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Abstract

Recent advances in fluorescence microscopy have made it possible to measure the
fluctuations of nascent (actively transcribed) RNA. These closely reflect transcription
kinetics, as opposed to conventional measurements of mature (cellular) RNA, whose
kinetics is affected by additional processes downstream of transcription. Here, we for-
mulate a stochastic model which describes promoter switching, initiation, elongation,
premature detachment, pausing, and termination while being analytically tractable.
We derive exact closed-form expressions for the mean and variance of nascent RNA
fluctuations on gene segments, as well as of total nascent RNA on a gene. We also
obtain exact expressions for the first two moments of mature RNA fluctuations and
approximate distributions for total numbers of nascent and mature RNA. Our results,
which are verified by stochastic simulation, uncover the explicit dependence of the
statistics of both types of RNA on transcriptional parameters and potentially provide
a means to estimate parameter values from experimental data.

Keywords Stochastic gene expression - Master equation - RNA fluctuations -
Singular perturbation theory - Distributions of RNA molecules - Stochastic
simulations

1 Introduction

Transcription, the production of RNA from a gene, is an inherently stochastic pro-
cess. Specifically, the interval of time between two successive transcription events is
arandom variable whose statistics depend on multiple single-molecule events behind
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transcription (Sanchez and Golding 2013). When the distribution of this random vari-
able is exponential, we say that expression is constitutive; in that case, the number of
transcripts produced in a certain interval of time follows a Poisson distribution. On the
other hand, when the distribution of times between two successive transcripts is non-
exponential, then the number of transcripts is non-Poissonian. A special case of such
non-constitutive behaviour is bursty expression, whereby transcripts are produced in
short bursts that are separated by long silent intervals (Suter et al. 2011; Halpern et al.
2015). In yeast, genes whose expression is constitutive include MDN1, KAP104, and
DOA1, whereas PDRS is an example of a gene whose expression is bursty (Zenklusen
et al. 2008).

For two decades, mathematical models of gene expression have been developed to
predict the distribution of RNA abundance. By matching the theoretical distribution
with experimental measurements from microscopy-based methods (Raj et al. 2008),
one hopes to obtain insight into the underlying kinetics of transcription and to estimate
transcriptional parameters. The standard model of gene expression which has been
used for these analyses is the telegraph model (Peccoud and Ycart 1995), whereby
a gene can be in two states. Transcription occurs in one of the states, whereupon
RNA degrades; first-order kinetics is assumed for all processes. While the distribution
obtained from the telegraph model can typically fit cellular RNA abundance data,
there are innate difficulties with the interpretation of that fit: fluctuations in cellular
RNA numbers and, hence, the shape of the experimental RNA distribution do not only
reflect transcription, but also many processes downstream thereof, such as splicing,
RNA degradation, and partitioning during cell division.

To counteract these difficulties, in the past few years, mathematical models
(Choubey et al. 2015; Choubey 2018; Heng et al. 2016; Cao and Grima 2020) have
been developed to predict the statistics of nascent RNA, i.e. of RNA in the process of
being synthesised by the RNA polymerase molecule (RNAP), which can be visualised
and quantified due to recent advances in fluorescence microscopy (Lenstra et al. 2016;
Skinner et al. 2016; Larson et al. 2011; Antoine et al. 2014; Brouwer and Lenstra
2019). In contrast to cellular RNA, the statistics of nascent RNA is a direct reflection
of the transcription process; hence, these models can potentially give more insight
than the simpler, but cruder telegraph model. Choubey and collaborators (Choubey
et al. 2015; Choubey 2018) have developed a stochastic model with the following
properties: (i) a gene can be in two states (active or inactive); (ii) from the active
state, transcription initiation occurs in two sequential steps: the pre-initiation complex
is formed, after which the RNA polymerase escapes the promoter; (iii) once on the
gene, the polymerase moves from one base pair to the next (with some probability)
until the end of the gene is reached, when transcription is terminated and polymerase
detaches. Queuing theory is used to derive analytical expressions for the transient and
steady-state means and variances of numbers of RNAP that are attached to the gene in
the long-gene limit when the elongation time is practically deterministic. Heng et al.
(2016) have considered a coarse-grained version of that model, whereby the move-
ment of RNAP from one base pair to the next is not explicitly modelled, obtaining an
analytical expression for the total RNAP distribution in steady-state conditions. More
recently, Cao and Grima (2020) have studied a model of eukaryotic gene expression
that yields approximate time-dependent distributions of both nascent and cellular RNA
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abundance as a function of the parameters controlling gene switching, DNA duplica-
tion, partitioning at cell division, gene dosage compensation, and RNA degradation; in
their coarse-grained model, the movement of RNAP is not explicitly modelled, while
the elongation time is assumed to be exponentially distributed, which simplifies the
requisite analysis.

