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SUMMARY
Somite formation is foundational to creating the vertebrate segmental body plan. Here, we describe three
transcriptional trajectories toward somite formation in the early mouse embryo. Precursors of the anterior-
most somites ingress through the primitive streak before E7 and migrate anteriorly by E7.5, while a second
wave of more posterior somites develops in the vicinity of the streak. Finally, neuromesodermal progenitors
(NMPs) are set aside for subsequent trunk somitogenesis. Single-cell profiling of T�/� chimeric embryos
shows that the anterior somites develop in the absence of T and suggests a cell-autonomous function of T
as a gatekeeper between paraxial mesoderm production and the building of the NMP pool. Moreover, we
identify putative regulators of early T-independent somites and challenge the T-Sox2 cross-antagonism
model in early NMPs. Our study highlights the concept of molecular flexibility during early cell-type specifi-
cation, with broad relevance for pluripotent stem cell differentiation and disease modeling.
INTRODUCTION

The recent emergence of high throughput single-cell RNA-

sequencing (scRNA-seq) assays has allowed researchers to sur-

vey entire transcriptional landscapes of development in

numerous species (Cao et al., 2019; Packer et al., 2019; Pi-

juan-Sala et al., 2019; Wagner et al., 2018). Somites are transient

segments of the paraxial mesoderm that give rise to the axial

skeleton and associated musculature. Following formation of

the most anterior somites, subsequent axis elongation is fueled

by a pool of neuromesodermal progenitors (NMPs), which give

rise to neural components of the spinal cord as well as themeso-

dermal tissue of the somites (Pourquié, 2001; Tzouanacou et al.,

2009). NMPs are characterized by co-expression of transcription

factors associated with gastrulation, mesodermal, and neural

development, including Brachyury (T), Sox2, and Nkx1-2 (Henri-

que et al., 2015; Steventon and Martinez Arias, 2017; Wilson

et al., 2009).
Developmental Cell 56, 141–153, Ja
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Starting as uniform blocks of epithelium, somites compart-

mentalize into ventral sclerotome (which gives rise to major ele-

ments of the skeleton, such as the vertebrae and ribs) and dorsal

dermomyotome (precursor of skeletal muscles and of the skin of

the back; Keynes and Stern, 1988). Somitogenesis is often por-

trayed as a relatively uniform process, regulated by an interact-

ing network of signaling pathways and transcription factors

such as Fgf, Wnt, Notch, T, and Tbx6 (Chapman and Papaioan-

nou, 1998; Hubaud and Pourquié, 2014; Martin and Kimelman,

2008). However, multiple lines of evidence indicate that disrup-

tion of these canonical somite regulators has little effect on the

formation of the first, most anterior, somites both in mouse and

in fish (Nowotschin et al., 2012; Pourquié, 2001), and the molec-

ular programs responsible for the formation of these occipital so-

mites remain poorly defined. Occipital somites differentiate early

in development and do not give rise to repetitive skeletal struc-

tures. In chick, gene-expression analysis has demonstrated a

specific molecular make-up of the anterior-most somites
nuary 11, 2021 ª 2020 The Authors. Published by Elsevier Inc. 141
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Figure 1. Two Distinct Transcriptional Sub-

sets of Somites at E8.5

(A) Uniform manifold approximation and projection

(UMAP) representation of the axial elongation-

related tissues present at E8.5.

(B) Schematic of the axial elongation-related tissues

in the anatomy of the E8.5 mouse embryo. For color

code, refer to legend in (A).

(C) Distribution of E8.5 axial elongation-related

tissues along one-dimensional transcriptional

ordering. For color code, refer to legend in (A).

(D) Marker expression along one-dimensional tran-

scriptional ordering delimits neural and paraxial cell

types, including bipotent NMPs. Expression levels

are shown as the mean of the expression values in a

sliding window of width 10% of the length of the

ordering.

(E) Homeobox genes provide rostrocaudal orienta-

tion of diffusion pseudotime ordering with bipotent

NMPs in the center of the ordering, corresponding

to the caudal end of the embryo, and neural and

paraxial cell types at the edges, expressing rostral

Hox genes. Expression levels are shown as in (D).

See also Figure S1.
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(Rodrigues et al., 2006), and in Amphioxus, there are at least

three distinct transcriptional networks regulating the emergence

of specific anterior-posterior somite subsets (Aldea et al., 2019).

Overall, these observations suggest that multiple, potentially in-

dependent, molecular pathways can generate somites.

Here, we used trajectory inference in a transcriptional atlas of

mouse gastrulation, as well as single-cell profiling of T�/� embry-

onic chimeras, to show that somitic tissues present in the E8.5

mouse embryo emerge through different developmental path-

ways. A first wave arises from early progenitors ingressing

through the primitive streak before E7.0 and migrating anteriorly

before E7.5, while a second wave of more posterior somitic pro-

genitors remains posteriorly in the streak region. At E7.5, precur-

sors of both waves are anatomically segregated, express

different levels of T and Tbx6, and are exposed to distinct

signaling environments. Nevertheless, both will activate the

‘‘core’’ somitic transcriptional program characterized by upregu-

lation of Tcf15 andMeox1. The presence of two distinct waves is

corroborated in T�/� chimeric embryos, where T�/� cells

contribute normally to the first wave but are highly depleted in

the second wave. This depletion is accompanied by increased

contribution to a third developmental trajectory, leading from

epiblast to E8.5 NMPs, suggesting that T may function as a gate-

keeper regulating the allocation of streak cells to the NMP pool.

Finally, we provide evidence that in E8.5 NMPs, T acts predom-

inantly as a transcriptional activator and may not be necessary

for Sox2 repression.

RESULTS

The E8.5 Mouse Embryo Contains Somitic Cells with
Distinct Transcriptional Signatures
A previously published reference atlas of mouse gastrulation re-

ported 37 major cell types (Pijuan-Sala et al., 2019). To charac-

terize the heterogeneity of E8.5 paraxial mesoderm, we subclus-

tered cells belonging to the somitic and paraxial mesoderm

clusters (Figures S1A–S1E). Presomitic mesoderm was identi-
142 Developmental Cell 56, 141–153, January 11, 2021
fied by expression of Fgf17, Tbx6, Cyp26a1, T, Hes7, Dll3,

Lef1, Rspo3, and Dkk1 (Bessho et al., 2001; Cao et al., 2004;

Chal et al., 2015; Chapman et al., 1996; Galceran et al., 2004; Sa-

kai et al., 2001; Takahashi et al., 2003; Wahl et al., 2007) and cra-

nial mesodermby elevated levels of Tbx1, Foxl2, andPitx2 (Dast-

jerdi et al., 2007; Marongiu et al., 2015; Nandkishore et al., 2018;

Sambasivan et al., 2011; Shih et al., 2007). Four somitic subclus-

ters included two sets of uncompartmentalized somitic cells (co-

expressing Tcf15 and Meox1) (Burgess et al., 1996; Mankoo

et al., 2003) separated by clusters indicating commitment to

sclerotome (Pax1 and Pax9) (Peters et al., 1999) and dermomyo-

tome (Dmrt2, Pax3, andMeox2) (Kassar-Duchossoy et al., 2005;

Sato et al., 2010) (Figure S1E).

We next investigated the transcriptional similarity between

these populations and other cell types related to axial elongation

at E8.5—NMPs and spinal cord. Diffusion processes revealed a

one-dimensional ordering (Figures 1A–1C) consistent with

higher-dimensional representations (Figure S1F), from Sox2-ex-

pressing spinal cord, through NMPs co-expressing Sox2, T, and

Nkx1-2, to Meox1-expressing paraxial lineages (Figure 1D). Ho-

meobox transcription factor expression supported an underlying

spatial component to this ordering, with caudal Cdx genes peak-

ing in the center, at the position of NMPs (Figures 1E and S1G).

The cranial mesoderm signature is present at the rostral-most,

paraxial end of the ordering (Figures 1E, S1E and S1G). Next in

the ordering are somitic cells flanked by dermomyotome and

sclerotome clusters. With this signature of ongoing compart-

mentalization, these represent the most developed and, there-

fore, themost anterior somites. They are followed by uncompart-

mentalized, less mature, and more posterior somitic cells,

followed by presomitic mesoderm and finally NMPs, in the

more posterior region of the E8.5 embryo (Figures 1B and 1C).

