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Abstract 17 

An understanding of genetic structure is essential for answering many 18 

questions in population genetics. However, complex population dynamics 19 

and scale-dependent processes can make it difficult to detect if there are 20 

distinct genetic clusters present in natural populations. Inferring discrete 21 

population structure is particularly challenging in the presence of continuous 22 

genetic variation such as isolation by distance. Here, we use the plant species 23 

Mimulus guttatus as a case study for understanding genetic structure at three 24 

spatial scales. We use reduced-representation sequencing and marker-based 25 

genotyping to understand dispersal dynamics and to characterise genetic 26 

structure. Our results provide insight into the spatial scale of genetic structure 27 

in a widespread plant species, and demonstrate how dispersal affects spatial 28 

genetic variation at the local, regional, and range-wide scale. At a fine-spatial 29 

scale, we show dispersal is rampant with little evidence of spatial genetic 30 

structure within populations. At a regional-scale, we show continuous 31 

differentiation driven by isolation by distance over hundreds of kilometres, 32 

with broad geographic genetic clusters that span major barriers to dispersal. 33 

Across Western North America, we observe geographic genetic structure and 34 

the genetic signature of multiple postglacial recolonization events, with 35 

historical gene flow linking isolated populations.  Our genetic analyses show 36 

M. guttatus is highly dispersive and maintains large metapopulations with 37 

high intrapopulation variation. This high diversity and dispersal confounds 38 
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the inference of genetic structure, with multi-level sampling and spatially-39 

explicit analyses required to understand population history.   40 
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Introduction  41 

Describing the pattern of genetic structure is the foundation for many 42 

population genetic studies. The cornerstone for understanding population 43 

genetic structure is the expectation that individuals become more genetically 44 

distinct, or less genetically related, with increasing geographic distance. 45 

Indeed, a pattern of “isolation by distance” is often used as a null model of 46 

genetic differentiation (Malecot 1948; Slatkin, 1993; Wright, 1943). This 47 

pattern arises because at increased distances, genetic drift and natural 48 

selection occur faster than dispersal can homogenise population 49 

differentiation. However, several challenges occur when studying population 50 

structure across species-wide distributions. In particular, the degree to which 51 

patterns represent individual dispersal and genetic drift versus large-scale 52 

population movements like recolonization from glacial refugia can generate 53 

patterns that are hard to interpret (Slatkin et al. 1987). 54 

 55 

The development of new sequencing approaches make the study of natural 56 

populations more accessible (Ekblom and Galindo, 2011), and various 57 

methods allow genetic clusters to be detected and visualised across 58 

geographic space (Falush et al. 2003; Hubisz et al. 2009; Pritchard et al. 59 

2000). However, the ease with which genetic structure can be detected is 60 

somewhat at odds with the known complexity of genetic variation in natural 61 

populations. Detecting clearly defined geographic genetic units is expected to 62 
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be challenging against the background of continuous genetic variation often 63 

present in nature. As such, group assignment algorithms may detect artificial 64 

genetic clusters in populations characterised by isolation by distance, 65 

especially if the sampling of populations is aggregated (Pritchard et al. 2000). 66 

Nevertheless, a recent meta-analysis has shown that isolation by distance is 67 

present in 60% of population genetic datasets, with more than half these 68 

studies continuing to use the programme STRUCTURE without accounting 69 

for geographic distances between sampling locations (Perez et al. 2018). The 70 

long-running issue of identifying ‘clusters versus clines’ motivated the 71 

development of new methods that account for spatial information of samples 72 

when estimating genetic structure (Bradburd et al. 2016; Petkova et al. 2016; 73 

Bradburd et al. 2018; House and Hahn 2018), and these methods may be more 74 

accurate in detecting distinct genetic clusters in the presence of continuous 75 

patterns of genetic differentiation. However, only a few studies to date have 76 

applied these methods (e.g. Murray et al. 2019; Whelan et al. 2019). 77 

 78 

A further issue with studying genetic structure is going from pattern to 79 

process, when a range of scale-dependent and temporally variable processes 80 

together shape the spatial arrangement of genetic variation (Schregel et al. 81 

2018). At a local scale, the amount of dispersal and the strength and pattern 82 

of microgeographic selection, are expected to jointly affect spatial dynamics 83 

and patterns of relatedness (Vekemans & Hardy 2004). At the population 84 
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level, barriers to dispersal and regional selection will determine 85 

metapopulation structure and consequently evolutionary dynamics (Husband 86 

& Spencer 1996). At the landscape-level, long-distance dispersal is expected 87 

to be uncommon, but even rare long-distance dispersal can introduce 88 

important allelic variation and affect broad-scale patterns of relatedness 89 

(Nathan 2006). Thus, studies that focus on a single spatial scale may bias their 90 

inferences toward a particular biological process. Therefore, to obtain a full 91 

understanding of the evolutionary and ecological processes that shape genetic 92 

variation and structure, studies should integrate over multiple scales (Schregel 93 

et al. 2018). However, such studies are rare.  94 

 95 

Here, we investigate the spatial scale of genetic structure and address how 96 

dispersal interacts with other scale-dependent processes to determine genetic 97 

structure in the plant species Mimulus guttatus (syn. Erythranthe guttata; see 98 

Lowry et al. 2019 for nomenclature). While M. guttatus is a widely used study 99 

system for investigating diverse biological processes, from the evolution of 100 

flower colour pigmentation and patterns (e.g. Yuan et al. 2016; Twyford et 101 

al. 2018), to adaptation to harsh environments (e.g. Lowry et al. 2009; 102 

Hendrick et al. 2016), there are still major gaps in our knowledge of the 103 

structure of genetic variation in natural populations. Previous studies have 104 

shown populations of M. guttatus are strongly differentiated for adaptive 105 

traits and morphological characters (Friedman et al. 2015; Nesom 2014), and 106 
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population genetic divergence in this species is high (FST ~0.5; Lowry et al. 107 

