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Abstract 

The N/O anion distributions in the melilite-type phosphor host material Y2Si3O3N4 and a Ce-doped 

sample Y1.5Ce0.5Si3O3N4 have been determined from powder neutron diffraction. Both materials have a 

highly ordered N/O distribution that is not changed significantly by the disorder introduced by Ce 

doping.  This distribution evidences the presence of SiN3O and SiN2O2 tetrahedra and although these 

are not fully long range-ordered, local structural correlations follow simple connectivity rules that lead 

to an estimated residual molar entropy of R ln3. A broad range of N/O environments is found around 

8-coordinate Y(Ce) sites which is expected to broaden their spectroscopic features. 
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1. Introduction 

In recent decades, there has been a great development of new materials containing more than one anion, 

such as oxyfluorides, oxynitrides and oxyhydrides, which may combine the benefits of the two anions. 

This emerging area of mixed-anion compounds provides a novel field of solid-state chemistry to explore 

[1]. Conventional solid-state chemistry reactions are often not adequate for these materials and 

alternative synthetic procedures such as ammonolysis, topochemical insertion and exchange reactions 

or high-pressure techniques are required. Regarding the crystal structure, there is an additional 

challenge that involves the investigation of the long-range and local anion ordering, which may be 

important to understand and ultimately tailor the physical properties.  

Metal oxynitrides [2, 3] have been intensively studied due to their great potential as phosphors, 

photocatalysts, dielectric and magnetic materials. The substitution of nitride, a less electronegative and 
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more polarizable anion than oxide, increases the covalency of bonding and the expansion of the electron 

cloud while decreasing the interelectronic repulsions. The higher charge of the nitride anion allows 

transition metal materials with higher oxidation states cations to be stabilised and gives rise to a larger 

crystal field splitting that may lead to substantial changes in optical properties [4].  Among luminescent 

materials, silicon nitrides and oxynitrides [5-8] have been widely studied due to their excellent 

properties: low toxicity, good thermal stability, and great colour tunability. Particularly interesting are 

Ce3+ or Eu2+ activated oxynitridesilicate phosphors, which represent a family of luminescent compounds 

with long wavelengths and broad emission bands. Y-Si-O-N systems are efficient host lattices for 

luminescent materials and the substitution of Y3+ by Ce3+ leads to 5d→4f emission in the near-

ultraviolet or blue region. Y2Si3O3N4:Ce3+ is a phosphor that shows intense absorption in the near-

ultraviolet region and exhibits bright blue emission and so is a promising blue-emitting phosphor 

candidate for white LEDs for general illumination or displays. [9,10] 

Y2Si3O3N4 has the melilite type crystal structure [11-15], which crystallises in the tetragonal P 4̄21m 

space group. There is a unique site for Y, two different crystallographic sites for the Si atoms, and three 

different anion sites. Since local crystal structure has a strong impact on the emission and excitation 

spectra of these cations, we have studied here the order of the N/O anions in Y2Si3O3N4 , and in a heavily 

doped Y1.5Ce0.5Si3O3N4 sample to discover whether the Y/Ce cation disorder has any effects on the 

anion ordering.  

 

2. Experimental Methods 

Polycrystalline Y2Si3O3N4 and Y1.5Ce0.5Si3O3N4 samples were prepared by high-temperature solid-state 

reaction. Stoichiometric quantities of Y2O3 (Aldrich, 99.9%), CeO2 (Aldrich, 99.995%), and α-Si3N4 

(Aldrich, 99.6%), were weighed and ground in an agate mortar for 30 minutes, transferred into 

molybdenum crucibles and placed in a tube furnace. The precursors were heated at 5 °C min-1 up to 

1700 °C and sintered for 2 h under a reducing and nitriding atmosphere of 5%/95% H2/N2 gas.  

Time-of-flight powder neutron diffraction data from both samples were collected at room temperature 

using the diffractometer GEM at the ISIS facility, UK. The profile fits via the Rietveld method [16] 

were carried out using the FullProf software package [17]. A pseudo-Voigt function convoluted with 

an Ikeda-Carpenter function was used to generate the line shape of the peaks, and the background was 

fitted using linear interpolation. The following parameters were refined in the final runs together with 

the peak shape parameters: scale factor, detector zero-point, lattice parameters, atomic coordinates and 

isotropic atomic displacement (B) parameters. 

