
Munich Personal RePEc Archive

Strategy-proof Allocation of Indivisible

Goods when Preferences are

Single-peaked

Mandal, Pinaki and Roy, Souvik

15 January 2021

Online at https://mpra.ub.uni-muenchen.de/105320/

MPRA Paper No. 105320, posted 19 Jan 2021 10:34 UTC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Munich Personal RePEc Archive

https://core.ac.uk/display/372992738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


STRATEGY-PROOF ALLOCATION OF INDIVISIBLE GOODS WHEN
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Abstract

We consider assignment problems where heterogeneous indivisible goods are to be assigned to indi-

viduals so that each individual receives at most one good. Individuals have single-peaked preferences

over the goods. In this setting, first we show that there is no strategy-proof, non-bossy, Pareto efficient,

and strongly pairwise reallocation-proof assignment rule on a minimally rich single-peaked domain

when there are at least three individuals and at least three objects in the market. Next, we characterize

all strategy-proof, Pareto efficient, top-envy-proof, non-bossy, and pairwise reallocation-proof assign-

ment rules on a minimally rich single-peaked domain as hierarchical exchange rules. We additionally

show that strategy-proofness and non-bossiness together are equivalent to group strategy-proofness

on a minimally rich single-peaked domain, and every hierarchical exchange rule satisfies group-wise

reallocation-proofness on a minimally rich single-peaked domain.

Keywords: Assignment problem; Single-peaked preferences; Strategy-proofness; Pareto efficiency; Non-

bossiness; Top-envy-proofness; Strong reallocation-proofness; Pairwise/group-wise reallocation-proofness
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1 Introduction

We consider the well-known assignment problem where heterogeneous indivisible goods are to be as-

signed to individuals so that each individual receives at most one good. Such problems arise when, for

instance, the Government wants to assign houses to the citizens, or hospitals to doctors, or a manager

wants to allocate offices to employees, or tasks to workers, or a professor wants to assign projects to

students. Individuals are asked to report their preferences over the goods and the designer decides the

allocation based on these reports. We analyze the structure of such decision process satisfying some de-

sirable properties such as (group) strategy-proofness, efficiency, non-bossiness, (top-)envy-proofness, and

(pairwise/group-wise) reallocation-proofness.

(Group) strategy-proofness ensures that a (a group of) dishonest individual(s) cannot improve her

(their) assignment(s) by misreporting her (their) preference(s).1 Efficiency says that the assignments can-

not be improved in the sense of Pareto (that is, everyone is weakly better off and someone is strictly

better off). Non-bossiness says that a person cannot change the assignment of any other person without

changing her own assignment. Envy-proofness says that if an individual is envious at another individual

(that is, if she strictly prefers the assignment of the individual to her own assignment), then she cannot

harm the individual by misreporting her preference. Top-envy-proofness, in a sense, can be viewed as

envy-proofness with respect to the top-ranked object of the envious individual. Pairwise/group-wise

reallocation-proofness rules out the possibility of an obvious case of manipulation where a pair/group of

individuals misreport their preferences and become better off by redistributing the objects they obtain at

the misreported profile.

Svensson (1999) shows that the set of strategy-proof, non-bossy, and neutral assignment rules on the

unrestricted domain is the set of serial dictatorships, if every individual is assumed to be assigned an

object.2,3 Pápai (2000) characterizes strategy-proof, Pareto efficient, non-bossy, and reallocation-proof as-

signment rules on the unrestricted domain as hierarchical exchange rules. These rules can be regarded as

generalizations of Gale’s well-known top trading cycle (TTC) procedure.4 Pycia and Ünver (2017) char-

acterizes strategy-proof, Pareto efficient, and non-bossy assignment rules on the unrestricted domain as

trading cycles rules.5

1A group of individuals improve their assignments if each member in it is weakly better-off and some member is strictly
better-off.

2An assignment rule is neutral if its outcomes do not depend on the identities of the objects.
3Whenever it is clear from the context, we use the term “domain” to refer to a set of preferences or a set of preference profiles.
4Top trading cycle (TTC) is due to David Gale and discussed in Shapley and Scarf (1974).
5Ergin (2000) shows that an assignment rule satisfies Pareto efficiency, neutrality, and consistency if and only if it is a simple

serial dictatorship rule (he uses somewhat weaker properties to show his result). Ehlers and Klaus (2006) characterize all Pareto
efficient, strategy-proof, and reallocation-consistent assignment rules as efficient priority rules. Later, Ehlers and Klaus (2007) and
Velez (2014) characterize a slightly larger class of assignment rules by weakening these characterizing properties. Karakaya et al.
(2019) analyze TTC rules in the context of house allocation problem with existing tenants.
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1.1 Our motivation and contribution

As we have mentioned, Svensson (1999), Pápai (2000), and Pycia and Ünver (2017) assume that the indi-

viduals can have arbitrary preferences over the goods. However, it is well-known that in many circum-

stances preferences of individuals are restricted in a particular way. Single-peakedness is known as one of

the most common such restrictions. It arises when goods can be ordered based on certain criteria and

individuals’ preferences respect that ordering in the sense that as one moves away from her top-ranked

(peak) good, her preference declines. For instance, in the problem of assigning hospitals (houses) to doc-

tors (citizens), hospitals (houses) can be ordered based on their locations on a street and an individual

may like to be assigned as close as possible to her favorite location, in the problem of assigning tasks

to students, tasks can be ordered based on their technical difficulties and an individual may like to get

a task that she is technically more comfortable with, etc. This motivates us to explore the structure of

strategy-proof assignment rules when individuals have single-peaked preferences. Instead of focusing

only on the maximal single-peaked domain, we do our analysis on a class of single-peaked domains that

we call minimally rich. A single-peaked domain is minimally rich if it contains all left single-peaked and

all right single-peaked preferences.6

There are two main results in this paper. The first one says that there is no strategy-proof, non-bossy,

Pareto efficient, and strongly pairwise reallocation-proof assignment rule on a minimally rich single-

peaked domain, when there are at least three individuals and three objects in the market (Theorem 5.1).

The second result characterizes all strategy-proof, Pareto efficient, top-envy-proof, non-bossy, and pair-

wise reallocation-proof assignment rules on a minimally rich single-peaked domain as hierarchical ex-

change rules (Theorem 7.1). We additionally show that strategy-proofness and non-bossiness together are

equivalent to group strategy-proofness on a minimally rich single-peaked domain (Proposition 4.1), and

every hierarchical exchange rule satisfies group-wise reallocation-proofness on a minimally rich single-

peaked domain (Proposition 7.1).7

Ours is not the first paper to deal with single-peaked domains, Damamme et al. (2015) and Bade (2019)

consider single-peaked domains in the context of housing markets.8 Damamme et al. (2015) provide an

algorithm which is Pareto efficient on a single-peaked domain and Bade (2019) introduces the notion of

the crawler algorithm and shows that it is Pareto efficient, strategy-proof, and individually rational on the

maximal single-peaked domain.9 To the best of our knowledge, the present paper is the first paper to

analyze the structure of assignment rules on the single-peaked domains.

6A single-peaked preference is left (right) if every alternative on the left (right) of the peak is preferred to every alternative
on the right (left) of the peak.

7This, in particular, implies that if we replace pairwise reallocation-proofness by its stronger version group-wise reallocation-
proofness, the conclusion of Theorem 7.1 does not change.

8Shapley and Scarf (1974) introduce the housing market, a model (with equal number of individuals and objects) in which
each individual owns a unique indivisible object (a house) initially.

9In fact, Bade (2019) shows that the crawler algorithm satisfies a stronger version of strategy-proofness called OSP-
implementability.
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1.2 Organization of the paper

The organization of this paper is as follows. In Section 2, we introduce basic notions and notations that

we use throughout the paper. In Section 3, we define domains and discuss their properties. In Section

4, we define assignment rules and discuss their standard properties. We present an impossibility result

(non-existence of strategy-proof, non-bossy, Pareto efficient, and strongly pairwise reallocation-proof as-

signment rules on a minimally rich single-peaked domain) in Section 5. Section 6 introduces the notion

of hierarchical exchange rules. In Section 7, we present our main result: a characterization of all strategy-

proof, Pareto efficient, top-envy-proof, non-bossy, and pairwise reallocation-proof assignment rules on

a minimally rich single-peaked domain as hierarchical exchange rules, and in Section 8, we discuss the

independence of these characterizing properties. All the proofs are collected in the Appendix.

2 Basic notions and notations

Let N = {1, . . . , n} be a (finite) set of individuals and A be a (non-empty and finite) set of objects. We

denote the set of all strict linear orders over the elements of A by L(A).10 An element P of L(A) is called

a preference over A. For a preference P ∈ L(A), by R we denote the weak part of P, that is, for all a, b ∈ A,

aRb if and only if
[

aPb or a = b
]

. For P ∈ L(A) and non-empty B ⊆ A, we define τ(P, B) = a if and only

if a ∈ B and aPb for all b ∈ B \ {a}. For ease of presentation, we denote τ(P, A) by τ(P).

We introduce the notion of an allocation of a (non-empty) set of objects B ⊆ A over a (non-empty) set

of individuals S ⊆ N. If |S| ≤ |B|, then an allocation assigns a unique object to each individual (some

objects will be left unassigned if |S| < |B|). More formally, an allocation in this scenario is a one-to-one

function µ : S → B. On the other hand, if |B| < |S|, then an allocation assigns each object to a unique

individual (some individuals will not be assigned any object). More formally, an allocation in this scenario

is an onto function µ : S → B ∪ {∅} such that µ−1(a) is singleton for all a ∈ B.

Here, µ(i) = a for some element a of A means individual i is assigned object a in allocation µ, and

µ(i) = ∅ means individual i is not assigned any object in µ. For S ⊆ N and B ⊆ A with |S|, |B| 6= 0, we

denote by M(S, B) the set of all allocations of B over S. For ease of presentation, we denote M(N, A) by

M.

For ease of presentation we use the following convention throughout the paper: for a set {1, . . . , g} of

integers, whenever we refer to the number g + 1, we mean 1. For instance, if we write st ≥ rt+1 for all

t = 1, . . . , g, we mean s1 ≥ r2, . . . , sg−1 ≥ rg, and sg ≥ r1.

10A strict linear order is a semiconnex, asymmetric, and transitive binary relation.
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3 Domains and their properties

Each i ∈ N has a preference Pi ∈ L(A) over A. We denote by Pi ⊆ L(A) the set of all admissible

preferences of individual i, and by PN = (P1, . . . , Pn) a n-vector of all the individuals’ preferences, which

will be referred to as a preference profile. By PN =
n

∏
i=1

Pi we denote the set of all admissible preference

profiles.

Given a preference profile PN , we denote by (P′
i , P−i) the preference profile obtained from PN by chang-

ing the preference of individual i from Pi to P′
i and keeping all other preferences unchanged.