2008; Puzey et al. 2017), therefore we may expect highly structured 108 

populations, with localised genetic clusters and limited gene flow. In contrast, 109 

owing to its high dispersal potential through seeds and vegetative fragments 110 

(Lindsay 1964; Truscott et al. 2006; Vickery et al. 1986; Waser et al. 1982), 111 

M. guttatus has spread to the farthest reaches of the Aleutian Islands in Alaska 112 

and rapidly invaded large areas of north-western Europe and New Zealand 113 

over the past c. 200 years (Truscott et al. 2006). Based on these observations, 114 

one would predict broad-scale genetic structure but limited structure at a fine 115 

spatial scale.  116 

 117 

We address these different expectations by investigating genetic variation and 118 

population structure at a range of spatial scales (Figure 1). First, we genotype 119 

individuals at a fine-spatial scale to look for spatial genetic structure (SGS) 120 

and limits to localised dispersal within two M. guttatus populations. Second, 121 

we use genome-wide sequencing of populations across a 700 km transect 122 

from the Sierra Nevada to infer the nature of genetic structure, using 123 

conStruct (Bradburd et al. 2018), a recently developed method to infer 124 

discrete genetic clusters from continuous population samples. Third, we 125 

analyse sequence variation from range-wide populations to infer the extent of 126 

divergence and the distribution of genetic variation, and to understand the 127 

phylogeographic history of the species in North America. Finally, we 128 
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integrate across distance classes to understand dispersal dynamics over 129 

different scales. Our results provide critical insight into the genetic structure 130 

and phylogeographic history of a widespread and ecologically diverse plant 131 

species, while also allowing us to evaluate the benefits of studying dispersal 132 

at multiple spatial scales simultaneously.  133 

 134 

Materials and Methods 135 

Study species 136 

The plant species Mimulus guttatus is an emerging model system in 137 

evolutionary and ecological research because of its rich adaptive variation, 138 

the presence of closely related interfile taxa, and its amenability to genetic 139 

analysis (Twyford et al. 2015; Wu et al. 2007). The species is a self-140 

compatible hermaphrodite with small-flowered populations that are selfers or 141 

mixed-maters and large-flowered populations that are predominantly 142 

outcrossers. Pollination is by bees, and the small seeds are likely dispersed by 143 

wind and water. M. guttatus has two ecotypes, an annual ecotype found in 144 

seasonally dry conditions, and a perennial ecotype found in permanently wet 145 

sites (Lowry et al. 2008). These ecotypes show substantial morphological 146 

differentiation (Friedman et al. 2015), and are maintained by multiple regions 147 

of divergence, including a large chromosomal inversion that protects multiple 148 

loci involved in adaptive divergence (Lowry and Willis, 2010; Twyford and 149 

Friedman, 2015). Perennial populations reproduce vegetatively by producing 150 
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horizontal spreading stems (stolons), which may facilitate local clonal spread 151 

and may also break-off and disperse along watercourses.  152 

 153 

The extensive distribution range of M. guttatus, with a native range extending 154 

over 5000 km from northern Mexico to Alaska, makes it a useful study system 155 

for investigating geographic genetic structure and responses to biogeographic 156 

barriers. M. guttatus is widespread and abundant in areas with a rich biota and 157 

complex biogeography, encircling the Central Valley, spanning the 158 

Cascade/Sierran transition, bridging the Cascades/Coast ranges and the 159 

Rocky Mountains, and found in formerly glaciated regions of western Canada 160 

and Alaska. Previous studies of M. guttatus populations have identified 161 

geographic genetic structure corresponding to coastal and inland populations 162 

(Lowry et al. 2008) or northern, coastal, and southern populations (Twyford 163 

& Friedman 2015). However, the confounding issue of isolation by distance 164 

observed in some population studies of M. guttatus (e.g. Kooyers et al. 2015), 165 

and the lack of support for some nodes in phylogeographic analyses (Twyford 166 

and Friedman, 2015), has precluded detailed interpretation of geographic 167 

genetic structure and the phylogeographic history of the species. 168 

 169 

Fine-scale spatial genetic structure 170 

We used two populations from California to estimate spatial genetic structure. 171 

We sampled one population of the perennial ecotype (population ELD), and 172 
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one of the annual ecotype (FOR; see Table S1 for population details). Our 173 

classification of population life history was based on morphological traits 174 

such as number of stolons and flower size, observed in the field and in 175 

common garden experiments (Twyford & Friedman, Unpublished data). The 176 

two study populations were chosen for their large census population sizes of 177 

many thousands of individuals, and the continuous distribution of individuals 178 

with no obvious barriers to dispersal. For each population, we sampled at least 179 

twenty plants at approximately 30 cm intervals along a transect, with four 180 

additional transects at different spacings (3 - 500 m). Our sampling scheme 181 

represents a shallow survey of individuals, sampling less than 10% of plants 182 

in the populations, with the aim to capture the range of pairwise distance 183 

classes represented by samples within each site. Maximum inter-plant 184 

sampling distances were 680 m for population ELD and 410 m for population 185 

FOR. We calculated interplant distances from individual GPS coordinates. 186 

We collected plant tissue in silica gel, for DNA extraction with the Qiagen 187 

Plant DNeasy kit (Qiagen, Germantown, MD). We used a total of ten PCR-188 

based markers for genetic analysis, four intron-based length polymorphism 189 

markers and six microsatellites (marker details reported in Lowry et al. 2008). 190 

