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Abstract: 
 
Methods for estimating body mass from the human skeleton are often required for research in 
biological or forensic anthropology. There are currently only two methods for estimating body 
mass in subadults: the width of the distal femur metaphysis is useful for individuals 1–12 years 
of age and the femoral head is useful for older subadults. This article provides age‐structured 
formulas for estimating subadult body mass using midshaft femur cross‐sectional geometry 
(polar second moments of area). The formulas were developed using data from the Denver 
Growth Study and their accuracy was examined using an independent sample from Franklin 
County, Ohio. Body mass estimates from the midshaft were compared with estimates from the 
width of the distal metaphysis of the femur. Results indicate that accuracy and bias of estimates 
from the midshaft and the distal end of the femur are similar for this contemporary cadaver 
sample. While clinical research has demonstrated that body mass is one principle factor shaping 
cross‐sectional geometry of the subadult midshaft femur, clearly other biomechanical forces, 
such as activity level, also play a role. Thus formulas for estimating body mass from femoral 
measurements should be tested on subadult populations from diverse ecological and cultural 
circumstances to better understand the relationship between body mass, activity, diet, and 
morphology during ontogeny. 
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Article:  
 
Biological anthropologists who seek to understand human biological variation from an 
evolutionary or bio‐cultural perspective often require methods to estimate body shape and size 
from subadult human skeletal material. Forensic anthropologists similarly require accurate and 
precise estimates of stature and body mass (or weight) from the skeletal remains of human 
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children to aid in personal identification. While there are several methods available for 
estimating stature from subadult bones (Telkka et al., 1962; Himes et al., 1977; 
Feldesman, 1992; Ruff, 2007) there are fewer published methods for accurately estimating body 
mass from the subadult skeleton. Ruff (2007) provides methods to estimate body mass in 
subadults using the width of the distal metaphysis of the femur in children less than 12 years of 
age and using the femoral head for older juvenile and adolescent individuals. 
 
The femur articular surfaces yield accurate estimates of body mass because it is clear that body 
mass is the base load to which the lower appendicular skeleton is subject during life (Ruff et 
al., 1993; Ruff, 2000, 2002a, b, 2005a). Research has also shown a strong correlation between 
body weight and femoral midshaft bone mass throughout human ontogeny (Van Der Meulen et 
al., 1993, 1996; Moro et al., 1996; Sumner and Andriacchi, 1996; Ruff, 2003a, b, 2005a; Ruff et 
al., 2006) with body mass and activity level acting in synergy to shape the acquisition of bone 
mass early during ontogeny (Ruff, 2003a, b, 2005a). The goals of this article are thus to 
investigate the relationship between body mass and femoral midshaft geometry (polar second 
moment of area, J) in samples of modern human subadults and to provide equations for 
estimating subadult body mass. The present approach can supplement previous methods when 
the femur distal metaphysis or femur head is not available. 
 

 Abbreviations 
BMI body max index 
CI confidence interval 
FH Femoral Head 
J polar second moments of area 
MET metaphysis 
MS midshaft 
SEE standard error of the estimate 
%SEE percent standard error of the estimate 

 
MATERIALS AND METHODS 
 
A set of age‐structured least squares regression formulas for predicting subadult body mass from 
femur midshaft cross‐sectional geometry (polar second moment of area) were developed using a 
longitudinal sample of measurements from 20 well‐nourished, active juveniles 2 months to 17 
years of age selected from a database compiled by the Denver Child Research Council from 
1941 to 1967, and used in several previous studies (Ruff, 2003a, b, 2005a, 2007). Permission to 
use these data for this project was obtained from Richard Siervogel, current Director of the 
Lifespan Health research Center at Wright State University. Ruff measured femur lengths, 
external diaphyseal diameter, and cortical bone thicknesses (at 45.5% of diaphyseal length) from 
the Denver sample anteroposterior radiographs (Ruff, 2003a, b). Medullary diameter (M) was 
calculated as diaphyseal external diameter (T) minus combined cortical thickness, and torsional 
rigidity, J, as (O'Neill and Ruff 2004) π/32 × (T4 − M4), assuming a cylindrical model. 
Magnification error was corrected as described previously. An intraobserver measurement error 
of 3.1% for J was reported (Ruff, 2007). 
 