Definition 3.1. A preference P ∈ L(A) is called single-peaked with respect to an ordering ≺∈ L(A) if

(i) for all aj, ak ∈ A with aj ≺ ak ≺ τ(P), we have akPaj, and

(ii) for all aj, ak ∈ A with τ(P) ≺ aj ≺ ak, we have ajPak.

A single-peaked preference (with respect to ≺) is called left (right) single-peaked if for all aj, ak ∈ A,

aj ≺ τ(P) ≺ ak implies ajPak (akPaj). A domain of preferences is called single-peaked (with respect to ≺)

if each preference in it is single-peaked. A single-peaked domain of preferences is called minimally rich

if it contains all left single-peaked and all right single-peaked preferences.

In the rest of the paper we assume that for all i ∈ N, Pi is a minimally rich single-peaked domain (with

respect to some (fixed) ordering ≺).

4 Assignment rules and their properties

In this section, we introduce the notion of assignment rules and discuss a few properties of those.

Definition 4.1. A function f : PN → M is called an assignment rule on PN .

For an assignment rule f : PN → M and a preference profile PN ∈ PN , we denote by fi(PN) the object

that is assigned to individual i by the assignment rule f at PN .

An allocation µ Pareto dominates another allocation ν at a preference profile PN if µ(i)Riν(i) for all

i ∈ N and µ(j)Pjν(j) for some j ∈ N.

Definition 4.2. An assignment rule f : PN → M is called Pareto efficient at a preference profile PN ∈ PN

if there is no allocation that Pareto dominates f (PN) at PN , and it is called Pareto efficient if it is Pareto

efficient at every preference profile in PN .

Remark 4.1. If an assignment rule f : PN → M satisfies Pareto efficiency, then τ(Pj) ∈ ∪
i∈N

{ fi(PN)} for

all j ∈ N. In other words, every object that is ranked at the top position by some individual must not be

left unassigned. To see this, note that if τ(Pj) /∈ ∪
i∈N

{ fi(PN)} for some j ∈ N, then the allocation µ defined

by µ(j) = τ(Pj) and µ(k) = fk(PN) for all k 6= j Pareto dominates f (PN) at PN .
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Non-bossiness is a standard notion in matching theory which says that if an individual misreports her

preference and her assignment does not change by the same, then the assignment of any other individual

cannot change.11

Definition 4.3. An assignment rule f : PN → M is non-bossy if for all PN ∈ PN , all i ∈ N, and all P̃i ∈ Pi,

fi(PN) = fi(P̃i, P−i) implies f (PN) = f (P̃i, P−i).

Definition 4.4. An assignment rule f : PN → M is strategy-proof if for all PN ∈ PN , all i ∈ N and all

P̃i ∈ Pi, we have fi(PN)Ri fi(P̃i, P−i).

Note that if an assignment rule f : PN → M is not strategy-proof, then there exist PN ∈ PN , i ∈ N and

P̃i ∈ Pi such that fi(P̃i, P−i)Pi fi(PN). In such cases, we say that the individual i manipulates f at PN via P̃i.

Definition 4.5. An assignment rule f : PN → M is group strategy-proof if for all PN ∈ PN , there do

not exist a set of individuals S ⊆ N, and a preference profile P̃S of the individuals in S such that fi(P̃S,

P−S)Ri fi(PN) for all i ∈ S and f j(P̃S, P−S)Pj f j(PN) for some j ∈ S.

Proposition 4.1. An assignment rule f : PN → M is group strategy-proof if and only if it is strategy-proof and

non-bossy.

The proof of this proposition is relegated to Appendix B.

5 An impossibility result

We introduce the notion of strongly pairwise reallocation-proof assignment rules. It says that no pair of

individuals can misreport their preferences and be better off redistributing their assignments ex post.12

Definition 5.1. An assignment rule f : PN → M is weakly manipulable through pairwise reallocation if there

exist PN ∈ PN , distinct individuals i, j ∈ N, and P̃i ∈ Pi, P̃j ∈ Pj such that

(i) f j(P̃i, P̃j, P−i,j)Ri fi(PN), and

(ii) fi(P̃i, P̃j, P−i,j)Pj f j(PN).

An assignment rule is strongly pairwise reallocation-proof if it is not weakly manipulable through

pairwise reallocation.

Pápai (2000) mentions that there is no strategy-proof, non-bossy, Pareto efficient, and strongly pairwise

reallocation-proof assignment rule on the unrestricted domain, where there are at least three individuals

and three objects. Our next result says that the result holds if we restrict the domain to be minimally rich

single-peaked.

11The concept of non-bossiness is due to Satterthwaite and Sonnenschein (1981).
12Here, we say a group of individuals is better-off if each member in it is weakly better-off and some member is strictly

better-off.
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Theorem 5.1. Suppose |N| ≥ 3 and |A| ≥ 3. Then, there does not exist a strategy-proof, non-bossy, Pareto

efficient, and strongly pairwise reallocation-proof assignment rule on PN .

The proof of this theorem is relegated to Appendix C.

Since group strategy-proofness is equivalent to strategy-proofness and non-bossiness (see Proposition

4.1), we obtain the following corollary from Theorem 5.1.

Corollary 5.1. Suppose |N| ≥ 3 and |A| ≥ 3. Then, there does not exist a group strategy-proof, Pareto efficient,

and strongly pairwise reallocation-proof assignment rule on PN .

6 Hierarchical exchange rules

We introduce the notion of hierarchical exchange rules in this section. These rules are introduced in Pápai

(2000) and are well-known in the literature. We present a description of these rules for the sake of com-

pleteness. The description in Section 6 is taken from Mandal and Roy (2020).

We introduce some basic definitions from graph theory which we will use in defining hierarchical

exchange rules. We denote a rooted (directed) tree by T. For a tree T, we denote its set of nodes by V(T),

set of all edges by E(T), and root by r(T). For a node v ∈ V(T), we denote the set of all outgoing edges

from v by Eout(v). For an edge e ∈ E(T), we denote its source node by s(e). A path in a tree is a sequence

of nodes such that every two consecutive nodes form an edge.

First we explain the notion of a TTC procedure with respect to a given endowments of the objects over

the individuals. Suppose that each object is owned by exactly one individual. Note that an individual

may own more than one objects. A directed graph is constructed in the following manner. The set of

nodes is the same as the set of individuals. There is a directed edge from individual i to individual j if and

only if individual j owns individual i’s most preferred object. Note that such a graph will have exactly

one outgoing edge from every node (though possibly many incoming edges to a node). Further, there

may be an edge from a node to itself. It is clear that such a graph will always have a cycle. This cycle is

called a top trading cycle (TTC). After forming a TTC, the individuals in the TTC are assigned their most

preferred objects.

6.1 Verbal description of hierarchical exchange rules

The following verbal description of hierarchical exchange rules is taken from Pápai (2000). The allocation

obtained by a hierarchical exchange rule can be described by the following iterative procedure. Individ-

uals have an initial individual “endowment“ of objects such that each object is exactly one individual’s

endowment. It is important to note that some individuals may not be endowed with any objects. Now

apply the TTC procedure to this market with individual endowments. Notice that individuals who don’t

have endowments cannot be part of a top trading cycle, since nobody points to them, and therefore they
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need not point. Given that multiple endowments are allowed, after the individuals in top trading cycles

leave the market with their most preferred objects, unassigned objects in the initial endowment sets of

individuals who received their assignment may be left behind. These objects are reassigned as endow-

ments to individuals who are still in the market, that is, they are “inherited“ by individuals who have

not yet received their assignments. Furthermore, the objects in the initial endowment sets of individuals

who are still in the market remain the individual endowments of these individuals. Thus, notice that each

unassigned object is the endowment of exactly one individual who is still in the market. Now apply the

TTC procedure to this reduced market with the new endowments.13 Repeat this procedure until every

individual has her assignment or all the objects are assigned. Since there exists at least one top trading

cycle in every stage, this procedure leads to an allocation of the objects in a finite number of stages. In par-

ticular, there are at most as many stages as there are individuals or objects, whichever number is smaller,

since in each stage at least one person receives her assignment. Furthermore, for any strict preferences of

the individuals, the resulting allocation is unique.

A hierarchical exchange rule is determined by the initial endowments and the hierarchical endowment

inheritance in later stages. While the initial endowment sets are given a priori, the hierarchical endow-

ment inheritance may be endogenous. In particular, the inheritance of endowments may depend on the

assignments made in earlier stages.

We explain how a hierarchical exchange rule works by means of the following example.

Example 6.1. Suppose N = {1, 2, 3} and A = {a1, a2, a3, a4} with a prior order a1 ≺ a2 ≺ a3 ≺ a4. A

hierarchical exchange rule is based on a collection of inheritance trees, one tree for each object. We will

define this notion formally; for the time being we explain it through the current example. Figure 6.1

presents a collection of inheritance trees Γa1
, . . . , Γa4

. To understand their structure, let us look at one of

them, say Γa1
. Each maximal path of this tree has min{|N|, |A|} − 1 = 2 edges. In any maximal path,

each individual appears at most once at the nodes. For instance, individuals 1, 2 and 3 appear at the nodes

(in that order) in the left most path of Γa1
. Each object other than a1 appears exactly once at the outgoing

edges from the root (thus there are three edges from the root). For every subsequent node which is not

the end node of a maximal path, each object other than a1, that has not already appeared in the path from

the root to that node, appears exactly once at the outgoing edges from that node. For instance, consider

the node marked with 2 in the left most path of Γa1
. Since this node is not the end node of the left most

maximal path and object a2 has already appeared at the edge from the root to this node, objects a3 and a4

appear exactly once at the outgoing edges from this node. Thus, each object other than a1 appears at most

once at the edges in any maximal path of Γa1
. For instance, objects a2 and a3 appear at the edges (in that

order) in the left most path of Γa1
. It can be verified that other inheritance trees have the same structure.

13In this TTC procedure, an individual i point to an individual j if j owns i’s most preferred object among the remaining
objects.
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Figure 6.1: Inheritance trees for Example 6.1

Consider the hierarchical exchange rule based on the collection of inheritance trees given in Figure 6.1.

We explain how to compute the outcome of the rule at a given preference profile. Consider the preference

profile PN as given below:

P1 P2 P3

a2 a1 a1

a1 a2 a2

a3 a3 a3

a4 a4 a4

Table 6.1: Preference profile for Example 6.1

The outcome is computed through a number of stages. In each stage, endowments of the individuals

are determined by means of the inheritance trees and TTC procedure is performed with respect to the

endowments.

Stage 1.

In Stage 1, the “owner“ of an object a is the individual who is assigned to the root-node of the inheri-

tance tree Γa. Thus, object a1 is owned by individual 1, objects a2 and a3 are owned by individual 2, and

object a4 is owned by individual 3.

