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The problem of inferring pair-wise and higher-order interactions in complex systems involving
large numbers of interacting variables, from observational data, is fundamental to many fields.
Known to the statistical physics community as the inverse problem, it has become accessible in
recent years due to real and simulated ‘big’ data being generated. Current approaches to the in-
verse problem rely on parametric assumptions, physical approximations, e.g. mean-field theory, and
ignoring higher-order interactions which may lead to biased or incorrect estimates. We bypass these
shortcomings using a cross-disciplinary approach and demonstrate that none of these assumptions
and approximations are necessary: We introduce a universal, model-independent, and fundamen-
tally unbiased estimator of all-order symmetric interactions, via the non-parametric framework of
Targeted Learning, a subfield of mathematical statistics. Due to its universality, our definition is
readily applicable to any system at equilibrium with binary and categorical variables, be it mag-
netic spins, nodes in a neural network, or protein networks in biology. Our approach is targeted, not
requiring fitting unnecessary parameters. Instead, it expends all data on estimating interactions,
hence substantially increasing accuracy. We demonstrate the generality of our technique both ana-
lytically and numerically on (i) the 2-dimensional Ising model, (ii) an Ising-like model with 4-point
interactions, (iii) the Restricted Boltzmann Machine, and (iv) simulated individual-level human
DNA variants and representative traits. The latter demonstrates the applicability of this approach
to discover epistatic interactions causal of disease in population biomedicine.

I. INTRODUCTION

Starting from microscopic laws of Nature, the aim of
statistical physics is to provide a macroscopic descrip-
tion of Nature by deriving observable quantities from
the underlying laws. In the inverse problem, the start-
ing point is observations for which the underlying mi-
croscopic properties, such as interactions within the con-
stituents of the system of interest, are unknown and to
be inferred. Taking the Ising model of binary magnetic
spins as an example, the goal of the forward problem is
to obtain observables such as magnetisation, energy and
correlation, given the Hamiltonian with its parameters.
Conversely, the goal of the inverse problem is to derive
unknown interactions within spins directly from data.

In recent years, the inverse problems are often moti-
vated by challenges in ‘big data’ biology due to modern
high-throughput sequencing experiments and large scale
patient databases. There is a rich literature for inverse

∗ Email: sjoerd.beentjes@ed.ac.uk
† Email: ava.khamseh@ed.ac.uk

problems with the aim of inferring model parameters de-
scribing a system, e.g., via a Hamiltonian, from obser-
vational data (see, e.g., [1] and the references therein).
Most of these methods rely on making assumptions about
the parametric form of the Hamiltonian, which may not
accurately reflect the true distribution of the data. For
instance, a misspecified parametric form often results in
biases in the estimation of the quantities of interest when
sample sizes grow without the variance in the estimation
decreasing sufficiently fast. Furthermore, in most real
world settings such as interactions in biomedical data,
there is no heuristic, let alone a theory, suggesting that
the effects of higher-order interactions are negligible and
can be ignored without consequence. Most methods in
the literature simply truncate the problem by allowing
for at most pair-wise interactions [1–5]. This in turn re-
sults in biased estimates, even for 2-point interactions.

The aim of this work is to introduce a universal,
unbiased, and targeted framework in which symmetric
2-point and higher-order interactions can be estimated
from any discrete data set. We propose a model-
independent definition of n-point interaction amongst
binary and categorical random variables. In contrast
to earlier approaches to the inverse problems in the

mailto:Email: sjoerd.beentjes@ed.ac.uk
mailto:Email: ava.khamseh@ed.ac.uk
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literature, our definition is fully non-parametric: we
make no assumptions on the parametric form of the joint
or marginal probability distributions of the random vari-
ables. Moreover, in contrast to other approaches, which
consider pair-wise interactions only, ours can access
higher-order interactions [1–5]. We note that the non-
parametric approach in Ref. [6], although pair-wise, does
incorporate dynamical interactions. From a theoretical
perspective, our definition benefits from the following
three properties: (i) it is unbiased by construction and
hence converges to the ground truth in the infinite
data limit, (ii) it provides a natural, model-independent
interpretation of higher-order interactions, and (iii) it
reduces to well-known intuitive notions of interaction
in parametric statistical physics models described by a
Hamiltonian. From a computational point of view, our
definition of n-point interaction may be directly esti-
mated from observational data by simply taking suitable
combinations of expectation values. The variance on the
resulting estimate solely depends on how deeply relevant
states are sampled, and it can be substantially improved
when (conditional) independence between variables is
known or derived. In most practical situations where the
Markovian condition is assumed, e.g., for causal identi-
fiability [7], (conditional) independence may be derived
using causal structure learning algorithms such as [8–10].

Our non-parametric definition of n-point interactions
amongst binary random variables fits in the Targeted
Learning framework of [11], a subfield of mathematical
statistics. Targeted Learning is a probabilistic frame-
work to estimate (causal) quantities of interest directly
from a data set O, without the need to successfully
estimate the true (but unknown, and often unknowable)
joint probability distribution p0 that generated O,
or to expend data on estimating parameters θ of a
potentially misspecified parametric model pθ. Crucially,
the framework requires a model-independent definition
of the (causal) quantity of interest α, known as the
target parameter, as a functional of any candidate
probability distribution p, not in terms of a parameter
of a parametric ansatz. This eliminates bias due to the
choice of model whilst safeguarding the interpretation
of α as a meaningful statistical quantity revealing true
knowledge about the ground truth p0. Once the target
parameter is established, all statistical power is used for
its estimation. The Targeted Learning framework has
already been successfully applied in biomedicine and
epidemiological studies [11].

This paper is structured as follows. We discuss the
non-parametric formulation of interactions using the Tar-
geted Learning framework in Sec. II, for the case of binary
and categorical variables. We propose two definitions of
interaction, namely additive and multiplicative, and illus-
trate their relation. For a given data set and application,

one choice may be more intuitive than the other, but the
information they hold is equivalent. The additive formu-
lation in Sec. II B applies to scenarios where the subject
expert takes one of the variables in the system as the ‘out-
come’ variable and is interested in estimating the effect
of the interaction amongst other variables on this out-
come. The multiplicative formulation in Sec. II C treats
the variables on the same footing, and instead considers
their effect (via interactions) on the energy function, and
hence the joint probability distribution. The former is
more used in biomedical applications when a treatment-
outcome relationship is set out at the beginning, whereas
the latter is more relevant for statistical physics and, e.g.,
molecular networks in biology.

Next, we provide a general formula for extracting n-
point interactions and their interpretation directly from
data. We conclude Sec. II by discussing how establish-
ing conditional independence amongst variables, e.g., via
the non-parametric χ-squared test or more sophisticated
state-of-the-art algorithms such as [8, 9], leads to im-
proved estimates of the n-point interaction.

As a first result, we provide a concrete biological ex-
ample in Sec. III, based on interactions amongst DNA
variants (epistasis) contributing to trait or disease, with
data generated using a linear model. We demonstrate
analytically and numerically, that the Targeted Learning
estimator obtains the correct ground truth interaction,
even though it is entirely agnostic to both the data gen-
erating process and its linearity. This simplified example
is used to guide the reader through the theoretical con-
cepts introduced in Sec. II.

To demonstrate universal applicability of our estima-
tor, in Sec. IV B, we consider a more complex Hamilto-
nian, namely that of the Restricted Boltzmann Machine
(RBM), and analytically obtain its all-order couplings
without the need for an asymptotic expansion and re-
summation as originally employed in [12]. In Sec. IV C,
we consider the 2D Ising model and show how the same
estimator is able to predict 2-point interactions amongst
nearest and non-nearest neighbour spin pairs, at various
temperatures and lattice sizes. Moreover, it correctly
predicts that 3-point and 4-point interactions vanish. We
compare our estimations to predictions from an RBM,
on data generated from the 2D Ising model. We limit
our comparisons to the RBM as, unlike other parametric
methods, it does not truncate higher-order interactions
and hence does not bias lower-order interactions.

Finally, in Sec. V, we generate data from a Hamiltonian
with self, 2-point, 3-point, and 4-point interactions and
show that our Targeted Learning estimator accurately
predicts higher-order interactions. We present numeri-
cal results at various temperatures. This indicates that
the TL estimator can be applied to obtain higher-order
interactions in the case of biological networks, such as
biomarker and gene expression networks. For instance,
this method is applicable to modern biomedical data sets,
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such as large-scale patient databases, e.g., UKBiobank,
containing half a million patient samples [13], or high-
throughput sequencing experiments, e.g., 10X 1.3 million
cell experiment [14] and the Human Cell Atlas project,
so far containing 4.5 million cells [15].

II. NON-PARAMETRIC FORMULATION OF
INTERACTION

A. Targeted Learning

Let O be a data set of n observations Oi generated by
an experiment with random variable O, and let p0 denote
its probability distribution O ∼ p0. The fundamental
goal in probabilistic modelling is to obtain an estimate
p̄ of p0 given the data O. With p̄ in hand, a relevant
quantity α concerning the data set O can then be esti-
mated, such as a moment, an interaction coefficient, or a
(causal) effect.

In typical situations however, given the data O the
ground truth p0 is completely out of reach due to, e.g., a
small sample size n as compared to the dimensionality of
the data. To remedy this, a parametric form pθ of p̄ may
be proposed, and the data may be used to fit unknown
parameters θ, but this often leads to an incorrect ansatz
for the parametric model due to bias. Alternatively, one
may use model selection based on the data O, but will
subsequently suffer from overconfidence in reporting the
estimate ᾱ of the quantity of interest α.

Targeted Learning [11] is a probabilistic framework to
estimate (causal) quantities of interest directly, without
the need to successfully estimate p0 or to expend data on
estimating parameters θ of a (misspecified) parametric
model pθ. As such, it avoids the above pitfalls of the
estimation problem. Targeted Learning consists of the
following steps:

1. Define the statistical model M: this is the, in gen-
eral infinite dimensional, space of candidate prob-
ability distributions, b

M = {p | p a probability compatible with O},

based on the data O. By compatibility, we mean
that the statistical model accommodates for a pri-
ori knowledge regarding the data and how it is
generated. For example, if O is generated by n
binary random variables, then M only contains
p = p(T1, . . . , Tn) with Ti binary variables. Sim-
ilarly, if the expectation value E(Ti) of a variable
is known to be positive, or if one or more variables
are known to be (conditionally) independent, this
true knowledge can be incorporated. Finally, the
statistical model contains the true probability dis-
tribution p0 ∈M by definition.

2. Define the target mapping Φ: M → Rd that ex-
presses the quantity of interest α as a function of
the distribution p. In particular, α0 = Φ(p0) is
the ground truth for α. For example, Φ could be a
(conditional) expectation value over some or all of
the variables. As another example, suppose that O
is generated by a random variable O = (Y, T,W )
where Y is a continuous outcome, T is a binary
random variable which we will call treatment, and
W is a covariate. The treatment effect,

Φ(p) = EW [E(Y | T = 1,W )− E(Y | T = 0,W )],

is another example of a target parameter, often
used in epidemiological studies to estimate the
causal effect of a drug or treatment T on health
outcome Y whilst correcting for confounding effects
due to the covariate W .

3. Apply statistical methods to obtain an estimate ᾱ
of the target parameter. We indicate a method for
obtaining improved estimates of n-point interaction
in Sec. II F, but otherwise refer the reader to [11].

There are a number of important remarks to be made
regarding the Targeted Learning paradigm. First of
all, the definition of the quantity of interest α and
its subsequent estimation are two separate steps. On
the one hand, the quantity of interest is no longer
a parameter in a potentially misspecified parametric
model pθ, but is associated to a candidate probability
distribution p via the map Φ as Φ(p); thus, the quantity
of interest needs to be expressed non-parametrically as
a function of p forcing one to re-evaluate the interest
of said quantity. On the other hand, the method of
estimation may be chosen independently from either
model or target parameter. Secondly, by expressing the
quantity of interest α as a target parameter Φ(p) one
avoids introducing bias by making an incorrect para-
metric ansatz pθ whilst safeguarding the interpretation
of α as a meaningful statistical quantity revealing true
knowledge about the ground truth p0. And thirdly, due
to bias every misspecified parametric model will not
converge to the ground truth as sample size increases
and variance shrinks. Thus a non-parametric definition
of a quantity of interest is essential to make full use of
big data.

