning, update Q-values via (30).

7: For Q-learning with LFA, update θ’s by (35).

8: For Q-learning with NLFA, update via (41).

9: end for

10: Update εt = εt−1 (1− εδ) and βt = βt−1 (1− εβ).

11: end for

C. Non-linear function approximation (NLFA)

Although LFA is popular, many real world applications cannot be modeled with linear func-

tions. Here, inspired by the ASP for interference limited system in (18), we propose to approx-
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imate the instantaneous Q(st, at+1) to Qθ(st, at+1) in time slot t+ 1 as

Qθ(st, at+1) =
∑

f∈F

pf,t

[
θ1qf,t+1

2B + qf,t+1 (2A− 2B + 1) θ2

− θ3νqf,t+1 (1− qf,t)

]
, (40)

where θT = [θ1, . . . , θ3] are the coefficients. Each of the coefficient is associated with the action

qf,t+1. In these settings, the update rule for the NLFA approximated Q-learning is changed to

θt+1 = θt + αt∇θQθ (st, at+1) ∆t (41)

where ∆t is the same temporal difference as defined in (31) according to (32). The gradient can

be calculated as

∂Qθ

∂θ1

=
∑

f∈F

pf,t+1
qf,t+1

2B + qf,t+1 (2A− 2B + 1) θ2

∂Qθ

∂θ2

= −
∑

f∈F

pf,t+1

θ1q
2
f,t+1 (2A− 2B + 1)

(2B + qf,t+1 (2A− 2B + 1) θ2)2

∂Qθ

∂θ3

= −ν
∑

f∈F

pf,t+1qf,t+1 (1− qf,t) .

To establish the convergence of the algorithm (41), a similar type of approach is adopted as

in [35], establishing the trajectories of the algorithm to closely follow those of an associated

ODE with a globally asymptotically stable equilibrium point. This convergence result is given

as follows.

Lemma 8. Given M, π and {A,B} with finite state space, if the step size sequence verifies
∑

t βt =∞,
∑

t β
2
t <∞, and the following conditions are satisfied

Eπ {b1 (b∗1γ − b1)} < 0, (42)

Eπ {b1 (b∗1γ − b1)} · Eπ {b3 (b∗3γ − b3)}

−Eπ {b1 (b∗3γ − b3)} ·Eπ {b3 (b∗1γ − b1)} < 0, (43)

Eπ {b1 (c∗γ − c)} < 0, (44)

Eπ {b3 (c∗γ − c)} < 0, (45)
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where4 b1 = 1
2B

∑
f∈F pfqf , b3 = −ν

∑
f∈F pfqf

(
1− q′f

)
, c = −

∑
f∈F pfq

2
f

2A−2B+1
4B2 , then the

algorithm (41) based on non-linear approximation converges w.p. 1.

Proof: Proof is given in Appendix-C.

The above conditions essentially implies that at convergence, the variables b1, b3, c should

be closed to the corresponding optimum values. Similar to the case in LFA, these conditions

are satisfied by properly choosing γ and the exploration factors εβ and εδ as mentioned in the

Algorithm 1.

VI. SIMULATION RESULTS

In simulations for ASP, we assume M = 256 antennas for channel hardening, qf = 0.2 for

moderately popular files, λBS = 20, cT = 0.6, SNR σ̄−2 = 30dB and α = 3. Each of Q-learning

algorithms is run for interference-limited systems with threshold value fixed to 0.01. Q-learning

algorithm is run for finite states finite policies (FSFP) scenarios with the parameters given as

follows: number of popularity profiles in the finite set {p ∈ P}, |P| = 8, the cardinality of the

set of caching probabilities |A| = 32, content library size F = 1024, cache size L = 32, decay

factor εβ = 0.1, learning rate β1 = 0.7, the number of steps per episode is 103 and maximum

number of episodes is 100. Note that each algorithm is initialized with the same random seed.

Since the refresh rate is much higher that the ASP, we choose ν = 0.005.