Once the endowments of the individuals are decided, TTC procedure is performed with respect to the

endowments to decide the outcome of Stage 1. Individuals who are assigned some object in Stage 1 leave

the market with the corresponding objects. It can be verified that for the preference profile PN given in
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Table 6.1, individual 1 gets object a2 and individual 2 gets object a1 at the outcome of TTC procedure in

this stage. So, individuals 1 and 2 leave the market with objects a2 and a1, respectively.

Stage 2.

As in Stage 1, the endowments of the individuals are decided first and then TTC procedure is per-

formed with respect to the endowments. To decide the owner of a (remaining) object a, look at the root of

the inheritance tree Γa. If the individual who appears there, say individual i, is remained in the market,

then i becomes the owner of a. Otherwise, that is, if i is assigned an object in Stage 1, say b, then follow

the edge from the root that is marked with b. If the individual appearing at the node following this edge,

say j, is remained in the market, then j becomes the owner of a. Otherwise, that is, if j is assigned an

object in Stage 1, say c, then follow the edge that is marked with c from the current node. As before, check

whether the individual appearing at the end of this edge is remained in the market or not. Continue in

this manner until an individual is found in the particular path who is not already assigned an object and

decide that individual as the owner of a.

For the example at hand, the remaining market in Stage 2 consists of objects a3 and a4, and individual 3.

Consider object a3. Individual 2 appears at the root of Γa3 . Since individual 2 is assigned object a1 in Stage

1, we follow the edge from the root that is marked with a1 and come to individual 1. Since individual 1

is assigned object a2, we follow the edge marked with a2 from this node and come to individual 3. Since

individual 3 is remained in the market, she becomes the owner of a3. For object a4, individual 3 appears

at the root of Γa4
and she is remained in the market. So, individual 3 becomes the owner of a4 in Stage 2.

To emphasize the process of deciding the owner of an object, we have highlighted the node in red in the

corresponding inheritance tree in Figure 6.2.
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Figure 6.2: Stage 2

Once the endowments are decided for Stage 2, TTC procedure is performed with respect to the en-

dowments to decide the outcome of this stage. As in Stage 1, individuals who are assigned some object in

Stage 2 leave the market with the corresponding objects. It can be verified that for the current example,

individual 3 gets object a3 in this stage. So, individual 3 leave the market with objects a3.

Stage 3 is followed on the remaining market in a similar way as Stage 2. For the current example,
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everybody is assigned some object by the end of Stage 2 and hence the algorithm stops in this stage.

Thus, individuals 1, 2, and 3 get objects a2, a1, and a3, respectively, at the outcome of the hierarchical

exchange rule.

6.2 Formal definition of hierarchical exchange rules

In what follows, we present a formal description of hierarchical exchange rules.

6.2.1 Inheritance trees

For a rooted tree T, the level of a node v ∈ V(T) is defined as the number of edges appearing in the

(unique) path from r(T) to v.

Definition 6.1. For an object a ∈ A, an inheritance tree for a ∈ A is defined as a tuple Γa = 〈Ta, ζNI
a , ζEO

a 〉,

where

(i) Ta is a rooted tree with

(a) max
v∈V(Ta)

level(v) = min{|N|, |A|} − 1, and

(b) |Eout(v)| = |A| − level(v)− 1 for all v ∈ V(Ta) with level(v) < min{|N|, |A|} − 1,

(ii) ζNI
a : V(Ta) → N is a nodes-to-individuals function with ζNI

a (v) 6= ζNI
a (ṽ) for all distinct v, ṽ ∈

V(Ta) that appear in same path, and

(iii) ζEO
a : E(Ta) → A \ {a} is an edges-to-objects function with ζEO

a (e) 6= ζEO
a (ẽ) for all distinct e,

ẽ ∈ E(Ta) that appear in same path or have same source node (that is, s(e) = s(ẽ)).

In what follows, we provide two examples (for two different scenarios) of inheritance trees.

Example 6.2. Suppose N = {1, 2, 3} and A = {a1, a2, a3, a4} with a prior order a1 ≺ a2 ≺ a3 ≺ a4.14 Figure

6.3 presents an example of Γa1
.

1

2

3

a3

3

a4

a2

3

2

a2

2

a4

a3

2

3

a2

3

a3

a4

Figure 6.3: Example of Γa1

Example 6.3. Suppose N = {1, 2, 3, 4} and A = {a1, a2, a3} with a prior order a1 ≺ a2 ≺ a3. Figure 6.4

presents another example of Γa1
.

14The ordering ≺ over A does not play any role in the definition of an inheritance tree.
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1

2

3

a3

a2

3

4

a2

a3

Figure 6.4: Example of Γa1

6.2.2 Endowments

A hierarchical exchange rule works in several stages and in each stage, endowments of individuals are

determined by using a (fixed) collection of inheritance trees.

Given a collection of inheritance trees Γ = (Γa)a∈A, one for each object a ∈ A, we define a class of

endowments EΓ as follows:

(i) The initial endowment EΓ
i (∅) of individual i is given by

EΓ
i (∅) = {a ∈ A | ζNI

a (r(Ta)) = i}.

(ii) For all S ⊆ N \ {i} and B ⊆ A with |S| = |B| 6= 0, and all µ̂ ∈ M(S, B), the endowment EΓ
i (µ̂) of

individual i is given by

EΓ
i (µ̂) ={a ∈ A \ B | ζNI

a (r(Ta)) = i, or

there exists a path (v1
a, . . . , vra

a ) from r(Ta) to vra
a in Γa such that ζNI

a (vra
a ) = i

and for all s = 1, . . . , ra − 1, we have ζNI
a (vs

a) ∈ S and µ̂(ζNI
a (vs

a)) = ζEO
a (vs

a, vs+1
a )}.

6.2.3 Iterative procedure to compute the outcome of a hierarchical exchange rule

For a given collection of inheritance trees Γ = (Γa)a∈A, the hierarchical exchange rule f Γ associated with

Γ is defined by an iterative procedure with at most min{|N|, |A|} number of stages. Consider a preference

profile PN ∈ PN .

Stage 1.

Hierarchical Endowments (Initial Endowments): For all i ∈ N, E1(i, PN) = EΓ
i (∅).

Top Choices: For all i ∈ N, T1(i, PN) = τ(Pi).

12



Trading Cycles: For all i ∈ N,

C1(i, PN) =











































{j1, . . . , jg} if there exist j1, . . . , jg ∈ N such that

for all s = 1, . . . , g, T1(js, PN) ∈ E1(js+1, PN), and

for some ŝ = 1, . . . , g, jŝ = i;

∅ otherwise.

Since each individual can be in at most one trading cycle, C1(i, PN) is well-defined for all i ∈ N.

Furthermore, since both the number of individuals and the number of objects are finite, there is always at

least one trading cycle. Note that C1(i, PN) = {i} if T1(i, PN) ∈ E1(i, PN).

Assigned Individuals: W1(PN) = {i | C1(i, PN) 6= ∅}.

Assignments: For all i ∈ W1(PN), f Γ
i (PN) = T1(i, PN).

Assigned Objects: F1(PN) = {T1(i, PN) | i ∈ W1(PN)}.

This procedure is repeated iteratively in the remaining reduced market. For each stage t, define

Wt(PN) =
t
∪

u=1
Wu(PN) and Ft(PN) =

t
∪

u=1
Fu(PN). In what follows, we present Stage t + 1 of f Γ.

...

Stage t + 1.

Hierarchical Endowments (Non-initial Endowments): Let µt ∈ M(Wt(PN), Ft(PN)) such that for all i ∈

Wt(PN),

µt(i) = f Γ
i (PN).

For all i ∈ N \ Wt(PN), Et+1(i, PN) = EΓ
i (µ

t).

Top Choices: For all i ∈ N \ Wt(PN), Tt+1(i, PN) = τ(Pi, A \ Ft(PN)).

Trading Cycles: For all i ∈ N \ Wt(PN),

Ct+1(i, PN) =











































{j1, . . . , jg} if there exist j1, . . . , jg ∈ N \ Wt(PN) such that

for all s = 1, . . . , g, Tt+1(js, PN) ∈ Et+1(js+1, PN), and

for some ŝ = 1, . . . , g, jŝ = i;

∅ otherwise.

Assigned Individuals: Wt+1(PN) = {i | Ct+1(i, PN) 6= ∅}.

Assignments: For all i ∈ Wt+1(PN), f Γ
i (PN) = Tt+1(i, PN).
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Assigned Objects: Ft+1(PN) = {Tt+1(i, PN) | i ∈ Wt+1(PN)}.

...

This procedure is repeated iteratively until either all individuals are assigned or all objects are assigned.

The hierarchical exchange rule f Γ associated with Γ is defined as follows. For all i ∈ N,

f Γ
i (PN) =











Tt(i, PN) if i ∈ Wt(PN) for some stage t;

∅ otherwise.

Since for every preference profile PN and every individual i, there exists at most one stage t such that

i ∈ Wt(PN), f Γ is well-defined.

Remark 6.1. Note that a collection of inheritance trees do not uniquely identify a hierarchical exchange

rule. More formally, two different collections of inheritance trees Γ and Γ may give rise to the same

hierarchical exchange rule, that is, f Γ ≡ f Γ.

7 A characterization of hierarchical exchange rules

We introduce the notion of top-envy-proofness for an assignment rule. It says that if an individual i is

assigned the most preferred object of another individual j, then no matter how the individual j misreports

her preference, individual i cannot be worse-off. Thus, if an individual (here, j) is envious at another

individual (here, i) for getting her (here, j’s) top-ranked object, then the former one can never harm the

latter. As the name suggests, top-envy-proofness is weaker than envy-proofness (that is, envy-proofness

implies top-envy-proofness).15 Loosely speaking, top-envy-proofness can be viewed as envy-proofness

with respect to the top-ranked object of the envious individual.

Definition 7.1. An assignment rule f : PN → M satisfies top-envy-proofness condition if for all PN ∈ PN

and all distinct i, j ∈ N, τ(Pj) = fi(PN) implies fi(P̃j, P−j)Ri fi(PN) for all P̃j ∈ Pj.

Next, we introduce the notion of an assignment rule being manipulable through pairwise reallocation. It

captures the idea of manipulation where two individuals simultaneously misreport their preferences and

finally benefit (with respect to their original assignments) by reshuffling their assignments that they obtain

at the misreported preference profile. It further says that if any one of the two individuals misreports her

preference as “planned”, then her assignment will not depend whether the other individual misreports

her preference as planned or reports truthfully.

15An assignment rule f : PN → M satisfies envy-proofness condition if for all PN ∈ PN and all distinct i, j ∈ N,
fi(PN)Pj f j(PN) implies fi(P̃j, P−j)Ri fi(PN) for all P̃j ∈ Pj.
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Definition 7.2. An assignment rule f : PN → M is manipulable through pairwise reallocation if there exist

PN ∈ PN , individuals i, j ∈ N; i 6= j, and P̃i ∈ Pi, P̃j ∈ Pj such that

(i) f j(P̃i, P̃j, P−i,j)Ri fi(PN),

(ii) fi(P̃i, P̃j, P−i,j)Pj f j(PN), and

(iii) fi(P̃i, P̃j, P−i,j) = fi(P̃i, Pj, P−i,j) and f j(P̃i, P̃j, P−i,j) = f j(Pi, P̃j, P−i,j).