In this paper, we apply the framework of Targeted
Learning to our quantity of interest, n-point interaction,
and illustrate its application on data generated from var-
ious models.

B. Additive interaction

Consider a random variable O = (Y, T1, . . . , Tr,W )
where Y is a discrete or continuous outcome, the Ti are
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binary random variables causally leading to the outcome
Y , and W is a covariate. In this section, we wish to
causally infer the effect of the interaction of the treat-
ment variables Ti on the outcome Y , for simplicity hav-
ing already corrected for confounding effects W . In other
words, we implicitly take expectation values over strata
of the covariate W . For example, we abbreviate

E(Y | T1 = 1) = EW [E(Y | T1 = 1,W )] , (1)

where E denotes the expectation value over Y | T1 = 1,
and EW denotes the expectation value over W . Note
however, that all definitions and results hold in the more
general case of a fixed value W = w of the covariate.

First of all, we define the statistical model, incorporat-
ing all a priori knowledge, as in Sec. II A:

M =
{
p(Y, T1, T2, . . . , Tr,W ) | Y continuous, Ti binary,

W a covariate

}
.

Before defining the target parameter, we introduce some
notation that will be used throughout the paper. If a
subset Ti1 , . . . , Tin of the variables T1, . . . , Tr is specified,
then we write T for all of the remaining variables. For
example, E(T1 | T3 = 1, T = 0) denotes the conditional
expectation value of T1, given T3 = 1 and T = 0, meaning
T2 = T4 = T5 = . . . = Tr = 0. We abbreviate (Ti, Tj) =
(a, b) to Tij = (a, b).

In biomedicine and epidemiological studies, a particu-
lar quantity of interest to be estimated is the causal effect
of a treatment on an outcome, the average treatment ef-
fect, e.g., the effect of a drug on health. We express our
additive notion of interaction with notation compatible
with the existing literature [7, 11, 16]. The average treat-
ment effect (ATE) of Ti on Y is given by

ATETi
(Y ) = E(Y | Ti = 1)− E(Y | Ti = 0). (2)

This expression is the first order derivative with respect
to Ti evaluated at Ti = 0 of the function Ti 7→ E(Y | Ti).
Indeed, for a function f of a binary variable T we have
∂T f = f(1)− f(0).

Next, given two binary variables Ti, Tj encoding two
different treatments, we obtain the ATE of treatment Ti
on Y and the ATE of treatment Tj on Y . A natural ques-
tion is how do these treatments interact? In words, how
does applying treatment Ti affect the effect of treatment
Tj on Y , and vice versa? In order to isolate the effects
of Ti and Tj on Y , the other treatments are not applied,
i.e., we condition on T = 0. We now define the first tar-
get mapping, Φai,j , which is our non-parametric additive
formulation of 2-point interaction between binary ran-
dom variables. The additive interaction Iai,j between the
binary variables Ti and Tj , is given by the difference of
the effect of changing Ti : 0→ 1 on Y given Tj = 1, and
the effect of changing Ti : 0→ 1 on Y given Tj = 0, i.e.,

M3 p 7→ Φa
i,j(p) := Iai,j

=
[
E(Y | Tij = (1, 1), T = 0)− E(Y | Tij = (0, 1), T = 0)

]
−
[
E(Y | Tij = (1, 0), T = 0)− E(Y | Tij = (0, 0), T = 0)

]
.

(3)

Note that interaction is a difference of ATEs, i.e., Iai,j =
ATETi

(Y | Tj = 1, T = 0) − ATETi(Y | Tj = 0, T = 0).
Thus, the interaction Iai,j is the change of effect of Ti
on Y when changing Tj , conditioned on T = 0. This
change of effect may be expressed as the (symmetric)
double derivative with respect to Ti and Tj , and so Ia1,2
is also the change of effect of Tj on Y when changing Ti.
Formally, this reads

Iai,j = Iaj,i, (4)

as one readily deduces from Eq. 3. Indeed, given a func-
tion f : {0, 1}2 → R of two binary variables x and y,
∂x∂yf = ∂y∂xf .

Although numerically, the effect of Ti on the effect of
Tj on Y is the same as the effect of Tj on the effect of
Ti on Y , only one direction might admit a sensible inter-
pretation. This is similar to the causal interpretation of
the set of equations Y = mX+ b or X = m′Y + b′ that is
provided by a directed acyclic graph (DAG) [7] and is not
captured by the equation alone. In contrast, note that
the sign of the interaction is uniquely determined since
a direction is specified: it is the effect on Y of changing
Ti from 0 to 1, not from 1 to 0, that we compare to the
effect on Y of changing Tj from 0 to 1. Both the sym-
metry and the sign of Iai,j are illustrated in the following
diagram:

(1, 1) A (1, 0)

A A

(0, 1) A (0, 0)

(5)

We introduce the shorthand A(ti, tj) = E(Y | Tij =
(ti, tj), T = 0) where ti, tj ∈ {0, 1}. In the diagram,
vertex (ti, tj) represents the expected outcome A(ti, tj).
An arrow represents the average treatment effect of the
variable of which the value changes, where the sign is
dictated by ‘target minus source’. For example, the left
vertical arrow encodes the average treatment effect of
Ti : 0→ 1 on Y given Tj = 1, i.e.,

A(1, 1)−A(0, 1) = ATETi(Y | Tj = 1, T = 0). (6)

Finally, either dotted arrow encodes the interaction be-
tween the effects of Ti and Tj on the outcome Y , together
with its inherent symmetry. Indeed, via the sign conven-
tion ‘target minus source’, the diagram yields relations,

Iai,j = ATETi(Y | Tj = 1, T = 0)−ATETi(Y | Tj = 0, T = 0),

Iaj,i = ATETj (Y | Ti = 1, T = 0)−ATETj (Y | Ti = 0, T = 0),

where the first line is encoded by the horizontal arrow
and the second line by the vertical arrow.
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Next, we define the additive n-point interaction on the
outcome Y . Whereas the 2-point interaction is a dif-
ference of two ATEs, hence a sum of 22 = 4 expectation
values, the 3-point interaction involves 23 = 8 such terms
and, more generally, the n-point interaction involves 2n

terms. We introduce notation in order to state the for-
mula of a general n-point interaction.

Consider a subset K = {i1, . . . , i`(K)} ⊂ {1, . . . , r} of
the indices for the treatment variables T1, . . . , Tr in the
random variable O. Here, in general, given a further
subset J ⊂ K we denote its number of elements by `(J).

We write e
(`(K))
J for the `(K)-tuple of elements,

e
(`(K))
J = (ei1 , . . . , ei`(K)

), (7)

where eij equals 1 if ij ∈ J and 0 if ij 6∈ J . For example,
if J = {2, 7} ⊂ {1, 2, 4, 5, 7} = K, then

e
(`(K))
J = e

(5)
J = (0, 1, 0, 0, 1). (8)

Finally, we write TK = (Ti1 , . . . , Ti`(K)
) where ij ∈ K for

all 1 ≤ j ≤ `(K). Continuing the previous example, we
have `(K) = 5 and `(J) = 2. The 5-point interaction
between the variables TK = (T1, T2, T4, T5, T7) is a sum
of 25 = 32 terms, and it will involve the expectation value

E
(
Y |TK = e

(5)
J , T = 0

)
=

E
(
Y |(T1, T2, T4, T5, T7) = (0, 1, 0, 0, 1), T = 0

)
.

(9)

The next target mapping, Φai1,...,in , is our non-parametric
additive formulation of n-point interaction.

Definition II.1. Let K = {i1, . . . , in} ⊂ {1, . . . , r}
be a subset of indices. The additive n-point interac-
tion amongst the effects of the binary treatments TK =
(Ti1 , . . . , Tin) on the outcome Y , is

M3 p 7→ Φa
i1,...,in(p) := Iai1,...,in =

n∑
j=0

(−1)n−j

 ∑
J⊂K : `(J)=j

E
(
Y | TK = e

(n)
J , T = 0

) ,
(10)

where the internal sum runs over all subsets J ⊂ K of
length `(J) = j.

This is the nth order boolean derivative of the func-
tion (T1, . . . , Tn) 7→ E(Y | T1, . . . , Tn). As an example,
consider the 3-point interaction Ia1,2,3 amongst the effects
of the binary random variables T1, T2, T3 on the outcome
Y . Then TK = (T1, T2, T3) with K = {1, 2, 3}, and Ia1,2,3
consists of 23 = 8 terms. Explicitly, the interaction reads

Ia1,2,3 =E(Y |TK = (1, 1, 1), T = 0)− E(Y |TK = (1, 1, 0), T = 0)

−E(Y |TK = (1, 0, 1), T = 0)− E(Y |TK = (0, 1, 1), T = 0)

+E(Y |TK = (1, 0, 0), T = 0) + E(Y |TK = (0, 1, 0), T = 0)

+E(Y |TK = (0, 0, 1), T = 0)− E(Y |TK = (0, 0, 0), T = 0).

Note that the four terms with a ‘+’ are those for which
an odd number of variables satisfies Ti = 1, whereas the

four terms with a ‘−’ are those for which an even number
of variables satisfies Ti = 1. This is the other way around
for 2-point interactions, see Eq. 3, and depends on the
parity of the number n in general as follows from Eq. 10.

For a diagrammatic relation between the 3-point
interaction and the 2-point interactions from which it
is built, as in Eq. 5, together with an interpretation of
n-point interaction in general, we refer the reader to
section II E. Finally, we show in Cor. B.2 that Iai1,...,in is
symmetric under any permutation of its indices i1, . . . , in.

Our additive notion of n-point interaction amongst bi-
nary random variables readily generalizes to the setting
of categorical variables. Recall that a categorical random
variable X distinguishes k + 1 categories, typically la-
belled by integers 0, 1, . . . , k, where the probability of be-
ing in category i equals p(X = i) = pi and the pi ∈ [0, 1]
sum to 1. If k = 1 then X is a binary random variable.
The categorical case leads to new phenomena, most im-
portantly the dependence of the interaction Iai1,...,in on
the particular categories of Ti1 , . . . , Tin one considers. In-
deed, e.g., Iai,j in the binary case has a unique double
derivative whereas in general a derivative is a function
that needs to be evaluated at a point (i.e., a category) in
order to obtain a value.

Before we define interaction as a target parameter, we
again specify the statistical model:

M =
{
p(Y, T1, T2, . . . , Tr,W ) | Y continuous, Ti categorical with

ki∈N categories,W a covariate

}
Let ti, t

′
i and tj , t

′
j be categories of Ti and Tj respectively.

First, we define the interaction between the effects of Ti
on Y as Ti changes from ti to t′i and the effect of Tj on Y
as Tj changes from tj to t′j . We write Ti : ti → t′i to mean
that Ti changes from ti to t′i. For example, the average
treatment effect of Ti : ti → t′i on Y , given Tj = tj , reads

ATETi : ti→t′i
(Y | Tj = tj) =

E(Y | Ti = t′i, Tj = tj)− E(Y | Ti = ti, Tj = tj),
(11)

The target mapping for the additive interaction between
the effects of Ti and Tj on the outcome Y is the following.
The additive interaction Iai,j(tit

′
i; tjt

′
j) between the effect

of the categorical variables Ti : ti → t′i on Y and the effect
of Tj : tj → t′j on Y , is given by the difference of their
respective treatment effects, i.e.,

Iai,j(tit
′
i; tjt

′
j) = ATETi : ti→t′i(Y | Tj = t′j , T = 0)

−ATETi : ti→t′i(Y | Tj = tj , T = 0).
(12)

This definition reduces to that of Eq. 3 in the case where
both Ti and Tj are binary with labels {0, 1}, i.e.,

Iai,j(01; 01) = Iai,j . (13)

For properties of n-point interaction in this more general
setting, such as transitivity, see App. A.
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C. Multiplicative interaction

In this section, we define the multiplicative interaction
amongst n binary random variables Xi forming part of a
random variable O = (X0, . . . , Xr) with joint probability
density function p0. First of all, we specify the statistical
model as in Sec. II A:

M =
{
p(X0, X1, . . . , Xr) | Xi binary random variables

}
.