A. ASP versus threshold and BS’s density

Figure 3 shows the variations of the success probability with the threshold for a fixed value

of λBS in (a), and for different values of λBS in (b). It can be observed that as the threshold is

increased, the success probability decreases, while verifying the theoretical results. As compared

to MRT, ZF provides better ASP at all thresholds, although the difference in ASP is negligible

at lower thresholds. From the second sub-figure, it can be seen that the success probability is

independent of the density of BSs. It happens due to the fact that both the signal and interference

powers are increased for an increase in the density of BSs, causing very small changes in SINRs

and keeping the ASP unchanged with respect to λBS .

4Also note that the variables b1, b3, c are a function of (s, a). To avoid cumbersome notations, these notations have been

shortened.
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Figure 3. Success probability versus T for a fixed value λBS = 20 in (a), and for different value of λBS in (b).

B. Convergence plots

1) With single Q-entry updation: Figure 4(a) plots the episodic progress of average rewards

(on the left axis) and average ASPs (on the right axis) for three different approaches, namely

conventional Q-learning, and the Q-learning with LFA and NLFA with single entry updates

as in conventional Q-learning. The approach with LFA (or NLFA) with single entry update is

like approximated conventional Q-learning, where the Q-matrix is maintained and one entry is
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Figure 4. Convergence of average reward and average ASP versus number of episodes for single-entry update based RL

algorithms for a library size F = 1024 and cache size L = 32 with 256 states and 32 actions in (a), and with 1024 states and

64 actions in (b).
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Figure 5. Convergence of average reward and average ASP versus number of episodes for single-entry update based RL

algorithms for a library size F = 1024 and cache size L = 32 with 256 states and 32 actions.
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updated per step observation. It can be observed that as episodes progress, these Q-learning

approaches achieve convergence around 40 episodes, and the achieved stable point is approxi-

mately same along with the approximately similar convergence path. A similar trend is observed

as in Figure 4(b) for the larger set of states and actions with |P| = 16 and |A| = 64. These

results demonstrate successful applicability of the proposed linear and non-linear approximations

for the present scenario with finite set of states and actions.

Figure 5 shows the plot for the averaged mean squared error (∆2
t ) for the same algorithms

with single entry update. It can be observed that Q-values reaches a better convergence when

the approximation is used. This is due to the fact that the θ-variables are updated in each step,

in contrast to the occasional entry updates in the conventional Q-learning. In other words, each

single Q-value is updated based on all the previous experiences of other Q-values, since θ-

variables are common for all the states and actions. Next, we show the results, when all the

necessary required entries are updated in each step.

2) With all necessary Q-entries updates : Figure 6(a) plots progress of the averaged reward

per episode, while the averaged mean squared error (∆2
t ) with respect the number of episodes

is given in (b). As compared to single entry Q-update, the first notable fact observed from (a)

is that LFA/NLFA starts giving better rewards, just after few episodes, while Q-learning needs

many observation with many episodes. Note that the whole Q-matrix needn’t require updation in

each step; only the necessary Q-values can be computed by the updated θ-variables for the action

selection by the agent in the next step. Further, it can be seen that all the three methods show

convergent behavior, and the NLFA-based Q-learning provides the best value. Also, the LFA-

based learning also provides better performance than the conventional Q-learning. The reason

behind is the number of variables that needs to be updated or learned. In the conventional RL,

the number of learning variables are huge, while in function approximated ones, the number

of these variables is small. Further, better performance of NLFA than that of LFA is observed

due to the fact that NLFA is able to better approximate the ASP than the linear expression in

LFA. Although the converged mean squared errors for three methods are different, Figures 4

demonstrate the approximately similar reward performances, which is due to the fact that the

actions depends on the relative Q-values, rather than the individual values. Thus, if the order of

some of those values matches, approximately similar results can be obtained.
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Figure 6. Progress of average reward per episode versus the number of steps in (a) and average mean squared error versus

episodes in (b) for whole Q-update based RL algorithms for F = 1024 and L = 32 with 256 states and 32 actions.