Inference of Distinct Developmental Routes for E8.5
Somitic Tissues
Having characterized two transcriptionally distinct anterior and

posterior sets of somitic cells, as well as a caudal NMP pool at
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Figure 2. Identification of Distinct Developmental Trajectories toward NMPs and Anterior and Posterior Somitic-Cell Subsets

(A) UMAP layout from Pijuan-Sala et al. (2019) highlighting cells belonging to the developmental trajectories for anterior somitic tissues, the newly formed

posterior somitic tissues, and NMPs present at E8.5, predicted using WOT analysis. For visualization purposes, the rare populations of shared ancestors were

plotted on top.

(B) UMAP layout from Pijuan-Sala et al. (2019) highlighting the same cells as in (A) colored by sampling time point.

(C) Gene-expression dynamics along the three developmental trajectories reveals distinct transcriptional programs. y axis: mean log2 (normalised counts).

See also STAR Methods; Figure S2; Table S1.
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E8.5, we next investigated their putative developmental origins.

We reconstructed developmental trajectories using an optimal

transport approach (WOT) (Schiebinger et al., 2019; STAR

Methods; Figures 2A and 2B), which assigns ‘‘mass’’ to each

cell at the clusters featuring the presumed trajectory endpoints

and then transfers that mass sequentially backward between

cells in adjacent time points that are transcriptionally similar.

For each cell, the ‘‘mass’’ for each of the three endpoints allowed

us to allocate it to a given trajectory based on the highest mass

contribution. As such, WOT enables incorporation of real-time

information of the 9 sequential time points from E6.5 to E8.5

covered in the reference atlas; the classification of cells along

a trajectory is, thus, not only based on their transcriptional simi-

larity but also on time-point progression. NMPs could be traced
back to the epiblast at E6.5, while both somitic trajectories orig-

inate from E6.5 primitive streak cells. Separation between ante-

rior and posterior somitic trajectories occurred within E7.0-E7.5

nascent mesoderm (Figures 2B and S2A), suggesting that the

diversification of these two populations occurs following ingres-

sion through the streak.

Consistent with reported features of gastrulation, both anterior

and posterior somitic trajectories display a sharp early downre-

gulation of Nanog coupled with a shift in cadherin expression

(Cdh1 to Cdh2), which is characteristic of epithelial-to-mesen-

chymal transition (EMT) (Morgani et al., 2018). By contrast, for

the NMP trajectory, these processes occur gradually after E7.0

(Figure 2C). Expression of NMP markers over time confirms the

known NMP signature, with expression of T, Sox2, Nkx1-2, and
Developmental Cell 56, 141–153, January 11, 2021 143



Figure 3. Anterior-Posterior Patterning of Paraxial Mesoderm during Gastrulation

(A) Differential expression analysis of E7.5 cells with predicted posterior somitic fate versus E7.5 cells with predicted anterior somitic fate. Genes queried

individually in the eGastrulation tool are highlighted in bold. See (B) and (C).

(B) Overall ‘‘activity score’’ of the genes significantly enriched in the anterior trajectory (top) for E7.5 spatial data (Peng et al., 2019) and expression levels in log10
(FPKM+1) for selected genes (bottom) highlighted in bold font in (A). Cornplots were generated using the eGastrulation tool, where the embryo is represented by

anatomical sections featuring anterior-posterior and left-right axes for sections in distinct proximal-distal regions (10 being most proximal and 1 most distal; EA,

anterior endoderm;MA, anterior mesoderm; A, anterior epiblast; L1, anterior left lateral; R1, anterior right lateral; L2, posterior left lateral; R2, posterior right lateral;

P, posterior epiblast; MP, posterior mesoderm; EP, posterior endoderm).

(C) Overall ‘‘activity score’’ of the genes significantly enriched in the posterior trajectory (top), and expression levels in log10 (FPKM+1) for selected genes (bottom)

highlighted in bold font in (A). See also legend for (B).

(legend continued on next page)
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Cdx2 at E7.5 being maintained up to E8.5. In this trajectory, the

persistence of Cdh1 expression throughout upregulation of

Cdh2 between E7.0 and E8.25 is consistent with an ‘‘incom-

plete’’ EMT in NMPs (Dias et al., 2020). Inspection of additional

EMT genes, including Epcam (epithelial marker) and Vim

(mesenchymal marker), reinforced this notion, with co-expres-

sion detected in half of the predicted NMP ancestors between

E7.5 and E8.0 (Figures S2B–S2D).

Expression of early mesoderm markers, Eomes and Mixl1, in

all three trajectories is followed by upregulation of the somite

markers,Meox1 and Tcf15, specifically in the two somitic trajec-

tories. These two trajectories showed clear molecular diver-

gence at E7.5 (before upregulation ofMeox1 and Tcf15), with up-

regulation of Wnt3a, T, and Tbx6 specific to the posterior

trajectory (Figure 2C).

In addition to examining known regulators, we performed un-

biased pair-wise comparisons of gene expression along the

entire length of the three trajectories. We examined for each

gene whether its expression pattern significantly differed be-

tween each pair-wise combination of trajectories, using as input

data the mean expression level of each trajectory at each time

point (see STAR Methods; Table S1). Gene set enrichment anal-

ysis using the Molecular Signatures Database Hallmark gene set

collection (Liberzon et al., 2015; Subramanian et al., 2005) re-

vealed that genes displaying distinct behaviors between the

three trajectories were enriched for the EMT process (Fig-

ure S2E), consistent with our targeted analysis (Figures S2B–

S2D). The process of myogenesis was enriched in the anterior

versus posterior somitic trajectories comparison, likely due to

the different maturation kinetics of these two sets of somites, re-

flected by the dynamics of the myogenesis regulatorMef2c (Fig-

ures S2E and S2F). The mTORC1 pathway was also enriched,

with distinct expression of the upstream regulator Pdk1 and of

the downstream targets Slc2a1 and Slc2a3 (Figures S2E and

S2F). Differences between anterior and posterior somitogenesis

have been noted previously (Nowotschin et al., 2012; Rashbass

et al., 1991). This inferred transcriptional trajectory leading from

the primitive streak to anterior somitic tissues now provides an

unbiased molecular description of this process.

Canonical Regulators of Somitogenesis Are Depleted in
the Anterior Trajectory
The anterior and posterior somitic trajectories share early (E6.5–

E7.0) transcriptional changes associated with gastrulation, as

well as upregulation of somitic genes at E8.0–E8.5 (Figure 2C),

but also show divergent expression at intermediate time points

(E7.25–E7.75). Differential gene-expression analysis at E7.5

showed earlier Tcf15 expression in the anterior trajectory,

consistent with a more advanced somitic maturation compared

with the posterior trajectory (Figures 2C and 3A; Table S2).
(D) Differential gene expression of E7.5 cells with predicted NMP fate versus E7.5

gene expression in the cells with predictedNMP fate comparedwith either the ante

somitic mesoderm cells only. Genes queried individually in the eGastrulation too

(E) Overall ‘‘activity score’’ of the genes significantly enriched in the NMP traject

highlighted in bold in (D). See also legend for (B).

(F) Schematic of anterior-posterior patterning of paraxial mesoderm during gastru

E8.5 posterior somites are in yellow, and those biased to the E8.5 NMP pool are

See also Figure S2; Tables S2–S4.
Higher levels of T in the posterior trajectory were matched with

higher expression of canonical regulators of somitogenesis,

including Tbx6 and members of the Wnt, Notch, retinoic acid,

Fgf, and Nodal/Tgfb/BMP signaling pathways. Of note, forma-

tion of the earliest anterior somites has been observed in em-

bryos that lack key somitic regulators such as T, Tbx6, Wnt3a,

and Fgfr1a (Takada et al., 1994; Xu et al., 1999). E7.5 cells on

the anterior somitic trajectory instead showed strong upregula-

tion of the transcriptional regulator Id3 as well as the homeobox

transcription factor Alx1. Oscillating genes of the somitogenesis

clock and wave-front model also had an overall reduced expres-

sion along the trajectory leading to anterior somitic tissues

compared with that of posterior somitic tissues (Figure S3A).

We next interrogated the dynamics of gene expression along

the trajectory toward the anterior paraxial mesoderm (Fig-

ure S3B). The transcription factor Hand1 and adhesion molecule

Pmp22 showed early peaks of expression, the frizzled related

protein Sfrp1 and homeobox transcription factor Alx1 peaked

at a midpoint, and homeobox transcription factors of the Irx

and Prrx family peaked at the end of the trajectory. Many of

the above candidate regulators have not previously been impli-

cated in somite development, yet the anterior trajectory culmi-

nates with induction of the somite master regulators Tcf15

and Meox1.