The target map, Φmi,j , is our non-parametric multiplica-
tive formulation of 2-point interaction between the binary
random variables Xi and Xj :

M3 p 7→ Φmi,j(p) := Imi,j =

p(Xij = (1, 1) | X = 0)

p(Xij = (1, 0) | X = 0)

p(Xij = (0, 0) | X = 0)

p(Xij = (0, 1) | X = 0)
.

(14)

The above ratios of conditional probability distributions
may be expressed in terms of the joint probability distri-
bution p since all are conditioned on X = 0. As a result,
the 2-point interaction between, e.g., X1 and X2 can be
directly estimated from the data, as it reduces to

Im1,2 =
p(1, 1, 0, . . . , 0)

p(1, 0, 0, . . . , 0)

p(0, 0, 0, . . . , 0)

p(0, 1, 0, . . . 0)
. (15)

Moreover, if a variable Xk appearing in the X is indepen-
dent of both Xi and Xj , then one need not condition on
Xk. In this case, statistics may be improved as Xk drops
out of the conditional joint distribution p(Xi, Xj |X) for
(Xi, Xj). See Sec. II F where this argument is explained
in detail.

The multiplicative 2-point interaction Imi,j of Eq. 14
between the binary random variables Xi, Xj can also be
expressed in terms of their (conditional) expectation val-
ues. Numerically, this re-formulation allows one to ob-
tain uncertainties on the estimates of Imi,j using, e.g., the
empirical bootstrap procedure, see Sec. IV C. The expres-
sion of Imi,j in terms of expectation values is derived via
the product rule for probabilities, which yields

p(Xij = (0, 0) | X = 0)

p(Xij = (1, 0) | X = 0)
=

1− E(Xi | Xj = 0, X = 0)

E(Xi | Xj = 0, X = 0)
,

and similarly for the remaining two probabilities. There-
fore, the multiplicative 2-point interaction Eq. 14 can be
written as a combination of expectation values:

Imi,j =
E(Xi|Xj = 1, X = 0)

E(Xi|Xj = 0, X = 0)

(
1− E(Xi|Xj = 0, X = 0)

)(
1− E(Xi|Xj = 1, X = 0)

) .
(16)

It is not hard to see that this expression is symmetric
under Xi ↔ Xj . For a general statement, see Prop. B.1.

The following is the target map for our non-parametric
multiplicative formulation of n-point interaction.

Definition II.2. Let K = {i1, . . . , in} ⊂ {0, 1, . . . , r}
be a subset of indices. The multiplicative n-point in-
teraction amongst the binary random variables XK =
(Xi1 , . . . , Xin) is defined as

M3 p 7→ Φm
i1,...,in(p) := Imi1,...,in =

n∏
j=0

 ∏
J⊂K : `(J)=j

p
(
XK = e

(n)
J | X = 0

)(−1)n−j

 ,
(17)

where the internal product runs over all subsets J ⊂ K
of length `(J) = j.

As an example, consider the 3-point interaction Im1,2,3
amongst the binary random variables X1, X2, X3. It con-
sists of 23 = 8 terms. Writing XK = X1,2,3 for the triple
(X1, X2, X3), the interaction reads

Im1,2,3 =
p(XK = (1, 1, 1) | X = 0)

p(XK = (1, 1, 0) | X = 0)

p(XK = (1, 0, 0) | X = 0)

p(XK = (1, 0, 1) | X = 0)

·p(XK = (0, 1, 0) | X = 0)

p(XK = (0, 1, 1) | X = 0)

p(XK = (0, 0, 1) | X = 0)

p(XK = (0, 0, 0) | X = 0)
.

(18)

Note that the four terms in the numerator are those
for which an odd number of variables satisfies Xi = 1,
whereas the four terms in the denominator are those
for which an even number of variables satisfies Xi = 1.
This is the other way around for 2-point interactions, see
Eq. 14, and depends on the parity of the number n in
general as follows from Eq. 17. There is a large amount
of symmetry in this expression:

Im1,2,3 =
Im1,2(X3 = 1)

Im1,2(X3 = 0)
=
Im1,3(X2 = 1)

Im1,3(X2 = 0)
=
Im2,3(X1 = 1)

Im2,3(X1 = 0)
, (19)

where Im1,2(X3 = 1) means that all instances of X3 are
conditioned as X3 = 1, as opposed to X3 = 0. The
fact that all three expressions (and the remaining three)
are equal follows from the 3! = 6 symmetries of Im1,2,3 of
Prop. B.1 below. We also remark that Im1,2,3 can be read-
ily computed from data since the ratios of conditional
probability distributions appearing in this equation may
be expressed in terms of the joint probability distribution
p of O. As for the 2-point interaction, a general 3-point
interaction Imi,j,k can be expressed in terms of expectation
values:

Imi,j,k =
Ri;jk(1, 1)

Ri;jk(1, 0)

Ri;jk(0, 0)

Ri;jk(0, 1)
, (20)

where we have defined, for any variable Xi conditioned
on Xjk = (Xj , Xk) = (a, b), the following expression,

Ri;jk(a, b) =
E(Xi | Xjk = (a, b), X = 0)

1− E(Xi | Xjk = (a, b), X = 0)
. (21)

For any binary variable T with p(T = 1) = p, this frac-
tion encodes the ratio p/(1−p). The expression of the 3-
point interaction Imi,j,k in terms of expectation values over
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binary random variables is used in Sec. IV C for the pur-
poses of numerical estimation via statistical bootstrap.
It is straightforward to write down an expression simi-
lar to that of Eq. 20 for any n-point interaction, making
statistical bootstrap applicable in general.

Finally, we make explicit a basic and natural symme-
try that is inherent in our non-parametric formulation of
n-point interaction Imi1,...,in amongst the binary random
variables Xi1 , . . . , Xin : n-point interaction is invariant
under any permutation σ of the n variables, namely

Imi1,...,in = Imσ(i1,...,in). (22)

We refer the interested reader to Prop. B.1 for a proof.

D. Relating additive and multiplicative
formulations

Consider binary random variables Xi forming part of a
random variable O = (X0, . . . , Xr) with joint probability
density function p. In this section, we show that the non-
parametric formulation of multiplicative n-point interac-
tion amongst the variables Xi1 , . . . , Xin is equivalent to
the additive n-point interaction amongst the effects of the
variables Xi1 , . . . , Xin on a particular outcome canoni-
cally related to p; in fact, when both interactions are
defined, they are related by a logarithm. This outcome
is the negative of the energy function E(X), obtained
from the joint distribution p via

p(X) = exp
(
−(− ln p(X))

)
and E(X) = − ln p(X). (23)

Note that the expectation value of E(X) is the Shan-
non entropy of the probability distribution p. More pre-
cisely, the additive and multiplicative n-point interac-
tions amongst the Xi1 , . . . , Xin are related via

ln
(
Imi1,...,in

)
= Iai1,...,in , (24)

where the additive n-point interaction is computed with
respect to the outcome Y = −E(X). Indeed, this follows
directly as taking the logarithm of Eq. 17 yields Eq. 10.
Here we have used that

p(Xi1,...,in = e
(n)
J | X = 0)

p(Xi1,...,in = e
(n)

J′ | X = 0)
=
p(Xi1,...,in = e

(n)
J , X = 0)

p(Xi1,...,in = e
(n)

J′ , X = 0)
,

(25)

i.e., a ratio of conditional probabilities is equal to the
corresponding ratio of joint probabilities, together with
the fact that an expectation value of the number

α = ln p(Xi1,...,in = e
(n)
J , X = 0)

equals the number itself: E(α) = α. Take, as an example,
the 2-point interaction Im1,2 between X1 and X2 of Eq. 14:

Im1,2 =
p(X12 = (1, 1) | X = 0)

p(X12 = (1, 0) | X = 0)

p(X12 = (0, 0) | X = 0)

p(X12 = (0, 1) | X = 0)

=
p(X12 = (1, 1), X = 0)

p(X12 = (1, 0), X = 0)

p(X12 = (0, 0), X = 0)

p(X12 = (0, 1), X = 0)
.

Taking the logarithm, and simplifying notation to
p12(X1, X2) = p(X1, X2, X = 0), yields

ln Im1,2 = ln p12(1, 1)− ln p12(1, 0)

− ln p12(0, 1) + ln p12(0, 0) = Ia1,2,

as claimed. Note that we recognise the canonical outcome
Y = −E(X) = ln p(X).

As a corollary, we deduce the general permutation sym-
metry of the additive n-point interaction, namely

Iai1,...,in = Iaσ(i1,...,in) (26)

for any permutation σ; see Cor. B.2 for a proof.

E. Interpreting higher-order interactions

The non-parametric n-point interaction consists of 2n

terms, as it involves n binary variables turning on or
off. Consequently, the interpretation of such higher-order
interactions is somewhat delicate. To fix ideas, we focus
on the case of additive 3-point interactions, the discussion
readily generalises to n-point interactions.

Let T1, T2, T3 be three binary random variables and
let Y denote the outcome. The interpretation of the 3-
point interaction Ia1,2,3 of Sec. II B is similar to that of
the 2-point interaction in Eq. 5. Consider the following
diagram:

(1, 1, 0) (1, 0, 0)

(1, 1, 1) (1, 0, 1)

(0, 1, 0) (0, 0, 0)

(0, 1, 1) (0, 0, 1)
(27)

We have introduced the shorthand

A(t1, t2, t3) = E(Y | T123 = (t1, t2, t3), T = 0), (28)

where t1, t2, t3 ∈ {0, 1}. Vertex (t1, t2, t3) represents the
expected outcome A(t1, t2, t3). An arrow represents the
ATE of the variable of which the value changes, where
the sign is again dictated by ‘target minus source’. For
example, the front left vertical arrow encodes the ATE:

A(1, 1, 1)−A(0, 1, 1) = ATET1(Y | T23 = (1, 1), T = 0).

The twelve arrows along the six faces of the cube (one
horizontal and one vertical each) encode the six addi-
tive 2-point interactions between the effects of two out
of the three variable T1, T2, T3 on the outcome Y , with
the third variables fixed to 0 or 1, together with their in-
herent symmetry as discussed in Sec. II B. Either of the
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three arrows through the sides of the cube, depicted in
the figure below, encodes the additive 3-point interaction
between the effects of T1, T2, T3 on the outcome Y .

I23(T1 = 1)

I12(T3 = 0)

I13(T2 = 1) I13(T2 = 0)

I12(T3 = 1)

I23(T1 = 0)
(29)

We have the relations ‘target minus source’:

Ia1,2,3 = Ia1,2(T3 = 1)− Ia1,2(T3 = 0)

= Ia1,3(T2 = 1)− Ia1,3(T2 = 0)

= Ia2,3(T1 = 1)− Ia2,3(T1 = 0).

(30)

This is our three-fold interpretation of 3-point interac-
tion: it is the change in the 2-point interaction between
T1 and T2, i.e., Ia1,2 = Ia1,2(T3 = 0), as T3 is turned on
T3 : 0 → 1, yielding Ia1,2(T3 = 1). In other words, Ia1,2,3
captures the dependence of the 2-point interaction be-
tween T1 and T2 as a function of T3. We conclude that
the sign and magnitude of a 3-point interaction can be
interpreted relative to any of the 2-point interactions be-
tween two out of the three variables.

As an illustration, we present the natural interpreta-
tion of symmetric higher-order interactions in the follow-
ing real-world examples:

1. Genomic variant-interaction leading to disease:
The additive 2-point interaction answers the ques-
tion Does variant i influence disease differently de-
pending on the status of variant j, and by how
much? The 3-point interaction answers the ques-
tion Does the interaction between variant i and
variant j influence disease differently depending on
the status of variant k, and by how much? The
same interpretation applies to combination therapy
where the effects of multiple drug-interactions on
health are examined.