We performed multiplexed PCR reactions with M13-tailed primers, prior to 191 

genotyping on the ABI 3730 DNA Analyzer at Edinburgh Genomics. We 192 

scored the size of the amplified fragments automatically, with manual edits, 193 

using geneMapper (Applied Biosystems). We checked genotype data for null 194 
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alleles and other errors with MICRO-CHECKER (Van Oosterhout et al. 195 

2004). We excluded locus MgSTS278 in population ELD due to uneven 196 

amplification success, prior to statistical analyses. The final dataset included 197 

91 individuals for population ELD and 79 for FOR. 198 

 199 

We inferred individuals likely to be the product of clonal reproduction using 200 

a permutation and re-sampling approach that accounts for scoring error and 201 

somatic mutations, as implemented in GENCLONE (Arnaud‐Haond & 202 

Belkhir 2007). We related clonality to the inter-plant sampling distance to 203 

understand the extent of clonal spread, then selected a single individual at 204 

random from each clone for downstream analyses of diversity and 205 

relatedness. We calculated the extent of SGS for each population using spatial 206 

autocorrelation analysis described in Vekemans and Hardy (2004), using the 207 

pairwise kinship coefficients (Fij) of Loiselle et al. (1995). We performed 208 

analyses with SPAGeDi (Vekemans & Hardy 2004) using the following 209 

distance classes: 0 – 2 m, 2 – 4 m, 4 – 6 m, 6 – 8 m, 8 – 10 m, 10 – 20 m, 20 210 

– 50 m, 50 – 100 m, 100 – 200 m, 200 – 400 m and 400 – 700 m. We 211 

calculated mean Fij per distance class, 95% confidence intervals by 212 

permutation, standard errors by jack-knifing, and plotted autocorrelograms 213 

for each analysis. We calculated overall spatial genetic structure per 214 

population with the Sp statistic. As we found little evidence of genetic 215 

substructure within populations (see results), we then calculated pooled 216 
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diversity statistics across transects within a site. We used FSTAT v.2.9.3 217 

(Goudet 2001) to calculate the inbreeding coefficient (FIS) and allelic richness 218 

(AR) per population. 219 

 220 

Population-level differentiation 221 

We calculated the extent of population-level genetic diversity and 222 

differentiation for a transect of nine populations of M. guttatus spaced at 223 

approximately 95km intervals (range 52-143 km) through the Sierra Nevada 224 

(Table S1). We collected leaf tissue from between eighteen and twenty well-225 

spaced (>1 m) individuals per population into silica for DNA extraction. We 226 

used the genotyping by sequencing (GBS) method to generate genome-wide 227 

polymorphism data (Elshire et al. 2011). We created sequencing libraries by 228 

digesting individual samples with the frequent cutting enzyme ApeKI, before 229 

ligating barcoded adapters, performing PCR, and pooling in 96-plex 230 

reactions. We sequenced multiplexed libraries with 100 bp single-end 231 

sequencing with the Illumina HiSeq 2500 at Rochester Medical Center. We 232 

used TASSEL-GBS v2 (Glaubitz et al. 2014) to de-multiplex samples, 233 

remove barcodes, perform quality filtering, and call SNPs. We aligned the 234 

GBS tags to the M. guttatus genome version 2.0_256 (phytozome.net) using 235 

the default settings of BWA (Li & Durbin 2009). We called sites with a 236 

minimum quality score of 20, and with no minimum allele frequency to 237 

recover all variant and invariant sites. Ten of 193 sequence libraries failed, 238 
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yielding less than 1% of the mean number of sequencing reads across 239 

samples, while other samples yielded between 766,539 – 6,704,555 reads. 240 

The average sequencing coverage per site was 38-fold, for 5,611,458 sites. 241 

Downstream population genetic analyses used a subset of data filtered to 242 

include individuals with less than 50% missing data, sites scored in over 75% 243 

individuals, a minor allele frequency of 0.05, and with SNPs in tight linkage 244 

removed by filtering variants within 20 bp (Brandvain et al. 2014), to give a 245 

final dataset of 22,697 SNPs. 246 

 247 

We inferred discrete population structure using conStruct (Bradburd et al. 248 

2018), which models admixture across a specified number of discrete layers 249 

as defined by the K-value. Non-spatial conStruct analyses do not use location 250 

information, while spatial conStruct analyses assume allele frequencies have 251 

a positive covariance based on geographic locations to account for isolation 252 

by distance. To determine an appropriate level of parameterization for the 253 

models, we used cross-validation with a training set (Bradburd et al. 2018), 254 

and compared predictive accuracies between spatial and non-spatial models, 255 

and between successive K-values, to determine which model has the best 256 

goodness-of-fit without overfitting. We analysed K-values of 1-9. To test 257 

whether spatial models were better fitting than non-spatial models we used 258 

paired t-tests comparing cross-validation scores across values of K. The best 259 

fitting models were repeated with 100,000 MCMC iterations with the first 260 
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50% removed as burn-in to produce the final analyses. Admixture plots were 261 

visualised per population using the default options in conStruct.  262 

 263 

We compared our conStruct results with patterns of genetic structure inferred 264 

from additional non-spatial analyses. fastSTRUCTURE analyses used the 265 

simple prior and values of K between 1 and 9, with the optimal K considered 266 

as the run that maximizes the log-marginal likelihood of the data. We then re-267 