24

1 2 3 4 5 6 7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v

er
ag

e 
A

S
P

 

FSFP

FSFP-LFA

FSFP-NLFA

Figure 7. Average ASP with respect to cache size for F = 1024 with 256 states and 32 actions.

C. ASP versus cache size

Figure 7 depicts the average ASP at convergence with respect to the cache size, while keeping

library size fixed. It can be seen that as the cache storage is increased, the ASP improves. For

lower cache sizes, NLFA provides the better ASP than that of LFA, which reflects the limitations

of LFA.

VII. CONCLUSION

In this paper, for a PPP network with massive-MIMO base stations, two function approximation

based reinforcement learning approaches are proposed for ASP maximization and cache refresh

rate minimization. We first derive the ASP for multi-user massive MIMO systems and conclude

that for interference limited systems, the resulting ASP gets independent of the densities. Further,

global content popularities are modeled using a Markov chain. Given a set of caching probabil-

ities, conventional Q-learning and function approximation based Q-learning methods converge

and yield the similar optimal content placement policy. The function approximated learning

requires only a constant number of parameters to be updated, while the recent Q-learning model

[26] in caching context requiring parameters updates proportional to number of states and actions.

Using the synthetic dataset, simulations verify the equivalent performance of the approximated
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Q-learning approaches with the Q-learning approach without approximation, albeit with much

lower time and space computational complexity.

APPENDICES

A. Proof of Lemma 2

Since SINR model of interest is a function of the distance between the typical and the BS only,

but not a function of the azimuth angles. Thus, ΦBS is statistically equivalent to another 1D-

inhomogeneous PPP Φeq1 = {ri, i ∈ N} with density function λeq1(r) =
∫ 2π

0
λBSrdθ = 2πλBSr.

The SINR model for Φeq1 is the same as the one for ΦBS . Let us define R−α = ξd−α ∈ Φeq.

Then, dα = ξRα and dα−1dd = ξRα−1dR =⇒ dd = dR−1dR = ξ1/αdR. It can be equated to

another PPP Φeq as

EΦeq1


 ∑

r∈Φeq1

1[r,r̄] (r)


 = Eξ,Φeq


∑

d∈Φeq

1[d,d̄] (d)




∫ r̄

r

λeq1(r)dr = Eξ

[∫ d̄

d

λeq(d)dd

]

= Eξ
[∫ r̄

r

λeq(ξ
1/αr)ξ1/αdr

]

=

∫ r̄

r

[∫ ∞

0

a
(
ξ1/αr

)b
ξ1/α exp(−ξ)dξ

]
dr

= a

∫ r̄

r

rb
[∫ ∞

0

ξ(b+1)/α exp(−ξ)dξ
]

dr

∫ r̄

r

2πλBSrdr = aΓ

(
1 +

b+ 1

α

)∫ r̄

r

rbdr,

where λeq(d) = Cdb is assumed. Equating both sides yields b = 1 and C = 2πλBS
Γ(1+ 2

α)
= πλBSα

Γ( 2
α)

.
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B. Proof of Theorem 7

Based on the statistical equivalence, the success probability can be computed for T = 2
R0
W −1

as

g(qf ) = Pr
(
ΓMRT
fk > T

)
= Pr

(
ΓMRT
fk,eq > T

)
(46)

= Pr


 ξokd

−α
ok

pok
PT
M

ξokd
−α
ok

(
1− pok

PT

)
+ Ifk + Icf + σ̄2

> T


 (47)

= Eξ,Φeq

[
Pr

[
ξok > Tokd

α
ok

(
Ifk + Icf + σ̄2

)
∣∣∣∣∣dok

]]
(48)

= Eξ,Φeq
[
exp

(
−Tokdαok

(
Ifk + Icf + σ̄2

))]
, (49)

where the last step is obtained from the exponential distribution of ξok, and Tok = T