2. Molecular networks: The multiplicative 2-point in-
teraction answers the question Does the likelihood
of gene i being on increase or decrease depending
on whether gene j is on or off, and by how much?
Similarly, the 3-point interaction answers the ques-
tion Does the interaction between gene i and gene
j influence outcome differently, depending on the
status of gene k, and by how much?

The cause-effect directionalities are either provided by
subject experts, discovered by perturbation experiments,
or derived by causal discovery algorithms.

F. Improving statistics via (conditional)
independence

The non-parametric formulations of n-point interac-
tion amongst the random variables Xi1 , . . . , Xin , Eq. 10
and Eq. 17, require conditioning on all remaining vari-
ables in the system. In order to improve statistical power
when estimating interactions directly from data, this re-
quirement can be relaxed under the assumption that the
system is Markovian. Then, one need only condition on
the parents of the variables Xi1 , . . . , Xin involved in the
interaction. A finite collection of categorical random vari-
ables {Xi}ri=1 is a Markov random field if

1. the joint distribution is strictly positive, i.e.,
p(Xi = xi for 1 ≤ i ≤ r) > 0, and

2. for each Xi there exists a set of parents Pi ⊂
{1, 2, . . . , r}, not including i, which is the minimal
set such that the following condition holds:

p
(
Xi = xi | X = x

)
= p
(
Xi = xi | Xj = xj for j ∈ Pi

)
.

In words, the conditional probability of Xi = xi
only depends on its parents Xj = xj , j ∈ Pi.

It is not hard to see that the set of parents Pi of the
variable i is unique. To any Markov random field one
can associate a finite undirected graph with a vertex for
each variable Xi and an edge connecting Xi and Xj if
j ∈ Pi, i.e., Xj is a parent of Xi. The Hammersley–
Clifford Theorem [17] (see also [18]) states that {Xi}ri=1

is a Markov random field if and only the joint probability
distribution p(X1, . . . , Xr) is a Gibbs ensemble, i.e., there
exists a Hamiltonian E(X1, . . . , Xr) such that

p(X1, . . . , Xr) =
1

Z
exp
(
−E(X1, . . . , Xr)

)
, (31)

where Z denotes the partition function normalising the
distribution. As a result, all energy-based models of bi-
nary and categorical random variables are Markov ran-
dom fields, and may thus benefit from the aforemen-
tioned improvement in statistical power when comput-
ing n-point interactions directly from data. These facts
are leveraged in the numerical sections IV C and V B be-
low. We also remark that we regard the assumption that
{Xi}ri=1 be a Markov random field as minimal in the con-
text of inverse problems, since it is a basic axiom in any
treatment of causality, e.g., in the works of Pearl [7] or
Rubin [16]. In practice, it may be the case that the par-
ent structure of a Markov random field {Xi}ri=1 is not
a priori known and is to be inferred from data. This
can be achieved by applying algorithms designed to es-
timate conditional independence amongst variables in a
given system, from data. These algorithms use paramet-
ric or non-parametric statistical methods, such as Pear-
son’s χ-squared test, to establish conditional indepen-
dence amongst categorical random variables [8–10].
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As an example of a structure discovery algorithm,
the PC algorithm only scales exponentially in the worst
case scenario. The sparser the ground truth network
structure is, the faster the algorithm will converge. In
Ref. [8], parallelised PC is benchmarked for construct-
ing gene network neighbouring structures for yeast (5361
variables), a bacterium (2810 variables) and DREAM5-
Insilico dataset (1643 variables). The algorithm was
shown to converge in less than 12 hours in all cases, on
a personal computer with 8-cores. Once the graph struc-
ture is known or learned, estimating interactions scales as
efficiently as computing averages over the data. The al-
gorithm is therefore approximately as fast as estimating
the bootstrap error on the interaction estimates.

As a simple illustration, in Sec. IV D we demonstrate
the results of conditional independence tests on data gen-
erated by the 2-dimensional Ising model, using the χ-
squared test, and discuss the improved statistics of the
interaction estimates.

III. RESULTS I: ANALYTICAL MAP TO
REGRESSION AND NUMERICAL RESULTS

FOR THE UK BIOBANK SIMULATION

As an elementary and concrete example, in this section
we show that the non-parametric additive definition
of interactions (Def. II.1) reduces to an interaction
coefficient in a linear regression model. We illustrate
this example in the context of a biomedical application.

A. Application: Interactions in biomedicine

Genome-wide association studies (GWAS) are methods
to identify genetic variants in the genome of individuals
in a population, that could be associated with a disease
or trait. In case-control GWAS, one searches for variants,
a collection of single nucleotide changes in the DNA, that
occur more frequently in people with a particular disease
(cases) as compared to those without the disease (con-
trols). The goal of GWAS is to find candidate genes that
could potentially increase the risk of a certain disease,
with the medical aim of identifying potential drug tar-
gets. Currently, one of the main aims of this field of study
is to move away from associational to causal variant-trait
relations. For the magnitude of causal effects of genomic
variants on traits to be inferred accurately, one is required
to (i) relax parametric assumptions such as the linear
dependencies of the traits on the variants, and (ii) take
into account interactions amongst the variants affecting
traits, known as epistasis. In contrast to the methods
used in some of the key literature in the field [19, 20],
our definition of interaction via the Targeted Learning
framework satisfies requirement (i) by removing the need
for parametric assumptions altogether, and incorporates
(ii) by taking into account epistatic interactions.

B. Epistatic interactions

Consider (i) a transcription factor protein which
modifies gene expression by binding the DNA. The
degree of binding, however, depends on the underlying
DNA variants to which the transcription factor is
binding. Now suppose that (ii) there are multiple other
variants across the genome that regulate the effect of
another transcription factor protein, hence changing
levels of gene expressions. Then, (i) and (ii) have
downstream interactions that affect particular traits or
diseases in humans. As the considerations of genetics
and causality are beyond the scope of this work, we limit
ourselves here to a sample application of our techniques
in extracting such epistatic interactions, using simulated
data of trait and disease representative of the summary-
level UK BioBank population [13]. We consider the
case of a complex continuous trait, height, as an example.

There are many variants across the genome contribut-
ing a small fraction to a complex trait such as height; this
is known as the omnigenic model [21]. Suppose that we
have an a priori understanding of which genomic vari-
ants are relevant to consider, e.g., those in the vicin-
ity of bone developmental genes. Consider the follow-
ing linear ground truth, involving six variants, Vj for
j = 1, 2, . . . , 6, across the genome each contributing via
a positive or negative coefficient to the value of height.
Without loss of generality, suppose that only two of them
also have a non-zero interaction (the generalisation to
more interactions is trivial):

Height(i) ∼ α0 +

6∑
j=1

αj ·V(i)
j + γ ·V1 ·V2 + ε, (32)

where i represents an individual, ε is the noise in height
and α0 corresponds to unobserved, but independent,
variants contributing to height.

We use our model-agnostic non-parametric additive 2-
point interaction estimator Ia1,2, Eq. 3, to show we recover
the coefficient γ representing the ground truth interaction
between V1 and V2. To see this, we simply compute the
four expected outcomes in Eq. 3:

E(H | V1 = 1, V2 = 1, V3,4,5,6 = 0) = α0 + α1 + α2 + γ,

E(H | V1 = 1, V2 = 0, V3,4,5,6 = 0) = α0 + α1,

E(H | V1 = 0, V1 = 0, V3,4,5,6 = 0) = α0 + α2,

E(H | V1 = 0, V2 = 0, V3,4,5,6 = 0) = α0

We obtain the following expressions for the four average
treatment effects:

ATEV1(H | TV = 1) = α1 + γ,

ATEV1(H | TV = 0) = α1

ATEV2
(H | TV = 1) = α2 + γ,

ATEV2
(H | TV = 0) = α2.

(33)
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The interactions both ways around are Ia1,2 = γ = Ia2,1, as
expected since interaction is symmetric by Cor. B.2. In
conclusion, we have Ia1,2 = γ as claimed. Generalisations
to higher-point interactions are trivial. For a numerical
example with 3-point interactions, see App. D.

C. Numerical simulations based on
the UK BioBank traits

We generate data from the above ground truth, Eq. 32.
The coefficients are chosen without loss of generality to
reproduce a realistic distribution of heights which is rep-
resentative of the UK BioBank population [13], with ap-
proximately the same mean (168.5 cm) and standard de-
viation (9.3 cm) (UK BioBank, standing height).

The male and female populations are generated sep-
arately and merged to form the full distribution of
height, consisting of 20,000 individuals, as presented in
Fig. 1. More explicitly, WLOG, α0 = 154 for females
and α0 = 166 for males, together with {α1, · · · , α6} =
{2, 6,−3, 6,−1.5, 6} with γ = ε = 5. Notice that the
2-point interaction, γ, between the two aforementioned
variants is chosen to approximately equal the level of
noise in height across the population. The variant allele
frequencies for V1, V2 ∼ Binom(0.8),Binom(0.7) respec-
tively, and for V3, . . . ,V6 ∼ Binom(0.5).
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FIG. 1: Histogram of female, male and combined
heights on simulated data, such that it is representative
of the UK BioBank population (UK BioBank,
standing height).

We apply the additive Targeted Learning estimator of
interaction Eq. 10 to the data. We obtain the Targeted
Learning prediction γ = 4.77(1.36) which agrees with
the ground truth value γ = 5, within statistics.

N.B. Since the Targeted Learning (TL) estimator is
non-parametric, it is completely agnostic to form, e.g.,
linearity or non-linearity, of the data generating process.
In particular, in the case of categorical variants, there
is no biological basis for the linearity assumption often
used in modelling variant-trait relations. The above

example merely serves to illustrate that if the underlying
truth were to be linear, then the TL estimator correctly
recovers this linearity. In fact, TL can be used to test if
the effect of variants on trait is linear.

The Targeted Learning estimator of epistatic interac-
tions applies to all scenarios, be they linear, non-linear or
non-monotonic, without requiring any parametric ansatz
regarding the form of the fit function. This generality
is of crucial importance since transcription factors of-
ten consist of large protein complexes that can introduce
highly non-trivial behaviour as well as other higher-order
interactions. Such scenarios will be missed by standard
linear parametric fits. Using individual-level DNA vari-
ant and trait population data, our estimator’s agnosti-
cism and flexibility allows for new discoveries of novel
and more complex interaction networks.

IV. RESULTS II: ANALYTICAL MAP AND
NUMERICAL RESULTS OF THE 2D ISING
MODEL AND RESTRICTED BOLTZMANN

MACHINES (RBM)

In this section, we discuss Boltzmann probability dis-
tributions. In Sec. IV A, we recover the 2-point couplings
in an Ising Hamiltonian from the multiplicative formula-
tion, Eq. 14. In Sec. IV B, we consider a more com-
plex Hamiltonian: the Restricted Boltzmann Machine
(RBM). We analytically obtain its all-order couplings
without any need for an asymptotic expansion and re-
summation as originally employed in [12], using the same
universal multiplicative estimator, Eq. 14. In Sec. IV C,
we compare numerical results and finally, in Sec. IV D, we
evaluate the improvement in the numerical results when
applying Markovian conditional independence criteria.

A. Two-dimensional Ising model

We briefly recall the 2-dimensional Ising model. Con-
sider a 2-dimensional square lattice of size L2 with pe-
riodic boundary conditions, with a spin ṽi on each lat-
tice point i taking on values ṽi = ±1. A state of the
Ising model is the assignment ṽ of a value +1 or −1 to
each of the L2 spins. Given a temperature T , the Boltz-
mann distribution describes the probability p(ṽ|T ) that
the system takes on a particular state ṽ at temperature
T . Explicitly,

p(ṽ|T ) =
1

Z(T )
e−E(ṽ) where E(ṽ) = −

∑
i,j

Ji,j ṽiṽj , (34)

where the sum runs over all pairs of lattice sites (i, j),
where Ji,j is the coupling between spins ṽi and ṽj , the
external magnetic field is zero, and Z(T ) is the partition
function that normalises this probability distribution.

http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=50
http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=50
http://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=50
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In the basic version of the Ising model, the interaction
between non-nearest neighbour spins is put to zero, and
Ji,j = 1

2T for all nearest neighbour spins ṽi, ṽj ; this is not
required in general. However, Ji,j = Jj,i is symmetric.