Parallel Spatial and Transcriptional Divergence of
Distinct Somitic Mesoderm Programs
Complementary laser-capture microdissection experiments,

profiling contiguous segments of approximately 20 cells, have

been performed at equivalent stages of mouse development

(Peng et al., 2019), thus allowing us to interrogate the spatial

expression of genes differentially expressed between the poste-

rior and anterior trajectories (Figure 3A). The E7.5 anterior somitic

signature shows the strongest positional enrichment in anterior

mesoderm, while the posterior signature is enriched in the pos-

terior mesoderm and in the posterior epiblast sections of the

Peng et al. dataset (Figures 3B and 3C). We also performed a

similar analysis, in the opposite direction, by extracting the

genes enriched, respectively, in anterior and posterior meso-

derm at E7.5 from the Peng et al. dataset (Table S3) and assess-

ing their expression in our single-cell atlas, which highlighted the

expected populations of anterior and posterior somitic trajec-

tories (Figure S3C; STAR Methods). This complementary anal-

ysis also highlighted additional expression sites (such as in

lateral-platemesoderm lineages) for genes on the anterior trajec-

tory. Taken together, this supports the notion that at E7.5, pos-

terior paraxial mesoderm precursor cells are still located close

to the primitive streak, while the precursors of anterior paraxial

mesoderm have already migrated to the anterior end of the

embryo.
cells with predicted somitic fate. Adjusted p value is calculated for differential

rior or the posterior somitic-fated cells. Log2 fold-change is shown for posterior

l are highlighted in bold. See (E).

ory (top), and expression levels in log10 (FPKM+1) for selected genes (bottom)

lation. Tissues biased to the E8.5 anterior somites are in red, those biased to the

in green. A, anterior; P, posterior.

Developmental Cell 56, 141–153, January 11, 2021 145
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The clear separation of the two trajectories at E7.5 suggested

theymay be spatially segregated at earlier stages.We, therefore,

employed a similar strategy to compare the two trajectories at

E7.0 (Figure S3D; Table S2). Genes enriched in the E7.0 posterior

paraxial mesoderm ancestors are most strongly associated with

the primitive streak region, while genes specific to the anterior

paraxial mesoderm ancestors show the highest enrichment in

the mesoderm layer, suggesting that these cells have already in-

gressed through the primitive streak (Figure S3E). Interestingly,

genes enriched in the anterior somitic trajectory are expressed

in more proximal regions of the egg cylinder compared with

those of the posterior trajectory, highlighting an additional spatial

segregation of the two sets of ancestors.

Next, we characterized the trajectory leading to NMPs. Com-

parison with the somitic trajectories not only suggested an early

divergence but also that ancestors of the posterior somitic tis-

sues had a higher likelihood of contributing to the NMP trajectory

than ancestors of anterior somitic tissues (Figures 2A and S3F).

Differential gene-expression analysis between NMP and somitic

trajectory cells at E7.5 showed higher levels of NMP-signature

genes in NMP-fated cells (e.g., Cdx1, Cdx2, Nkx1-2, Fst, and

Grsf1) (Gouti et al., 2017) and a higher expression of the epiblast

markers Dnmt3b, Epcam, and Pou5f1 (Figure 3D; Table S4).

Conversely, NMP-fated cells had lower levels of themesodermal

genes Mesp1, Aldh1a2, Cited1, and Rspo3 relative to the E7.5

ancestors of somitic tissues. This suggests that at E7.5, NMP an-

cestors have amore immature, epiblast-like signature compared

with the early somite precursors. Consistently, spatial visualiza-

tion of this NMP-enriched signature showed the highest scores

in epiblast sections of the E7.5 embryo (Figure 3E).

This spatiotemporal transcriptional analysis supports a model

whereby rostrocaudal patterning of the first somites is concom-

itant with gastrulation. Mesoderm cells biased to an anterior par-

axial fate ingress earlier through the primitive streak and likely

acquire their somitic identity anteriorly (marked by an upregula-

tion of both Tcf15 and Meox1 after spatial segregation at E7.5),

while cells destined for a more posterior paraxial fate undergo

gastrulation later and develop posteriorly in the embryo. Finally,

NMP ancestors remain in the posterior epiblast, where they ac-

quire an NMP signature, sustained up until at least E8.5, the last

time point sampled in the current atlas (Figure 3F).

T–/– Chimera Single-Cell Transcriptional Analysis
Reveals Alterations in Common and Rare Cell Types
Given the role of Brachyury (T) in axial elongation, we were

intrigued to observe that T was the most differentially expressed

gene between the two early somitic trajectories (Figures 3A and

S3D). The homozygous T mutant mouse model is embryonic le-

thal, with a severe arrest of axis elongation, notochord and allan-

tois defects, and a kinked neural tube (Beddington et al., 1992;

Chesley, 1935; Rashbass et al., 1991). To study the cell-autono-

mous effects of T knockout, we performed scRNA-seq on

chimeric mouse embryos. We targeted T in a mouse embryonic

stem cell line constitutively expressing tdTomato (Pijuan-Sala

et al., 2019; see STAR Methods). We confirmed the disruption

of T by sequencing the CRISPR-Cas9-targeted locus, which

showed frameshift mutations and early stop codons precluding

the generation of a functional protein, in two different clones (Fig-

ures S4A and S4B). Chimeric embryos generated with these two
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independent T�/� clones were harvested at E8.5, mutant and

wild-type (WT) cells sorted based on tdTomato fluorescence,

and scRNA-seq performed on four independent pools of em-

bryos, with 14,048 T�/� and 13,724 WT single-cell transcrip-

tomes passing quality control (Figure S4C; STAR Methods).

Cell types were determined by mapping the chimeric embryo

cells onto the reference atlas. As expected, mutant cells still ex-

pressed the T transcript, although at reduced levels (Figure S4D,

in agreement with self-regulation of this transcription factor; Bei-

saw et al., 2018). Importantly and in line withmutation analysis by

sequencing, there is no detectable T protein in T�/� cells of chi-

meras (Figure S4E), likely due to severe effects on the stability

and/or conformation of any residual peptide produced, as only

the first 23% of the amino-acid sequence may be retained

(Figure S4B).

We performed differential abundance testing of cell types with

reference to matched wild-type chimeras (Figure S4F; STAR

Methods). This showed significantly reduced T�/� cell contribu-

tion to intermediate and somiticmesoderm and increased contri-

bution to NMPs (Figures 4A, S4F, and S4G). Other T-expressing

tissues, e.g. notochord and primordial germ cells (PGCs), also

showed changes in differential abundance, but below statistical

significance, likely due to the low numbers of these cells at this

time point. Interestingly, notochord cells showed perturbed

gene-expression patterns in T�/� cells (Figure S4H). Reduced

contribution of T�/� cells to the PGC lineage has been reported,

but no quantitative analysis was performed (Aramaki et al.,

2013). Given a quantitative reduction rather than total absence

seen by scRNA-seq analysis of chimeric embryos, we quantified

the numbers of presumptive PGCs present from the E7.5 (neural

plate) to E8.5 (10 somite) stages in T-expressing embryos and

then compared presumptive PGC numbers at E7.75 (headfold

stage) with T�/� embryos (Figures S4I and S4J). Counting pre-

sumptive PGCs in multiple embryos demonstrated that there is

indeed a statistically significant reduction in the T�/� samples.

Thus, even in rare cell types such as notochord and PGCs,

combining mouse chimeras with scRNA-seq reveals cell-auton-

omous roles for T.

T–/– Chimera Analysis Validates the Two Early Somitic
Trajectories
We next focused on the subclusters of paraxial mesoderm

defined in Figure 1. In line with previous findings (Beddington

et al., 1992; Rashbass et al., 1991; Wilson et al., 1995), we

observed a marked decrease in contribution to posterior somitic

tissue and presomitic mesoderm, while cranial mesoderm and

anterior somitic tissues showed only small changes in abun-

dance (Figure 4B). This not only supports an essential cell-auton-

omous role for T specifically in the development of the E8.5 pos-

terior somitic tissue but also confirms that the two sets of

somites present at E8.5 emerge in molecularly distinct develop-

mental events, as suggested by the two different trajectories

defined above. To obtain a finer resolution, we assessed the dis-

tribution of chimeric cells mapped onto the transcriptional

ordering from Figure 1C (STAR Methods). In WT chimeras,

tdTomato+ (tdTom+) and tdTomato- (tdTom-) cells were similarly

distributed (p = 0.14, Kolmogorov-Smirnov [KS] test). By

contrast, T�/� cells accumulated in the caudal-most portion of

the ordering in T�/� chimeras (p % 10�15, KS test; Figure 4C).
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Figure 4. Development of T–/– Cells in

Chimeric Embryos Reveals a Differential

Requirement of T in Two Developmental Tra-

jectories Leading to Somitic Tissues

(A) Differential abundance testing of cell types with

most pronounced effects in T�/� chimeras

compared with WT controls, as well as other cell

types relevant to axial elongation. * BH-corrected

p < 0.1, n = 4 independent experiments.