The Denver data were originally collected at 2, 4, 6, and 12 months for the first year of life and 
at 6 month intervals through the age of 17 years (although more often annually after age 14 
years). Here only data for 2 months (referred to as age category “0”) and at annual intervals from 



1 to 17 years of age were used to derive estimation equations. Results are intended to apply to 
individuals at ±6 months from these ages, e.g., the 1‐year‐old formula applies to individuals 6 
months to 17.59 months. The “0” year formula applies to individuals under 6 months of age. 
Missing data points (2.3% of total sample) were estimated using linear interpolation such that 
each age category initially contained 20 individuals (following Ruff, 2007). The only exception 
was the “0” year age category, which contained 15 individuals. Based on comparisons of BMI 
(body mass index, weight/height2) to national standards (Must et al., 1991), one female at ages 
4–8 and one male at ages 6–8 were eliminated as extreme positive outliers, following Ruff 
(2007). Thus, age categories 4 and 5 had a final sample size of 19 individuals and age categories 
6–8 had a sample size of 18 individuals. 
 
The formulas were tested on an independent sample from the Franklin County, Ohio Coroner's 
office (Pfau and Sciulli, 1994; Sciulli, 1994; Sciulli and Blatt, 2008). This sample consists of 186 
subadult individuals, 0.04–20 years of age, who died between July 1, 1990 and June 30, 1991. 
Long bones were radiographed shortly after death (Pfau and Sciulli, 1994; Sciulli and 
Blatt, 2008). Dates of birth, death, sex, ancestry, weight, and stature were obtained from previous 
medical records. The sample includes European‐American and African‐American males and 
females. Blatt collected the following measurements from the radiographs: femur distal 
metaphyseal breadth and external diaphyseal and medullary breadths (at 50% of diaphyseal 
length). Twenty individuals (17.8%) were measured on two separate occasions and these 
measurements were compared for intraobserver error. The mean standard deviation was ±0.12 
mm for the midshaft diameter and ±0.47 mm for the medulla. Following Ruff (2007), Blatt 
calculated polar second moments of area (J) using the method described above. 
 
Statistical methods 
 
Least squares (LS) regression was used to generate age‐structured formulas for predicting body 
mass from polar second moments of area (J). Although there are other statistical methods that are 
appropriate for these data, one of our goals was to evaluate the usefulness of the midshaft for 
estimating body mass for subadults in comparison with other methods published previously 
(Ruff, 2007). Standard errors of the estimates (SEE) were calculated to measure the precision of 
the predictions for each formula. The percent standard error of the estimate (%SEE) was 
calculated by dividing the SEE by the mean body mass (kg) for each age category (following 
Ruff, 2007). This measure allows a comparison of the precision of the estimates from these 
formulas across different age categories despite differences in average body mass. The %SEE 
was compared for the formulas from the midshaft with the published formulas for estimating 
body mass from the width of the distal metaphysis (ages 1–12) and the femoral head (ages 7–17; 
Ruff, 2007). 
 
The accuracy of body mass estimates was examined using an independent sample of children of 
known body mass from Franklin County, Ohio. Body mass was first estimated for 112 
individuals 1–15 years of age. Accuracy and bias were measured for the body mass estimates 
made from the midshaft. Accuracy was defined as the absolute value of the difference between 
observed and predicted body mass and bias is the signed difference between observed and 
predicted (Sciulli and Blatt, 2008). Body mass estimates for 38 individuals in age categories 1–8 
(0.5–8.49 years) were also compared using the formulas for the midshaft developed in this article 