M
pok
PT
−T

(
1− pok

PT

) =

TPT
Mpok

· 1

1− T
M

(
PT
pok
−1

) . For equal power allocation pok = PT
Kk

, the effective threshold Tok = TKk
M
·

1
1− T

M
(Kk−1)

changes with the number of users. On the other hand, if per user power allocation

is constant pok = cTPT i.e. the total transmit power budget is increased with the increase in

number of users, Tok = T
McT
· 1

1− T
M (c−1

T −1)
= T̄ is a constant. For ZF, Tok = TPT

Mpok
.

Further, since the terms in Ifk + Icf are independent, the first term in the above equation can

be simplified as

Eξ,Φeq
{

exp
(
−TokdαokIfk

)}
(50)

= EΦeq





∏

j∈Φeq(f)\{k}

Eξ
{

exp
(
−ξd−αoj Tokdαok

)}


 (51)

= EΦeq


 ∏

j∈Φeq(f)\{k}

1

1 + d−αoj Tokd
α
ok


 (52)

(a)
= exp

[
−
∫ ∞

0

(
1− 1

1 + d−αTokdαok

)
qfλeq(d)dd

]

= exp

[
−
∫ ∞

0

(
qfCd

1 + dαT−1
ok d

−α
ok

)
dd

]
(53)

(b)
= exp

[
−Cqfα−1T

2/α
ok d2

ok

∫ ∞

0

t2/α−1dt

1 + t

]
(54)

(c)
= exp

[
−CqfAd2

ok

]
(55)
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where in (a), Campbell’s theorem is invoked; in (b), by change of variables t = dαT−1
ok d

−α
ok , we

get dt = dd · αdα−1T−1
ok d

−α
ok = dd · αd−1t = dd · αt

(
T−1
ok d

−α
ok t
−1
)1/α and d · dd = α−1d2t−1dt =

α−1T
2/α
ok d2

okt
2/α−1dt; (c) follows from letting A = α−1T

2/α
ok I(0) and I(x) =

∫∞
x

c2/α−1dc
1+c

. Simi-

larly, the other term of (49) can be written as

Eξ,Φeq
{

exp
(
−TokdαokIcf

)}
(56)

= exp
[
−(1− qf )CBd2

ok

]
,

where B = α−1T
2/α
ok I(T−1

ok ). Substituting (55) and (56) into (49) gives the required expression

in (11).

C. Proof of Lemma 8

To prove the convergence of non-linear function approximation based Q-learning algorithm,

we leverage the Taylor series approximation for Q-function as

Qθ(s, a) ≈ bTθ + θTCθ,

where bT = ∇T
θQθ

∣∣∣
θ=0

= [b1, 0, b3] =
[

1
2B

∑
f∈F pfqf , 0,−ν

∑
f∈F pfqf

(
1− q′f

)]
and C =

∇θ∇T
θQθ

∣∣∣
θ=0

=




0 c 0

c 0 0

0 0 0


 with c = −

∑
f∈F pfq

2
f

2A−2B+1
4B2 . Let maxaQ(s, a) = bTθ θ +

θTCθθ. The proof is established via a standard ODE argument. The assumptions on the chain

(M, π), the function u and µX-almost every x ∈ X ensure the applicability of the result in

[36, Th. 17, p239]. Therefore, the convergence of the algorithm can be analyzed in terms of the

stability of the equilibrium points of the associated ODE

θ̇ = Eπ {∇θE} , (57)

where E = (r(s, a, s′) + γmaxbQθ(s, b)−Qθ(s, a))2 and

Eπ {∇θE} = Eπ
{
∂E
∂Qθ

∇θQθ

}

= Eπ
{(
r(s, a, s′) + γ

(
bTθ θ + θTCθθ

)

−
(
bTθ + θTCθ

) )
(b + Cθ)