The complexity of nascent RNA models has thus far not allowed the same detailed
level of analysis as has been possible with the much simpler telegraph model. A few
shortcomings of current models can be summarised as follows: (i) distributions of
nascent RNA have been derived from models that do not explicitly model the move-
ment of RNAP along a gene (Heng et al. 2016; Cao and Grima 2020), resulting in
a disconnect between theoretical description and the microscopic processes underly-
ing transcription; (ii) while the analysis of single-cell sequencing data and electron
micrograph data yields the positions of individual polymerases along the gene, allow-
ing for the calculation of statistics (means and variances) of the numbers of RNAP on
gene segments that are obtained after binning, detailed models of RNAP elongation
(Choubey et al. 2015; Choubey 2018) provide analytical results only for total RNAP
on a gene and hence cannot be used to understand gene segment data; (iii) analytical
calculations of the statistics of nascent RNA ignore important details of the transcrip-
tion process such as pausing, traffic jams, backtracking, and premature termination,
some of which have to date been explored via stochastic simulation (Klumpp and Hwa
2008; Rajala et al. 2010; Choubey et al. 2015; Rodriguez et al. 2019; Md Zulfikar et al.
2020).

In this paper, we overcome some of the aforementioned shortcomings of analytically
tractable models for the transcription process. In Sect. 2, we study a stochastic model
for promoter switching and the stochastic movement of RNAP along a gene, allowing
for premature termination. We derive exact closed-form expressions for the first and
second moments (means and variances) of local RNAP fluctuations on gene segments
of arbitrary length, which allows us to study how these statistics vary along a gene as
a function of transcriptional parameters; we also obtain expressions for the mean and
variance of the total RNAP on the gene which generalise previous work by Choubey
et al. (2015). In Sect. 3, we investigate approximations for the distributions of total
RNAP and mature RNA, showing in particular that Negative Binomial distributions
can provide an accurate approximation in certain biologically meaningful limits. In
Sect. 4, we illustrate the difference between the statistics of local and total RNAP
fluctuations and those of light fluorescence due to tagged nascent RNA. In Sect. 5,
we extend our model to include pausing by deriving approximate expressions for the
mean, variance, and distribution of observables. We conclude with a discussion of our
results in Sect. 6.

2 Detailed Stochastic Model of Transcription: Set-up and Analysis
In this section, we specify the stochastic model studied here; then, we derive closed-

form expressions for the moments of mature RNA and of local and total RNAP
fluctuations in various parameter regimes.
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2.1 Set-up of Model

We consider a stochastic model of transcription that includes the processes of initiation,
elongation, and termination, as illustrated in Fig. 1. For simplicity, we divide the gene
into L segments; the RNAP on gene segment i is then denoted by P;. The promoter
can be either in the inactive state (Gofr) or the active state (Gop), switching from the
inactive state to the active one with rate s, and from the active state to the inactive
one with rate s,. When the promoter is active, initiation commences via the binding
of an RNAP with rate r, denoted by P;. Subsequently, the RNAP either moves from a
gene segment to the neighbouring segment with rate k, or it prematurely detaches with
rate d. Note that here we have made two assumptions: (i) the movement of RNAP is
unidirectional, away from the promoter site and hence left to right, with no pausing or
backtracking allowed; (ii) the detachment and elongation rates are independent of the
position of RNAP on the gene. Each RNAP has associated with it a nascent RNA tail
that grows longer as the RNAP transcribes more of the gene. When the RNAP reaches
the last gene segment, termination occurs, i.e. the RNAP-nascent RNA complex gets
dissociated from the gene leading to a mature RNA (M) which degrades with rate d,,,.
Note that for simplicity, we have not considered excluded-volume interaction between
adjacent RNAPs here; hence, we make the implicit assumption of low ‘traffic’, which
is plausible when the initiation rate is sufficiently low. (We test the validity of this
assumption through simulations below.)