(B) Differential abundance testing of somitic sub-

clusters identified in Figure 1 in T�/� chimeras

compared with WT controls. * BH-corrected p < 0.1,

n = 4 independent experiments.

(C) Density of mapped chimera cells along the one-

dimensional diffusion pseudotime ordering from

Figure 1.

(D) Confocal image of a T�/� chimeric embryo

stained with phalloidin-alexa488 (green). Arrowhead

points to accumulation of tdTom+ cells in the caudal

region of the embryo (red). * somites; nt, neural tube;

N, node; Scale bar: 100 mm.

See also Figure S4.

ll
OPEN ACCESSArticle
Since the mapping above was based on transcriptomic fea-

tures, we next used confocal imaging to visualize the distribution

of tdTom+ cells in chimeric embryos, confirming a caudal accu-

mulation as predicted from scRNA-seq data (Figure 4D). Further

examination of confocal Z-stacks of the primitive streak region

suggested that caudal accumulation is primarily ectodermal

and is, therefore, a consequence of failure to ingress through

the primitive streak (Figure S4K), in agreement with prior obser-

vations (Wilson et al., 1995). Importantly, the confocal data also

confirm that T�/� cells contribute normally to anterior somitic tis-

sues and to other tissues, namely cranial regions, endoderm,

cardiac cells, allantois and extraembryonic mesoderm (Figures

S4L and S4M). Of note, overrepresentation of T�/� cells in the

caudal NMP subset supports a previously proposed model,

whereby higher levels of T favor ingression through the streak,

while lower or absent T expression maintains cells in the streak

region where they may ultimately contribute to the tail bud

NMP pool (Wilson and Beddington, 1997).

Characterization of NMP Over-Production in the
Absence of T
To further investigate the relationships between the develop-

mental trajectories for posterior somites and NMPs, we quanti-

fied the contribution of T�/� cells across all replicates of our

E8.5 chimeras to posterior somites and NMPs. To control for

any potential differences in contribution to lineages intrinsic to

the chimera assay, we considered the ratio of cell numbers in

the injected population divided by the cell numbers in the

host population for each lineage, in chimeras generated by in-

jection of T�/� and WT cells, respectively. This confirmed the

change in balance between the two lineages (Figure 5A). We

next asked whether cells lacking T might already be differen-

tially abundant between these two trajectories at E7.5 (Fig-

ure 2B). We, thus, generated a new set of chimeras that were

harvested at E7.5 and analyzed by scRNA-seq (STAR Methods;

Figures 5B and S5A–S5C). Quantitative analysis across repli-

cate experiments confirmed the trend toward a reduced contri-

bution to the posterior somitic trajectory, although, at this
stage, mutant cells were only slightly overrepresented in the

NMP trajectory (Figure 5B). Two other observations are note-

worthy. For the E8.5 chimeras, there is still a small contribution

of T�/� cells to posterior somitic mesoderm, meaning that the

T�/� phenotype is not fully penetrant at this stage (Figure S4G).

Second, when the E7.5 chimera cells are mapped onto the

landscape, a minority of cells is fairly far advanced, whereas

the bulk still sits in a territory that overlaps with the NMP trajec-

tory (Figures 5C and 5D). A model, therefore, emerges where

the earlier cells contributing to the posterior somites may do

so even in the absence of T, whereas the rest may be diverted

along the NMP trajectory.

T–/– NMPs Do Not Show Molecular Evidence of an Early
Fate Switch
The accumulation of T�/� cells in an NMP transcriptional state in

E8.5 chimeras prompted us to characterize this overrepresented

mutant NMP subset by differential gene-expression analysis

(Figures 6A and S6A). The majority (75%) of genes differentially

expressed in the absence of T were downregulated, suggesting

that, in these cells, T functions mostly as a transcriptional acti-

vator (Figure 6A; Table S5). Moreover, 18 of the significantly

downregulated genes have previously been identified by ChIP-

seq as direct targets of T in in vitro NMP models (Koch et al.,

2017), which is significantly more than expected by chance (18

of 47 genes; p < 10�11, Fisher’s Exact test; Figure 6A, genes

highlighted in yellow).

Genes downregulated in T�/� NMPs include major elements

of the canonical somitogenesis signaling pathways: Wnt

(Rspo3), Fgf (Fgf3, Fgf4, Fgf8, and Fgf18), Notch (Dll1 and

Hes3), and retinoic acid (Cyp26a1). This is consistent with the

previously reported positive feedback loops between T and

these pathways during axial extension (Diez del Corral et al.,

2003; Hubaud and Pourquié, 2014; Kumar and Duester, 2014;

Vermot and Pourquié, 2005). Less well implicated but likely

also important regulators include the cell-cell adhesion and

signal transduction genes Sema6a, Epha1, Itgb8, Igfbp3,

Penk, Nrxn1, and Fst. The transcription factors Mixl1, Ets2,
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Figure 5. Assessing Allocation of T–/– Cells to the NMP Pool

(A) Relative contribution of injected cells to NMPs versus posterior

somites in E8.5 chimeras (p values calculated by permutation). Each

point is an independent experiment (pool of chimeric embryos) and

calculated as: relative ratio = (number of tdTom+ NMPs / number of

tdTom� NMPs) / (number of tdTom+ posterior somite cells / number

of tdTom� posterior somite cells). Hollow circles, values for WT

chimera assays; filled circles, values for T�/� chimeras.

(B) Relative contribution of injected cells to trajectories toward NMPs

versus posterior somites in E7.5 chimeras, showing significant bias

toward the NMP fate in T�/� chimeras compared with WT (p values

estimated by permutation; values plotted as in (A).

(C) UMAP layout from Pijuan-Sala et al. (2019), highlighting mapped

nearest neighbors of injected (tdTom+) and host cells (tdTom�) in
E7.5 and E8.5 chimeras.

(D) UMAP layout from Pijuan-Sala et al. (2019) with cells colored by

their relative mass from NMP versus posterior trajectories. Values

are capped at �5 and +5 for better legibility. Arrowhead highlights

the nascent mesoderm cell subset with balanced mass (i.e., equal

likelihood) for both trajectories, according to WOT.
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Mycl, and Dlx5 were also downregulated and may, therefore,

play previously unsuspected roles in NMP regulation and somi-

togenesis downstream of T.
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It was proposed that the multipotent nature of NMPs

relies on cross-antagonism between T and the neural-

determining factor, Sox2, where each serves as a line-

age-determining factor (Gouti et al., 2017; Koch et al.,

2017). Furthermore, in our analysis of gene-expression

dynamics along the NMP trajectory, we observed a

decline in T transcript concurrent with the increase in

Sox2 between E7.5 and E8.5 (Figure 2C), which would

support this model. Accordingly, T�/� NMPs would be

expected to express higher levels of Sox2 than WT

NMPs, which would, in turn, increase the production of

spinal cord progenitors (Takemoto et al., 2011). Howev-

er, neither Sox2, nor a broader neural signature, were

upregulated in T�/� NMPs (Figures 6A, S6B, and S6C).

Moreover, spinal cord cells were not overproduced in

the T�/� chimeras (Figure 4A). Our analysis of primary

cells, therefore, argues against a cell-autonomous

mutually repressive model of T and Sox2 as early NMP

fate determinants.

To investigate earlier molecular consequences of T

knockout, we next performed differential gene-expres-

sion analysis within E7.5 chimeras, focusing on the

tdTom+ and tdTom� cells mapping to each trajectory

(Figures 6B and S6D–S6F; Table S6). There was little

overlap between the sets of deregulated genes across

the different trajectories, consistent with trajectory-spe-

cific effects at this early time point. Among the genes up-

regulated in cells biased to anterior somitic tissues was

the T-box family transcription factor Tbx3. Cells biased

to posterior somitic tissues showed downregulation of

genes involved in cell migration including Vim, Pdlim4,

and Htra1 (Fu et al., 2019; Singh et al., 2014; Ye and

Weinberg, 2015). These cells also displayed downregu-

lation of Cited1, previously shown to label specifically

cells that have ingressed through the primitive streak
(Garriock et al., 2015). Of note, genes related to an incomplete

EMT state (Figures S2B–S2D) were not affected in T�/�NMP an-

cestors at any of the analyzed time points (Figures 6A and 6B).
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Figure 6. Role of T in the Formation of the First Posterior Somites and Establishment of the NMP Pool

(A) Differential gene expression between E8.5 mutant cells accumulated in an NMP state and their WT counterparts within chimeras (see inset and Figure 4C).