ran fastSTRUCTURE with the logistic prior, to help infer fine-scale 268 

admixture. Admixture plots were visualised per individual using the default 269 

options in fastSTRUCTURE. We performed PCA analysis in Tassel 270 

(Bradbury et al. 2007) and calculated pairwise FST using the R package 271 

diveRsity (Keenan et al. 2013) and nucleotide diversity () per site (including 272 

invariant sites) using VCFTools (Danecek et al. 2011). 273 

 274 

Range-wide dispersal and broad-scale genetic structure 275 

We reanalysed GBS data from 174 individuals from 70 populations from 276 

across the native range of M. guttatus which were used to compare SNP 277 

differences within and outside a chromosomal inversion by Twyford & 278 

Friedman (2015). This data includes annual and perennial populations 279 

sampled from Alaska, Arizona, California, Idaho, Nevada, Oregon and 280 

Washington (America), as well as British Columbia (Canada) and Sonora 281 

(Mexico) (Figure S1). We re-called SNPs from the raw reads using the Tassel 282 
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5 GBS v2 pipeline, with the minor allele frequency set to 0 to call invariant 283 

sites to improve branch length estimates in phylogenetic analyses. Variant 284 

calls were made using a minimum sequencing quality score of 20. Our variant 285 

calling produced 72,941 SNPs and invariant sites that were used in 286 

phylogenetic analyses, of which 6,523 sites were variable. Two further 287 

filtered datasets were generated for population genomic analyses. For 288 

analyses of genetic structure, we filtered invariant, low frequency sites and 289 

SNPs in tight linkage (as above), and removed samples with more that 25% 290 

missing data, producing a dataset of 3,414 SNPs. For TreeMix analysis, we 291 

filtered populations with fewer than three sampled individuals, leaving 30 292 

populations, and then filtered invariant, low frequency sites and SNPs in tight 293 

linkage as above, to give a final dataset of 3,066 filtered SNPs. 294 

 295 

We used conStruct, as described above (but with K-values between 1 and 10), 296 

to characterize genetic structure using spatial and non-spatial models. We 297 

then used polymorphism-aware phylogenetic models (PoMo) implemented in 298 

IQ-TREE (Nguyen et al. 2015) to investigate population-level relationships. 299 

PoMo uses site frequency data to account for incomplete lineage sorting thus 300 

providing a more accurate estimate of the species tree when there is gene 301 

discordance (De Maio et al. 2015). We calculated allele frequencies per 302 

population using the counts file library (cflib) python scripts supplied with 303 

IQ-TREE. We tested the best-fitting model (-m TEST) and subsequently 304 
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performed analyses with TVM+F+G4+P. We adjusted the virtual population 305 

size setting (N) to equal the number of chromosome sets per population (i.e. 306 

+N5) based on the mean of 2.5 diploid individuals sampled per site. Tree 307 

searches used settings recommended for short-sequence block data (-pers 0.2, 308 

-nstop 500). We used 1000 ultrafast bootstrap estimates to test the support for 309 

the topology (Minh et al. 2013).  310 

 311 

We used TreeMix to further investigate population relationships and to model 312 

historical migration events. TreeMix constructs a maximum likelihood 313 

phylogeny from genome-wide polymorphism data, and incorporates 314 

directional migration edges between populations where historical admixture 315 

is likely (Pickrell & Pritchard 2012). We assessed the fit of models with 316 

between 0 and 10 migration events by calculating the percentage of variation 317 

explained by the maximum likelihood trees using the 318 

treemixVarianceExplained scripts as part of the RADpipe package (doi: 319 

10.5281/zenodo.17809). We also investigated patterns of range-wide genetic 320 

diversity by calculating  per site for each population with two or more 321 

sampled individuals, using VCFTools. We used general linear models in R to 322 

test whether variation in  is explained by life history (annual vs. perennial) 323 

and geographic region (coastal, northern, southern). 324 

 325 

Integrated analyses across spatial scales 326 

http://doi.org/10.5281/zenodo.17809
http://doi.org/10.5281/zenodo.17809
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We evaluated the pattern of genetic structure across spatial scales. First, we 327 

evaluated the strength of isolation by distance by regressing pairwise 328 

population genetic structure (FST/(1-FST)) against pairwise linearised 329 

geographic distance (log transformed). We did this separately for the Sierra 330 

dataset and the range-wide data.  We tested for a correlation between the 331 

matrix of geographic distances and the matrix of genetic distances using a 332 

Mantel test with 99 permutations in the R package Ade4 (Dray & Dafour 333 

2007). Next, we used the geostatistical method of using semivariance to fit 334 

variograms to our genetic divergence and geographic distance data to 335 

understand broad-scale patterns of genetic relatedness. We performed 336 

analyses separately for the Sierra and range-wide data. We fitted variograms 337 

using the R package Phylin (Pedro et al. 2015) with the ‘gen.variogram’ 338 

function, and models with the ‘gv.model’ function. We permuted the nugget 339 

and sill to identify the best-fit model measured by R2 fit to the data. 340 

 341 

Results 342 

Our genotyping of spatially mapped individuals in a population of the annual 343 

ecotype (FOR) revealed high mean allelic richness (AR = 10.4), with low 344 

overall SGS (Sp = -5.90 x 10-5). Over all distance classes, values of Fij 345 

consistently fell within the permuted upper and lower confidence intervals, 346 

reflecting no spatial structure (Figure 2A). A population of the perennial 347 

ecotype (ELD) also showed high genetic diversity as measured by mean 348 
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allelic richness (AR = 8.1), though there was evidence for local clonal spread, 349 