and the formulas for the distal metaphyseal breadth published previously (Ruff, 2007). Older 
individuals were not included in this comparison because measurement error increases in the 
midshaft and the distal femur after 9 years; thus the femoral head method (with slightly smaller 
errors in this age range) would be preferred but that measurement is not available from the 
radiographs of the Ohio cadavers. Accuracy and bias were also compared for 34 Ohio 
individuals remaining after four outliers with high BMI (above the 95th percentile for age) were 
removed. This was done because obese individuals were problematic in a previous test of the 
formulas for the bone end (Sciulli and Blatt, 2008). Data were also examined by sex (males n = 
21, females n = 13) and Caucasian males (n = 17) and females (n = 10) were analyzed separately 
(following Sciulli and Blatt, 2008). 
 
RESULTS 
 
Least squares regression formulas, by age class, for predicting body mass from J in the Denver 
sample are shown in Table 1. Results of one‐way ANOVA's demonstrate that torsional rigidity is 
a significant predictor of body mass in all age categories except age categories 0 (P = 0.086) and 
16 (P = 0.067). Midshaft femur J appears to be a very good predictor of body mass in age 
categories 1–8 with mean SEE of 1.01 kg for these age categories (range is 0.61–1.75 kg) and 
%SEE's between 5.9 and 7.2%. Body mass can be predicted from J with less accuracy and 
precision for the older age categories 9–17. The mean SEE increases greatly to 6.48 (range is 
4.11–8.43 kg) and %SEE increases to 14.3–16.9%. 
 
Table 1. Equations for predicting body mass (kg) from femoral second moments of area (J), 
(raw data) 

Age Body mass BMI Intercept Slope F P SEEa %SEEb 
0 4.52 15 3.8 0.003 3.454 0.086 0.27 6.0 
1 9.05 17 7.1 0.002 15.40 0.001 0.61 6.7 
2 11.59 16 8.1 0.002 16.96 0.001 0.68 5.9 
3 13.57 15 10.5 0.001 8.44 0.009 0.92 6.8 
4 15.45 15 11.4 0.001 13.45 0.002 1.00 6.5 
5 17.25 15 12.8 0.001 14.94 0.001 1.06 6.1 
6 19.25 15 14.2 0.001 15.83 0.001 1.23 6.4 
7 21.72 15 15.8 0.001 15.10 0.001 1.38 6.4 
8 24.25 15 16.0 0.001 19.85 <0.0001 1.75 7.2 
9 28.70 16 17.1 0.001 7.430 0.014 4.11 14.3 
10 31.87 17 16.3 0.001 8.81 0.009 5.05 15.84 
11 35.87 17 18.4 0.001 8.70 0.009 6.06 16.89 
12 39.53 18 19.2 0.001 12.24 0.003 6.48 16.39 
13 44.44 18 21.1 0.001 16.89 0.001 7.00 15.75 
14 49.89 19 30.4 0.001 8.505 0.010 7.29 14.61 
15 53.92 20 36.6 0.001 9.463 0.007 6.41 11.88 
16 59.16 20 45.8 0.000 3.815 0.067 8.13 13.74 
17 59.93 21 46.2 0.000 6.244 0.023 7.84 12.76 

a SEE = 𝑆𝑆𝑌𝑌−𝑌𝑌 = �Σ(𝑌𝑌−𝑌𝑌)2

𝑛𝑛−2
 where Y = observed value of the dependent variable based on the given X, Ŷ =  predicted 

value of the dependent variable Y based on the given X, n − 2 = degrees of freedom for the independent variable. 
b %SEE = SEE/mean body mass (kg) in a given age category. 
 