Note that, while the choice of L is arbitrary, it should be kept in mind that L needs
to be sufficiently large for the dynamics to be described at a fine spatial resolution.
However, L also has to be small enough for the length of each gene segment to be much
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Fig.1 (Color Figure Online) Model of transcription. a The gene is arbitrarily divided into L segments, with
RNAP (blue) on gene segment i denoted by P;. The promoter switches from the active state Gop to the
inactive state G g With rate s, while the reverse switching occurs with rate s,,. When the promoter is active,
initiation of RNAP occurs with rate r. Initiation is followed by elongation, which is modelled as RNAP
‘hopping’ from gene segment i to the neighbouring segment i + 1 with rate &, i.e. as the transformation
of species P; to P; 1. RNAP prematurely detaches from the gene with rate d. A nascent RNA tail (red),
attached to the RNAP, grows as elongation proceeds. Termination is modelled by the change of Py, withrate k
to mature RNA (M), which subsequently degrades with rate dy,; . In b, we show the probability distribution
P(T) of the total elongation time 7—the time between initiation and termination—as predicted by the
stochastic simulation algorithm (SSA; histogram) and our theory (Erlang distribution with shape parameter
L and rate k + d; solid line). The parameter values used are L = 50, k = 10/min, and d = 1.5/min. In ¢, we
show the dependence of the mean of the distribution P(7') on the RNAP detachment rate (d), as predicted
by SSA (dots) and our theory ((T') = L/(k + d); solid line). The relevant parameter values are L = 50 and
k = 10/min (Color figure online)
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larger than the footprint of an RNAP; the latter is needed to ensure the validity of the
low-traffic assumption. The elongation time which is the total time 7 from initiation
to termination, that is, conditioning on those realisations for which the RNAP does
not prematurely detach, is Erlang distributed with mean L/(k 4+ d) and coefficient
of variation 1/+/L; see ‘Appendix A’ for a derivation and Fig. 1b, ¢ for verification
through stochastic simulation (SSA).

Note that the total number of RNAPs transcribing the gene is equal to the number
of nascent RNA molecules present, irrespective of their lengths; to shed light on the
fluctuations of nascent RNA, in this section we therefore focus on the calculation
of statistics of local and total RNAP fluctuations. We define the vector of molecule
numbers m = (ng,ni,...,nr,n), and we write (ng), (n;) G = 1,2,...,L), and
(n) for the average numbers of molecules of active gene, RNAP, and mature RNA,
respectively. The above model can then be conveniently described by L + 2 species
interacting via a set of 2L + 4 reactions with the following rate functions:

Species Molecule numbers Position (in 771)
Gon no 1
P, iell,... L} n; i+1
M n L+2
Reaction Rate function f;
Sh
Gon —> Goff J1 = sp(no)
Ay .
Goff - Gon S2 = su(l = (no))
r
Gon — Gon + Py f3 =r{ng)
k .
Pi — Py, i€f{l,..., L-1} fit3 = kin;)
k
P — M Jr43 =k(nr)
d .
P,— o, iefl,...,L} Sivr+3 =d(n;)
d, .
M=o faL+4 = dpm (n)

Note that G is not an independent species; the reason is that the binary state of the
gene implies a conservation law, with the sum of the numbers of G and G ¢t equalling
1. Hence, the number of independent species in the modelis L+2. The rate functions f;
are the averaged propensities from the underlying chemical master equation (CME);
note that, because our reaction network is composed of first-order reactions, these
rate functions also equal the reaction rates in the corresponding deterministic rate
equations. The description of our model is completed by the (L + 2) x (2L + 4)-
dimensional stoichiometric matrix S; the element S;; of S gives the net change in
the number of molecules of the ith species when the jth reaction occurs. Given the
ordering of species and reactions as described in the tables above, it follows that the
matrix S has the simple form
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3 Page60of62 T.Filatova et al.

Si1=-1, Sip=1,
Siit1=1, Siit2=—1, Siivr+2 =—1, (D
Sti2043 =1, Spi22044 =—1,

wherei =2,...,L + 1.

2.2 Closed-Form Expressions for Moments of Mature RNA and Local RNAP

In this subsection, we outline the derivation of the steady-state means and variances
of local RNAP fluctuations (on each gene segment), as well as of mature RNA. Our
results are summarised in the following two propositions.