with two to six samples present in nine clonal genotypes, with a maximal 350 

clonal spread of 4.8 m. There was no SGS in most distance classes, except a 351 

high and significant Fij value in the 0 - 2 m distance class (Figure 2B). Both 352 

populations also had evidence of non-random mating, with a high FIS value 353 

for the annual population (FIS = 0.388) and a moderate FIS value in the 354 

perennial population (FIS = 0.218). Overall, the general absence of SGS 355 

suggests no limits to dispersal over a spatial scale of hundreds of meters in 356 

large continuous M. guttatus populations, though clonal spread and self-357 

fertilisation influence fine-scale population dynamics.  358 

 359 

Genome-wide SNP analysis of nine M. guttatus populations spaced at ~100 360 

km intervals through the Sierra Nevada showed high genetic diversity with a 361 

mean per site  of 1.6 %, and high population structure with a mean pairwise 362 

FST of 0.327. Analyses of genetic clustering using PCA and fastSTRUCTURE 363 

revealed geographic genetic clusters corresponding to northern and southern 364 

Sierran populations (Figure 3). Similarly, the non-spatial model in conStruct 365 

showed a north-south genetic division at K = 2 (Figure 4A), with genetic 366 

clusters corresponding to geographic groupings at K = 3 or 4 (Figure 5A-C; 367 

with K = 4 the value at which the likelihood plateaus, Figure S2). However, 368 

model-based clustering incorporating spatial information proved a 369 

significantly better fit than non-spatial models, particularly for K-values 370 
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between one and three (Figure S2). The spatial conStruct models did not show 371 

a clear north-south genetic discontinuity at K = 2 (Figure 4C), and at higher 372 

K-values (Figure 5D-F), and instead genetic differentiation of the Sierra 373 

Nevada populations largely reflects continuous variation in allele frequencies 374 

rather than discrete genetic clusters. 375 

 376 

Analyses of broad-scale population samples across the native range, using 377 

non-spatial conStruct models, revealed clinal genetic variation at K = 2 that 378 

correlates with latitude (R2 = 0.545; Figure 4B, 5G). This result confirms a 379 

pattern of south-north genetic divergence previously identified with 380 

STRUCTURE (Twyford and Friedman 2015). In contrast, spatial conStruct 381 

models showed a substantially better fit to the data across K-values (P < 382 

0.0001, Figure S2), revealed no such correlation with latitude at K = 2 (R2 = 383 

0.0001), and instead discriminated coastal from inland populations (Figure 384 

5J). At K = 3, spatial models distinguished coastal, northern and southern 385 

genetic clusters but with major admixture (Figure 5K).  386 

 387 

Complex patterns of genetic structure were also evident in polymorphism 388 

aware phylogenetic analyses, which resolved a well-supported tree topology 389 

with genetic clusters of southern, coastal and northern populations, while also 390 

revealing previously uncharacterised geographic substructure within clades 391 

(Figure 6). For example, well-supported at the base of the coastal clade are 392 
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two Californian populations from Monterey Bay, BCB and LOR, with other 393 

more northerly coastal populations in a derived position, supporting south to 394 

north range expansion along the Pacific coast. Evidence for historical 395 

dispersal in M. guttatus is provided by the TreeMix analysis, with models 396 

incorporating at least two migration events (m) showing much better model 397 

fit than those without migration (Figure S3). At m = 10, dispersal is observed 398 

across the admixture graph, including multiple dispersal events from 399 

populations in California (Figure 6C). These results indicate a history of 400 

repeated dispersal across the range of M. guttatus, facilitating recolonization 401 

after glaciation. 402 

 403 

Genetic diversity as estimated by population-level  values showed no 404 

significant difference between annual and perennial populations (F1,55=0.22, 405 

P = 0.6), and instead the three previously identified geographic clusters 406 

explain a significant amount of variation in the data (F2,55=5.75, P < 0.01). 407 

The greatest genetic diversity was found in the southern cluster, then 408 

northern, and the lowest in the coastal cluster (Figure 6A). While genetic 409 

diversity was uniformly low across populations along the 580 km of coastline 410 

in Oregon, and uniformly high across the north of the Sierra Nevada, genetic 411 

diversity was more heterogeneous in other areas, with notable patches of high 412 

diversity both in the north (e.g. HOC, Olympic National Forest, Washington) 413 
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and in the more sparsely sampled inland southern populations of Sonora 414 

(ALI) and Arizona (CRZ).   415 

 416 

For the Sierra dataset, the linear regression between (FST /1-FST) and log 417 

pairwise geographic distance was significant (P < 0.001) and geographic 418 

distance explained 66% of genetic variation (Figure 7A). However, for the 419 

range-wide dataset, although the linear regression is significant (P < 0.001), 420 

the data showed a poor fit, with distance explaining only 6% of genetic 421 

variation (Figure 7B). This matches predictions that isolation by distance 422 

should break down with increasing geographic distance as dispersal processes 423 

change and as different geographic genetic clusters mix. Similarly, Mantel 424 

tests for the correlation between the geographic and genetic distance matrices 425 

showed a significant correlation for the Sierra dataset (r: 0.69, P < 0.01), but 426 

no significant correlation for the range-wide dataset (r: 0.13, P = 0.13). To 427 

provide a separate estimate of the geographic scale of genetic differentiation 428 

independent of mutation rate we related genetic divergence to geographic 429 

distance in variogram models. Our results showed that the range, defined as 430 

the scale of spatial autocorrelation after which little change in the semi-431 

variance is encountered with increasing distances, extended to 500 km for 432 

both Sierra and range-wide GBS data (Figure 7C, D). These analyses showed 433 

that the spatial independence of populations is only achieved at 500 km. 434 

 435 
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Discussion 436 

Identifying the spatial scale of genetic structure is key for understanding 437 

population dynamics and for inferring evolutionary and ecological processes, 438 

however most population genetic studies focus on a single spatial scale or 439 

ignore spatial information in their analyses. Our analyses of the widespread 440 

plant M. guttatus revealed different patterns of genetic structure over a range 441 