The %SEE is provided in Table 2 for three methods of estimating body mass using the Denver 
growth study data: J, the width of the distal metaphysis, and the femoral head (Ruff, 2007). The 
%SEE for formulas using both raw and log‐transformed data are given for Ruff's formulas, as 
presented in the original publication. The midshaft and the distal end of the femur have 
consistently strong scaling relationships with body mass for age categories 1–8 and both 
techniques provide body mass estimates with similar %SEE's. J yields the most precise estimates 
for age categories 1, 6, and 8. The distal metaphysis performs better than J in age categories 2, 3, 
and 7, although in age category 7, the femoral head performs better than either J or the distal 
metaphysis. In the late juvenile years (9–12), both J and the distal metaphysis demonstrate 
increasing variance in the scaling relationship with body mass, and lower %SEE's. The equations 
for the femoral head (log‐transformed) provide the most precise estimates for age categories 9–
12 and 17. J is the most precise predictor for individuals in age categories 13–15 while precision 
is about equal for J and the femoral head in age category 16. 
 
Table 2. Comparison of %SEE for body mass predictions from the bone end and the midshaft 
for the Denver Growth Study population   

%SEE 
Method with the 

lowest %SEE 
Midshaft (MS) Metaphysis (MET) Femoral head (FH) 

Age (yrs) Body mass (kg) Natural Natural Log Natural Log 
1 9.05 6.7 7.2 7.1 – – MS 
2 11.59 5.9 5.0 4.8 – – log MET 
3 13.57 6.8 6.7 4.8 – – log MET 
4 15.45 6.5 6.9 6.5 – – MS, log MET 
5 17.25 6.1 6.1 6.2 – – MS, MET 
6 19.25 6.4 6.6 6.6 – – MS 
7 21.72 6.4 6.1 6.3 5.9 6.2 FH 
8 24.25 7.2 9.0 9.2 7.7 7.9 MS 
9 28.70 14.3 15.5 14.4 12.3 11.3 log FH 
10 31.87 15.8 16.8 15.8 14.8 13.9 log FH 
11 35.87 16.9 19.1 18.0 15.6 14.7 log FH 
12 39.53 16.4 18.7 17.6 14.3 13.5 log FH 
13 44.44 15.8 – 19.7 17.7 16.7 MS 
14 49.89 14.6 – 

 
15.5 14.9 MS 

15 53.92 11.9 – 
 

– – MS 
16 59.16 13.7 – 

 
– 13.6 MS, log FH 

17 61.47 12.8 – 
 

11.9 11.4 log FH 
 
For the independent test sample (n = 112) of 1‐ to 15‐year‐olds from Franklin County, Ohio, the 
average bias, or mean directional difference between the observed and expected values, using the 
femoral J formulas is 0.6 kg (SE = 0.6 kg; Table 3). When four individuals are removed because 
their body mass index is outside the 95% confidence limits for age (following Sciulli and 
Blatt, 2008), the mean bias is 0.3 kg (SE = 1.0 kg). When the sample is analyzed by sex, the 
formulas tend to underestimate slightly body mass in males (Bias = −0.5 kg) and overestimate in 
females (Bias = 0.8 kg). The accuracy of the estimates from J is 3.1 kg and accuracy improves 
when the four outliers are removed, ranging from 2.5 to 2.8 kg in the subsamples considered. 
The results of this analysis indicate that the formulas for estimating body mass from J are useful 
for subadults up to 15 years of age if the distal femur or femoral head are not available. 



 
Table 3. Accuracy and bias in formulas for body mass estimation from femur midshaft polar 
second moments of area in the Franklin, Ohio population (ages 1–15 years) 

Age (yrs) Sex Ancestrya N 
Accuracyb Biasc 

MS (J)d 95%CI MS (J) 95%CI 
1–15 M,F A,E 112e 3.1 2.0–4.2 0.6 −0.6–1.8 
1–15 M,F A,E 108 2.6 1.8–3.5 0.3 −0.7–1.3 
1–15 M A,E 63 2.6 1.5–3.7 −0.5 −1.8–0.8 
1–15 M E 52 2.5 1.3–3.7 −0.1 −1.5–1.3 
1–15 F A,E 44 2.7 1.4–4.0 0.8 −0.7–2.3 
1–15 F E 32 2.8 1.1–4.5 0.8 −1.2–2.8 

a E = European ancestry, A = African American ancestry. 
b Kilograms; Accuracy = | observed body mass − estimated body mass |. 
c Kilograms; Bias = (observed body mass − estimated body mass). 
d Femur midshaft polar second moment of area (J). From equations (raw data) in Table 1. 
e Includes four individuals with BMI > 95th percentile (one individual each in age categories 2, 5, and 7). 
 