Proposition 1 Let n = s, /(s + sp) be the fraction of time the gene spends in the
active state, let py = r /k be the mean number of RNAPs binding to the promoter site
in the time it takes for a single RNAP to move from one gene segment to the next, let
p = r/dy be the mean number of RNAPs binding to the promoter site in the time it
takes for a mature RNA to decay, and let © = k/(k + d) be the probability that an
RNAP molecule moves to the next gene segment rather than detaching prematurely.
Then, the steady-state mean numbers of molecules of active gene, RNAP, and mature
RNA are given by

(no) = n, (2a)
(ni) = noxp! fori=1,...,L, (2b)
(n) = nou*, (2¢)

respectively.

Proposition 1 can be proved in a straightforward fashion, as follows. Using the under-
lying CME, one can show from the corresponding moment equations (Warren et al.
2006) that the time evolution of the vector (r?t) of mean molecule numbers in a sys-
tem of zeroth-order or first-order reactions, i.e. with prqpensities thaﬁ are linear in the
number of molecules, is given by the time derivative d(m)/df = S- f. Given the form
of the stoichiometric matrix S and of the rate functions f ;. as described in Sect. 2.1, it
follows that the mean numbers of all species in steady state can be obtained by solving
the following system of L + 2 algebraic equations:

0 = s, (1 = {(no)) — sp(no),

0 =r(no) — (k +d)(n1),

0=kini_1) — (k+d)n;) fori=2,...,L,
0=k(np) — dpn(n).

3)

These equations can easily be solved simultaneously to yield the steady-state value of
(m), as given in Eq. (2).
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Proposition2 Lett, = 1/(d+k), 1, = 1/(su+S5p), and T, = 1/d,, be the timescales
of fluctuations of RNAP, gene, and mature RNA, respectively, and define the three new
parameters

1 1 1
O=—, y=————, and 0 = ———.
1+1,/7g 1+1p/tm 1+ 1,/1g

Furthermore, let B = sp /s, denote the ratio of gene inactivation and activation rates.
Then, the variances and covariances of molecule number fluctuations of active gene,
RNAP, and mature RNA are given by

Var(ng) = (no)?B, (4a)

Cov(no. ny) = (no)(ni)ep - fui. where fi; =o'~ (4b)

Cov(ng, n) = (no){n)eB - fim, where fiy = 0o’ !, (4c)

Cov(nj,nj) = 8;j(ni) + (n;)nj)ap - fij,  where fi; = f(, j)+ f(j,0), (4d)

Cov(ni.n) = (n;)n)aB - fin. where fiyr = y'0er ™ + (1= )Yy fyr.

g=1

(4e)

Var(n, n) = (n) + (n)*aB - fum. where fum = fLm, (4f)
and where i, j =1, ..., L. Here, §;; is the Kronecker delta; moreover,

ol til 1 [fi+j—1 20 — 1
i) = ' 1 1— Fi(l.i ';';L],
F@D (2a—l)‘+2’+l—1< i )[ 2e 2P+ 775 5)

where o F| denotes the generalised hypergeometric function of the second kind (Digital
Library of Mathematical Functions 2020a), which is defined as

o]

2Fi(ar.axibiiz) =)

s=0

(ap)s(az)s i
(b1)s st

with (a)s = I'(a + 5)/ ' (a) the Pochhammer symbol.

Here, we note that an alternative representation of the functions f;; in Eq. (4d), in
terms of finite sums, is given in Eq. (B.33) of ‘Appendix B’.

As above, since the underlying propensities are linear in the number of molecules,
the CME implies (Warren et al. 2006) that the corresponding second moments in steady
state are exactly given by a Lyapunov equation. That equation, which is precisely the
same as the one that is obtained from the linear-noise approximation (LNA) (EIf and
Ehrenberg 2003), takes the form

J-c+C-JT+D=0. 5)

Here, C, J, and D are (L + 2) x (L + 2)-dimensional matrices; C is a variance—
covariance matrix that is symmetric (C;; = Cj;), J is the Jacobian matrix with
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3 Page8of62 T.Filatova et al.

elements J;; = (S - f),-/a(n,->, and D = S Diag(f) - ST is a diffusion matrix,
where Diag( f) is a diagonal matrix whose elements are the entries in the rate function
vector f. The nonzero elements of J are given by