Genes previously found to be bound by T (Koch et al., 2017) are highlighted in yellow.

(B) Differentially expressed genes in tdTom+ T�/� cells in E7.5 chimeric embryos compared with their tdTom� WT counterparts (adjusted p < 0.1), within the

transcriptomes mapping to each of the developmental trajectories highlighted in Figures 2A and 2B. Genes also identified as differentially expressed in control

chimeras (injected with WT tdTom+ cells) or significantly correlated with the tdTomato transcript were considered as results of a chimera assay-related technical

bias and excluded from the analysis (see Figures S6D–S6F).

(C) Working model for cell-autonomous role of T in the formation of the first somites during gastrulation.

See also Figure S6; Tables S5 and S6.
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Taken together, these results suggest that the precursors of

anterior mesoderm are capable of undergoing gastrulation in

the absence of T. Precursors of more posterior somites reach

the streak later in development and require T to activate genes

involved in EMT. In the absence of T, they remain in the streak

region, where they may contribute to the developing pool of

NMPs (Figure 6C).

DISCUSSION

By integrating computational methods with scRNA-seq of em-

bryonic chimeras, we inferred three distinct trajectories from

pluripotent epiblast cells toward somite development. We re-

vealed previously unknown dynamic gene expression during

the emergence of the anterior-most somites, accompanied by

a clear spatial separation at E7.5. Analysis of T�/� chimeras vali-
dated these trajectories, suggested reallocation of early poste-

rior somite progenitors to the NMP pool in the absence of T,

and supported a model whereby T does not inhibit expression

of Sox2 in NMPs.

To infer developmental trajectories, we applied WOT (Schie-

binger et al., 2019), which has the key advantage, compared

with many trajectory inference methods, of incorporating real-

time information when analysing time-course datasets. Methods

that do not take real-time information into account can produce

erroneous assignments when similar cell types emerge over an

extended period of time or in ‘‘waves’’. WOT allowed us to disen-

tangle transcriptional trajectories with relatively similar signa-

tures (in relation to the whole embryonic landscape), but with

different times of developmental emergence. Importantly, addi-

tional independent analyses using spatial transcriptomic data,

as well as the distinct effects of the T knockout in the -chimera
Developmental Cell 56, 141–153, January 11, 2021 149
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assays were consistent with the trajectories inferred from the

scRNA-seq data.

Our results support a model whereby the first somites develop

from precursors that ingress early through the primitive streak

and migrate anteriorly, concurrently with the precursors of other

anterior mesoderm tissues. This agrees with previous fate-map-

ping experiments where precursors of the first pairs of somites

are found in the same regions of the primitive streak as cardiac

and cranial mesoderm, ingressing at around E7.0 (Kinder et al.,

1999). The anterior somitic trajectory was characterized by

higher levels of previously identifiedmarker genes of lateral-plate

mesoderm (e.g., Hand1, Prrx1, and Prrx2), also suggesting this

shared ontogeny. Different timing of ingression is further sup-

ported by higher expression levels of caudal Cdx/Hox transcrip-

tion factors in the E8.5 posterior paraxial tissues compared with

anterior paraxial tissues, reflecting a later timing of ingression of

precursors of posterior paraxial mesoderm (Forlani et al., 2003).

One of the most noteworthy observations here is molecular

convergence, where both the early anterior and posterior trajec-

tories ultimately acquire a paraxial transcriptional identity, yet

through journeys that are temporally, spatially, and molecularly

distinct.

Analysis of T�/� embryos indicated that the anterior somitic

tissues identified here correspond to the first somite subsets,

previously shown to form in the absence of T (Chesley, 1935).

In E7.5 chimeric embryos, genes involved in cell migration

were specifically downregulated in posterior somite-fated T�/�

cells, providing a molecular explanation for previous reports

where impaired cell migration was suggested to cause the

observed accumulation of mutant cells in the remnants of the

primitive streak of chimeric embryos (Wilson and Beddington,

1997; Wilson et al., 1995). Our data further show that E8.5 caudal

accumulation of T�/� cells is coupled with the acquisition of an

aberrant NMP signature, consistent with the model proposed

by Wilson and Beddington (1997), where primitive streak cells

harboring lower levels of T protein remain in the streak

throughout gastrulation and contribute to the NMP pool of the

developing tail bud to fuel subsequent axial elongation. Further

studies will be required to functionally validate whether different

levels of T regulate the allocation of individual streak cells to par-

axial mesoderm or NMPs in the wild-type setting.

The ability of anterior paraxial mesodermprecursors to ingress

through the streak andmigrate anteriorly in the absence of T sug-

gests they rely on other factors. Other members of the T-box

protein family may play this role: the anterior somite-fated cells

ingress through the streak before E7.0, within the window of

Eomes expression during gastrulation (Figure 2C) and with

considerable overlap with T in gene targets (Tosic et al., 2019).

Our analysis revealed Tbx3 as another possible candidate, with

specific upregulation at the start of the developmental trajectory

toward anterior somitic tissues, and in the E7.5 T�/� cells fated to

the anterior somitic tissues (Figures 6B and S3B).

As in prior mouse and zebrafish studies, we observed a resid-

ual contribution of T�/� cells to the posterior somitic tissues

(Martin and Kimelman, 2010; Wilson and Beddington, 1997).

While expression of somiticmarkers had not been tested in these

studies, our results suggest that some of these residual cells

are indeed correctly transcriptionally patterned as somitic

mesoderm.
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Characterization of T�/� NMP-like cells suggested a model

where T is required for NMPs to move down a somitic differentia-

tion path, but where T has little bearing onNMPsmoving along the

neural lineage. The observation that many T�/� NMPs become

trapped in the primitive streak, rather than produce excess neural

tissue, suggests that at the single-cell level in the intact embryo,

many NMPs may not have both somitic and neural differentiation

options available to them, possibly due to spatial constraints.

Indeed, although in vivo lineage tracing suggest widespread bipo-

tency for largerNMPclones (Tzouanacouet al., 2009), heterotopic

transplantation and live-cell imaging studies suggest that many

cells with NMP potential will only differentiate into one lineage in

the embryo (Wood et al., 2019; Wymeersch et al., 2016).

In the present report, we show that single-cell transcriptional

analysis of entire embryos provides a complementary approach

toward a better understanding of long-standing questions in

developmental biology. Moving forward, the ability to couple

such unbiased transcriptional profiling with information about a

cell’s location within the organism will further enable new biolog-

ical discovery. Together with appropriate functional experi-

ments, this promises to open an exciting new chapter in devel-

opmental biology, where hypotheses can be investigated

in vivo, at single-cell resolution, genome-wide scale, and at the

level of the whole organism.
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Vermot, J., and Pourquié, O. (2005). Retinoic acid coordinates somitogenesis

and left-right patterning in vertebrate embryos. Nature 435, 215–220.

Wagner, D.E., Weinreb, C., Collins, Z.M., Briggs, J.A., Megason, S.G., and

Klein, A.M. (2018). Single-cell mapping of gene expression landscapes and

lineage in the zebrafish embryo. Science 360, 981–987.