The inverse Ising problem is concerned with estimating
the coupling Ji,j from data. Our non-parametric defini-
tion Eq. 14 of multiplicative 2-point interaction between
the binary random variables vi and vj recovers the cou-
pling coefficient Ji,j directly from the probability distri-
bution, after applying ln(−)/8; the factor of 8 is due to
double counting as explained below. To see this, we first
apply the bijective transformation ṽi = 2vi − 1 express-
ing the values of a spin vi in terms of {0, 1} as opposed
to {−1, 1} in order to use our definition of multiplicative
2-point interaction Eq. 14. Thus, ṽi = −1 corresponds
to vi = 0, whereas ṽi = 1 corresponds to vi = 1. The
energy function corresponds to

E(v) = −4
∑
i,j

Ji,jvivj + 4
∑
i

(∑
j

Ji,j

)
vi −

(∑
i,j

Ji,j

)
,

where we have used the symmetry Ji,j = Jj,i.
Next, we compute the multiplicative 2-point inter-

action Imi,j between two spins. Without loss of gen-
erality, we do this for spins v1 and v2. We com-
pute the probabilities that (v1, v2) takes on the values
{(1, 1), (1, 0), (0, 1), (0, 0)} with all other spins being zero,
i.e., v = 0. We find

p(1, 1, v = 0)

p(1, 0, v = 0)
= exp

(
4J1,2 + 4J2,1 − 4

∑
j 6=1

J1,j

)
(35)

p(0, 0, v = 0)

p(0, 1, v = 0)
= exp

(
4
∑
j 6=1

J1,j

)
, (36)

and multiplying both yields Im1,2 = exp(8J1,2). Hence
ln(Im1,2)/8 = J1,2 as claimed.

Whether or not Im1,2 is smaller or larger than 1 is due
to the interpretation of the interaction. In this case,
it is the 2-point interaction between turning on both
spins, i.e., v1 : 0 → 1 and v2 : 0 → 1, not turning them
off. Alternatively, computing the additive interaction
between v1 : 0→ 1 and v2 : 0→ 1 on the outcome −E(v)
is easily seen to be Ia1,2 = 8J1,2. The factor of 8 is due
to the change of variables ṽi 7→ vi and a double counting
in Eq. 34. Finally, the coupling Ji,j can be obtained
directly by taking the double derivative of the outcome
−E(v) with respect to v1 and v2.

In Sec. IV C, we extract Ji,j directly from data. In or-
der to improve the estimate of the 2-point interaction Imi,j
from data, one may appeal to the Hammersley–Clifford
Theorem of Sec. II F to increase statistics by only condi-
tioning on the relevant parent variables, i.e., in this case
the nearest neighbours of vi and vj . In fact, the Monte
Carlo algorithm, e.g., Metropolis, generating Ising config-
urations uses this feature in its update step by computing

the change in energy only using nearest neighbour spins.
For completeness, we analytically demonstrate that the
Hammersley–Clifford Theorem applies to the Ising model
in App. C.

B. Restricted Boltzmann Machine

A Restricted Boltzmann Machine (RBM) is a type of
undirected Markov random field (MRF) with a two layer
architecture. An RBM consists of m visible nodes vj , j ∈
{1, . . . ,m}, collectively denoted by v and representing
the observed input data, and n hidden nodes hi, i ∈
{1, . . . , n}, collectively denoted by h. We consider binary
variables, i.e. vj , hi ∈ {0, 1}. The energy of the joint
state {v,h} of the machine is as follows:

E(v,h; θ) = −
n∑
i=1

m∑
j=1

hiwijvj−
m∑
j=1

bjvj−
n∑
i=1

cihi, (37)

and we collectively call θ = {w,b, c} the model param-
eters. The RBM is used to encode the joint conditional
probability distribution of a state {v,h} given a set of
parameters θ:

p(v,h|θ) =
1

Z(θ)
e−E(v,h;θ), (38)

where the partition function Z(θ) normalises the proba-
bility distribution. Marginalising over the binary hidden
variables hi yields the probability distribution of the vari-
ables in the visible layer [22]:

p(v|θ) =
1

Z(θ)

m∏
j=1

(
ebjvj

) n∏
i=1

(
1 + eci+

∑m
j=1 wijvj

)
.

(39)
By equating the RBM energy function to the 2-
dimensional Ising energy function, the expression

Jj1,j2 =
1

8
ln

n∏
i=1

(1 + eci+wij1
+wij2 )(1 + eci)

(1 + eci+wij1 )(1 + eci+wij2 )
(40)

is obtained in [12]. This expresses the Ising coupling
Jj1,j2 in terms of the model parameters of the RBM. The
proof uses an asymptotic expansion and a resummation.
Computing the non-parametric 2-point interaction, as in
Eq. 14, of the RBM readily yields the above formula:

1

8
ln
(
Imj1,j2

)
= Jj1,j2 , (41)

where Imj1,j2 is computed from equation Eq. 38. Indeed,
this follows from Eq. 14 by a direct computation, since

Imj1,j2 =
p(vj1j2 = (1, 1), v = 0)

p(vj1j2 = (1, 0), v = 0)

p(vj1j2 = (0, 0), v = 0)

p(vj1j2 = (0, 1), v = 0)

=

n∏
i=1

(1 + eci+wij1
+wij2 )(1 + eci)

(1 + eci+wij1 )(1 + eci+wij2 )
.
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Indeed, both the partition functions and the bj coeffi-
cients cancel out. By the same argument, one imme-
diately recovers the closed form expression for the 3-
point interaction between vj1 , vj2 , vj3 as derived in [12,
Eq. (66)], and the closed form expressions for all n-point
interactions, without having to resolve to an asymptotic
expansion and resummation as in [12].

C. Numerical results for the Ising model and
comparisons with the RBM

In this section, we generate 2-dimensional Ising
configurations at various values of temperature using
Magneto [23], a fast parallel C++ Monte Carlo code
available online. We set Jij = 1/2T in Eq. 34. We
then use the non-parametric multiplicative definition
of interactions, Sec. II C, to extract the couplings Jij
directly from the data, i.e., we solve the inverse problem.
We demonstrate agreement with the ground truth and
compare the performance of the estimation of interac-
tions directly from the data with the estimates obtained
via the RBM [12]. Ising states generated by Magneto
consist of spins ±1. Note that these are converted to
0, 1 as input to both the multiplicative interaction
formulation and the RBM, as already discussed in
Sec. IV A. Before delving into the numerical analysis,
our main results are summarised in the paragraph below.

In general, the non-parametric interaction converges to
the true value in the infinite data limit as it is unbiased,
whereas the RBM need not do so as the original data is
almost surely not generated from an RBM distribution.
However, for finite sample sizes, the direct computation
may become noisy and unstable without additional
information, such as conditional independence amongst
the variables. Take, for example, the case of the Ising
configuration in different temperature regimes. At low
temperatures the system is highly coupled and symmet-
ric with respect to configurations mostly containing spin
zeros and those mostly containing spin ones. In this
regime, there are enough samples to estimate conditional
probabilities appearing in Eq. 14. On the other hand,
it is harder to train an RBM in highly coupled systems,
e.g., in [12] more precise hyperparameter tuning and
longer training was required. This behaviour of the
RBMs has been reported previously in the literature [22]
and is due to the machine remaining in local minima of
the activation function. To avoid this problem, the RBM
needs to be trained using more advanced algorithms such
as Parallel Tempering [22] which allows the machine
to exit potential local minima. Of course, this in turn
requires tuning of extra hyperparameters and results
in longer training times. For temperatures above the
critical temperature, the system becomes weakly coupled
and moves towards more randomly distributed zero and

one spin configurations. In this scenario, conditioning
on all but two variables in the system results in very low
sample sizes and unstable estimates of the interactions
unless the total sample size is very large. The RBM, on
the other hand, captures the interactions well given a
comparable sample size. If however, information about
conditional independence amongst the variables in the
system is used, the non-parametric estimates perform
better than the RBM in terms of bias, variance and
compute time. In what follows, we quantify the above
statements explicitly.

Before we present numerical results, we note that ex-
cluding higher-order interaction terms from the outset
necessarily results in biased or incorrect estimates of even
the 2-point and self-couplings. To give a simple example,
consider the following formula;

E = E0 + h1v1 + h2v2 + J12v1v2 + J123v1v2v3 (42)

= E0 + h1v1 + h2v2 +
(
J12 + J123v3

)
v1v2.

Thus, any parametric fit ignoring third order (and
higher) interactions will incorrectly report J12+J123E(v3)
as the 2-point interaction. More disturbingly, in a sit-
uation where the ground truth satisfies J12 = 0 but
J123 6= 0, a truncated parametric fit will incorrectly
produce the non-existent 2-point interaction J123E(v3).
Our method avoids this problem entirely.

Using the TL universal estimator, Eq. 14 directly, it is
possible to obtain an accurate estimate of the couplings
at cold temperatures, without conditioning on the Marko-
vian parents or using translational invariance. Unlike
Refs. [1–5] no parametric assumptions, regularisation,
truncation of higher-order interactions or other approxi-
mations are required. The results are shown in Fig. 2.

Above the critical temperature, however, TL estima-
tion requires larger samples sizes. More explicitly, be-
yond T = 2.4, the states become more random, and
conditioning on all vi’s to be zero, apart from the two
spins whose interaction is to be estimated, results in low
sample sizes and unstable predictions of the conditional
probabilities appearing in Eq. 14. This is demonstrated
by plotting the bin sizes used to estimate the probabili-
ties at various values of temperature in Fig. 3.

Note that, as mentioned earlier, the non-parametric
approach of estimating coupling from the data is an un-
biased estimator and only limited by the amount of data.
Therefore, larger samples sizes are required, if one wishes
to make no physical approximation or further assump-
tions about, e.g., conditional independence amongst the
variables. Fig. 4 indicates this requirement: Above the
critical temperatures, the sample sizes need to be in-
creased from 100K to 1M and 10M, at very hot tempera-
tures, in order to estimate the couplings. As expected, in
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FIG. 2: All non-zero 2-point interaction estimates using
Eq. 14 directly, at temperature T = 1.8, in an Ising
system of size L2 = 82 with periodic boundary
conditions. 100K samples are used for this estimation.
No conditioning on the Markovian parents is performed,
no translational invariance assumptions are made.

Fig. 4 the estimates converge to the theoretical ground
truth when the samples sizes are sufficiently increased.
Note that translational invariance is not a requirement
and is merely used as a summary to illustrate conver-
gence of the non-zero couplings to the correct ground
truth value.

We now demonstrate improvements in the estimates
of interactions at all values of temperatures, by using
information on conditional independence amongst the
spins. This allows for a substantial reduction in the
sample sizes required, especially at high temperature.
As discussed earlier in Sec. II F and will be further
explained in Sec. IV D, to obtain correct estimates of
interaction amongst spins of interest, it is sufficient to
condition on their parents, i.e., nearest neighbour spins,
as opposed to all other spins in the rest of the lattice.
For interactions between pairs of nearest neighbour
spins, we condition on their 6 nearest neighbours, while
for interactions between pairs of non-nearest neighbour
spins we condition on their 4+4 nearest neighbour spins.

The individual per spin pair results, without using
translational averaging, for T = 1.8, 2.2, 3.0 are shown in
Fig. 5. Individual vanishing per spin triplet and quadru-
plet 3- and 4-point interactions are presented in App. F,
Fig. 24 with T = 1.8 as an example. Fig. 6 indicates
an increase in the smallest bin size, i.e., vi = vj = 1, at
all temperatures. This results in more precise estimates
for the couplings, presented in Fig. 71, by using transla-
tional invariance. Again, note that translational invari-
ance used in Fig. 7 is not a requirement and is merely

1 All run times are measured on a MacBook Pro (2018) machine,
6-Core Intel i9 with 16GB memory.
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FIG. 3: Average sample sizes for conditional
probabilities entering the computation of the 2-point
interaction for the nearest neighbour pairs in an L2 = 82

lattice. These values are obtained by conditioning on all
other spins. The bin vi = vj = 0 is left out as it has the
largest size as compared to the other three. The top
plot is from 100K samples, and the bottom is from 1M
samples. Notice that each of the bin sizes increases
10-fold as we go from 100K to 1M samples, as expected.
Observing the 100K plot, it is clear that above T = 2.6,
there are not enough samples in the vi = vj = 1 bin to
yield reliable estimates of the interactions, with T = 2.6
containing approximately 9 samples on average. With
1M total samples, one can obtain estimates for T = 2.7,
which on average contain 10 samples in the vi = vj = 1
bin respectively. Beyond this temperature, one has to
again increase the sample size to 2M or more.

used as a summary for comparison with the RBM results
in [12].