Ji1t = —(su + 5p),
Jor =1, Jo =—(k+d), ©)
Jiic1 =k, Ji=—(k+d) fori=3,...,L+1,
JitoL41 =k, Jito. 042 = —dm,
while the nonzero elements D; read
D1y = sp(no) + su(1 — (no)),
Dy = r(no) + (k +d)(n1), D3 = —k(n1),
Dj i1 = —k(ni-2), D;; =k{nj_1) + (k +d)(n;) fori=3,...,L+1,
D; i1 = —k(ni_1) fori =3,..., L,
Dryo. 1 = —k(nL), Dryo. 42 =king) + dw(n).
(7

Given the structure of the matrices J and D above, the Lyapunov Eq. (5) can be
solved explicitly for the covariance matrix C whose elements are given by Eq. (4).
The solution by induction is involved and can be found in ‘Appendix B’, which proves
Proposition 2.

2.2.1 Simplification in Bursty and Constitutive Limits

Bursty limit: We now consider a particular parameter regime—the limit of large
initiation rate r and large gene inactivation rate s, such that b = r /s, is constant.
Since the fraction of time spent in the active state is 5, it follows that the gene is
mostly in the inactive state in that limit. During the short periods of time when it
transitions to the active state, a burst of initiation events occur; in particular, a mean
number b of RNAPs bind to the promoter during activation. Hence, such genes are
often termed bursty, since transcription proceeds via sporadic bursts of activity and b
is called the mean transcriptional burst size. For r and s, large with b constant, the
expressions for the first two moments of RNAP at every gene segment and of mature
RNA from Egs. (2) and (4), respectively, simplify to

(ni)p = bugp', (8a)
(n)p = bump, (8b)
. 1 TGi+j-1
Cov(ni,nj)p =8ij(ni)p + (nidp(njlp(vgn)™" - hjj, whereh;; = 72 TG
(8c)
i
Cov(nj, m)p = (ni)p(n)p W) ™"+ hip. where hipy = (1—y) Y ' ™9 hyp
g=1
(8d)
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Var(n)p = (n) + (M) ei) ™~ kg, where hyy = hpas (8e)

here, the subscript b denotes the moments in the bursty limit. Moreover, vy = s, /k,
Un = Su/dm, and h;j = fijlq—0 denotes the simplified function f;; in the limit of
a—> 0, which is achieved when s;, — 00. We note that the above expressions for
the functions £;; are derived from the expressions for f;; that are given in Eq. (B.33),
rather than from those in Eq. (4d). The reason is that, in the bursty limit, we have that
ﬁ — 00, in which case the identity in Eq. (B.36) does not hold. The bursty limit
in Eq. (B.33) is simply taken by collecting terms that are not dependent on «, since
o —> 0 in that limit.

To test the accuracy of our theory, in Fig. 2 we compare our analytical expressions
for the mean of local RNAP numbers, as well as for various measures of local RNAP
fluctuations—the coefficient of variation CV, the Fano factor FF, and the Pearson
correlation coefficient CC—with those calculated from stochastic simulation using
Gillespie’s algorithm (SSA) (Gillespie 1977). Simulations are performed for two dif-
ferent scenarios: (i) without volume exclusion, where the footprint of RNAPs is not
taken into account; and (ii) with volume exclusion, where RNAPs are treated as solid
objects with a footprint of 35 bp, which is the value reported in Md Zulfikar et al.
(2020). For our simulations in Fig. 2, we use parameter values characteristic for the
gene PDRS5 of length 3070 bp, as reported in Zenklusen et al. (2008). Our choice of
L = 30 implies that the length of each gene segment is about 100 bp and, hence,
that at most 3 RNAPs can fit in each segment when volume exclusion is taken into
account. In this case, Gillespie’s algorithm is modified such that the initiation and
RNAP ‘hopping’ rates are proportional to the available volume in the gene segment
which the RNAP is moving to. That is achieved by rescaling the transcription initiation
rate as 7 — r(1 —n1/3) and the RNAP hopping rate from the ith to the (i + 1)th gene
segment as k — k(1 — n;41/3). Since we use parameters measured for a gene that
demonstrates bursty expression (PDRS5) (Zenklusen et al. 2008), we test the accuracy
of both the exact theory from Eqgs. (2) and (4) and the approximate expressions given
in Eq. (8).