Wahl, M.B., Deng, C., Lewandoski, M., and Pourquié, O. (2007). FGF signaling
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Human/Mouse Brachyury Affinity Purified

Polyclonal Ab antibody

R and D Systems Cat# AF2085; RRID: AB_2200235

Donkey anti-Goat IgG (H+L) Cross-

Adsorbed Secondary Antibody, Alexa

Fluor 647

Thermo Fisher Scientific Cat# A-21447; RRID: AB_2535864

Chemicals, Peptides, and Recombinant Proteins

VECTASHIELD Mounting Medium Vector Laboratories Cat# H-1000; RRID: AB_2336789

Alexa Fluor 488 Phalloidin Thermo Fisher Scientific Cat# A12379

Critical Commercial Assays

Chromium Single Cell 30 Library & Gel Bead

Kit v2

10X Genomics PN-120237

Chromium Single Cell 30 Chip Kit v2 10X Genomics PN-120236

Deposited Data

T chimera single-cell RNA-seq This paper ArrayExpress: E-MTAB-8811

New wild-type chimera single-cell RNA-seq This paper ArrayExpress: E-MTAB-8812

Existing wild-type chimera single-cell

RNA-seq

Pijuan-Sala et al., 2019 ArrayExpress: E-MTAB-7324

Mouse gastrulation single-cell RNA-

seq atlas

Pijuan-Sala et al., 2019 ArrayExpress: E-MTAB-6967

Experimental Models: Cell Lines

tdTomato+ mESC line (male, karyotypically

normal)

Pijuan-Sala et al. 2019 B6xtdTom+ cl12-F10

T-/- tdTomato+ mESC Clone 1 This paper B6xtdTom+ cl12-F10-B6

T-/- tdTomato+ mESC Clone 2 This paper B6xtdTom+ cl12-F10-C6

Experimental Models: Organisms/Strains

Heterozygous T/+ BTBR/Pas mice Rashbass et al., 1994 Heterozygous T/+ BTBR/Pas mice

C57BL/6 wild type mice Charles River C57BL/6J (JAX� Mice Strain)

Oligonucleotides

F-primer for embryo genotyping (Figures

S4I and S4J)

CCAGTTGACACCGGTTGTTACA

Sigma Aldrich N/A

R-primer for embryo genotyping (Figures

S4I and S4J)

TATCCCAGTCTCTGGTCTGT

Sigma Aldrich N/A

F-primer for embryo genotyping (Figures

S4I and S4J; positive control)

GCGCCAGTGCAGGGAAGATTGGAA

Sigma Aldrich N/A

R-primer for embryo genotyping (Figures

S4I and S4J; positive control)

GATATGACTGGGCCAGACGGAAA

Sigma Aldrich N/A

T locus targeting gRNA1:

TGACGGCTGACAACCACCGC

Sigma Aldrich N/A

T locus targeting gRNA2:

GCCCCAAAATTGGGCGAGTC

Sigma Aldrich N/A

F-primer for NGS of T-targeted mESC

clones

TCGTCGGCAGCGTCAGATGTGTATAA

GAGACAGTCCCGGTGCTGAAGGTAAAT

Sigma Aldrich N/A

(Continued on next page)
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R-primer for NGS of T-targeted mESC

clones

GTCTCGTGGGCTCGGAGATGTGTA

TAAGAGACAGCCTGCTTAACCC

TCATCAGC

Sigma Aldrich N/A

Recombinant DNA

pX458 plasmid Addgene #48138

Software and Algorithms

Cellranger Zheng et al., 2017 https://support.10xgenomics.com/single-

cell-gene-expression/software/downloads/

latest?

Scran Lun et al., 2016 http://bioconductor.org/packages/release/

bioc/html/scran.html

DropletUtils Griffiths et al., 2018 http://bioconductor.org/packages/release/

bioc/html/DropletUtils.html

Uwot McInnes et al. 2020, https://arxiv.org/abs/

1802.03426

https://cran.r-project.org/web/packages/

uwot/index.html

Destiny Angerer et al. 2016 http://bioconductor.org/packages/release/

bioc/html/destiny.html

FIJI Schindelin et al. 2012 https://imagej.net/Fiji
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Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, John C.

Marioni (john.marioni@cruk.cam.ac.uk).

Materials Availability
Mouse embryonic stem cell lines generated in this study are available upon request.

Data and Code Availability
Raw sequencing data is available on Arrayexpress: T chimeras – E-MTAB-8811; WT chimeras – E-MTAB-7324 (as used in Pijuan-

Sala et al., 2019) and E-MTAB-8812 (newly generated). Original data have been deposited with accession numbers: Arrayexpress:

E-MTAB-8811, E-MTAB-8812. Processed data is available from the Bioconductor package MouseGastrulationData (https://

bioconductor.org/packages/release/data/experiment/html/MouseGastrulationData.html). This includes the single-cell RNA-seq

data directly, as well as the NMP orderings, and somitogenesis trajectory labels used in this manuscript. An online visualisation

tool is available at https://marionilab.cruk.cam.ac.uk/EarlySomites2020/.

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Cell Lines
All mouse embryonic stem cell lines were expanded under the 2i+LIF conditions (Ying et al., 2008), in a humidified incubator at 37�C
and 7% CO2, and routinely tested negative for mycoplasma infection. A male, karyotypically normal, tdTomato-expressing mouse

embryonic stem cell line was derived from E3.5 blastocysts obtained by crossing a male ROSA26tdTomato (Jax Labs – 007905)

with a wildtype C57BL/6 female. Competence for chimera generation was assessed using morula aggregation assay. Targeting

of the T locuswas performed using the CRISPR/Cas9 system (seeMethod Details), mutant clones were assessed by next-generation

sequencing (see Figure S4). Two mutant clones were used to generate T-/- embryonic chimeras.

Mouse Models
All procedures were performed in strict accordance to the UK Home Office regulations for animal research. Chimaeric mouse em-

bryos were generated under the project licence number PPL 70/8406. Animals used in this study were 6-10 week-old females,

maintained on a lighting regime of 14 hours light and 10 hours darkness with food and water supplied ad libitum. For chimera

generation, E3.5 blastocysts were derived from wildtype C57BL/6 matings, and after injection of the mutant cells, the resulting

chimaeric embryos were transferred to C57BL/6 recipient females at 0.5 days of pseudopregnancy following mating with

vasectomised males.
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METHOD DETAILS

Somitic Trajectory Analysis from Atlas Data
Subclustering the Atlas Paraxial Cell Types

To dissect the Paraxial Mesoderm sub-populations present in the E8.5 embryo, cells from the reference Atlas (Pijuan-Sala et al.,

2019) belonging to E8.5 time-point and to the cell types ‘‘Paraxial Mesoderm’’ and ‘‘Somitic Mesoderm’’ were extracted and re-clus-

tered using igraph’s Louvain algorithm. Clustering was performed on Mutual Nearest Neighbours (MNN) batch corrected principal

components (top 50), and the resulting subclusters were annotated using differentially expressed genes.

Transcriptional Ordering of Axial Elongation Cell Types

The Atlas data were subset to E8.5 cells of spinal cord, NMP, caudal epiblast, caudal mesoderm, somitic mesoderm, and paraxial

mesoderm cell types. A 50-dimensional principal component (PC) space was generated from these cells from log-transformed nor-

malised gene counts (with an added pseudocount of 1), considering only highly-variable genes (HVGs, see Selection of HVGs in the

‘‘quantification and statistical analysis’’ section, below). Expression levels for each gene were centred, but not scaled, prior to PC

computation. PCs were calculated using the irlba package. To ensure that the atlas manifold was continuous in the PC subspace,

and so that batch-effects could not affect mapping of chimera data, it was batch-corrected as described below (see ‘Batch correc-

tion’). As themanifold is largely a one-dimensional structure (see Figure 1A), it was summarised into a one-dimensional ordering using

diffusion pseudotime (DPT; Haghverdi et al., 2016). DPT was computed from a diffusion map, itself computed from the atlas cells in

the PC subspace, with DPT ordering from the spinal cord cell with most extreme value of the first diffusion component.

Identifying Somitic Developmental Trajectories

To reconstruct the lineages of cells in the reference atlas, we used the W-OT package 1.0.7 (Schiebinger et al., 2019) to estimate the

sequence of ancestor distributions at earlier time points. Cells were allocated to the trajectory of their largest endpoint mass contri-

bution, or to multiple trajectories if their mass contribution was at least 90% as large as their largest endpoint mass contribution (to

capture apparently uncommitted cells).

Spatial Domains of Trajectory-Specific Expression Signatures

Genes that defined the posterior and anterior somitic trajectories at E7.0 and E7.5 (determined by differential expression, with

adjusted P value < 0.1; differential expression testing was performed using the scran function findMarkers using default parameters)

were introduced into the Gene Activity Score tool provided by the eGastrulation database (http://egastrulation.sibcb.ac.cn/; Peng

et al., 2019) to generate 2-dimensional ‘‘corn plots’’. For the reverse analysis (Figure S3C), signature genes enriched in anterior

and posterior mesoderm domains in the Peng et al. dataset were retrieved using the ‘‘Gene Search by Pattern’’ tool provided by

the eGastrulation database. The following patterns were used as input: anterior – value of 80 for rows 3 to 7 of MA column (remaining

slots were given 0); posterior – value 80 for rows 3 to 7 of MP column and value 60 for rows 3 to 7 of P column. Cutoff for correlation

analysis: RCC > 0.4. We transformed the atlas expression levels onto a common scale (as a Z-score for each gene), and plotted the

average Z-score of the Peng et al. signature genes on our transcriptional Atlas layout, which highlighted the expected populations of

anterior and posterior somitic trajectories (Figure S3C). For details on gene expression comparisons along trajectories, see ‘‘quan-

tification and statistical analysis’’ section below.