An assignment rule is pairwise reallocation-proof if it is not manipulable through pairwise realloca-

tion.

Our next result provides a characterization of hierarchical exchange rules.

Theorem 7.1. An assignment rule f : PN → M is strategy-proof, Pareto efficient, top-envy-proof, non-bossy,

and pairwise reallocation-proof if and only if it is a hierarchical exchange rule.

The proof of this theorem is relegated to Appendix D.

Since group strategy-proofness is equivalent to strategy-proofness and non-bossiness (see Proposition

4.1), we obtain the following corollary from Theorem 7.1.

Corollary 7.1. An assignment rule f : PN → M is group strategy-proof, Pareto efficient, top-envy-proof, and

pairwise reallocation-proof if and only if it is a hierarchical exchange rule.

We now strengthen the notion of pairwise reallocation-proof by group-wise reallocation-proof. As the

name suggests, instead of a pair of individuals, arbitrary groups of individuals are considered in group-

wise reallocation-proof. Thus, group-wise reallocation-proof ensures that no group of individuals can be

better off by misreporting their preferences and redistributing the objects they obtain at the misreported

preference profile. Condition (iii) in Definition 7.2 is suitably modified for group of individuals.

To ease our presentation, for an assignment rule f , a preference profile PN , and a set of individuals S,

we denote by fS(PN) the allocation over S according to f (PN). More formally, fS(PN) is the allocation µ

over S such that µ(i) = fi(PN) for all i ∈ S. With slight abuse of notation, by { fS(PN)} we denote the

set of objects which are assigned to the individuals in S at PN , that is, { fS(PN)} := {a ∈ A | fi(PN) =

a for some i ∈ S}.

Definition 7.3. An assignment rule f : PN → M is manipulable through group-wise reallocation if there exist

PN ∈ PN , a set of individuals S ⊆ N, a preference profile P̃S of the individuals in S, and an allocation µ̂ of

{ fS(P̃S, P−S)} over S where µ̂ 6= fS(P̃S, P−S) such that

(i) µ̂(i)Ri fi(PN) for all i ∈ S,

(ii) µ̂(j)Pj f j(PN) for some j ∈ S, and
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(iii) fi(P̃i, P̃S\{i}, P−S) = fi(P̃i, PS\{i}, P−S) for all i ∈ S.

An assignment rule is group-wise reallocation-proof if it is not manipulable through group-wise real-

location.

Proposition 7.1. Every hierarchical exchange rule satisfies group-wise reallocation-proofness.

The proof of this proposition is relegated to Appendix E.

We obtain the following corollary from Theorem 7.1 and Proposition 7.1.

Corollary 7.2. An assignment rule f : PN → M is strategy-proof, Pareto efficient, top-envy-proof, non-bossy,

and group-wise reallocation-proof if and only if it is a hierarchical exchange rule.

The next corollary is obtained by combining Corollary 7.1 and Proposition 7.1.

Corollary 7.3. An assignment rule f : PN → M is group strategy-proof, Pareto efficient, top-envy-proof, and

group-wise reallocation-proof if and only if it is a hierarchical exchange rule.

8 Independence of the conditions in Theorem 7.1

In this section, we show that strategy-proofness, Pareto efficiency, top-envy-proofness, non-bossiness and

pairwise reallocation-proofness are all independent for a hierarchical exchange rule. In particular, we

show that no four of those conditions imply the fifth one.

Example 8.1. In this example, we show that Pareto efficiency, top-envy-proofness, non-bossiness, and

pairwise reallocation-proofness do not imply strategy-proofness. Consider an allocation problem with

three individuals N = {1, 2, 3} and three objects A = {a1, a2, a3} with a prior order a1 ≺ a2 ≺ a3.

Consider the assignment rule f such that

f =











Serial dictatorship with priority (1 ≻ 3 ≻ 2) if τ(P1) = τ(P2) = a1, and τ(P3) = a2;

Serial dictatorship with priority (1 ≻ 2 ≻ 3) otherwise.

Consider the preference profiles PN = (a1a2a3, a1a2a3, a2a1a3) and P̃N = (a1a2a3, a2a1a3, a2a1a3).16 Note

that only individual 2 changes her preference from PN to P̃N . This, together with the facts f2(PN) = a3,

f2(P̃N) = a2, and a2P2a3, implies f is not strategy-proof. It can be easily verified that f is Pareto efficient,

top-envy-proof, non-bossy, and pairwise reallocation-proof.

Example 8.2. In this example, we show that strategy-proofness, top-envy-proofness, non-bossiness, and

pairwise reallocation-proofness do not imply Pareto efficiency. Define f such that fi(PN) = ∅ for all i ∈ N

and all PN . It is easy to verify that f satisfies strategy-proofness, top-envy-proofness, non-bossiness,

and pairwise reallocation-proofness. However, from Remark 4.1, it follows that f does not satisfy Pareto

efficiency.
16Here, we denote by (a1a2a3, a2a3a1, a3a2a1) a preference profile where individuals 1, 2 and 3 have preferences a1a2a3, a2a3a1,

and a3a2a1, respectively.
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Example 8.3. In this example, we show that strategy-proofness, Pareto efficiency, non-bossiness, and pair-

wise reallocation-proofness do not imply top-envy-proofness condition. Consider an allocation problem

with three individuals N = {1, 2, 3} and four objects A = {a1, a2, a3, a4} with a prior order a1 ≺ a2 ≺ a3 ≺

a4. Consider the assignment rule f such that

f =











Serial dictatorship with priority (2 ≻ 1 ≻ 3) if τ(P1) = τ(P2) = a1, and τ(P3) = a4;

Serial dictatorship with priority (1 ≻ 2 ≻ 3) otherwise.

Consider the preference profiles PN = (a1a2a3a4, a1a2a3a4, a1a2a3a4) and P̃N = (a1a2a3a4, a1a2a3a4,

a4a3a2a1). Note that only individual 3 changes her preference from PN to P̃N . This, together with the

facts f1(PN) = a1, τ(P3) = a1, f1(P̃N) = a2, and a1P1a2, implies f is not top-envy-proof. It can be easily

verified that f is strategy-proof, Pareto efficient, non-bossy, and pairwise reallocation-proof.

Example 8.4. In this example, we show that strategy-proofness, Pareto efficiency, top-envy-proofness, and

pairwise reallocation-proofness do not imply non-bossiness. Consider an allocation problem with three

individuals N = {1, 2, 3} and three objects A = {a1, a2, a3} with a prior order a1 ≺ a2 ≺ a3. Consider the

assignment rule f such that

f =











Serial dictatorship with priority (1 ≻ 2 ≻ 3) if a1P1a3;

Serial dictatorship with priority (1 ≻ 3 ≻ 2) if a3P1a1.

Consider the preference profiles PN = (a2a1a3, a2a1a3, a2a1a3) and P̃N = (a2a3a1, a2a1a3, a2a1a3). Note

that only individual 1 changes her preference from PN to P̃N . This, together with the facts f (PN) = [(1,

a2), (2, a1), (3, a3)] and f (P̃N) = [(1, a2), (2, a3), (3, a1)], implies f is not non-bossy. It is easy to verify that

f is strategy-proof, Pareto efficient, top-envy-proof, and pairwise reallocation-proof.

Example 8.5. In this example, we show that strategy-proofness, Pareto efficiency, top-envy-proofness, and

non-bossiness do not imply pairwise reallocation-proofness. Consider an allocation problem with three

individuals N = {1, 2, 3} and three objects A = {a1, a2, a3} with a prior order a1 ≺ a2 ≺ a3. Consider the

hierarchical exchange rule f Γ based on the collection of inheritance trees given in Figure 8.1. Consider the

assignment rule f such that

f =











Serial dictatorship with priority (2 ≻ 1 ≻ 3) if τ(P1) = τ(P2) = a3, and τ(P3) = a1;

f Γ otherwise.

Consider the preference profile PN = (a3a2a1, a3a2a1, a1a2a3) and the preferences P̃1 ∈ P1, P̃3 ∈ P3 such

that τ(P̃1) = a1 and τ(P̃3) = a3. It follows from the construction of f that f (PN) = [(1, a2), (2, a3), (3,

a1)], f1(P̃1, P2, P̃3) = f1(P̃1, P2, P3) = a1, f3(P̃1, P2, P̃3) = f3(P1, P2, P̃3) = a3. These facts, along with the fact

a3P1a2, together imply f is not pairwise reallocation-proof. It can be easily verified that f is strategy-proof,

Pareto efficient, top-envy-proof, and non-bossy.
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1

a2
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(c) Γa3

Figure 8.1: Inheritance trees for Example 8.5

Remark 8.1. The examples in this section also demonstrate that strategy-proofness, Pareto efficiency, top-

envy-proofness, non-bossiness, and group-wise reallocation-proofness are all independent for a hierarchi-

cal exchange rule. To see this note that except for Example 8.2, all other examples deal with three individ-

uals, and Pareto efficiency and pairwise reallocation-proofness together imply group-wise reallocation-

proofness in such cases. The fact that the assignment rule in Example 8.2 satisfies group-wise reallocation-

proofness is straightforward, and the assignment rule in Example 8.5 is not pairwise reallocation-proof

(while being strategy-proof, Pareto efficient, top-envy-proof, and non-bossy), so it will not be group-wise

reallocation-proof either.

Appendix A Preliminaries

For a, b ∈ A, let P(a;b) be a single-peaked preference (with respect to the given ordering ≺) such that

(i) τ(P(a;b)) = a, and

(ii) P(a;b) is a left (right) single-peaked preference if b � a (a ≺ b).17

Remark A.1. Since Pi is minimally rich single-peaked domain of preferences (with respect to the given

ordering ≺) for all i ∈ N, we have P(a;b) ∈ Pi for all i ∈ N and all a, b ∈ A.

Appendix B Proof of Proposition 4.1

Proof of Proposition 4.1. (If part) Assume for contradiction that f is not group strategy-proof. Since f is

not group strategy-proof, there exist PN ∈ PN , S ⊆ N, and P′
S ∈ ∏

i∈S
Pi such that fi(P′

S, P−S)Ri fi(PN) for

all i ∈ S and f j(P′
S, P−S)Pj f j(PN) for some j ∈ S. Consider the profile of preferences P̃S ∈ ∏

i∈S
Pi such that

for all i ∈ S,

P̃i =











P( fi(P′
S,P−S); fi(PN)) if fi(PN) 6= ∅;

P′
i if fi(PN) = ∅.

It follows from the construction of P̃S and Remark A.1 that P̃S is well-defined.