The perfect agreement between our exact theory (solid lines) and simulation without
volume exclusion (dots) provides a numerical validation of that theory. Our approxi-
mate theory (dashed lines) also yields a reasonably good approximation; the mismatch
can be decreased if the degree of burstiness is increased, i.e. by increasing the param-
eters r and s, relative to the other rates in the model. We also note that the theory is in
good agreement with simulation with volume exclusion (open circles), which shows
that the ‘low traffic’ assumption upon which our theory is based is valid.

The following interesting observations can be made from these figures: (i) if the rate
of premature detachment is greater than zero, then the mean of local RNAP decreases
monotonically with the distance i from the promoter according to a power law, whereas
that mean is constant along the gene if there is no premature detachment, as expected,;
(ii) the size of RNAP fluctuations, as measured by CV, decreases with i for small
premature detachment rates, but increases with i for sufficiently large values of the
detachment rate; (iii) the Fano factor approaches 1—the value of FF for a Poissonian
distribution—as i increases, which is due to the dispersal of the burst as stochastic
elongation proceeds; (iv) the correlation coefficient between the local RNAP on two
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3 Page 100f62 T.Filatova et al.

neighbouring gene segments decreases monotonically with i, which is exacerbated
by premature detachment and is a direct result of the stochasticity inherent in the
elongation process.

The observation in (iii) can be explained in detail as follows. When the detachment
rate is zero, a burst of RNAPs rapidly bind to the promoter, leading to large fluctuations
near that site; however, thereafter each RNAP moves distinctly from all others due to
stochastic elongation. Hence, the burst is gradually dispersed as elongation proceeds,
which implies a decrease in the variance of fluctuations with increasing i. When the
detachment rate is nonzero, then the same effect is at play; however, the increase in the
variance of fluctuations along the gene is now counteracted by the decrease in mean
RNAP numbers, which leads to two types of behaviour: for small i, CV decreases with
i, since the variance dominates over the mean, while for large i, the opposite occurs
and CV increases with .

Constitutive limit: The other common parameter regime is that of constitutive gene
expression, where the gene spends most of its time in the active state and transcrip-
tion is continuous, which corresponds to the limit of very small sp. In that limit, the
expressions from Eqs. (2) and (4) simplify to

(ni)e = Var(n;)e = pept' and (). = Var(n), = bpu*, )

while the covariances Cov(n;,nj). and Cov(n;, n). between the species are zero;
here, the subscript ¢ denotes the constitutive limit. This drastic simplification reflects
the fact that, in the constitutive limit, the distributions of mature RNA and local RNAP
are Poissonian: as the regulatory network is effectively given by § — P} — P, —
... > P — M — (J then, the result follows directly from the exact solution provided
in Jahnke and Huisinga (2007).

To further test the accuracy of our theory, in Fig. 3 we compare our analytical expres-
sions for the mean of local RNAP numbers, as well as for various measures of local
RNAP fluctuations, with those calculated from stochastic simulation using Gillespie’s
algorithm, where we use parameters measured for a gene that demonstrates constitu-
tive expression (DOA1) (Zenklusen et al. 2008). As before, we test the accuracy of
both the exact theory given by Eqgs. (2) and (4) and the approximate expressions from
Eq. (9). Unsurprisingly, we observe agreement between exact theory (solid lines) and
simulation (dots); the mismatch between our approximate theory and simulation is due
to the fact that the gene does not spend 100% of its time in the active state—the true
constitutive limit—but, rather, s, /(s, + sp) = 85%. The local mean RNAP number
decreases with distance from the promoter, as was the case for bursty expression in the
previous subsubsection, which is to be expected. The various measures which depend
on the second moments are, however, considerably different: CV increases monoton-
ically with i, independently of the rate of premature detachment, while FF and CC are
very close to 1 and zero, respectively; moreover, the latter two measures practically
show very little variation along the gene. The lack of transcriptional bursting explains
all these effects in a straightforward fashion.