Fig. 8 (upper), indicates individual spin pair couplings
Imij , estimated using Eq. 16 over 100K samples as com-
pared to 20K (lower) for both nearest and non-nearest
neighbour spins. The latter results are more noisy as
expected. As compared to the 100K, 20K total samples
approximately had 2% of spin pairs with no samples in
the p11 bin. This is due to the fact that it is unlikely that
2 spins having value one, whilst their 8 nearest neigh-
bours all have spin zero. This scenario is observed more
often at colder temperatures, see Figs. 21, 22 in App. F.
Note that the non-parametric method of estimation,
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FIG. 4: A comparison of estimates of the 2-point
interaction amongst nearest neighbour spins as the
temperature varies, in an Ising system of size L2 = 82

with periodic boundary conditions, averaged over all 128
pairs of nearest neighbours for summary illustration.
Each point represents a bootstrap average with error
bar given by the bootstrap error. For T ≤ 2.6, 100K
samples are enough to estimate the nearest neighbour
interactions. For T > 2.6 substantially more samples
are required for stable estimates of the interactions. At
T = 3.0, 8M samples are required for a stable estimate.
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FIG. 5: Conditioning on the nearest neighbours (as
prior information) to estimate Imij substantially
improves the estimates. 100K samples for estimations
at T = 1.8, 2.2, 3.0, L2 = 82.

combined with information on conditional independence
amongst the variables, has nevertheless enabled us to
obtain accurate estimates of the interactions relying
on a smaller number of samples in total. For example,
using this method, there is enough power to estimate
all the nearest neighbour spin pair interactions and ap-
proximately 83% of the non-nearest neighbour spin pair
interactions for temperature T = 2.2 using 10K sample
only, as demonstrated in Fig. 8. In contrast, e.g., the
RBM does not train well on Ising data with 10K samples,
see [12, Fig. 31], and therefore is not able to provide
accurate estimates of the interactions at low sample sizes.
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FIG. 6: Average sample sizes for conditional
probabilities entering the computation of the 2-point
interaction for the nearest neighbour pairs in an
L2 = 82 lattice. These values are obtained by
conditioning on the nearest neighbour spins only. The
bin vi = vj = 0 is left out as it has the largest size as
compared to the other three. There are enough samples
in each bin to yield stable estimates of each conditional
probability/expectation value.
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FIG. 7: Conditioning on the nearest neighbours (as
prior information) to estimate Imij substantially
improves the estimates as compared to Fig. 4. 100K
samples are used for both training the RBM and
estimating the interactions directly using TL. See
Fig. 23 for the successful estimation of interactions and
their uncertainty using TL, with 10K samples. The run
time for each estimation using TL is at the order of a
few seconds.

Finally, we present the results of estimating the 2-point
interactions per individual spin pair, for a L2 = 322 lat-
tice at temperature T = 3.0, in Fig. 9. As expected,
the results for the case of 20K total samples is more
noisy, however, the signal is clearly distinguishable from
background with most of the nearest-neighbour interac-
tions being more than 3σ away from the zero line. We
note that training an RBM on a lattice of this size,
if possible, is expected to be computationally expen-
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FIG. 8: L2 = 82, T = 3.0, with conditioning on the
nearest neighbours to estimate Imij for both nearest and
non-nearest neighbour spin pairs. In order to reduce
clutter, the same number of non-nearest as nearest
neighbour couplings are shown (128). No translational
invariance is used. Top: The results are computed over
a total of 100K samples, using Eq. 16 and statistical
bootstrap, as compared to bottom: The results are
computed over a total of 20K samples. For the latter,
approximately 2% of spins had no samples in the p11
bin. This is because it is unlikely that 2 spins have
value one, whilst their 8 nearest neighbours all have
spin value zero, as the total sample size reduces.

sive and not possible for low numbers of sample sizes.
This is due to the fact that a L2 = 322 lattice con-
tains 1024 spins which would correspond to an RBM with
1024×1024 weights +2×1024 bias terms , i.e., 1,050,624
parameters to be determined, when the number of hid-
den nodes (1024) is set equal to the visible nodes (1024).
The run time of the non-parametric approach is of the
order of minutes on a local computer.

D. Numerical evidence for conditional
independence

In the first step of the Targeted Learning road map
stated in Sec. II A, we select the set of probability dis-
tributions p that are compatible with a priori knowledge
regarding the data and how it is generated. For example,
in the case of the Ising model, this knowledge could in-
clude information regarding the nearest neighbour struc-
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FIG. 9: L2 = 322, T = 3.0, with conditioning on the
nearest neighbours to estimate Imij for both nearest and
non-nearest neighbour spin pairs. In order to reduce
clutter 2× 128 interactions are shown. No translational
invariance is used. Top: The results are computed over
a total of 100K samples, using Eq. 16 and statistical
bootstrap, as compared to bottom: The results are
computed over a total of 20K samples. For the latter,
there is sufficient power to accurately estimate all the
nearest neighbour interactions, as well as approximately
98% of non-nearest neighbour interactions.

ture, namely, that by conditioning on the parental spins
of two spins, the two spins become independent of each
other and the rest of the spins if they are non-nearest
neighbours. If they are nearest neighbours, then they
only become independent of the rest of the spins but not
of each other. Then using the Markovian property and
the Hammersley–Clifford theorem of Sec. II F, to obtain
the interactions between pairs of spins, it suffices to con-
dition on their nearest neighbours to be zero, rather than
all the rest of the spins (see App. C for a proof). This
results in improved statistical estimates, as the number
of samples that satisfy the latter condition will be sig-
nificantly larger than the former. The Markovian parent
structure of nearest and non-nearest neighbours in the
2-dimensional Ising model are presented in Fig. 10.

If a priori information on conditional independence is
not known one can use non-parametric statistical testing
to determine such independence criteria, in order to im-
prove the estimates of interactions. The χ-squared test
of independence can be used for the case of binary or
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FIG. 10: Nearest neighbour structure in the
2-dimensional Ising model. Parents of the pairs of
interest required for conditional independence: the 6
parents of a nearest neighbour pair (top), and the 8
parents of a non-nearest neighbour pair (bottom).

categorical variables and, e.g., an information-theoretic
independence criterion for continuous variables [24]. Al-
gorithms such as Peter–Clark can then be employed to
automatically detect (conditional) independence using a
given test in an efficient way [25]. Discussion on the lat-
ter is beyond the scope of this work, and we only briefly
present results on applying a χ-squared test directly on
Ising data as an example.

We perform the χ-squared test of independence on
Ising configurations generated at the critical tempera-
ture which is approximately T = 2.3. The null hypothe-
sis H0 of χ-squared is that the variables are independent
of each other. Given a particular threshold, if the com-
puted p-values becomes less than the threshold, we reject
the null hypothesis in favour of the alternative hypothesis
H1, i.e., that the variables in question are indeed depen-
dent. For the 2-dimensional Ising model at the critical
temperature we expect the correlation length to diverge,
and therefore to observe a large degree of dependence
amongst all spins. Therefore, taking pairs of spins, while
conditioning on no other spins in the system, we expect
the χ-squared test to result in small p-values, indicat-
ing dependence amongst the spins. Indeed, we observed
p ≈ 0 for all pairs of spins in this case. If, on the other
hand, we condition on all 8 nearest neighbour spins of
any non-nearest neighbour spin pair, we observed that
most of the p-values are large, indicating independence
as expected. However, the test does result in less than
10% of the non-nearest neighbour spin pairs having small
p-values, namely less than the chosen threshold of 0.1, see
Fig. 11. These are the result of a type I error, or false
claim of dependence, which do not bias the estimation
of the interactions but merely render the procedure more

conservative than necessary, at the cost of larger vari-
ance.
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FIG. 11: Histogram of χ-squared test p-values for
non-nearest neighbour spins pairs, conditioned on all of
the 8 parents, for the T = 2.3 Ising model. We expect
the null hypothesis of independence not to be rejected,
i.e., high p-values. This is indeed observed with less
than 10% of the p-values being less than the chosen
threshold 0.1. The χ-squared test has incorrectly taken
these as dependent, however, taking more spins into
account when conditioning does not introduce any bias
in the estimation of the interactions.

Next, we observe what happens if we, wrongly, do not
condition on all the parents of variables that χ-squared
otherwise declares as dependent. As an example, condi-
tioning on only 2 of the total of 8 nearest neighbours, the
χ-squared test declares all p ≈ 0. Estimating the inter-
action between non-nearest neighbour spin pairs, whilst
conditioning on two parents only, results in highly biased
estimates of the interactions, as expected, as indicated
on the right hands side of Fig. 12.

Finally, we condition on 4 out of the 8 nearest neigh-
bours, for all the non-nearest neighbour spin pairs, with
all 4 blocking one of the spins from the rest of the system.
In this case the χ-squared test seems to declare indepen-
dence in most cases. This is a type II error: failure to
reject a false null hypothesis of independence. We exam-
ine the resulting bias on the estimates for the associated
2-point interactions in Fig. 13: The level of statistical
variation in the data is large enough to compensate for
the bias introduced by not conditioning on all the Marko-
vian parents. In the tests that we have performed, we
have observed these features both at cold and hot tem-
peratures as well.

In summary, when a priori knowledge regarding in-
dependence amongst variables is not available and has
to be derived from the data, one can perform the non-
parametric χ-squared test for binary and categorical
data. If χ-squared declares dependence amongst vari-
ables, we must ensure to condition on these when esti-
mating the interactions. If χ-squared declares false inde-
pendence, potentially due to the level of variance/noise
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FIG. 12: Non-nearest neighbour 2-point interactions for
Ising configurations near the critical temperature
T = 2.3, 100K samples. 128 spin pairs are taken as
representatives of all 1888 non-nearest neighbour spin
pairs. Top: Conditioning on all 8 parents, estimation
accurately recovers the ground truth. Bottom:
Conditioning on only 2 parents, even though χ-square
has accurately detected dependence, results in biased
estimates of the interactions.

in the data, it is likely to be the case that this missed
degree of dependence is not so large as to bias the es-
timates of n-point interaction, again given the level of
variance/noise in the data.

V. RESULTS III: A HAMILTONIAN WITH 1-,
2-, 3-, AND 4-POINT INTERACTIONS

A. Analytical formulation

In this section, we consider an Ising-like Hamiltonian
in the {−1, 1} basis with 4-point couplings. After trans-
forming to the {0, 1} basis, this results in a Hamilto-
nian with non-zero self, 2-point, 3-point, and 4-point cou-
plings. The setup is as follows. Consider a 2-dimensional
square lattice of size L2 with periodic boundary condi-
tions, with a spin ṽi on each lattice point i taking on
values ṽi = ±1. A state is the assignment ṽ of a value
+1 or −1 to each of the L2 spins. The Boltzmann distri-
bution describes the probability p(ṽ|T ) that the system
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FIG. 13: Non-nearest neighbour 2-point interactions for
Ising configurations near the critical temperature
T = 2.3, 100K samples. 128 spin pairs are taken as
representatives of all 1888 non-nearest neighbour spin
pairs. Top: Conditioning on 4 out of the total of 8
parents, the χ-squared test is unable to detect
dependence. Bottom: Numerical results indicate that
when χ-squared does not detect dependence in the
data, conditioning on 4 out of the total of 8 parents
does not introduce strong bias in estimating the
interactions accurately.

takes on a particular state ṽ at temperature T ,i.e.,

p(ṽ|T ) =
1

Z(T )
e−E(ṽ), (43)

where,

E(ṽ) = − 1

T

∑
(i,j)

Ji,j ṽ(i,j)ṽ(i+1,j)ṽ(i,j+1)ṽ(i+1,j+1). (44)

The sum runs over all L2 lattice sites (i, j) ∈
{1, 2, . . . , L}2 and Ji,j is the coupling amongst the square
of spins {ṽ(i,j), ṽ(i+1,j), ṽ(i,j+1), ṽ(i+1,j+1)}.