17By � we denote the weak part of ≺, that is, for all a, b ∈ A, a � b if and only if
[

a ≺ b or a = b
]

.
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First, we show that f (P̃S, P−S) = f (PN). Fix j ∈ S.

Claim B.1. f (P̃j, P−j) = f (PN).

Proof of Claim B.1. Suppose f j(PN) = ∅. Then, by strategy-proofness, we have f j(P̃j, P−j) = ∅. Since

f j(PN) = ∅ and f j(P̃j, P−j) = ∅, by non-bossiness, we have

f (P̃j, P−j) = f (PN). (B.1)

Now, suppose f j(PN) 6= ∅. Then, by strategy-proofness, we have f j(P̃j, P−j)R̃j f j(PN). Suppose f j(P̃j,

P−j)P̃j f j(PN). Since f j(P̃j, P−j)P̃j f j(PN), it follows from the construction of P̃j that

f j(P′
S, P−S) 6= f j(PN), and (B.2a)

f j(P′
S, P−S) � f j(P̃j, P−j) ≺ f j(PN) or f j(PN) ≺ f j(P̃j, P−j) � f j(P′

S, P−S). (B.2b)

Since fi(P′
S, P−S)Ri fi(PN) for all i ∈ S, by (B.2a) we have f j(P′

S, P−S)Pj f j(PN). This, together with (B.2b),

implies f j(P̃j, P−j)Pj f j(PN), a contradiction to strategy-proofness. So, it must be that f j(P̃j, P−j) = f j(PN).

By non-bossiness, the fact f j(P̃j, P−j) = f j(PN) implies

f (P̃j, P−j) = f (PN). (B.3)

(B.1) and (B.3) together complete the proof of Claim B.1. �

Continuing in this manner, we can move the preferences of all individuals j ∈ S, from the preference

Pj to P̃j one by one and obtain

f (P̃S, P−S) = f (PN). (B.4)

Next, we show that f (P̃S, P−S) = f (P′
S, P−S). Fix j ∈ S. By strategy-proofness, we have f j(P̃j, P′

S\{j},

P−S)R̃j f j(P′
S, P−S). Moreover, it follows from the construction of P̃j that either τ(P̃j) = f j(P′

S, P−S) or

P̃j = P′
j . This, together with the fact f j(P̃j, P′

S\{j}, P−S)R̃j f j(P′
S, P−S), implies f j(P̃j, P′

S\{j}, P−S) = f j(P′
S,

P−S). By non-bossiness, the fact f j(P̃j, P′
S\{j}, P−S) = f j(P′

S, P−S) implies

f (P̃j, P′
S\{j}, P−S) = f (P′

S, P−S).

Continuing in this manner, we can move the preferences of all individuals j ∈ S, from the preference P′
j

to P̃j one by one and obtain

f (P̃S, P−S) = f (P′
S, P−S). (B.5)

However, (B.4) and (B.5) together imply f (P′
S, P−S) = f (PN), a contradiction to the fact that f j(P′

S,

P−S)Pj f j(PN) for some j ∈ S. This completes the proof of the “if“ part of Proposition 4.1.
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(Only-if part) It is obvious that group strategy-proofness implies strategy-proofness and non-bossiness.�

Appendix C Proof of Theorem 5.1

Proof of Theorem 5.1. Suppose A = {a1, a2, . . . , am} with a prior order a1 ≺ a2 ≺ · · · ≺ am, where m ≥

3. Assume for contradiction that there exists a strategy-proof, non-bossy, Pareto efficient, and strongly

pairwise reallocation-proof assignment rule f on PN . Since Pi is minimally rich for all i ∈ N, there exists

a preference profile P1
N ∈ PN such that P1

i = a2a1a3 . . . for all i ∈ N. Since |N| ≥ 3, by Pareto efficiency,

we have {a1, a2, a3} ⊆ ∪
i∈N

{ fi(P1
N)}. Without loss of generality, assume f1(P1

N) = a1, f2(P1
N) = a2, and

f3(P1
N) = a3.

Since Pi is minimally rich for all i ∈ N, we can construct the preference profiles presented in Table C.1.

Here, l denotes an individual other than 1, 2, 3 (if any). Note that such an individual does not change her

preference across the mentioned preference profiles.

Preference profiles Individual 1 Individual 2 Individual 3 . . . Individual l

P2
N a2 . . . ama1 a1a2a3 . . . a2a1a3 . . . . . . a2a1a3 . . .

P3
N a2 . . . ama1 a2a1a3 . . . a2a1a3 . . . . . . a2a1a3 . . .

Table C.1: Preference profiles for Theorem 5.1

Since f1(P1
N) = a1 and f2(P1

N) = a2, it follows from strong pairwise reallocation-proofness of f that

f1(P2
N) = a2 and f2(P2

N) = a1. (C.1)

By (C.1) we have f2(P2
N) = a1. This, together with strategy-proofness of f , implies f2(P3

N) ∈ {a1,

a2}. Suppose f2(P3
N) = a1. Since f2(P2

N) = a1 and f2(P3
N) = a1, by non-bossiness and (C.1), we have

f1(P3
N) = a2. However, since a2P1

1 a1, the facts f1(P1
N) = a1 and f1(P3

N) = a2 together contradict strategy-

proofness of f . So, it must be that

f2(P3
N) = a2. (C.2)

Since f1(P1
N) = a1 and f3(P1

N) = a3, (C.2) together with strong pairwise reallocation-proofness of f ,

implies that

f1(P3
N) = a3, f2(P3

N) = a2, and f3(P3
N) = a1. (C.3)

By (C.3) we have f2(P3
N) = a2 and f3(P3

N) = a1. Combining these facts with strong pairwise reallocation-

proofness of f , we have f2(P2
N) = a1 and f3(P2

N) = a2. However, the fact that f3(P2
N) = a2 contradicts

(C.1). This completes the proof of Theorem 5.1. �
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Appendix D Proof of Theorem 7.1

To prove Theorem 7.1, we use the notations introduced in Section 6. Furthermore, for a preference profile

PN ∈ PN and a hierarchical exchange rule, we assume F0(PN) = ∅ and W0(PN) = ∅.

The following lemma is taken from Pápai (2000). She proves this lemma for the unrestricted domain.

Since PN is a subset of the unrestricted domain, the result holds for PN as well.

Lemma D.1 (Lemma 4 in Pápai (2000)). Let f Γ be a hierarchical exchange rule, PN ∈ PN , and i, j ∈ N. Suppose

i ∈ Ws(PN) and f Γ
j (PN) 6= f Γ

j (P̃i, P−i) for some P̃i ∈ Pi. Then, either j ∈ Cs(i, PN) or j /∈ Ws(PN).

We obtain the following lemma from Lemma D.1.

Lemma D.2. Let f Γ be a hierarchical exchange rule and PN ∈ PN . Suppose i ∈ Wsi
(PN), j ∈ Wsj

(PN) and

si < sj. Then, f Γ
i (P̄j, P−j) = f Γ

i (PN) for all P̄j ∈ Pj.

Lemma D.3 establishes a property which says that if an individual j prefers the assignment of another

individual i of a hierarchical exchange rule, then it must be that i is assigned before j.

Lemma D.3. Let f Γ be a hierarchical exchange rule and PN ∈ PN . Suppose i ∈ Wsi
(PN) and j ∈ Wsj

(PN) such

that f Γ
i (PN)Pj f Γ

j (PN). Then, si < sj.

Proof of Lemma D.3. Assume for contradiction that sj ≤ si. Since j ∈ Wsj
(PN), by the definition of f Γ, we

have f Γ
j (PN) = τ(Pj, A \ Fsj−1(PN)). Furthermore, the fact i ∈ Wsi

(PN) together with the definition of f Γ,

implies that f Γ
i (PN) ∈ A \ Fsi−1(PN). This, together with the fact sj ≤ si, yields f Γ

i (PN) ∈ A \ Fsj−1(PN).

However, the facts that f Γ
j (PN) = τ(Pj, A \ Fsj−1(PN)) and f Γ

i (PN) ∈ A \ Fsj−1(PN) together contradict the

fact f Γ
i (PN)Pj f Γ

j (PN). This completes the proof of Lemma D.3. �

D.1 Proof of the “if“ part of Theorem 7.1

It follows from Pápai (2000) that every hierarchical exchange rule satisfies strategy-proofness, Pareto effi-

ciency, top-envy-proofness, and non-bossiness on the unrestricted domain.18 Since PN is a subset of the

unrestricted domain, it follows that every hierarchical exchange rule satisfies strategy-proofness, Pareto

efficiency, top-envy-proofness, and non-bossiness on PN . In what follows, we show that every hierarchi-

cal exchange rule satisfies pairwise reallocation-proofness on PN .

Let f Γ be a hierarchical exchange rule on PN . Assume for contradiction that f Γ does not satisfy pair-

wise reallocation-proofness. Then, there must exists PN ∈ PN , distinct i, j ∈ N, and P̃i ∈ Pi, P̃j ∈ Pj such

that

(i) f Γ
j (P̃i, P̃j, P−i,j)Ri f Γ

i (PN),

(ii) f Γ
i (P̃i, P̃j, P−i,j)Pj f Γ

j (PN), and

18For details see Lemma 1, Lemma 7, and the main theorem of Pápai (2000).
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(iii) f Γ
i (P̃i, P̃j, P−i,j) = f Γ

i (P̃i, P−i) and f Γ
j (P̃i, P̃j, P−i,j) = f Γ

j (P̃j, P−j).

Claim D.1. f Γ
i (PN) and f Γ

j (PN) are distinct objects.

Proof of Claim D.1. Suppose f Γ
i (PN) = ∅. Since f Γ is strategy-proof, f Γ

i (PN) = ∅ implies f Γ
i (P̃i, P−i) = ∅.

However, the facts that f Γ
i (P̃i, P−i) = ∅ and f Γ

i (P̃i, P̃j, P−i,j) = f Γ
i (P̃i, P−i) together imply f Γ

i (P̃i, P̃j, P−i,j) =

∅, a contradiction to the fact f Γ
i (P̃i, P̃j, P−i,j)Pj f Γ

j (P). So, it must be that

f Γ
i (PN) 6= ∅. (D.1)

Since f Γ
j (P̃i, P̃j, P−i,j)Ri f Γ

i (PN), (D.1) implies f Γ
j (P̃i, P̃j, P−i,j) 6= ∅. This, together with the fact f Γ

j (P̃i, P̃j,

P−i,j) = f Γ
j (P̃j, P−j), implies f Γ

j (P̃j, P−j) 6= ∅. Since f Γ is strategy-proof, f Γ
j (P̃j, P−j) 6= ∅ implies

f Γ
j (PN) 6= ∅. (D.2)

(D.1) and (D.2) together complete the proof of Claim D.1. �

It follows from Claim D.1 that there exist stages si and sj of f Γ at PN such that i ∈ Wsi
(PN) and j ∈

Wsj
(PN). Now, we complete the proof by distinguishing two cases.