Chimera Generation and Sequencing
Embryo Collection

All procedures were performed in strict accordance to the UK Home Office regulations for animal research under the project license

number PPL 70/8406.

Chimera Generation

TdTomato-expressing mouse embryonic stem cells (ESC) were derived as previously described (Pijuan-Sala et al., 2019). Briefly,

ESC lines were derived from E3.5 blastocysts obtained by crossing a male ROSA26tdTomato (Jax Labs – 007905) with a wildtype

C57BL/6 female, expanded under the 2i+LIF conditions (Ying et al., 2008) and transiently transfected with a Cre-IRES-GFP plasmid

(Wray et al., 2011) using Lipofectamine 3000 Transfection Reagent (ThermoFisher Scientific, #L3000008) according to manufac-

turer’s instructions. A tdTomato-positive, male, karyotypically normal line, competent for chimera generation as assessed using

morula aggregation assay, was selected for targeting T. Two guides were designed using the http://crispr.mit.edu tool (guide 1:

TGACGGCTGACAACCACCGC; guide 2: GCCCCAAAATTGGGCGAGTC) and were cloned into the pX458 plasmid (Addgene,

#48138) as previously described (Ran et al., 2013). The obtained plasmids were then used to transfect the cells and single transfected

clones were expanded and assessed for Cas9-inducedmutations. Genomic DNAwas isolated by incubating cell pellets in 0.1 mg/ml

of Proteinase K (Sigma, #03115828001) in TE buffer at 50�C for 2 hours, followed by 5 min at 99�C. The sequence flanking the guide-

targeted sites was amplified from the genomic DNA by polymerase chain reaction (PCR) in a Biometra T3000 Thermocycler (30 sec at

98�C; 30 cycles of 10 sec at 98�C, 20 sec at 58�C, 20 sec at 72�C; and elongation for 7 min at 72�C) using the Phusion High-Fidelity

DNA Polymerase (NEB, #M0530S) according to the manufacturer’s instructions. Primers including Nextera overhangs were used (F-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCCCGGTGCTGAAGGTAAAT; R- GTCTCGTGGGCTCGGAGATGTGTATAAGA

GACAGCCTGCTTAACCCTCATCAGC), allowing library preparation with the Nextera XT Kit (Illumina, #15052163), and sequencing

was performed using the Illumina MiSeq system according to manufacturer’s instructions. Two ESC clones showing frameshift mu-

tations in exon 2 resulting in the functional inactivation of T were selected for injection into C57BL/6 E3.5 blastocysts. A total of 17

chimaeric embryos were harvested at E8.5, dissected, and single-cell suspensions were generated from three independent pools of
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embryos by TrypLE Express dissociation reagent (Thermo Fisher Scientific) incubation for 7-10 minutes at 37�C under agitation. Sin-

gle-cell suspensions were sorted into tdTom+ and tdTom- samples using a BD Influx sorter with DAPI at 1mg/ml (Sigma) as a viability

stain for subsequent 10X scRNA-seq library preparation (version 2 chemistry), and sequencing using the Illumina HiSeq 4000 plat-

form, which resulted in 13,724 tdTom- and 14,048 tdTom+ cells that passed quality control (see ‘‘Single-cell RNA sequencing anal-

ysis’’ below). To exclude transcriptional effects intrinsic to the chimera assay, chimaeric embryos were generated by injecting the

parental tdTom+ T+/+ (WT) line into C57BL/6 E3.5 blastocysts and processed as for the T�/- samples. Three independent embryo

pools with a total of 13 embryos were used for scRNA-seq, and 1,077 tdTom- and 2,454 tdTom+ cells passed quality control.

Embryo Staining and Imaging

Following dissection, embryoswerewashed in PBS and fixed in 4%paraformaldehyde (PFA, ThermoScientific) for 1 hour at room tem-

perature. They were thenwashed three times for 15minutes in wash buffer (0.1% fraction 5 bovine serum albumin, 0.1%Tween20, 5%

DMSO, 0.1% Triton-X in PBS), permeabilized overnight at 4�C in permeabilization buffer (0.1% fraction 5 bovine serum albumin, 0.1%

Tween20, 5% DMSO, 0.25% Triton-X in PBS) and washed three times for 15 minutes in wash buffer. Embryos were then incubated

overnight in blocking solution (5% donkey serum and 1%BSA in wash buffer) at 4�C, washed three times for 15minutes in wash buffer

and incubated overnight at 4�C in blocking solution containing the goat anti mouse Brachyury primary antibody (1:200, R&D Systems,

cat# AF2085). After three 15minute washes, Phalloidin-AlexaFluor488 (Thermofisher Scientific) was added 1:1000 and 40,6-Diamidino-

2-phenylindole dihydrochloride (DAPI, Sigma) was added at 200ng/ml with the donkey anti-goat Alexa647 antibody (1:500, Invitrogen,

cat#A21447) in blocking solution for another overnight incubation at 4�C.Embryoswere thenwashed three times for 15minutes inwash

buffer and mounted in Vectashield mountingmedia (Vector laboratories, cat# H-1000) and imaged in a Confocal Leica TCS SP5micro-

scope. Images were captures with the Leica Application Suite software and processed for publication using Fiji.

Quantification of Primordial Germ Cells
Following dissection, embryos were stained for Alkaline phosphatase activity as described previously (Ginsburg et al., 1990). Briefly,

embryos were fixed in absolute ethanol with 12.5% glacial acetic acid at 4�C for 1 hour, followed by two 24h incubations in absolute

ethanol at 4�C and two 1h washes in chloroform. They were mounted in wax, sectioned and incubated in freshly made staining so-

lution (0.1mg/ml 1-Naphthyl phosphate, 0.5%borax solution, 0.5mg/ml Fast Red TR salt and 0.6%MgCl2, pH 9.2) for 15-30minutes.

For genotyping, extra-embryonic tissues of each embryo were digested with Proteinase K and tested by polymerase chain reaction

for the presence of a 310bp region including the 3’ coding region of the T gene, missing in T-/- embryos (primers: CCAGTTGA

CACCGGTTGTTACA and TATCCCAGTCTCTGGTCTGT). A 350bp fragment spanning the homeodomain of Hox 2.1 was used as

a positive control (primers: GCGCCAGTGCAGGGAAGATTGGAA and GATATGACTGGGCCAGACGGAAA) (Rashbass et al., 1994).

Single-Cell RNA Sequencing Analysis
10X Data Pre-processing

Raw files were processed with CellRanger 2.1.1 using default mapping arguments, with reads mapped to the mm10 genome and

counted with GRCm38.92 annotation, including tdTomato sequence. This older annotation was used to ensure consistency with

the reference atlas (Pijuan-Sala et al., 2019). Processed data and raw count matrices are available in the Bioconductor package

MouseGastrulationData.

Swapped Molecule Removal

Molecule counts that derived from barcode swapping were removed from all 10X samples by applying the DropletUtils function

swappedDrops (default parameters) to groups of samples (where a sample is a single lane of a 10X Chromium chip) that were multi-

plexed for sequencing.

Cell Calling

Cell barcodes that were associated with real cell transcriptomes were identified using emptyDrops (Lun et al., 2019), which assesses

whether the RNA content associated with a cell barcode is statistically significantly distinct from the ambient background RNA pre-

sent within each sample. A minimum UMI threshold was set at 5,000, and cells with an adjusted p-value < 0.01 (BH-corrected) were

considered for further analysis.

Quality Control

Cells with mitochondrial gene expression fractions greater than 2.52% and 2.90%, for the T-/- chimeras and WT chimeras respec-

tively, were excluded. These thresholds were determined by the data – we considered a median-centred MAD-variance normal dis-

tribution; cells with mitochondrial read fraction ‘‘outside’’ of the upper end of this distribution were excluded (adjusted p-value < 0.05;

BH-corrected).

Normalisation

Transcriptome size factors were calculated for each dataset separately (T-/- chimeras, WT chimeras), using computeSumFactors

from the R scran package (Lun et al., 2019), using default parameters. Raw counts for each cell were divided by their size factors,

and the resulting normalised counts were used for further processing.

Visualisation of Single-cell RNA Sequencing Data
Batch Correction

Batch-effects were removed using the fastMNN function in scran on the first 50 PCs, computed from the HVG-subset logcount

matrix. Default parameters were used. When correcting the reference atlas (Pijuan-Sala et al., 2019), correction was performed first
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between the samples within each time-point, merging sequentially from the samples containing the most cells to the samples con-

taining the least. Time-points were then merged from oldest to youngest. When correcting the chimeras, correction was performed

on all samples within a genotype first, from largest sample to smallest, then across the two genotypes.UMAPswere calculated using

the uwot R package with default parameters except for min_dist = 0.7.Diffusionmapswere calculated using the R package destiny,

with function DiffusionMap, using default settings. Batch-corrected principal components were used.