 

3. Results  
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Both samples were found to have melilite-type structures and neutron diffraction peaks were indexed 

with tetragonal space group P ̄421m. Y/Ce atoms are located at 4e sites (x, x+1/2, z) and Si atoms have 

two Wyckoff positions, Si1 at 4e sites (x, x+1/2, z) and Si2 at 2a sites (0,0,0). The anions are distributed 

over three sites; 2c (1/2, 0,z), 4e  (x, x+1/2, z) and 8f (x,y,z) and the high neutron contrast between O 

and N (scattering lengths 5.80 and 9.36 fm, respectively) enabled their site occupancies to be 

independently varied in initial refinements, as shown in Table 1.  

 

Table 1. N/O anion site occupancies (%) for Y2Si3O3N4 and Y1.5Ce0.5Si3O3N4 from initial Rietveld fits.  

Site Y2Si3O3N4 Y1.5Ce0.5Si3O3N4 

(N/O)2c 92/8(2) 92/8(4) 

(N/O)4e 8/92(4) 4/96(2) 

(N/O)8f 74/26(1) 75/25(4) 

 

These results show that the N/O distribution is highly ordered and is not changed significantly by the 

cation disorder introduced by Ce doping.  Based on these results, we have assumed that the site 2c is 

entirely occupied by nitrogen and the position 4e with oxygen, while the 8f presents a mixed N/O 

occupancy with 3:1 ratio in the final refinement model. These assumptions do not significantly change 

the fitting residuals (Y2Si3O3N4: residuals Rwp= 5.37/5.36 % and RF= 2.87/2.87 %, and Y1.5Ce0.5Si3O3N4: 

Rwp= = 6.66/6.60 % and RF= 2.25/2.23 % for the refined-/fixed- occupancy models). The refined 

parameters are shown in Table 2 and selected bond distances and angles are displayed in Table 3. Good 

agreement between the experimental and calculated points is seen in the profile fits in Figure 1, and a 

view of the melilite structure showing the average anion occupancies is in Figure 2.  
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Table 2. Final Rietveld refined values of cell parameters, atomic coordinates and isotropic thermal 

parameters for Y2Si3O3N4 and Y1.5Ce0.5Si3O3N4 defined in the space group P ̄421m, 

from powder neutron data at room temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Selected interatomic distances (Å) and angles (°) for Y2Si3O3N4 and Y1.5Ce0.5Si3O3N4 

determined from powder neutron data at room temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

  Y2Si3O3N4 Y1.5Ce0.5Si3O3N4 

 a (Å) 7.5991(5) 7.6425(3) 
 c (Å) 4.9113(4) 4.9489(3) 

 V (Å3) 283.61(3) 289.05(2) 

Y/Ce 4e (x,x+1/2,z) B (Å2) 0.90(9) 0.84(8) 

 x 0.3369(4) 0.3356(4) 
 z 0.5041(9) 0.5045(8) 

Si1 4e (x,x+1/2,z) B (Å2) 0.3(1) 0.5(1) 

 x 0.1426(8) 0.1438(7) 
 z 0.9495(14) 0.9514(12) 

Si2 2a (0 0 0) B (Å2) 0.3(2) 0.5(2) 

N 2c (1/2, 0,z) B (Å2) 0.9(1) 1.3(1) 

 z 0.1883(13) 0.1844(11) 

O 4e (x,x+1/2,z) B (Å2) 0.6(1) 0.8(1) 

 x 0.1404(5) 0.1403(4) 
 z 0.2799(11) 0.2774(10) 

N/O 8f (x, y,z) B (Å2) 0.70(8) 0.80(6) 

 x 0.0871(3) 0.0858(3) 
 y 0.1609(4) 0.1617(3) 

 z 0.7974(7) 0.8006(6) 

 Occ 0.75/0.25 0.75/0.25 

  Y2Si3O3N4 Y1.5Ce0.5Si3O3N4 

Y/Ce-N2c (x1)  2.340(6) 2.380(5) 

Y/Ce-O4e (x2)  2.544(5) 2.573(5) 

Y/Ce-O4e (x1)  2.382(5) 2.391(5) 
Y/Ce-(N/O)8f  (x2)  2.383(5) 2.407(4) 

Y/Ce-(N/O)8f  (x2)  2.756(5) 2.775(4) 

    

Si1-O4e (x1)  1.623(9) 1.614(8)    
Si1-N2c (x1)  1.675(7) 1.693(6) 

Si1-(N/O)8f (x2)  1.722(7) 1.721(6) 

Si2-(N/O)8f (x4)  1.710(3) 1.712(3) 
    

( N2c )-( Si1 )-( O8f )  103.1(4) 102.8(3) 