CASE 1: Suppose sj ≤ si.

Since f Γ is Pareto efficient, f Γ
i (P̃i, P̃j, P−i,j)Pj f Γ

j (PN) implies that there exists k ∈ N \ {j} such that

f Γ
k (PN) = f Γ

i (P̃i, P̃j, P−i,j). The facts f Γ
i (P̃i, P̃j, P−i,j)Pj f Γ

j (PN) and f Γ
k (PN) = f Γ

i (P̃i, P̃j, P−i,j) together imply

f Γ
k (PN)Pj f Γ

j (PN) and f Γ
k (PN) ∈ A. It follows from the fact f Γ

k (PN) ∈ A that there exists a stage sk of f Γ at

PN such that k ∈ Wsk
(PN). Since j ∈ Wsj

(PN), k ∈ Wsk
(PN), and f Γ

k (PN)Pj f Γ
j (PN), by Lemma D.3, we have

sk < sj. This, together with the fact sj ≤ si, implies sk < si. Since i ∈ Wsi
(PN), k ∈ Wsk

(PN), and sk < si, by

Lemma D.2, we have

f Γ
k (PN) = f Γ

k (P̃i, P−i). (D.3)

Furthermore, the facts i ∈ Wsi
(PN), k ∈ Wsk

(PN), and sk < si together imply i 6= k. Since f Γ
k (PN) ∈ A and

i 6= k, (D.3) implies

f Γ
k (PN) 6= f Γ

i (P̃i, P−i). (D.4)

However, the facts f Γ
i (P̃i, P̃j, P−i,j) = f Γ

i (P̃i, P−i) and f Γ
k (PN) = f Γ

i (P̃i, P̃j, P−i,j) together contradict (D.4).

CASE 2: Suppose si < sj.

If f Γ
j (P̃i, P̃j, P−i,j)Pi f Γ

i (PN), then the proof follows using a similar logic as for Case 1. Since f Γ
j (P̃i, P̃j,

P−i,j)Ri f Γ
i (PN), let us assume

f Γ
j (P̃i, P̃j, P−i,j) = f Γ

i (PN). (D.5)
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Since i ∈ Wsi
(PN), j ∈ Wsj

(PN), and si < sj, by Lemma D.2, we have

f Γ
i (P̃j, P−j) = f Γ

i (PN). (D.6)

Furthermore, since f Γ
j (P̃j, P−j) = f Γ

j (P̃i, P̃j, P−i,j), by (D.5) and (D.6), we have

f Γ
i (P̃j, P−j) = f Γ

j (P̃j, P−j) = f Γ
i (PN). (D.7)

However, by Claim D.1, we have f Γ
i (PN) ∈ A. Since f Γ

i (PN) ∈ A and i 6= j, (D.7) implies that f Γ(P̃j,

P−j) is not an allocation, a contradiction.

Since Cases 1 and 2 are exhaustive, it follows that f Γ satisfies pairwise reallocation-proofness on PN .

D.2 Proof of the “only-if“ part of Theorem 7.1

Let f be a strategy-proof, Pareto efficient, top-envy-proof, non-bossy, and pairwise reallocation-proof

assignment rule. We will show that f is a hierarchical exchange rule.

D.2.1 Construction of the inheritance trees based on f

Fix a ∈ A. We proceed to construct an inheritance tree Γa = 〈Ta, ζNI
a , ζEO

a 〉 for a ∈ A. Let Ta be a rooted tree

that satisfies Condition (i) of Definition 6.1. Let ζEO
a : E(Ta) → A \ {a} be an edges-to-objects function

that satisfies Condition (iii) of Definition 6.1. We will define ζNI
a : V(Ta) → N, a nodes-to-individuals

function, in accordance with property Condition (ii) of Definition 6.1 based on f .

Let P0
N ⊆ PN be the set of all preference profiles PN such that τ(Pi) = a for all i ∈ N.

Lemma D.4. There exists k ∈ N such that fk(PN) = a for all PN ∈ P0
N .

Proof of Lemma D.4. By Remark 4.1, for every given PN ∈ P0
N , there exists an individual k ∈ N such

that fk(PN) = a. It remains to show that this individual is unique for all preference profile in P0
N , that is,

fk(PN) = fk(P′
N) = a for all PN , P′

N ∈ P0
N . Assume for contradiction that f j(PN) = f j′(P′

N) = a for some

PN , P′
N ∈ P0

N and j, j′ ∈ N such that j 6= j′.

Since f j(PN) = a, τ(Pj) = a, and aPk fk(PN) for all k 6= j, by moving the preferences of the individuals

k 6= j one by one from Pk to P′
k, and by applying top-envy-proofness condition every time, we obtain

f j(Pj, P′
−j) = a. Moreover, since f j′(P′

N) = a and j 6= j′, we have f j(P′
N) 6= a. This, together with the

fact τ(P′
j ) = a, implies aP′

j f j(P′
N). However, the facts f j(Pj, P′

−j) = a and aP′
j f j(P′

N) together contradict

strategy-proofness of f . This completes the proof of Lemma D.4. �

By Lemma D.4, there exists i1 ∈ N such that fi1(PN) = a for all PN ∈ P0
N . Define ζNI

a (v1
a) = i1 where

v1
a is the root-node of Ta. Let (v1

a, . . . , vr
a) with r ≥ 2 be a path from v1

a to vr
a in Ta. We define ζNI

a on

{vs
a | 1 ≤ s ≤ r} in a recursive manner.
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Assume that ζNI
a is defined on {vs

a | 1 ≤ s ≤ r − 1}. Let ζNI
a (vs

a) = is for all s = 1, . . . , r − 1. We proceed

to define ζNI
a on vr

a. Let P r−1
N ⊆ PN be the set of all preference profiles PN such that Pis

= P(ζEO
a (vs

a,vs+1
a );a)

for all s = 1, . . . , r − 1, and τ(Pi) = a otherwise. Note that for all PN ∈ P r−1
N and all s, s′ ∈ {1, . . . , r − 1},

τ(Pis
) 6= τ(Pis′

) if s 6= s′.

Lemma D.5. There exists k ∈ N \ {i1, . . . , ir−1} such that fk(PN) = a for all PN ∈ P r−1
N .

Proof of Lemma D.5. We first prove two claims that we will use to complete the proof of Lemma D.5.

Claim D.2. Let S = {h1, . . . , hm} ( N be a set of distinct individuals with m < |A| and let {b1, . . . , bm} ∈

A \ {a} be a set of distinct objects. Consider the preference profile PN such that τ(Phu
) = bu for all u = 1, . . . , m

and τ(Pi) = a for all i /∈ S. Then, there exists j ∈ N \ S such that f j(PN) = a.

Proof of Claim D.2. By Remark 4.1, for all c ∈ {a, b1, . . . , bm}, there exists jc ∈ N such that f jc(PN) = c. It

remains to show ja /∈ S. Assume for contradiction that ja ∈ S. Let {j1, . . . , jt−1} ⊆ S and jt /∈ S be such that

j1 = ja, f js+1
(PN) = τ(Pjs) for all 1 ≤ s ≤ t − 1. Since S is finite, to show such a sequence must exist, it is

sufficient to show that j1, . . . , jt−1 are all distinct. We show this in what follows. Assume for contradiction

that l is the first index in the ordering 1, . . . , t − 1 for which there exists l < l′ ≤ t − 1 such that jl = jl′ .

Suppose l = 1. The facts l = 1, jl = jl′ , j1 = ja, f ja(PN) = a and f jl′
(PN) = τ(Pjl′−1

) together imply

τ(Pjl′−1
) = a. This is a contradiction since jl′−1 ∈ S, which in particular means τ(Pjl′−1

) ∈ {b1, . . . , bm}.

Now, suppose l > 1. Then jl = jl′ , f jl (PN) = τ(Pjl−1
) and f jl′

(PN) = τ(Pjl′−1
) together imply

τ(Pjl−1
) = τ(Pjl′−1

). (D.8)

However, by our assumption on l, jl−1 6= jl′−1. Because jl−1, jl′−1 ∈ S and jl−1 6= jl′−1, by the construction

of PN , τ(Pjl−1
) 6= τ(Pjl′−1

), a contradiction to (D.8). This shows that j1, . . . , jt−1 are all distinct.

By the construction of {j1, . . . , jt}, { f js(PN) | s = 1, . . . , t} = {τ(Pjs) | s = 1, . . . , t}. Define the

allocation µ such that µ(i) = τ(Pi) for all i ∈ {j1, . . . , jt} and µ(i) = fi(PN) for all i ∈ N \ {j1, . . . , jt}.

Clearly µ Pareto dominates f (PN) at PN , which violates Pareto efficiency of f at PN . This completes the

proof of Claim D.2. �

Claim D.3. For all PN ∈ P r−1
N and all s = 1, . . . , r − 1, we have fis

(PN) = τ(Pis
).

Proof of Claim D.3. Fix PN ∈ P r−1
N . We prove this in two steps.

Step 1. In this step, we show that fis
(PN)Pis

a for all s = 1, . . . , r − 1. Assume for contradiction that

aRis∗
fis∗

(PN) for some s∗ ∈ {1, . . . , r − 1}. Consider the preference profile P̃N such that P̃it
= Pit

for all

t = 1, . . . , s∗ − 1 and τ(P̃i) = a, otherwise. By the recursive definition of ζNI
a ,

fis∗
(P̃N) = a. (D.9)
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Since τ(P̃i) = a for all i ∈ N \ {i1, . . . , is∗−1}, (D.9) implies that fis∗
(P̃N) = τ(P̃is∗

) and fis∗
(P̃N)P̃i fi(P̃N) for

all i ∈ N \ {i1, . . . , is∗}. Therefore, by moving the preferences of all the individuals i ∈ N \ {i1, . . . , is∗}

from P̃i to Pi, and by applying top-envy-proofness condition every time, it follows from the construction

of P̃N that

fis∗
(P̃is∗

, P−is∗
) = a. (D.10)

By strategy-proofness, (D.10) implies

fis∗
(PN)Ris∗

a. (D.11)

By Claim D.2, there exists j ∈ N \ {i1, . . . , ir−1} such that f j(PN) = a. Since j ∈ N \ {i1, . . . , ir−1} and

f j(PN) = a, (D.11) implies fis∗
(PN)Pis∗

a, a contradiction to our assumption. This proves fis
(PN)Pis

a for all

s = 1, . . . , r − 1.

Step 2. In this step, we show that fis
(PN) = τ(Pis

) for all s = 1, . . . , r − 1. Assume for contradiction that

fis1
(PN) 6= τ(Pis1

) for some s1 ∈ {1, . . . , r − 1}. Let s1, . . . , su be the maximal sequence of distinct elements

such that {s1, . . . , su} ⊆ {1, . . . , r − 1} and fist+1
(PN) = τ(Pist

) for all t = 1, . . . , u − 1. Let j ∈ N be such

that f j(PN) = τ(Pisu
). By the maximality assumption of s1, . . . , su, either j ∈ N \ {i1, . . . , ir−1} or j = is1

.