of spatial scales. Within populations, we observed a lack of spatial genetic 442 

structure, suggesting extensive local dispersal. Between populations, we 443 

identified continuous genetic variation and isolation by distance, which had a 444 

major impact on the inference of genetic clusters. After accounting for 445 

isolation by distance, we were able to distinguish broad geographic genetic 446 

clusters that spanned many well-characterised barriers to dispersal. Across 447 

the species’ native range, we observed geographic genetic clusters 448 

corresponding to repeated colonisation from the south, with evidence for 449 

widespread historical dispersal. This pattern of recurrent colonisation 450 

suggests the species is an excellent coloniser that rapidly expands its range in 451 

response to new ecological opportunities and habitat availability. Our results 452 

showing high diversity and broad-scale genetic structure support the finding 453 

that M. guttatus has large metapopulations with high intrapopulation variation 454 

(Puzey et al. 2017). Local genetic variation and genetic structure is shaped by 455 

diverse factors including self-fertilisation and clonal spread of the perennial 456 

ecotype, in conjunction with diverse forms of selection known to operate in 457 
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this species (Peterson et al. 2016; Troth et al. 2018). We discuss our results 458 

below in terms of the spatial scale of gene flow and the species’ historical 459 

demography, and make recommendations for how best to use genetic 460 

information to infer genetic structure at different spatial scales. 461 

 462 

Spatial dynamics of dispersal and migration 463 

Our findings show that high dispersal potential has shaped genetic structure 464 

of M. guttatus populations. The lack of spatial genetic structure over hundreds 465 

of meters likely reflects extensive local dispersal. Similarly, the emergence 466 

of broad geographic genetic clusters that extend over potential barriers to 467 

dispersal, and variogram analyses that reveal the non-independence of 468 

populations over hundreds of kilometres, suggests large metapopulations. 469 

Although pollen movement by bees, and downstream dispersal of vegetative 470 

fragments will contribute to dispersal in this species, seed-mediated dispersal 471 

is likely to dominate. While >40% of M. guttatus seeds fall within 25 cm of 472 

the maternal plant (Ritland & Ritland 1996; Sweigart et al. 1999; Vickery et 473 

al. 1986), giving rise to some localized fine-scale genetic structure (Ritland 474 

and Ritland 1996) as observed in the perennial population, many of the 475 

lightweight seeds (0.002 mg) are likely dispersed much further. Occasional 476 

long-distance seed dispersal by wind, animals or water (Martin 2004) may be 477 

crucial for the widespread colonisation of Mimulus in its native range, and 478 

also in its introduced range where it has become a dominant species of 479 
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disturbed watercourses over the last 200 years.  Taken together, our analyses 480 

and previous work show the important role of dispersal at all spatial scales.  481 

 482 

Research on genetic population structure in natural populations is often 483 

focussed on assessing genetic divergence (e.g. FST ~ 1/(4Nem+1)) and 484 

understating demographic connectivity by predicting migration rate (m). 485 

However, linking FST and m relies on a number of assumptions that may be 486 

unrealistic in most natural populations. For example, the challenge for 487 

understanding migration is illustrated by the contrast between high FST values 488 

in M. guttatus which imply low migration (this study, and others reviewed in 489 

Puzey et al. 2017), and a migration rate sufficient to homogenize population 490 

differences in models fit to whole genome data (Aeschbacher et al., 2017). 491 

Crucial to estimating migration is understanding diversity and the effective 492 

population size (Ne), with previous estimates of Ne for M. guttatus in the 493 

hundreds of thousands (between 4.805 × 105 and 6.730 × 105: Aeschbacher 494 

et al. 2017; Brandvain et al. 2014), while the synonymous  value of 3.3% 495 

estimated by Puzey et al. (2017) makes M. guttatus one of the most 496 

genetically diverse plant species studied to date. Our study supports the 497 

finding of high genetic variation maintained in M. guttatus populations—we 498 

found up to thirty alleles at polymorphic markers within a population, 499 

numerous unique genotypes in a clonal perennial population, and a high value 500 

for sequence diversity at 1.6%.  High genetic diversity was present even in 501 
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populations with moderate to high selfing rates. Nonetheless, the demography 502 

of M. guttatus populations are characterized by ‘boom and bust’ dynamics, 503 

with rapid colonization and population expansion in response to ecological 504 

opportunities, but with frequent local extinctions due to drought and habitat 505 

change (Vickery 1999). Overall, it is possible that while seed dispersal allows 506 

substantial mixing within populations and facilitates occasional long-distance 507 

dispersal, migration between populations is not always sufficient to 508 

homogenize population differences. 509 

 510 

Spatial scale of genetic structure  511 

Our work highlights the confounding influence of continuous genetic 512 

variation on the inference of genetic clusters. At regional spatial scales, for 513 

example across Sierra Nevada populations of M. guttatus, we found strong 514 

isolation by distance, and spatial analyses accounting for continuous 515 

population structure did not detect clear geographic genetic structure. This 516 

indicates continuous genetic variation with geographic clines in allele 517 

frequencies, rather than discrete population clusters due to barriers to 518 

dispersal. Nonetheless, there was some evidence of subtle north-south 519 

divergence in the Sierra Nevada, which is notably less distinct than in other 520 