Accuracy and bias were compared for a subset of Ohio individuals in age categories 1–8 (n = 38) 
using formulas based on J and the distal metaphysis (Table 4). Estimates derived from the two 
methods do not appear to differ greatly in accuracy or bias. Four individuals who fall outside the 
95% CI for body mass index (BMI) for age were removed from the sample and accuracy and 
bias improved for both the midshaft and the bone end formulas. Because accuracy and precision 
were improved when outliers were removed, it suggests that both methods are limited for 
individuals with high BMI. The 95% confidence intervals for all comparisons overlap and thus it 
appears that both methods are similarly useful for estimating body mass in the Ohio sample. 
 
Table 4. Comparison of accuracy and bias in formulas for body mass estimation in the Franklin, 
Ohio population 1‐ to 8‐years old  

Accuracya Biasb 
Age Sex Ancestryc N METd 95%CI MS (J)e 95%CI MET 95%CI MS (J) 95%CI 
1–8 M,F A,E 38f 2.3 1.4–3.2 2.2 1.3–3.1 2.2 1.3–3.3 1.6 0.5–2.7 
1–8 M,F A,E 34 1.8 1.2–2.4 1.7 1.2–2.2 1.8 1.1–2.5 1.1 0.4–1.8 
1–8 M A,E 21 2.0 1.3–2.7 1.8 1.2–2.4 2.0 1.3–2.7 1.8 1.1–2.5 
1–8 M E 18 2.1 1.3–2.9 2.1 1.5–2.7 2.1 1.3–2.9 2.1 1.5–2.7 
1–8 F A,E 14 1.6 0.6–2.7 1.5 0.7–2.2 1.3 0.1–2.5 0.6 −0.5–1.7 
1–8 F E 10 1.9 0.5–3.3 1.7 0.6–2.8 1.5 −0.2–3.2 0.8 −0.7–2.3 

a Kilograms; Accuracy = | observed body mass − estimated body mass |. 
b Kilograms; Bias = (observed body mass − estimated body mass). 
c E = European ancestry, A = African American ancestry. 
d Femur distal metaphysis. From equations (raw data) in Ruff (2007). 
e Femur midshaft strength (J). From equations (raw data) in Table 1. 
f Includes four individuals with BMI > 95th percentile (one individual each in age categories 2, 5, and 7). 
 
DISCUSSION AND CONCLUSIONS 
 
This article provides a set of equations for estimating body mass from the human subadult 
femoral midshaft, derived from the modern Denver Growth Study sample. Precision (%SEE) of 
the formulas is similar to that shown previously in the same sample based on femoral distal 
metaphyseal and femoral head breadths (Ruff, 2007). When tested on a different contemporary 



cadaveric sample, accuracy and bias of the new equations are reasonable (2.5–3 kg and ± 0.8 kg, 
respectively), and are comparable to estimates based on the femoral distal metaphysis in 
individuals 1–8 years of age. Thus, in cases where the bone ends are damaged or unavailable and 
the midshaft can still be located or approximated, polar second moments of area (J) can be used 
to predict body mass for subadult human skeletons. In older age categories (9–17 years) body 
mass estimates from the midshaft femur are generally less accurate and precise than those from 
the femoral head and that measure is thus the preferred method for those age categories. This 
result is to be expected given that we know hormones, activity, and diet play an increasingly 
large role in bone mass acquisition during older ages. In addition, changes in the shape of the 
midshaft cross section during adolescence affect the accuracy of estimates for J in these older 
age categories. 
 