Finally, we remark that the accuracy of our expressions for the mean and variance
of mature RNA, as given in Eq. (2) and (4), is verified by simulation (SSA) in Fig. 4a,
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Fig.2 (Color Figure Online) First and second moments of the distribution of local RNAP for the PDRS5 gene
in yeast, which demonstrates bursty expression. In a—d, we show the dependence of the mean, coefficient of
variation squared, Fano factor, and Pearson correlation coefficient, respectively, of local RNAP fluctuations
on gene segment 7, as predicted by our exact theory (Egs. (2), (4); solid lines), the approximate theory in the
bursty limit (Eq. (8); dashed lines), and simulation via Gillespie’s stochastic simulation algorithm (SSA),
respectively. We performed simulations for two different cases: without volume exclusion (dots) and with
volume exclusion (open circles). The parameters are fixed to s, =0.44/min, sp=4.7/min, and r=6.7/min,
which are characteristic of the PDR5 gene in yeast, as reported in Supplemental Table 2 of Zenklusen
et al. (2008). The number of gene segments is arbitrarily chosen to be L = 30. The total elongation time
(T') = 4.5 min is also reported for PDRS, described as the synthesis time and denoted by t in Zenklusen
et al. (2008). The elongation rate by definition takes the value of the ratio k = L/{T) —d ~ L/(T), since
d < k. The detachment rate d is arbitrarily chosen to be d = 0.01/min (red lines and dots) or d = 0.2/min
(black lines and dots). Note that, for the SSA, moments are calculated from one long trajectory with a few
million time points, sampled at unit intervals (Color figure online)

b for parameters typical of the bursty PDRS5 gene. The meaning of the dependence of
descriptive statistics on L is discussed in the next section.

2.3 Closed-Form Expressions for Moments of Total RNAP

While local RNAP fluctuations are measurable in experiment, as discussed in the
Introduction, measurements of total RNAP on a gene are typically reported. Hence,
in this section, we briefly discuss descriptive statistics of total RNAP fluctuations.
Recalling that n; is the number of RNAP molecules on the ith gene segment, the
total number of RNAPs on the gene—arbitrarily divided into L segments—is given
by ny = Zle n;. Given Eq. (2) and (4), the steady-state mean (ny) = Zle (ni)
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Fig. 3 (Color Figure Online) First and second moments of the distribution of local RNAP for the DOA1
gene in yeast, which demonstrates constitutive expression. In a—d, we show the dependence of the mean,
coefficient of variation squared, Fano factor, and Pearson correlation coefficient, respectively, of local
RNAP fluctuations on gene segment i, as predicted by our exact theory (Egs. (2) and (4); solid lines), the
approximate theory in the constitutive limit (Eq. (9); dashed lines), and simulation via Gillespie’s stochastic
simulation algorithm (SSA; dots), respectively. The parameters are fixed to s, = 0.7/min, s = 0.12/min
and r = 0.14/min, which are characteristic of the DOA1 gene in yeast, as reported in Supplemental
Table 2 of Zenklusen et al. (2008). The number of gene segments is arbitrarily chosen to be L = 30.
The total elongation time (7') = 2.9 min is also reported for DOA1, described as the synthesis time and
denoted by 7 in Zenklusen et al. (2008). The elongation rate by definition takes the value of the ratio
k=L/(T)—d =~ L/(T), since d < k. The detachment rate d is arbitrarily chosen to be d = 0.01/min
(red lines and dots) or d = 0.2/min (black lines and dots). Note that, for the SSA, moments are calculated
from one long trajectory with a few billion time points, sampled at unit intervals (Color figure online)

and the steady-state variance Var(nyg) = ZlL j=1 Cov(n;,nj) of the total RNAP
distribution are given by

L_ Lo
(nior) = npku% and Var(o) = {(nior) + @B (npk)? Z Wt fij
ij=1
(10)

For a detailed derivation of the variance in Eq. (10), we refer to ‘Appendix C’.
These expressions for the mean and variance of the total RNAP distribution simplify
in the bursty and constitutive limits, as can be seen in ‘Appendix D’. The accuracy
of Eq. (10) is tested by comparing against stochastic simulation with SSA in Fig. 4c,
d. Both mean and variance are seen to increase monotonically with the number of
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Fig.4 Mean and variance of the distributions of mature RNA and total RNAP for the PDRS5 gene in yeast. In
a, b, we show the dependence of the moments of mature RNA fluctuations on the number of gene segments
L, as predicted by our theory (Egs. (2) and (4); solid lines) and SSA (dots). In ¢, d, we show the dependence
of the moments of total RNAP on L, as predicted by our exact theory (Eq. (10); solid lines) and SSA (dots).
The parameters s, sp, r, and (T') are characteristic of the PDRS5 gene and are the same as in Fig. 2. The
premature detachment rate is chosen to be d = 0.01/min; the elongation rate is then given by k ~ L/(T).
The degradation rate of mature RNA is d;; = 0.04/min, which is chosen such that the mean mature RNA
is roughly consistent with that reported in Fig. 6(b) of Zenklusen et al. (2008). Note that, for the SSA,
moments are calculated from one long trajectory with a few billion time points, sampled at unit intervals