organisms. In spiders, for example, cryptic intraspecific breaks and species 521 

divergence were found between Sierran populations (Hedin et al. 2013). 522 

Interestingly, we found contrasting patterns between analyses of genetic 523 
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structure across the species range. Non-spatial analyses such as 524 

fastSTRUCTURE and PCA detected the genetic distinctiveness of sampling 525 

sites, which in M. guttatus correspond to south-north genetic structure, while 526 

spatial analyses such as conStruct revealed clusters corresponding to barriers 527 

to dispersal and demographic history, which are coastal and non-coastal 528 

populations in M. guttatus. This underscores that spatial and non-spatial 529 

analyses complement each other and reveal different aspects of population 530 

structure (Bradburd et al. 2018). 531 

 532 

Demographic and phylogeographic history 533 

Combining our analyses of genetic structure and phylogeography allow us to 534 

suggest a model for the historical colonisation of M. guttatus across the US. 535 

The joint evidence from the phylogeographic and genetic diversity analyses 536 

support southern populations as a reservoir of diversity and a major source 537 

for range expansion. Divergence of populations in the south of the species 538 

range is likely to have occurred in the Pleistocene around 265,000 years ago 539 

(Brandvain et al. 2014). This postdates the period of major geological uplift 540 

during the Pliocene (3–5 Ma), or pre-Pliocene activity, and instead supports 541 

glacial activity and consequent climatic changes in the Sierra Nevada 542 

structuring genetic diversity in M. guttatus. The location of inland refugia is 543 

hard to specify due to the uniformly high genetic diversity of these 544 

populations, however this seems most likely to be in the south of the Sierra 545 



27 
 

Nevada. Whether there was a separate coastal refugium is hard to say with 546 

certainty. A coastal refugium is recognized for many North American plant 547 

species (Brunsfeld et al. 2001), and the patchy occurrence of high genetic 548 

diversity in coastal populations, and the topology of the phylogeny, are 549 

broadly consistent with a separate coastal refugium at the southern extent of 550 

the Northwest Forested Mountain biogeographic area, in the region of the 551 

Wilson Grove Formation. However, evidence for shared genetic variants 552 

between coastal populations and a population approximately 200 km inland, 553 

East of the Central Valley (population MED), suggests coastal populations 554 

may be independently derived from an inland source, rather than from a 555 

separate coastal refugium. Similar patterns of trans-valley relatedness have 556 

been seen in spiders (Hedin et al. 2013) and salamanders (Reilly et al. 2015). 557 

Major rivers are orientated in a perpendicular axis to the Sierra Nevada 558 

mountains (Rovito, 2010), and may have acted as a route for dispersal of the 559 

perennial ecotype. Our results support the model of Western North American 560 

phylogeography proposed by Brunsfeld et al. (2001), where vicariance, 561 

dispersal and refugia shape genomic variation, and where dispersal has 562 

occurred in waves as postglacial conditions became more hospitable.   563 

 564 

Subsequent range expansion from glacial refugia has left a clear genetic 565 

signature, with a latitudinal cline of genetic variation across the north of the 566 

species range that parallels broad-scale north-south divergence seen in other 567 
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taxa such as wild sunflowers (McAssey et al. 2016). Northwards range 568 

expansion and a subsequent increase in population size is likely to be recent, 569 

within the last ~20,000 years (Brandvain et al. 2014), as a response to 570 

increased habitat availability and more hospitable conditions post-glaciation.  571 

The improved branch support in polymorphism-aware phylogenetic analyses 572 

compared with conventional Bayesian analysis of concatenated sequences 573 

(Twyford and Friedman, 2015), supports the divergence of northern and 574 

coastal populations, and suggests a scenario of multiple independent 575 

colonisation events from the south, each with different biogeographic 576 

histories. Of particular interest is the coastal genetic cluster, which is mostly 577 

restricted to a narrow band adjacent to the Pacific. The low genetic diversity 578 

suggests these populations have been through a genetic bottleneck, while the 579 

TreeMix analysis suggests these populations have subsequently been a major 580 

source of admixture with inland populations. Overall, range-wide genetic 581 

variation in M. guttatus has been shaped by recurrent colonisation from the 582 

south of the species range, with dispersal avenues facilitating colonisation. 583 

 584 

Our finding of multiple independent recolonization events has important 585 

consequences for selecting samples for demographic analyses of M. guttatus. 586 

Genomic studies using sparse population samples need to compare 587 

individuals derived from a similar range expansion event, otherwise 588 

demographic inferences will reflect ancestral variation rather than recent 589 
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population changes. While our data support (at least) two colonization events 590 

from the south of the species range, recolonization from a northern refugium, 591 

such as the Berengian refugia proposed for cold-tolerant taxa such as the 592 

serrated wintergreen Orthilia secunda (Beatty & Provan 2010), generally 593 

seems less likely for M. guttatus given the placement of northern populations 594 

as highly derived in the population phylogeny. However, there are patches of 595 

high genetic diversity in the north, and TreeMix shows these populations are 596 

both a sink and a source of migration. The question of cryptic northern refugia 597 

would be better resolved with detailed sampling from the north of the species 598 

range. 599 

 600 

Conclusion 601 

Our genetic analyses reveal how dispersal affects spatial genetic variation 602 

from the local, to the regional, to the range-wide scale. At a local scale, high 603 

dispersal interacts with factors such as the spread of clonal genotypes and 604 

inbreeding, while at the broad spatial scale genetic structure is more likely to 605 

be determined by historical demography. Studying a single spatial scale 606 

would have overlooked critical aspects of metapopulation structure and 607 

limited our ability to infer dispersal dynamics, while not using spatial 608 

analyses would have overestimated the extent of geographic genetic structure 609 

where there is strong isolation by distance. We recommend other studies of 610 

population structure combine genetic data at multiple spatial scales, as well 611 
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as make use of spatial analyses of genetic structure to better understand 612 

genetic variation in widespread species. 613 
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Legends to figures 851 