Least‐squares regression was used in this analysis primarily to make comparisons with formulas 
published previously. The increasing variance in the residuals with age for equations based on 
both the femur midshaft and the distal metaphysis indicates that regression may not be the most 
appropriate statistical technique for these data. Regression also suffers from a centrist tendency 
which may contribute to the amount of error for the individual predictions (Lucy and 
Pollard, 1995). This centrist tendency might be one reason that formulas for estimating body 
mass considered here fail to predict accurately body mass for individuals outside the 95% 
confidence interval of BMI for age. This was identified as a major limitation in a previous 
publication (Sciulli and Blatt, 2008) and our results indicate that obese individuals are also a 
major limitation of the formulas provided here. A different approach, such as ARIMA analysis 
(AutoRegressive Integrated Moving Average; Box and Jenkins, 1970) could potentially yield 
more accurate estimates for body mass from the femur measures. This and other statistical 
methods are another avenue for future investigation. 
 
There are some important differences among the Denver and Ohio samples used in this analysis. 
The Ohio sample includes African‐American individuals (25%) whereas the Denver growth 
study included only European‐Americans. A significant number of right limb bones were 
measured in the Ohio cadaver sample, rather than all left side as in the Denver sample. In 
addition, the midshaft measures were made at 50% diaphyseal length in the Ohio sample as 
opposed to 45.5% diaphyseal length in the Denver sample, a difference that could result in errors 
of body mass estimation for the target sample if midshaft measures differ in the two locations. 
The femur midshaft measurements from the Ohio sample are derived from radiographs of 
children who died and the sample includes individuals from a wider range of economic statuses, 
with diseases and traumatic injuries that were probably not present in the Denver sample. As was 
previously pointed out by Sciulli and Blatt (2008), in general the developmental circumstances 
and measurement procedures for the Ohio sample probably correspond more closely to those of 
forensic skeletal samples and therefore the Ohio sample is an appropriate choice for testing 
methods of body mass estimation for that purpose. 
 
It is clear that there is a close relationship between bone cross‐sectional geometry and body mass 
given clinical and biomechanical studies which have repeatedly demonstrated a strong 
relationship between these two variables during growth and development (Ruff and 
Runestad, 1992; Van Der Meulen et al., 1993; Carter et al., 1996; Moro et al., 1996; 
Ruff, 1997, 1998, 2000, 2002a, 2003a; Pearson and Lieberman, 2004; Wescott, 2006). It is also 



clear that body mass and activity are not independent in bipedal organisms and both affect the 
shape of the cross section of the bone and the velocity of bone mass acquisition in the femur 
beginning early in infancy (Ruff, 2003a, b, 2005a). It is difficult to tease out influences on bone 
cross sections from body mass, activity levels, muscularity, nutritional status, and hormonal 
changes, all of which are significant in determining adolescent and adult midshaft robusticity. 
Articular dimensions, in contrast, seem to be less environmentally plastic (Trinkaus et al., 1994; 
Lieberman et al., 2001). For this reason, methods for estimating body mass from articular 
surfaces have generally been preferred over methods based on diaphyseal breadths 
(McHenry, 1991, 1992, 1994; Ruff et al., 1997; McHenry and Coffing, 2000; Brown et al., 2004; 
Rosenberg et al., 2006; Ruff, 2010). 
 
The formulas presented here perform well in tests on a contemporary cadaver sample from Ohio 
and ought to be applicable to contemporary populations with similar activity levels and lifestyles. 
The accuracy of these formulas is comparable to previously published techniques for the distal 
end of the femur for individuals 1–8 years of age and thus these formulas provide an alternative 
for use in cases where the femur distal metaphyses are damaged. The midshaft formulas are not 
as accurate as those for the head of the femur for older juveniles and adolescents; however, they 
may be used in situations where the femoral head is not preserved or is not clearly associated 
with a particular individual. However, body mass estimation methods for subadults based on 
measures of the femur should also be tested on populations from diverse climates, latitudes, 
activity patterns, diets, and biocultural stress levels (Lieberman et al., 2004; Pearson and 
Lieberman, 2004; Ruff et al., 2006) to evaluate their general applicability. 
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