}
.
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If the ODE in (57) has a global asymptotically stable point, the algorithm θt+1 = θt + βt∇θE

converges w.p. 1 [36]. Let θ1 and θ2 be two trajectories of ODE starting at different initializations,

and let θ̃ = θ1 − θ2. From (57), we get

∂

∂t
‖θ̃‖2

2 = 2θ̃
T
(
θ̇1 − θ̇2

)

= 2θ̃
TEπ

{
γ (b + Cθ1) (bθ1 + Cθ1θ1)T θ1

− (b + Cθ1) (b + Cθ1)T θ1

− γ (b + Cθ2) (bθ2 + Cθ2θ2)T θ2

+ (b + Cθ2) (b + Cθ2)T θ2

}
.

To get ∂
∂t
‖θ̃‖2

2 < 0, we need to have the following inequalities as

γθ̃
TEπ

{
b
(
bTθ1θ1 − bTθ2θ2

)}
< θ̃

TEπ
{
bbT

}
θ̃, (58)

γθ̃
TEπ

{
Cθ1θ

T
1 bθ1 −Cθ2θ

T
2 bθ2

}

< Eπ
{
tr
(
bθ̃

T
Cθ1θ

T
1

)
− tr

(
bθ̃

T
Cθ2θ

T
2

)}
, (59)

γEπ
{
θ̃
T
b tr

(
Cθ1θ1θ

T
1 −Cθ2θ2θ

T
2

)}

< Eπ
{
θ̃
T
b tr

(
Cθ1θ

T
1 −Cθ2θ

T
2

)}
, (60)

γθ̃
TEπ

{
Cθ1θ

T
1 Cθ1θ1 −Cθ2θ

T
2 Cθ2θ2

}

< θ̃
TEπ

{
Cθ1θ

T
1 Cθ1 −Cθ2θ

T
2 Cθ2

}
. (61)

If bTθ1θ2 ≤ bTθ2θ2, the first inequality in (58) reduces to θ̃
TEπ

{
bbTθ1

}
θ̃γ < θ̃

TEπ
{
bbT

}
θ̃,

yielding

Eπ
{
bbTθ1

}
γ ≺ Eπ

{
bbT

}
. (62)

Similarly, the second inequality is satisfied, if above condition is followed. The third inequality

is satisfied if

Eπ
{
bV(Cθ1)

T
}
γ < Eπ

{
bV(C)T

}
, (63)

where V(·) denotes the vectorization operation. This inequality implies Cθ1γ ≺ C for most of

(s, a) in the expectation, which leads to the forth inequality satisfied. This means, θ̃ converges

asymptotically to the origin i.e. the ODE in (57) is globally asymptotically stable. Since the

ODE is time-invariant, there exists one globally asymptotically stable point for the ODE.
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The conditions can be simplified as follows. Eπ
{
b (bθ1γ − b)T

}
=
∑

a π (s, a)b (bθ1γ − b)T .

Eπb (bθ1γ − b)T = Eπ




b1

0

b3







b∗1γ − b1

0

b∗3γ − b3




T

=




Eπb1 (b∗1γ − b1) 0 Eπb1 (b∗3γ − b3)

0 0 0

Eπb3 (b∗1γ − b1) 0 Eπb3 (b∗3γ − b3)


 ≺ 0

if Eπb1 (b∗1γ − b1) > 0 and Eπb1 (b∗1γ − b1) ·Eπb3 (b∗3γ − b3)−Eπb1 (b∗3γ − b3) ·Eπb3 (b∗1γ − b1) <

0. Further, the second condition reduces to

Eπ
{
bV(Cθ1)

Tγ − bV(C)T
}

=


0,

Eπb1 (c∗γ − c) 0 Eπb1 (c∗γ − c)

0 0 0

Eπb3 (c∗γ − c) 0 Eπb3 (c∗γ − c)

,0


 < 0,

which leads to Eπb1 (c∗γ − c) < 0 and Eπb3 (c∗γ − c) < 0.
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