Figure 1. Geographic locations and spatial scale of study of Mimulus guttatus 852 

populations. (a) Fine-scale geographic sampling at two locations in 853 

California. Five transects were sampled at different spacings in population 854 

FOR (top panel) and ELD (bottom panel). Yellow dots indicate transects of 855 

20 individual samples at 30cm spacing; inset in top panel highlights three 856 

closely spaced transects, inset in bottom figure shows an example of the 857 

detailed sampling of individuals performed for each transect, (b) population 858 

sampling through the Sierra Nevada, (c) range-wide sampling, with the 859 

known species limits marked with blue line. Note that a total of 81 860 

populations were analysed in this study, with unique population samples for 861 

each spatial scale. 862 

 863 

Figure 2. Autocorrelograms showing the extent of spatial genetic structure 864 

based on the kinship coefficient Fij as a function of distance for: (a) annual 865 

population FOR, (b) perennial population ELD. Analyses are based on ten 866 

PCR-based markers in population FOR and nine markers in ELD. Mean 867 

values of Fij are shown for 11 distance classes per population. Faint lines 868 

indicate 95% confidence intervals derived by permutation, and black bars are 869 

standard errors derived by jack-knifing.  870 

 871 
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Figure 3. Genetic clustering of M. guttatus populations across the Sierra 872 

Nevada. (a) Principal Component Analysis (PCA) showing individual 873 

positions on PC1 and PC2. Individuals are coloured by their source 874 

population to match the geographic map shown in inset, (b) 875 

fastSTRUCTURE analysis with K = 2 reveals a north-south genetic divide, 876 

(c) the best supported fastSTRUCTURE model K = 6 shows geographic 877 

structure and population clustering. In (b) and (c), individuals are represented 878 

by coloured bars, and assignment probability (Q-value) is displayed on the y‐879 

axis. 880 

 881 

Figure 4. Admixture bar plots for Sierra and range-wide M. guttatus 882 

populations using conStruct. Each bar represents a population, which are 883 

ordered by latitude (North-South), and assignment probability (Q-value) is 884 

displayed on the y‐axis. (a) conStruct non-spatial plot for 22,697 SNPs 885 

present in 9 Sierra populations, (b) conStruct non-spatial plot using 3,414 886 

SNPs present in range-wide populations, (c) conStruct spatial plot for Sierra 887 

populations, (d) conStruct spatial plot for range-wide populations. Coloured 888 

bar in panel (d) shows the presence of coastal populations in yellow and non-889 

coastal population in grey.  890 

 891 

Figure 5. Maps of admixture proportions for M. guttatus conStruct spatial 892 

and non-spatial analyses using K-values between 2 and 4. Pies show mean 893 
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admixture proportions across individuals from a given sampling site. Panels 894 

A-F show populations from the Sierra Nevada with colours to match Figure 895 

3, with the scale bar representing 100 km. Panels G-L show range-wide 896 

populations, with green southern, orange coastal, purple northern, blue inland 897 

and teal central, with the scale bar representing 500 km.  898 

 899 

Figure 6. Range-wide phylogeographic and diversity analyses of M. guttatus 900 

populations. (a) Map showing geographic variation in genetic diversity. 901 

Populations with more than two sampled individuals are coloured to indicate 902 

values for nucleotide diversity () per site per population, (b) Sampling map 903 

coloured by geographic clusters, modified from Twyford and Friedman 904 

(2015), (c) Maximum likelihood phylogeny generated in IQ-TREE using 905 

72,941 SNPs and invariant sites scored in 70 populations, (d) TreeMix graph 906 

showing population splits inferred from 3,066 LD filtered SNPs present in the 907 

30 populations with three sampled individuals. Ten migration edges shown, 908 

with migration weight indicated by the colour key. 909 

 910 

Figure 7. Isolation by distance and genetic structure in M. guttatus across 911 

spatial scales. (a) Isolation by distance plot showing the association between 912 

geographic distance and genetic distance across the Sierra Nevada, (b) 913 

Isolation by distance plot for range-wide populations, (c) Semivariogram 914 

showing genetic divergence as a function of distance for Sierra Nevada 915 
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populations, with symbols showing semivariance for a given lag-distance and 916 

the line the best fitting model, (d) Semivariogram of genetic divergence 917 

relative to distance for range-wide populations.  918 

 919 

Figure S1. Geographic map of samples used in the range-wide study. Sample 920 

population codes are coloured by geographic genetic clusters, with green 921 

southern, orange coastal, purple northern.  922 

 923 

Figure S2. Cross-validation results for M. guttatus conStruct models. (a) 924 

Sierra data run with K = 1 through 9; (b) Range-wide data run with K = 1 925 

through 10. Blue points represent the predictive accuracy for the spatial 926 

model, and green for the non-spatial model.  927 

 928 

Figure S3. Percentage variance explained by TreeMix models of range-wide 929 

M. guttatus populations using varying levels of migration. Model fit for 930 

between 0 and 10 migration events assessed using the RADpipe package. 931 

 932 

Table S1. Location information for newly sampled populations used in this 933 

study. Information is given for the sites used for studying fine-scale spatial 934 

genetic structure and population genetic variation. Details of the range-wide 935 

collections are reported in Twyford and Friedman (2015).  936 