We distinguish the following two cases.

CASE 1: Suppose j ∈ N \ {i1, . . . , ir−1}.

By the construction of su, we have fisu
(PN) 6= τ(Pisu

). Also, since su ∈ {1, . . . , r − 1}, by Step 1,

fisu
(PN)Pisu

a. Combining the facts fisu
(PN) 6= τ(Pisu

) and fisu
(PN)Pisu

a, we have

τ(Pisu
) Pisu

fisu
(PN) Pisu

a. (D.12)

Also, since su ∈ {1, . . . , r − 1}, by the construction of PN , we have Pisu
= P(τ(Pisu

);a). This, together with

(D.12), implies

τ(Pisu
) ≺ fisu

(PN) ≺ a or a ≺ fisu
(PN) ≺ τ(Pisu

). (D.13)

Since j ∈ N \ {i1, . . . , ir−1}, by the construction of PN , we have τ(Pj) = a. This, together with (D.13),

implies

a Pj fisu
(PN) Pj τ(Pisu

). (D.14)

Since f j(PN) = τ(Pisu
), (D.12) implies f j(PN)Pisu

fisu
(PN). Furthermore, since f j(PN) = τ(Pisu

), (D.14)

implies fisu
(PN) Pj f j(PN). However, the facts f j(PN)Pisu

fisu
(PN) and fisu

(PN) Pj f j(PN) together contradict

Pareto efficiency of f at PN .

CASE 2: Suppose j = is1
.

By the construction of {s1, . . . , su} and j, we have { fist
(PN) | t = 1, . . . , u} = {τ(Pist

) | t = 1, . . . , u}.

Let µ be the allocation such that µ(i) = τ(Pi) for all i ∈ {ist | t = 1, . . . , u} and µ(i) = fi(PN) for all
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i ∈ N \ {ist | t = 1, . . . , u}. Clearly, µ Pareto dominates f (PN) at PN , which violates Pareto efficiency of f

at PN .

Case 1 and Case 2 together complete Step 2, and Step 1 and Step 2 together complete the proof of Claim

D.3. �

Now we complete the proof of Lemma D.5. By Claim D.2, for every given PN ∈ P r−1
N , there exists an

individual k ∈ N \ {i1, . . . , ir−1} such that fk(PN) = a. It remains to show that this individual is unique for

all preference profile in P r−1
N , that is, fk(PN) = fk(P̃N) = a for all PN , P̃N ∈ P r−1

N . Assume for contradiction

that f j(PN) = f j̃(P̃N) = a for some PN , P̃N ∈ P r−1
N and j, j̃ ∈ N \ {i1, . . . , ir−1} such that j 6= j̃.

Consider the preference profile (P̃i1 , P−i1) ∈ P r−1
N . Since PN , (P̃i1 , P−i1) ∈ P r−1

N , by Claim D.3, we have

fi1(PN) = fi1(P̃i1 , P−i1). Using non-bossiness, fi1(PN) = fi1(P̃i1 , P−i1) implies

f (PN) = f (P̃i1 , P−i1).

Continuing in this manner, we can move the preferences of all individuals is, s = 0, . . . , r − 1, from the

preference Pis
to P̃is

one by one and obtain

f (PN) = f (P̃i1 , . . . , P̃ir−1
, P−{i1,...,ir−1}). (D.15)

The fact f j(PN) = a, together with (D.15), implies f j(P̃i1 , . . . , P̃ir−1
, P−{i1,...,ir−1}) = a. Since j ∈ N \ {i1,

. . . ir−1} and τ(Pi) = a for all i ∈ N \ {i1, . . . ir−1}, it follows from the fact f j(P̃i1 , . . . , P̃ir−1
, P−{i1,...,ir−1}) = a

that f j(P̃i1 , . . . , P̃ir−1
, P−{i1,...,ir−1}) = τ(Pj) and f j(P̃i1 , . . . , P̃ir−1

, P−{i1,...,ir−1})Pi fi(P̃i1 , . . . , P̃ir−1
, P−{i1,...,ir−1}) for

all i ∈ N \ {i1, . . . ir−1, j}. Therefore, by moving the preferences of all the individuals i ∈ N \ {i1, . . . ir−1, j}

from Pi to P̃i, and by applying top-envy-proofness condition every time, we obtain

f j(Pj, P̃−j) = a. (D.16)

Since f j̃(P̃N) = a and j 6= j̃, we have f j(P̃N) 6= a. Moreover, j ∈ N \ {i1, . . . ir−1} implies τ(P̃j) = a.

Combining the facts f j(P̃N) 6= a and τ(P̃j) = a, we obtain aP̃j f j(P̃N). However, this, together with (D.16),

contradicts strategy-proofness of f . This completes the proof of Lemma D.5. �

By Lemma D.5, there exists ir ∈ N \ {i1, . . . ir−1} such that fir(PN) = a for all PN ∈ P r−1
N . Define

ζNI
a (vr

a) = ir. This completes the recursive definition of ζNI
a , and thereby completes the construction of Γa.

Similarly for each object, an inheritance tree is constructed. Thus, we have constructed a collection of

inheritance trees Γ, based on the assignment rule f .

Now, we prove f (PN) = f Γ(PN) for all PN ∈ PN , where f Γ is the hierarchical exchange rule associated

with Γ.
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D.2.2 f (PN) = f Γ(PN) for all PN ∈ PN

Fix PN ∈ PN . We show f (PN) = f Γ(PN). We prove this by induction on the stages of f Γ at PN .

Base Case: Assignments in Stage 1.

(i) fi(PN) = f Γ
i (PN) for all i ∈ W1(PN), and

(ii) fi(P′
N) = fi(PN) for all i ∈ W1(PN), where P′

N ∈ PN is such that for all i ∈ W1(PN) either τ(P′
i ) =

fi(PN) or P′
i = Pi.

Proof of the Base Case. First, we prove a claim that we use in the proof of the Base Case.

Claim D.4. Let i ∈ N and let a ∈ E1(i, PN). Suppose P̃N ∈ PN is such that τ(P̃i) = a. Then fi(P̃N) = a.

Proof of Claim D.4. By the definition of f Γ, a ∈ E1(i, PN) implies ζNI
a (v1

a) = i where v1
a is the root-node of

Ta.19 By the construction of Γa, ζNI
a (v1

a) = i implies that

fi(P̄N) = a for all P̄N ∈ PN with τ(P̄j) = a for all j ∈ N. (D.17)

Now we show fi(P̃N) = a for all P̃N with τ(P̃i) = a. Consider the preference profile (P̃i, P̂−i) such that

τ(P̂j) = a for all j 6= i. By (D.17), we have fi(P̃i, P̂−i) = a. Since τ(P̃i) = a, fi(P̃i, P̂−i) = a, and τ(P̂j) = a

for all j 6= i, we have fi(P̃i, P̂−i) = τ(P̃i) and fi(P̃i, P̂−i)P̂j f j(P̃i, P̂−i) for all j 6= i. Therefore, by moving the

preferences of all the individuals j 6= i from P̂j to P̃j, and by applying top-envy-proofness condition every

time, we have fi(P̃N) = a. This completes the proof of Claim D.4. �

Now, we proceed to prove the Base Case. First we show (i) of the Base Case. Fix i ∈ W1(PN). We com-

plete the proof for (i) of the Base Case by using another level of induction on the number of individuals

in C1(i, PN).

Base Case (for (i) of the Base Case). Suppose |C1(i, PN)| = 1. It follows from the definition of f Γ that

T1(i, PN) ∈ E1(i, PN) and T1(i, PN) = τ(Pi). Therefore, by Claim D.4, we have

fi(PN) = T1(i, PN). (D.18)

By the definition of f Γ, |C1(i, PN)| = 1 means

f Γ
i (PN) = T1(i, PN). (D.19)

By (D.18) and (D.19), we have fi(PN) = f Γ
i (PN). This completes the proof of Base Case (for (i) of the Base

Case). Note that since PN ∈ PN and i ∈ W1(PN) are chosen arbitrarily, using similar logic as above, we

have f j(P̃N) = f Γ
j (P̃N) for all P̃N ∈ PN and all j ∈ W1(P̃N) with |C1(j, P̃N)| = 1.

19Recall that Γa = 〈Ta, ζNI
a , ζEO

a 〉.
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Induction Hypothesis (for (i) of the Base Case). Let u ≥ 2. Assume that fi(PN) = f Γ
i (PN) for |C1(i,

PN)| = u− 1. Assume, furthermore, that for all P̃N ∈ PN and all j ∈ W1(P̃N) such that |C1(j, P̃N)| = u− 1,

we have f j(P̃N) = f Γ
j (P̃N).

We show fi(PN) = f Γ
i (PN) for |C1(i, PN)| = u. Let C1(i, PN) = {j1, . . . , ju} such that for all l = 1, . . . , u,

T1(jl , PN) ∈ E1(jl+1, PN), where i = j1. Assume for contradiction that f j1(PN) 6= f Γ
j1
(PN).

Take P̂j1 = Pju and P̂ju = Pj1 . By the construction of P̂j1 and the definition of f Γ, it follows that τ(P̂j1) ∈

E1(j1, PN). Since τ(P̂j1) ∈ E1(j1, PN), by Claim D.4, we have

f j1(P̂j1 , P̂ju , P−j1,ju) = f j1(P̂j1 , P−j1) = τ(P̂j1). (D.20)

By the definition of C1(i, PN) and the construction of P̂ju , it follows that |C1(ju, (P̂j1 , P̂ju , P−j1,ju))| = |C1(ju,

(P̂ju , P−ju))| = u − 1. Therefore, by Induction Hypothesis (for (i) of the Base Case), we have

f ju(P̂j1 , P̂ju , P−j1,ju) = f Γ
ju
(P̂j1 , P̂ju , P−j1,ju), and (D.21a)

f ju(P̂ju , P−ju) = f Γ
ju
(P̂ju , P−ju). (D.21b)

By the definition of f Γ, we have

f Γ
j1
(PN) = τ(Pj1), and (D.22a)

f Γ
ju
(P̂j1 , P̂ju , P−j1,ju) = f Γ

ju
(P̂ju , P−ju) = τ(P̂ju). (D.22b)

Since P̂ju = Pj1 , combining (D.21) and (D.22b), we obtain

f ju(P̂j1 , P̂ju , P−j1,ju) = f ju(P̂ju , P−ju) = τ(Pj1). (D.23)

Since f j1(PN) 6= f Γ
j1
(PN) by our assumption, (D.22a) and (D.23) together imply

f ju(P̂j1 , P̂ju , P−j1,ju)Pj1 f j1(PN). (D.24)

By (D.20) and (D.23), we have

fh(P̂j1 , P̂ju , P−j1,ju) = fh(P̂h, P−h) for all h = j1, ju. (D.25)

Since P̂j1 = Pju , by (D.20), we have f j1(P̂j1 , P̂ju , P−j1,ju) = τ(Pju), which in particular means

f j1(P̂j1 , P̂ju , P−j1,ju)Rju f ju(PN). (D.26)

However, (D.24), (D.25) and (D.26) together contradict pairwise reallocation-proofness of f . This com-
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pletes the proof of (i) of the Base Case. Note, furthermore, that since PN ∈ PN and i ∈ W1(PN) are chosen

arbitrarily, using similar logic as above, we have

f j(P̃N) = f Γ
j (P̃N) for all P̃N ∈ PN and all j ∈ W1(P̃N). (D.27)

Now we show (ii) of the Base Case. Fix P′
N ∈ PN such that for all i ∈ W1(PN) either τ(P′

i ) = fi(PN) or

P′
i = Pi. From (i) of the Base Case, we have fi(PN) = f Γ

i (PN) for all i ∈ W1(PN). This, together with the

definition of f Γ, implies

fi(PN) = τ(Pi) for all i ∈ W1(PN). (D.28)

It follows from the construction of P′
N and (D.28) that τ(P′

i ) = τ(Pi) for all i ∈ W1(PN). This, together

with the definition of f Γ, implies

W1(PN) ⊆ W1(P′
N), and (D.29a)

f Γ
i (P′

N) = f Γ
i (PN) for all i ∈ W1(PN). (D.29b)

(D.29) and (D.27) together complete the proof of (ii) of the Base Case. This completes the proof of the Base

Case. �

Now, we proceed to prove the induction step.