We first solve the inverse problem defined by the
Hamiltonian of Eq. 44 analytically. Our non-parametric
definition II.2 of multiplicative self, 2-point, 3-point, and
4-point interaction amongst binary variables immediately
recovers the couplings −8Ji,j , 8Ji,j , −8Ji,j , and 16Ji,j
respectively from the probability distribution of Eq. 44,
after applying ln(−) and correcting for double counting
due to the change of basis {−1, 1} 7→ {0, 1}. To see this,
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we first apply the transformation ṽ(i,j) = 2v(i,j) − 1 ex-
pressing the values of a spin in terms of {0, 1} as opposed
to {−1, 1} in order to apply the definition of multiplica-
tive n-point interaction of Eq. 17. Thus, ṽ(i,j) = −1
corresponds to v(i,j) = 0, whereas ṽ(i,j) = 1 corresponds
to v(i,j) = 1. This yields,

Ji,j ṽ(i,j)ṽ(i+1,j)ṽ(i,j+1)ṽ(i+1,j+1) =

Ji,j
(
2v(i,j) − 1

)(
2v(i+1,j) − 1

)(
2v(i,j+1) − 1

)(
2v(i+1,j+1) − 1

)
,

for the contribution to E(v) of a single square of spins
with the top left spin at lattice site (i, j). The interac-
tions may now be computed by taking suitable deriva-
tives of the energy function E(v) in the {0, 1} basis,
whilst putting the remaining spins to zero, and taking
care of double counting due to the change of basis.

B. A Hamiltonian with 4-point interactions

In this section, we evaluate the performance of our
non-parametric formulation of multiplicative interaction
on data generated by an Ising-like Hamiltonian with 4-
point couplings in the {−1, 1} basis. This corresponds to
having non-zero self, 2-point, 3-point, and 4-point inter-
actions in the {0, 1} basis.

FIG. 14: Nearest neighbour structure in the Ising-like
Hamiltonian with 4-point interactions. There are 12
parents to be conditioned on for estimating the 4-point
interaction amongst the quadruple of spins of interest.

One million samples were generated using the
Metropolis algorithm, at T = 1 and different coupling
constants 0.1, 0.125, 0.15, 0.2, 0.25. The results for self
to 4-point interactions, normalised by the correspond-
ing coupling constant and corrected for change of basis
factors, are presented in Fig. 15. As expected, the uncer-
tainty on the estimations increases as we consider higher-
order interactions. Nevertheless, at one million samples,
the uncertainty on the average 4-point interaction is ap-
proximately less than 10% in this system. Reducing the
sample sizes from one million to 500K, then to 200K,
results in not having sufficient power to estimate the 4-
point and the 3-point interactions respectively. The re-
sults for the interactions per pair, triple and quadruple
of spins are presented in Fig. 16 and Fig. 17
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FIG. 15: Estimates of the self to 4-point interactions
Imijkl averaged across spins and normalised by various
values of coupling constants in the Hamiltonian
0.1, 0.125, 0.15, 0.2, 0.25. Estimations are performed
using 1M samples. As the total number of samples used
for estimation is lowered, the power to detect
higher-order interactions is reduced.
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FIG. 16: 2-point (top) and 3-point (bottom) per spin
estimates of interactions for the ground truth coupling
constant 0.2. Estimations are performed on 1M samples.

C. Interaction in energy-based models

Our non-parametric definition of n-point interaction
applies to any set of n binary and categorical random
variables in any probability distribution p. For example,
if the probability distribution is believed to be a Boltz-
mann distribution, our formulation can be used to es-
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FIG. 17: 4-point per spin estimates of interactions for
the ground truth coupling constant 0.2. Estimations are
performed using 1M samples. We observe that the
variance is large, in the sense that if the ground truth
were to be unknown, some of the couplings would be
considered as insignificant.

timate all the n-point interactions, i.e., the coefficients
in the Hamiltonian up to statistics, e.g., as shown in
Sec. V B numerically. In particular, given any paramet-
ric form pθ, our formulation yields an analytical, closed
form expression for all n-point interactions in terms of the
parameters θ of the given model. For example, the re-
stricted Boltzmann machine was dealt with in Sec. IV B.
Note, however, that in such energy-based neural networks
determining the n-point interaction is a two-step proce-
dure: (i) Marginalising of the hidden (latent) variables to
obtain the probability distribution in terms of the visible
variables only, and (ii) replacing the probabilities p in
Eq. 17 with the parametric form pθ. Thanks to the Tar-
geted Learning framework, the last step can be performed
directly without the need for asymptotic expansions and
resummations.

VI. CONCLUSIONS & FUTURE WORK

In this work, we have provided a non-parametric
solution to the inverse problem of estimating n-point
interactions amongst binary and categorical random
variables directly from data, using the framework of Tar-
geted Learning. In doing so, no parametric assumptions
have to be made, yielding a fully model-independent
and unbiased estimator of interaction at all orders. We
have shown that interaction can naturally be interpreted
as a derivative and, more specifically, that n-point
interactions are inductively interpretable as a change
in (n − 1)-point interaction when fixing any one of the
n variables. Under a Markovian assumption, which
is satisfied by all energy-based models in statistical
physics and machine learning, we have demonstrated
that interaction can be efficiently estimated from data
by only conditioning on parent variables. If the parent

structure is known, or has been inferred from a non-
parametric independence test, one can substantially
reduce the sample size required to obtain an accurate
estimate. Furthermore, as the estimator only consists
of expectation values over the data, the run time on a
local machine is of the order of a few minutes. We have
illustrated the above both analytically and numerically
on a 2-dimensional Ising Hamiltonian, a 4-point Ising-
like Hamiltonian, and the distribution of a restricted
Boltzmann machine. Moreover, we have argued that
our formulation can be used to extract closed form ex-
pressions of n-point interaction in any system of binary
and categorical random variables, such as energy-based
neural networks, where this coupling cannot directly be
read off from a Hamiltonian, e.g., due to multiple hidden
nodes. Finally, we have indicated how our definition
of interaction via Targeted Learning has applications
in population biomedicine, in particular genome-wide
association studies (GWAS), since it both removes
the need for parametric assumptions altogether and
correctly accounts for molecular interaction effects (epis-
tasis), in contrast to current approaches in the literature.

In future work, we plan to examine the bias-variance
trade-off in extracting n-point interactions from other
generative networks, such as Variational Auto-Encoders
(VAE) and Generative Adversarial Networks (GAN).
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Appendix A: Additive interaction for categorical
variables

We make the following remarks regarding Eq. 12 of
additive 2-point interaction for categorical variables.
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1. Similar to the notion of interaction in the binary
case, the notion of interaction for categorical vari-
ables is inherently symmetric under the exchange
of the variables (T1 : t1 → t′1) and (T2 : t2 → t′2),
i.e.,

Ia1,2(t1t
′
1; t2t

′
2) = Ia2,1(t2t

′
2; t1t

′
1). (A1)

2. The interaction between the effect of T1 : t1 → t′1
on Y and T2 : t2 → t′2 on Y is opposite in sign to
the effect of T1 : t′1 → t1 on Y (we swap t1 and t′1)
and T2 : t2 → t′2 on Y , i.e.,

Ia1,2(t1t
′
1; t2t

′
2) = −Ia1,2(t′1t1; t2t

′
2). (A2)

For example, the interaction between the effect of
turning on variable T1 : 0 → 1 on Y and the effect
of T2 : t2 → t′2 on Y , is opposite in sign to the in-
teraction between the effect of turning off variable
T1 : 1→ 0 on Y and the effect of T2 : t2 → t′2 on Y .

3. As a result of the above remark, swapping both
categories yields the same interaction

Ia1,2(t1t
′
1; t2t

′
2) = (−1)2Ia1,2(t′1t1; t′2t2). (A3)

Finally, the additive 2-point interaction between cate-
gorical variables satisfies the following transitivity :

Proposition A.1. Let T1, T2 be two categorical vari-
ables, let {0, 1, 2} denote the labels of three categories of
T1, and let {0, 1} denote the labels of two categories of
T2. Then the interactions satisfy transitivity, i.e.,

Ia1,2(01; 01) + Ia1,2(12; 01) = Ia1,2(02; 01). (A4)

Heuristically, the result states that the sum of the effect
on Y of changing T1 from 0 to 1 and then changing T1
from 1 to 2, equals the effect on Y of changing T1 from 0
to 2 directly. The same heuristic holds for the interaction
with the effect of T2 : 0→ 1 on Y as this effect is the same
during all three steps of the procedure.

Proof. We define the function f : {0, 1, 2} × {0, 1} → R
as

f(t1, t2) := E(Y | T1 = t1, T2 = t2, T = 0). (A5)

We may express the average treatment effect in terms
of f as ATET1 : t1→t′1(Y | T2 = t2, T = 0) = f(t′1, t2) −
f(t1, t2). This leads to the following expression for the
interaction in terms of f ,

Ia1,2(t1t
′
1; t2t

′
2) =

[
f(t′1, t

′
2)−f(t1, t

′
2)
]
−
[
f(t′1, t2)−f(t1, t2)

]
.

(A6)
Eq. A4 now follows by writing out both sides:

Ia1,2(01; 01) + Ia1,2(12; 01) =[
f(1, 1)− f(0, 1)

]
−
[
f(1, 0)− f(0, 0)

]
+
[
f(2, 1)− f(1, 1)

]
−
[
f(2, 0)− f(1, 0)

]
=
[
f(2, 1)− f(0, 1)

]
−
[
f(2, 0)− f(0, 0)

]
= Ia1,2(02; 01).

This completes the proof.

As an important corollary, we obtain a criterion for
linear dependence of the interaction Ia1,2 on particular
labels of the categorical variables. The precise statement
is the following.

Corollary A.2. Let T1, T2 be two categorical variables,
let {0, 1, 2} denote the labels of three categories of T1, and
let {0, 1} denote the labels of two categories of T2. If

Ia1,2(01; 01) = Ia1,2(12; 01), (A7)

then the interaction Ia1,2( ; 01) between the effect of T1 on
Y and the effect of T2 : 0 → 1 on Y depends linearly on
the label of the categorical variable T1, in the sense that

Ia1,2(02; 01) = 2 · Ia1,2(01; 01). (A8)

Thus the 2 of the label 02 can be taken outside to multiply
the interaction leaving the label 01, hence the term linear.

Proof. This follows directly from Proposition A.1.

A similar statement holds for the interaction condi-
tioned on a particular covariate W = w, and when in-
terchanging the roles of T1 and T2 by considering two
categories for T1 and three for T2.

This result has a graphical interpretation in terms of
the following triangle:

2

0 1
i(01)

i(02)

i(12)
(A9)

where we denote the corresponding interaction by
i(t1t

′
1) = Ia1,2(t1t

′
1; 01) which is represented by the length

of the vertical component of the arrow. For example,
in the above picture i(01) = 0 since the arrow is hori-
zontal, and i(12) = i(02) as the vertical components of
both arrows have the same length. Thus, the transitive
relation

i(01) + i(12) = i(02) (A10)

allows us to draw this triangle. Under the condition
of Corollary A.2, the vertical components of the arrow
0 → 1 and 1 → 2 are equal, i.e., i(01) = i(12), in which
case the above triangle is degenerate, i.e., a line segment.
In conclusion, the linearity of the dependence on the cat-
egorical variable T1 of the interaction Ia1,2( ; 01) between
the effect of T1 : 0→ 1 on Y and the effect of T2 : 0→ 1
on Y , in the sense that

i(02) = 2 · i(01), (A11)

corresponds to degeneracy of the above triangle. This is
a geometrical criterion for linearity.
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The notion of interaction as in Eq. 12 is independent
of the chosen labels for the categorical random vari-
ables T1, T2 whether they be numbers, farm animals, or
names of cabinet ministers. The interpretation of equa-
tion Eq. A8 in terms of linearity depends on the chosen
labels since it forces them to appear in the mathematical
formula Eq. A8. Naturally, the above discussion admits
a direct generalisation to the case of categorical variables
describing more than three categories. In fact, all results
are formulated in this general setting already, apart from
assigning the particular labels {0, 1, 2} or {0, 1}.