( O8f )-( Si1 )-( O4e )   116.1(5) 116.3(5) 
( O8f )-( Si1 )-( N8f )  103.7(4) 104.9(3) 

( N2c )-( Si1 )-( O4e )     113.0(6) 112.0(5) 

( O8f )-( Si2 )-( O8f )  109.8(3) 109.4(2)   
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Figure 1. Observed (crosses), calculated (solid line) and difference (bottom) neutron Rietveld profiles 

for Y2Si3O3N4 (top) and Y1.5Ce0.5Si3O3N4 (bottom) at room temperature, collected at the powder 

diffractometer GEM at ISIS. The green vertical lines indicate the positions of melilite Bragg reflections 

and those marked * correspond to unknown impurities. 
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Figure 2. Schematic view of the melilite type structures of Y2Si3O3N4 and Y1.5Ce0.5Si3O3N4 showing 

Si12(N,O)7 disilicate groups in yellow and Si2(N,O)4 tetrahedra in blue. N/O = green/red. 

 

The refined unit-cell parameters of both compounds, displayed in Table 1, correlate with the sizes of 

the cations Y3+ and Ce3+ (1.019 Å  and 1.143 Å respectively) [18].  The Ce- doped samples undergo a 

volume increase of 2% with a slightly larger increment along the c-axis compare to the a-axis (0.8% vs 

0.6%). As shown in Figures 2 and 3, there are two types of silicon tetrahedra. Si1 is coordinated to one 

terminal O4e, two (N/O)8f sites shared with Si2’s, and one N2c bridging to another Si1. Hence these sites 

may be described as forming Si12(N,O)7 disilicate-type groups. Si1-O4e distances are short (1.62/1.61 

Å for Y2Si3O3N4/Y1.5Ce0.5Si3O3N4) while Si1-N2c = 1.68/1.69 Å are longer reflecting the respective 

terminal and bridging natures of these anions and their sizes. Si1-(N/O)8f = 1.72/1.72 Å distances are 

even longer due to the anion disorder at the 8f site. Si2 atoms are coordinated to four (N/O)8f sites, each 

bridging to a Si1, and the relatively long bond Si2-(N/O)8f = 1.71/1.71 Å distances again reflect the site 

disorder. These bond distances compare well with predicted values from Shannon’s [18] effective ionic 

radii (<Si-O4e>=1.64 Å, <Si-N2c>=1.72 and <Si-O,N8f>=1.70 Å), with slight contractions of the 

distances to fully ordered N2c and O4e sites and a subtle expansion of distances to disordered (N/O)8f. 

The rare-earth ions have an 8-coordinate polyhedral environment with five symmetry inequivalent bond 

distances (Table 3). The bond distances of both compounds follow the same trend with respect to the 

theoretical values: <Y-N2c>=2.479 Å, <Y-O4e>=2.399 Å, and <Y-O,N8f>=2.459 Å for the undoped 

compounds and <Y1.5Ce0.5-N2c>=2.510 Å, < Y1.5Ce0.5-O4e>=2.430 Å, and < Y1.5Ce0.5-O,N8f>=2.487 Å. 

At the 2c and 4e sites, N- distances are underbonded (6-5%) while the average O-distances are longer 

than expected (two of them are 6% more elongated and the other one 0.7-1.6% shorter than the predicted 
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values). At the 8f site, there are two distances shorter (3%) and two longer (10-11%) than the ideal 

values, and the overall size of the (Y,Ce)O,N8 polyhedron is expanded with respect to the ideal values.  

 

 

Figure 3. Polyhedral coordination environments of (a) Si12(N,O)7 disilicate groups in yellow, (b)  
Si2[(N/O)8f]4  tetrahedra in blue and (c) (Y,Ce)(N,O)8 in purple. 

 

4. Discussion  

The results of this study are in good agreement with a previously published refinement of Y2Si3O3N4 

[14], although this reported N/O disorder over 2c and 8f anion sites whereas we find that the former is 

fully occupied by N. Our findings are also in agreement with first-principle calculations described in 

ref. [14]. This average anion distribution appears highly robust, as it is not changed by substitution of 

25% of the Y3+ cations by Ce3+. The anion site occupations are consistent with Pauling’s second rule 

[19, 20] as the bond strength sums (of cation charge divided by coordination number) for the N-rich 

sites 2c and 8f sites (each coordinated by 2Si and 2Y/Ce) are 2.75, whereas O4e  (coordinated by 1Si 

and 3Y/Ce) has 2.125. The full occupancies of N2c and O4e sites, and exact 0.75/0.25 fractional 

occupancy of (N/O)8f, suggest that the local anion arrangement in the latter sites is highly correlated. 