gene segments L, as we keep the mean elongation time constant; the mean shows very
little dependence on L, while the dependence of the variance is more pronounced. We
recall that, while the parameter L is arbitrary in principle, it actually determines the
size of fluctuations in the elongation time. Since that time is the sum of L independent
exponential variables with mean 1/(k + d) each, it follows that the distribution of the
elongation time 7 is Erlang with mean (T') = L/(k + d) and coefficient of variation
squared equal to 1/L. Hence, the larger L is, the narrower is the distribution of 7" and
the more deterministic is elongation itself. Thus, Fig. 4c, d predicts that the mean and
variance of total RNAP increase rapidly with decreasing fluctuations in the elongation
time 7. It hence follows that models in which the elongation rate is assumed to be
exponentially distributed (Cao and Grima 2020), which correspond to the case where
L = 1 in our model, underestimate the size of nascent RNA fluctuations.

2.4 Special Case of Deterministic Elongation
Next, we derive expressions for the descriptive statistics of total RNAP and mature

RNA in the limit of large L taken at constant mean elongation time, which corresponds
to deterministic elongation. As is shown in Fig. 4, these statistics converge quickly to
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the ones obtained in the large-L limit; hence, the resulting limiting expressions are
likely to be useful across a variety of genes.

Moments of total RNAP distribution: We define the non-dimensional parameters
dg = 1¢/t0, Tg = (T)/7g, and Ty = (T')/t4, which correspond to the ratio of
the gene timescale and the polymerase detachment timescale, the ratio of the mean
elongation time and the gene timescale, and the ratio of the mean elongation time
and the polymerase detachment timescale, respectively; here, T; = 1/d, as before.
Substituting k +— L/(T) — d into Eq. (10) and taking the limit of deterministic
elongation, i.e. letting L — oo at constant (7'), we obtain the following expressions
for the mean, variance, and CV? of total RNAP:

-
(Mot)oe =n=(1 —e 1),
(5g — 1) + (8g + De 2Tt — 28,6 Tze~Ta
(g — 1)(8g + 1)(1 — e~ Ta)2
(8g — 1) + (8 + De 2Tt — 25, Tee~Td
5y — D(8g + 1)(1 —eTa)?

Var (nio) oo = (ftot) 0o + <nt0t>§o : ﬁég

)

CV2 (o) oo = {Miot) e + Bg

(1)

Here, the subscript co denotes the limit of L — oo. A detailed derivation of the
variance in Eq. (11) can be found in Lemma C.1 of ‘Appendix C’.

In the special case when RNAP does not prematurely detach from the gene, i.e. for
d = 0, the expressions in Eq. (11) simplify to

(ntot) (00:0) = nr(T),
Var(ntot)(oo;O) = (ntot>(oo;0) + (ntot)%oo;()) .ZﬂTg_l(]‘ - Tg_l + Tg_le_Tg), (12)
2 -1 -1 -1 -1 .-T,
CV(OO;O) = <”‘°‘>(oo;0) + Z'BTg (1 — T, +T, e g)’

where the subscript (co; 0) denotes the limit of (L, d) — (oo, 0). The expressions
in Eq. (12) have been previously reported in Choubey et al. (2015), where they were
derived using queuing theory. Hence, our expressions in Eq. (11) constitute a gener-
alisation of known results, by further taking into account premature detachment of
RNAP from the gene.

Equation (12) shows that the coefficient of variation squared of total RNAP, denoted
by CV%OQ;0 , can be written as the sum of two terms: (i) the inverse of the mean which
is expected if the distribution of total RNAP is Poissonian, and (ii) a term that increases
with increasing B and decreasing T,. Hence, the latter term provides a measure for
the