Appendix B: Symmetry of n-point interaction

In this section, we prove the symmetry under any per-
mutation of the variables Xi1 , . . . , Xin of the multiplica-
tive formulation of n-point interaction.

Proposition B.1. Let K = {i1, . . . , in} ⊂ {0, 1, . . . , r}
be a subset of indices, and let σ be any of the n! per-
mutations of {1, 2, . . . , n} that acts on the n-tuple K as
σ(K) = σ(i1, . . . , in) = {iσ(1),...,σ(n)}. Then we have

Imi1,...,in = Imσ(i1,...,in). (B1)

Proof. Let J ⊂ K be a subset of j indices and recall that

e
(n)
J = (ei1 , . . . , ein) is the unique n-tuple such that eil =

1 if il ∈ J and eil = 0 otherwise; in particular, this n-
tuple contains j ones and n−j zeros. The same property

holds for the n-tuple e
(n)
σ(J), where σ is any permutation

of K. As a result, it suffices to show that σ satisfies

Imσ(i1,...,in)(j) = Imi1,...,in(j), (B2)

where

Imi1,...,in =

n∏
j=0

Imi1,...,in(j). (B3)

i.e., that it fixes the n + 1 factors Imi1,...,in(j) of Imi1,...,in
separately. But any permutation of K = {i1, . . . , in}
simply permutes all subsets J ⊂ K of fixed length `(J) =
j amongst each other. This completes the proof.

As a corollary, we deduce the general permutation sym-
metry of the additive n-point interaction.

Corollary B.2. Let K = {i1, . . . , in} ⊂ {1, 2, . . . , r}
be a subset, and let σ be any of the n! permutations
of {1, 2, . . . , n} acting on K as σ(K) = σ(i1, . . . , in) =
{iσ(1),...,σ(n)}. The additive n-point interaction satisfies

Iai1,...,in = Iaσ(i1,...,in). (B4)

Proof. For the outcome Y = −E(X), this follows directly
by combining Eq. 22 and Eq. 24. For a general outcome
Y , it follows by the argument of Prop. B.1.

Appendix C: Hammersley–Clifford Theorem for the
Ising model

Recall the 2-dimensional Ising model of spins {vi} tak-
ing on the value ±1. As an example, we explicitly estab-
lish the Hammersley–Clifford theorem of Sec. II F in this
case by verifying that its Hamiltonian,

p(v) =
1

Z(T )
e−E(v) where E(v) = −

∑
i,j

Ji,jvivj , (C1)

from Eq. 34 is locally, and hence globally, Markovian. To
do so, we denote by N the set of all spins in the system,
by Ni the set of (four) spins neighbouring spin i, and we
denote by N−i the set of all spins in the system apart
from spin i. The probability p is locally Markovian if we
have the equality,

p
(
vi = ±1 | vj for j 6= i

)
= p
(
vi = ±1 | vj for j ∈ Ni

)
, (C2)

for each i ∈ N . Fix a spin v0 and denote its neighbours
by N0 = {v1, v2, v3, v4}. We will check that in the con-
ditional probability on the left hand side of Eq. C2, one
only needs to condition on the spins v1, v2, v3, v4. Here

p
(
v0, vj |j ∈ N−0

)
=

1

Z(T )
e−

∑
i,j 6=0 Ji,jvivj e−v0

∑4
i=1(J0,ivi+Ji,0vi),

p
(
vj |j ∈ N−0

)
=

1

Z(T )
e−

∑
i,j 6=0 Ji,jvivj

·
[
e−

∑4
i=1(J0,ivi+Ji,0vi) + e

∑4
i=1(J0,ivi+Ji,0vi)

]
.

It follows that their ratio, which is by definition the bi-
nary probability distribution p

(
v0 | vj for j 6= i

)
, is fully

determined once one conditions on the four nearest neigh-
bour spins v1, v2, v3, v4 of v0. This proves the claim.

Appendix D: Linear regression

Let us consider the regression model with quadratic
and cubic terms, representing additive 2- and 3-point in-
teractions amongst the effects of the binary random vari-
ables T1, T2, and T3 on Y :

Y =α0 + α1T1 + α2T2 + α3T3 + α12T1T2

+α13T1T3 + α23T2T3 + γT1T2T3 + ε .
(D1)

The noise term ε is normally distributed N (0, σ2) with
σ2 = 1. Without loss of generality, the ground truth
3-point interaction γ is set to twice the value of the
noise, i.e., γ = 2, while the 2-point interactions are
set to α12, α13, α23 = 5.0,−2.5, 0 respectively. The ze-
roth order coefficient α0 = −1.5 and the linear coef-
ficient are set to α1, α2, α3 = −2, 10, 0. We generate
Ns = 40, 80, . . . , 1000 samples with T1 ∼ Binom(0.4),
T2 ∼ Binom(0.7), T3 ∼ Binom(0.5), where we have fixed
regression coefficients to be as above. We then take as
input (Y, T1, T2, T3), and compute the expectation values
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in Eq. 10 to estimate the 2-point and 3-point interac-
tions, for varying sample sizes Ns, and compare with the
ground truth values used to generate the data.

In order to ensure the estimates are robust, sufficiently
many sub-samples have to be available for estimating
each of the four conditional expectation values appearing
in Eq. 10. As with any statistical estimator, having very
few samples for one of the conditional expectation values
may result in unstable estimates of the expectation value
and its variance. This will in turn introduce instabili-
ties in the estimates of the interactions. See App. E for a
comparison of bin sizes for each of the expectation values
as the total sample size increases.

The three 2-point interactions and the 3-point interac-
tion amongst variables T1, T2, T3 are presented in Fig. 18.
The uncertainties on the estimates are derived using sta-
tistical bootstrap [26]. One can readily observe that as
the sample size increases, the estimates converge to the
correct value with smaller variance as expected.
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FIG. 18: Estimates of 2-point (top) and 3-point
(bottom) interaction as a function of sample size, with
noise σ2 = 1. The uncertainties on the estimates are
derived using statistical bootstrap. See Fig. 19 in
App. E for a comparison of bin sizes for each of the
expectation values as the total sample size increases.
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FIG. 19: Number of samples for each of the expectation
values vs total sample size. Top: For the 2-point
interaction I12. The variables are distributed as
T1 ∼ Binom(0.4) and T2 ∼ Binom(0.7) so that, e.g., the
bin size of (T1, T2) = (1, 0) is the smallest, whereas the
one of (T1, T2) = (0, 1) is the largest. Bottom: For the
3-point interaction I123, where T3 ∼ Binom(0.5). The
legend T1 = T2 = T3 = 1 and T1 = T2 = T3 = 0 are
placed lowest and highest in the bar plot respectively.

Appendix E: Linear regression: bin sizes as a
function of sample size

In Fig. 19 we plot the bin sizes for each of the four
expectation values appearing in Eq. 3 as the sample size
grows. When the total sample size is, e.g., Ns = 40, some
of the conditional expectation values are estimated using
one or two samples only and thus are unreliable.

Appendix F: Interaction estimates per spin pair for
the Ising model

We present the histogram of 2-point interactions
amongst all pairs of (non)-nearest neighbours, using
Eq. 14 for Ising states simulated at temperature T = 1.8
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and L2 = 82. As follows from Fig. 20, as the total sam-
ple size increases the two peaks corresponding to zero
couplings between non-nearest neighbour pairs and posi-
tive couplings at 1

2T ≈ 0.28 corresponding to the nearest
neighbour pairs, become more distinct.

FIG. 20: Histograms of 100K (top) and 1M (bottom)
estimates of the 2-point interaction at T = 1.8, in an
Ising system of size L2 = 82. The interactions are
computed directly from the data using the
non-parametric multiplicative formulation in Eq. 14. As
expected, with larger sample sizes, the peaks
corresponding to non-nearest neighbour interactions,
around zero, and nearest neighbour interactions, around
1
2T ≈ 0.28, become more distinct with less noise.

The estimates of 2-point couplings for both the nearest
neighbour and non-nearest neighbour spin pairs, using
100K (top) and 20K (bottom) sample sizes, are presented
in Fig. 21. As mentioned in Sec. IV C, one can use smaller
sample sizes to estimate the couplings at the cost of re-
duced power. For colder temperatures and small sample
sizes, there may be no states in the p11 bin, for the case
of non-nearest neighbour spin pairs. For T = 1.8 over
20K samples, we have power to accurately estimate all
the nearest neighbour couplings, but only have power to
accurately estimate approximately 70% of couplings be-
tween non-nearest neighbour pairs. As expected, increas-
ing the sample size to 100K improves the latter to 99%.
Note that with real data sets, one may have limitations

on the sample size. For example, as shown in Fig. 23, the
non-parametric estimator, combined with conditional in-
dependence amongst the variables, has nevertheless en-
abled us to obtain accurate estimates using 10K samples
only. In contrast, e.g., the RBM does not train well on
Ising data with 10K samples, see [12, Fig. 31].

Fig. 25 illustrates the estimates for nearest neighbour
interactions vs temperature with 10K total samples using
the TL framework.
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FIG. 21: L2 = 82, T = 1.8, with conditioning on the
nearest neighbours to estimate Imij for both nearest and
non-nearest neighbours. In order to reduce clutter, the
same number of non-nearest couplings as nearest
neighbours are shown (128). No translational invariance
is used. Top: The results over 100K samples, using
Eq. 16 and statistical bootstrap, as compared to
bottom: The results over 20K samples. For the latter,
approximately 30% of spins had no samples in the p11
bin. This is due to the fact that it is very rare to find 2
spins having value one, whilst their 8 nearest
neighbours all have spin value 0, particularly at cold
temperatures, as the total sample size become smaller.
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FIG. 22: L2 = 82, T = 2.2, with conditioning on the
nearest neighbours to estimate Imij for both nearest and
non-nearest neighbours. In order to reduce clutter, the
same number of non-nearest couplings as nearest
neighbours are shown (128). No translational invariance
is used. Top: The results over 100K samples, using
Eq. 16 and statistical bootstrap, as compared to
bottom: The results over 20K samples. At 20K samples
we have power to accurately estimate approximately
98% of non-nearest neighbour spin pairs.

0 20 40 60 80 100 120

Spin

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

2
-p
o
in
t
in
te
ra
c
ti
o
n

Ising 2-point interactions for each spin, L=8, T=2.2, 10K samples expectation

nn ground truth

non-nn ground truth

nn 2-point estimate

non-nn 2-point estimate

FIG. 23: L2 = 82, T = 2.2, with conditioning on the
nearest neighbours to estimate Imij for (non-)nearest
neighbours. In order to reduce clutter, the same
number of non-nearest couplings as nearest neighbours
are shown (128). Similar to the results in Fig. 22,
except the total sample size is now 10K only. There is
enough power to accurately estimate Imij for all nearest
neighbour pairs, and approximately 83% of the
non-nearest neighbour pairs. In contrast, e.g., the RBM
does not train on 10K samples, see [12, Fig. 31].
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FIG. 24: L2 = 82, T = 1.8, with conditioning on the
nearest neighbours to estimate 3-point (top) and 4-point
(bottom) interaction for the nearest neighbours. Due to
the cold temperature, 85% of triples can be estimated,
all 4-points are estimated. If 100K samples are used
40% of the 3-points can be estimated, but they are all
accurately zero within statistics, similar to the top plot.
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FIG. 25: Conditioning on the nearest neighbours to
estimate Imij substantially improves the estimates as
compared to Fig. 4. The square points are estimations
of interactions and their uncertainty using TL with 10K
samples. The run time for each estimation using TL is
at the order of a few seconds.
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