Previous studies of silicon and high valent transition metal oxynitrides have shown that covalency leads 

to uniform local coordination, so that in Y2Si3O3N4 the crystallographically observed average 

Si2[(N/O)8f]4 coordination with average composition Si(N0.75O0.25)4 corresponds to a tetrahedral SiN3O 

group being present at all Si2 sites. Si1 is coordinated to one N2c and O4e and two (N/O)8f sites and so 

has average composition SiNO(N0.75O0.25)2, and thus a 1:1 mixture of SiN3O and SiN2O2 groups are 

distributed over the Si1 positions.  

The simplest structure to follow these coordination constraints is shown in Fig. 4 below, where O/N 

segregation leads to -Si2-O-Si1-N- chains in the [110] direction and -Si2-N-Si1-N- in the [ ̄110]. This 

would result in a monoclinic Cm supercell but no evidence for this is found in our diffraction data. This 

is likely because the Si(N,O)4 tetrahedra can easily adopt a correlated disordered state as shown in Fig. 

5. Applying the rules that each Si2 sits at the centre of an SiN3O group, and each Si1 is coordinated to 
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either 2N or N+O (but never 2O) at the (N/O)8f sites, leads to configurations like those shown in Fig. 

5b. The configurational entropy can be estimated using the approach in Pauling’s famous ice rules paper 

[21]. 1 mol (N) of Y2Si3O3N4 contains 1 mol of Si2 sites, each of which has 4 allowed orientations of 

the SiN3O tetrahedron, and the probability that an orientation is allowed by neighbouring tetrahedra is 

¾ (to avoid O8f -Si1-O8f configurations). Hence the number of microstates is W = (4.¾)N and the residual 

molar entropy of Y2Si3O3N4 is predicted to be S = k lnW =  R ln3. It would be instructive to measure the 

entropy, but this is more difficult than for ice or magnetic analogues because the residual entropy is not 

frozen in directly below a phase transition. 

The local Y(Ce) environment shown in Fig 3c contains one N2c, three O4e, and four (N/O)8f sites. Two 

of the (N/O)8f sites are bonded to the same Si1 and thus can be occupied by 2N or N+O (but not 2O). 

the other two are coordinated to different Si1’s and so are uncorrelated. Hence, the Y(Ce) 8-coordination 

environment varies between N5O3 and N2O6 which is expected to broaden spectroscopic features from 

Ce3+ activator ions in this type of phosphor. There is no evidence for any Y/Ce ordering in our sample 

but electron diffraction could be used to check for possible short range ordering. 

In conclusion, both Y2Si3O3N4 and the Ce-doped derivative Y1.5Ce0.5Si3O3N4 are found to have highly 

segregated anion distributions, evidencing exclusively SiN3O and SiN2O2 coordinations around Si, and 

local structural correlations between disordered Si(N,O)4 tetrahedra that lead to an estimated residual 

entropy of R ln3. A broad range of N/O environments is found around 8-coordinate Y(Ce) sites which 

is expected to broaden their spectroscopic features. 

 

 

Figure 4. Schematic view of one example of the N/O distribution over the 8f sites. 
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(a)       (b) 

Figure 5. Correlated anion order models for Y2Si3O3N4 with (N/O)8f atoms as white/black circles. 

Si2N3O groups are shown as blue squares, and pairs of (N/O)8f atoms connected to the same Si1 

site are indicated by the yellow lines. (a) represents the simple long-range ordered model of Fig. 4, 

with unit cell shown. (b) shows a typical disordered configuration following the local coordination 

constraints. 

 

Acknowledgments 

This work was financially supported by EPSRC and the Ministry of Science and Technology in Taiwan 

(Contract No. MOST 107-2113-M-002-008-MY3) for RSL. We thank STFC for access to the ISIS 

facility. 