Chimera Cell Type Annotation
To annotate the cell types in the chimaeric embryos, we performed a transcriptional mapping to a large reference atlas of mouse em-

bryonic development (Pijuan-Sala et al., 2019). Each stage of the atlaswas sub-sampled at random to 10,000 cell libraries (i.e., including

the technical artefacts of doublets and stripped nuclei) at each time-point. Cells from the mixed time-point were excluded. This sub-

sampling reduces potential bias due to the different number of cells captured at each stage. Stages E6.5 and E6.75 contained fewer

cells than other stages (3,697 and 2,169 respectively) and were not downsampled; however we do not expect cells from E8.5 or

E7.5 chimeras to map to these time-points. A shared 50-dimensional PC subspace was constructed from the subsampled cells

from the atlas, and all chimera cells that were to be mapped. Batch-correction was then performed on the atlas cells in the PC space,

as described above (Batch correction), to construct a single contiguous referencemanifold. Samples to bemappedwere then indepen-

dently mapped onto the newly-corrected atlas data (scran function fastMNN), and the 10 nearest cells (by Euclidean distance) in the

atlas to each chimera cell were recorded. Mapped time-point and cell type of chimera cells were defined as the most frequent of those

of its 10 nearest-neighbours. Ties were broken by choosing the stage or cell type of the cell that had the lowest distance to the chimera

cell. Cells thatmapped to doublet- or stripped nucleus-labelled cells were excluded fromdownstreamanalyses. For cell type differential

abundance testing in chimaeric embryos, see ‘‘quantification and statistical analysis’’ section below.

Mapping Chimera Cells onto the Atlas Backbone
To map chimera cells onto their appropriate positions on the atlas manifold, they were mapped onto it using a strategy similar to that

used in Batch correction (above). Individual samples (i.e. one 10X channel) of the E8.5 chimera datasets were mapped onto the cor-

rected atlas using fastMNN, using coordinates from the PC subspace. This operation was repeated for each chimera sample, retain-

ing the mapped coordinate values for each cell. Performing this operation in parallel across samples prevents any mapped chimera

cells affecting the future mapping of other samples. For the spinal cord to head mesoderm ordering, mapping was performed only

using cells from the relevant cell types. DPT values (i.e., ordering positions) were inferred for chimera cells by considering the mean

DPT value for the 5 nearest atlas cells in the PC space, after performing the per-sample mapping. This value of DPT is, effectively, the

position of a chimera cell along the atlas backbone. For mapping chimera cells to somite trajectories through the atlas, chimera cells

were mapped to the whole atlas (excluding cells from the ‘‘mixed gastrulation’’ atlas time-point, and with the subsampling described

above), as above for cell type labelling. As for the previous approach, chimera cells were considered a part of a trajectory if the most

common trajectory state of their 10 nearest neighbours was one of the somite trajectories. For differential gene expression analyses,

see ‘‘quantification and statistical analysis’’ section below.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of Single-Cell Datasets
Selection of HVGs

HVGs were calculated using trendVar and decomposeVar from the scran R package, with loess span 0.05. Genes that had signifi-

cantly higher variance than the fitted trend (BH-corrected p < 0.05) were retained. Genes with mean log2(normalised count) < 10-3,

genes on the Y chromosome, Xist, and tdTomato were excluded.

Gene Expression Comparisons along Trajectories

First, we selected genes that were variable along any of the three trajectories.We took the union of the genes calculated in each of the

three trajectories, calculated according to the following procedure, considering only the cells from that trajectory: HVGs were first

identified (see Selection of HVGs, below), and their mean expression level at each time-point was calculated; an order three poly-

nomial linearmodel fit was compared to an intercept-onlymodel by F-test (i.e., R function anova). We considered genes to be variable

along a trajectory if the polynomial fit was significantly better than the intercept-only model (BH-corrected p < 0.1). In a pairwise

manner across the three trajectories, we then tested these genes for differences in expression along them. As above, we calculated

the mean expression level in each trajectory for the genes at each time-point. We then fitted a null model of an order three polynomial

(i.e., the same model as for selecting genes above, except with the model using data from two, rather than one, trajectories at each

time point). The alternative model allowed for trajectory-specific coefficients for each coefficient of the order three polynomial. We

then compared the fit of the two models (by F-test) and considered genes to show different patterns of expression along the trajec-

tories if they were fit better by the alternative model (BH-corrected FDR < 0.01). If the latter model fits better than the null, this sug-

gests that the data are better described by different polynomials for each trajectory.

Overlap Computation (GSEA)
Following pair-wise comparisons of expression dynamics along the entire length of transcriptional trajectories (Table S1), resulting

gene lists were used as input for computing overlap with the Molecular Signatures Database Hallmark gene set collection using the
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Gene Set Enrichment Analysis tool (Liberzon et al., 2015; Subramanian et al., 2005). Results were plotted in Figure S2E using the

calculated FDR q-values, analog of hypergeometric p-value after correction for multiple hypothesis testing according to Benjamini

and Hochberg (Subramanian et al., 2005).

Analysis of Embryonic Chimeras
Differential abundance testing was performed using edgeR (McCarthy et al., 2012). Each 103 sample was considered as a repli-

cate, andmapped cell type counts were used in place of gene counts. A separate linear model was fitted for E7.5 and E8.5 chimeras.

Each linear model contained an intercept value specific to each biological replicate (i.e., pools of chimaeric embryos – one sample

tdTom+ and the other tdTom-). A factor term was included for the injected samples from theWT chimeras, and another was included

for the injected samples from the T-/- chimeras. Differential abundancewas tested using the contrast between these two factor terms,

effectively asking whether the injected cell type frequency differed between the WT and T-/- chimeras. This approach is preferable to

testing entirely within the T-/- chimeras, where the tdTom- fraction of cells may be influenced by aberrant behaviour of the T-/- cells.

The intra-chimera approach is also vulnerable to confounding injected status (whichmay subtly affect cell behaviours) with genotype;

the inter-chimera approach is not confounded. The use of wild-type chimeras also allows incorporation of the intrinsic variability of a

mutation-free chimera system into the model. Finally, the use of edgeR allows sharing of uncertainty estimates across cell types

with similar frequency in this sample-limited experiment. edgeR models were fitted and contrasts tested using the functions

calcNormFactors, glmQLFit, and glmQLFTest.

Differential Expression Analyses
Differential expression testing was performed using the scran function findMarkers using default parameters. There was one excep-

tion. For the across-background NMP differential expression (Figure 6A), cells were selected with DPT values between 1.25 and 1.6.

However, different distributions of cells along this section could induce apparent differential expression due to positions along

ordering, rather than due to differences in genetic background. Here, we used the more sophisticated edgeR model, where we

also fit the centred DPT values as a model coefficient to control for different distributions along the cell ordering. For this model,

we tested against an absolute log2 fold-change of 0.5 as the edgeR model proved extremely sensitive to very small differences in

expression level.

Relative Ratio Comparisons
In Figures 5A and 5B, relative contribution of injected cells to NMPs vs Posterior somites trajectories are calculated in E8.5 and E7.5

embryonic chimeras, respectively. Each point corresponds to an independent experiment (pool of chimaeric embryos), and calcu-

lated as: relative ratio = (number of tdTom+ on NMPs trajectory / number of tdTom- on NMPs trajectory) / (number of tdTom+ on pos-

terior somites trajectory / number of tdTom- on posterior somites trajectory). This approach is robust to chimera-wide composition

effects, as cell numbers are normalised using the host cells from each sample. To assess the difference in ratios between chimera

types (i.e. WT into WT vs T-/- into WT chimeras). p-values were estimated from 1000 permutations of the cells’ trajectory labels.

Quantification of Primordial Germ Cells
Differences in Alkaline Phosphatase-positive PGC counts in T-expressing vs T-/- mouse embryos at the headfold stage were as-

sessed using an unpaired two-sample t-test (Figure S4J).

ADDITIONAL RESOURCES

The code used to perform these analyses is available at https://github.com/MarioniLab/TChimeras2020. A singularity image that

contains the exact versions of software used can be downloaded from the Github repository. An online visualisation tool is available

at https://marionilab.cruk.cam.ac.uk/EarlySomites2020/.
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