 

References  

[1] H. Kageyama, K. Hayashi, K. Maeda, J.P. Attfield, Z. Hiroi, J.M. Rondinelli, K.R. Poeppelmeier, 
Expanding frontiers in materials chemistry and physics with multiple anions, Nature Communications 
9(1) (2018). 
[2] M. Yang, J. Oró-Solée, J.A. Rodgers, A.B. Jorge, A. Fuertes, J.P. Attfield, Anion order in perovskite 
oxynitrides, Nature Chemistry 3(1) (2011) 47-52. 
[3] J.P. Attfield, Principles and Applications of Anion Order in Solid Oxynitrides, Crystal Growth & 
Design, American Chemical Society, 2013, pp. 4623-4629. 
[4] W.T. Chen, H.S. Sheu, R.S. Liu, J.P. Attfield, Cation-size-mismatch tuning of photoluminescence in 
oxynitride phosphors, J. Am. Chem. Soc. 134(19) (2012) 8022-8025. 
[5] A.P. Black, K.A. Denault, J. Oró-Solé, A.R. Goñi, A. Fuertes, Red luminescence and ferromagnetism 
in europium oxynitridosilicates with a β-K2SO4 structure, Chem. Commun. 51(11) (2015) 2166-2169. 



10 
 

[6] R.-J. Xie, N. Hirosaki, Silicon-based oxynitride and nitride phosphors for white LEDs—A review, 
Science and Technology of Advanced Materials 8(7-8) (2007) 588-600. 
[7] J.W.H. van Krevel, H.T. Hintzen, R. Metselaar, A. Meijerink, Long wavelength Ce3+ emission in Y–
Si–O–N materials, J. Alloys Compd. 268(1) (1998) 272-277. 
[8] S. Thomas, J. Oró-Solé, B. Glorieux, V. Jubera, V. Buissette, T. Le Mercier, A. Garcia, A. Fuertes, 
New luminescent rare earth activated oxynitridosilicates and oxynitridogermanates with the apatite 
structure, J. Mater. Chem. 22(45) (2012) 23913-23920. 
[9] Y.Y. Ma, F. Xiao, S. Ye, Q.Y. Zhang, Characterization and luminescence properties of Y2Si3O3N 

4:Ce3+ phosphor for white light-emitting-diode, J. Electrochem. Soc. 159(4) (2012) H358-H362. 
[10] J. Zhu, S. Qin, Z. Xia, Q. Liu, Synthesis and color-tunable emission studies of Y2Si3O3N 4:Ce 3+,Tb3+ 
phosphors, Ceramics International 41(10, Part A) (2015) 12633-12637. 
[11] A. Koroglu, D.C. Apperley, R.K. Harris, D.P. Thompson, Oxygen–nitrogen ordering in yttrium 
nitrogen melilite, J. Mater. Chem. 6(6) (1996) 1031-1034. 
[12] K.J.D. MacKenzie, G.J. Gainsford, M.J. Ryan, Rietveld refinement of the crystal structures of the 
yttrium silicon oxynitrides Y2Si3N4O3 (N-melilite) and Y4Si2O7N2 (J-phase), J. Eur. Ceram. Soc. 16(5) 
(1996) 553-560. 
[13] R. Dupree, M.H. Lewis, M.E. Smith, High-resolution silicon-29 nuclear magnetic resonance in the 
Y-Si-O-N system, J. Am. Chem. Soc. 110(4) (1988) 1083-1087. 
[14] C.M. Fang, G.A. de Wijs, R.A. de Groot, R. Metselaar, H.T. Hintzen, G. de With, O/N Ordering in 
Y2Si3O3N4 with the Melilite-type Structure from First-Principles Calculations, Chem. Mater. 12(4) 
(2000) 1071-1075. 
[15] P.L. Wang, P.E. Werner, L. Gao, R.K. Harris, D.P. Thompson, Ordering of nitrogen and oxygen in 
nitrogen-containing melilites Y2Si3O3N4 and Nd2Si2.5Al0.5O3.5N3.5, J. Mater. Chem. 7(10) (1997) 2127-
2130. 
[16] H. Rietveld, A profile refinement method for nuclear and magnetic structures, Journal of Applied 
Crystallography 2(2) (1969) 65-71. 
[17] J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder 
diffraction, Physica B: Condensed Matter 192(1) (1993) 55-69. 
[18] R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in 
halides and chalcogenides, Acta Crystallographica Section A 32(5) (1976) 751-767. 
[19] L. Pauling, The principles determining the structure of complex ionic crystals, J. Am. Chem. Soc. 
51(4) (1929) 1010-1026. 
[20] A. Fuertes, Prediction of Anion Distributions Using Pauling's Second Rule, Inorganic Chemistry 
45(24) (2006) 9640-9642. 
[21] L. Pauling, The Structure and Entropy of Ice and of Other Crystals with Some Randomness of 
Atomic Arrangement, J. Am. Chem. Soc. 57(12) (1935) 2680-2684. 

 

 