Induction Hypothesis: Fix a stage t ≥ 2. Assume that

(i) fi(PN) = f Γ
i (PN) for all i ∈ Wt−1(PN), and

(ii) fi(P′
N) = fi(PN) for all i ∈ Wt−1(PN), where P′

N is such that for all i ∈ Wt−1(PN) either τ(P′
i ) =

fi(PN) or P′
i = Pi.

We show

(i) fi(PN) = f Γ
i (PN) for all i ∈ Wt(PN), and

(ii) fi(P′
N) = fi(PN) for all i ∈ Wt(PN), where P′

N is such that for all i ∈ Wt(PN) either τ(P′
i ) = fi(PN)

or P′
i = Pi.

First, we prove a claim.

Claim D.5. Let i ∈ N \ Wt−1(PN) and let a ∈ Et(i, PN). Suppose P̃N ∈ PN is such that P̃j = Pj for all

j ∈ Wt−1(PN) and τ(P̃i, A \ Ft−1(PN)) = a. Then, fi(P̃N) = a.

Proof of Claim D.5. Since i ∈ N \ Wt−1(PN) and a ∈ Et(i, PN), it follows from the definition of f Γ that

there exists r ≥ 1 such that there is a path (v1
a, . . . , vr

a) in Ta from v1
a (root-node of Ta) to vr

a such that

ζNI
a (vr

a) = i and for all s = 1, . . . , r − 1, we have ζNI
a (vs

a) ∈ Wt−1(PN) and f Γ
ζNI

a (vs
a)
(PN) = ζEO

a (vs
a, vs+1

a ).

Note that for all s = 1, . . . , r − 1, by (i) of the Induction Hypothesis, fζNI
a (vs

a)
(PN) = f Γ

ζNI
a (vs

a)
(PN).
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First, we show that fi(P̄N) = a for all P̄N ∈ PN such that P̄j = Pj for all j ∈ Wt−1(PN) and τ(P̄j) = a

for all j ∈ N \ Wt−1(PN). Fix P̄N ∈ PN such that P̄j = Pj for all j ∈ Wt−1(PN) and τ(P̄j) = a for all

j ∈ N \ Wt−1(PN). If r = 1, then a ∈ E1(i, PN), and hence by Claim D.4, we have fi(P̄N) = a. Suppose

r > 1. Let S = {ζNI
a (vs

a) | s = 1, . . . , r − 1}. By construction, S ⊆ Wt−1(PN). Consider the preference

profile P̂N such that P̂j = P( f j(PN);a) for all j ∈ S, τ(P̂j) = a for all j ∈ Wt−1(PN) \ S, and P̂j = P̄j for all

j ∈ N \ Wt−1(PN). Since f Γ
ζNI

a (vs
a)
(PN) = ζEO

a (vs
a, vs+1

a ) and fζNI
a (vs

a)
(PN) = f Γ

ζNI
a (vs

a)
(PN), by the construction

of Γa, we have

fi(P̂N) = a. (D.30)

By the construction of P̂N , τ(P̂j) = a for all j ∈ N \ S. Since i ∈ N \ Wt−1(PN), S ⊆ Wt−1(PN), and

τ(P̂j) = a for all j ∈ N \ S, by (D.30), we have fi(P̂N) = τ(P̂i) and fi(P̂N)P̂j f j(P̂N) for all j ∈ Wt−1(PN) \ S.

Therefore, by moving the preferences of all the individuals j ∈ Wt−1(PN) \ S from P̂j to Pj, and by applying

top-envy-proofness condition every time, we have

fi(PN) = a, (D.31)

where Pj = P̂j for all j /∈ Wt−1(PN) \ S and Pj = Pj for all j ∈ Wt−1(PN) \ S. By the construction of PN ,

for all j ∈ Wt−1(PN), either τ(Pj) = f j(PN) or Pj = Pj. Therefore, by (ii) of the Induction Hypothesis, we

obtain

f j(PN) = f j(PN) for all j ∈ Wt−1(PN). (D.32)

Take j ∈ S. Consider the preference profile P′′
N , where P′′

j = Pj and P′′
k = Pk for all k 6= j. Since for all

k ∈ Wt−1(PN), either τ(P′′
k ) = fk(PN) or Pk = Pk, by (ii) of the Induction Hypothesis, f j(P′′

N) = f j(PN).

By (D.32), this means f j(P′′
N) = f j(PN). Since only individual j changes her preference from PN to P′′

N and

f j(P′′
N) = f j(PN), by non-bossiness, we have f (P′′

N) = f (PN). By moving the preferences of all individuals

j ∈ S from Pj to Pj one by one and every time applying a similar logic, we conclude

f (P̄N) = f (PN). (D.33)

Combining (D.31) and (D.33), we have

fi(P̄N) = a. (D.34)

Now we complete the proof of Claim D.5. Take P̃N such that P̃j = Pj for all j ∈ Wt−1(PN) and τ(P̃i,

A \ Ft−1(PN)) = a. By (D.34) and the construction of P̄N , we have fi(P̄N) = τ(P̄i) and fi(P̄N)P̄j f j(P̄N) for

all j /∈ Wt−1(PN) ∪ {i}. Therefore, by moving the preferences of all the individuals j /∈ Wt−1(PN) ∪ {i}

from P̄j to P̃j, and by applying top-envy-proofness condition every time, we obtain

fi(P̄i, P̃−i) = a. (D.35)
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Since f is strategy-proof, (D.35) implies

fi(P̃N)R̃ia. (D.36)

By the choice of P̃N , we have P̃j = Pj for all j ∈ Wt−1(PN). By (ii) of the Induction Hypothesis

f j(P̃N) = f j(PN) for all j ∈ Wt−1(PN). (D.37)

Since τ(P̃i, A \ Ft−1(PN)) = a, (D.36) and (D.37) together imply fi(P̃N) = a. This completes the proof of

Claim D.5. �

Now the proof of the induction step follows by using similar logic as for the proof of the Base Case

with Claim D.5 in place of Claim D.4.

Appendix E Proof of Proposition 7.1

Proof of Proposition 7.1. Let f Γ be a hierarchical exchange rule on PN . Assume for contradiction that f Γ

does not satisfy group-wise reallocation-proofness. Then, there must exist PN ∈ PN , a set of individuals

S ⊆ N, a preference profile P̃S of the individuals in S, and an allocation µ̂ of { f Γ
S (P̃S, P−S)} over S where

µ̂ 6= f Γ
S (P̃S, P−S) such that

(i) µ̂(i)Ri f Γ
i (PN) for all i ∈ S,

(ii) µ̂(j)Pj f Γ
j (PN) for some j ∈ S, and

(iii) f Γ
i (P̃i, P̃S\{i}, P−S) = f Γ

i (P̃i, PS\{i}, P−S) for all i ∈ S.

Condition (ii) implies that there exists i∗ ∈ S such that µ̂(i∗)Pi∗ f Γ
i∗(PN). Moreover, it follows from the

definition of µ̂ that there exists a set of individuals {i1 = i∗, . . . , im} ⊆ S such that µ̂(ih) = f Γ
ih+1

(P̃S, P−S)

for all h = 1, . . . , m. Since µ̂(i∗)Pi∗ f Γ
i∗(PN), this, together with Condition (iii) and strategy-proofness of f Γ,

implies m ≥ 2. Combining all these observations with Condition (i), we have

f Γ
ih+1

(P̃S, P−S)Rih
f Γ
ih
(PN) for all h = 2, . . . , m, and (E.1a)

f Γ
i2
(P̃S, P−S)Pi1 f Γ

i1
(PN). (E.1b)

Claim E.1. f Γ
ih
(PN) ∈ A for all h = 1, . . . , m.

Proof of Claim E.1. Suppose f Γ
i2
(PN) = ∅. Since f Γ is strategy-proof, f Γ

i2
(PN) = ∅ implies f Γ

i2
(P̃i2 , P−i2) =

∅. This, together with Condition (iii), yields f Γ
i2
(P̃S, P−S) = ∅, a contradiction to (E.1b). So, it must be that

f Γ
i2
(PN) 6= ∅. (E.2)
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Combining (E.1a) and (E.2), we have f Γ
i3
(P̃S, P−S) 6= ∅. This, together with Condition (iii), yields f Γ

i3
(P̃i3 ,

P−i3) 6= ∅. Since f Γ is strategy-proof, f Γ
i3
(P̃i3 , P−i3) 6= ∅ implies

f Γ
i3
(PN) 6= ∅. (E.3)

Continuing in this manner, we obtain

f Γ
ih
(PN) 6= ∅ for all h = 1, . . . , m. (E.4)

(E.4) completes the proof of Claim E.1. �

It follows from Claim E.1 that for all h = 1, . . . , m, there exists a stage sh of f Γ at PN such that ih ∈

Wsh
(PN).

Claim E.2. sh+1 ≤ sh for all h = 2, . . . , m.

Proof of Claim E.2. Assume for contradiction that there exists a h∗ ∈ {2, . . . , m} such that sh∗ < sh∗+1.

By (E.1a), we have f Γ
ih∗+1

(P̃S, P−S)Rih∗
f Γ
ih∗
(PN). We complete the proof of Claim E.2 by distinguishing two

cases.

CASE 1: Suppose f Γ
ih∗+1

(P̃S, P−S)Pih∗
f Γ
ih∗
(PN).

Since f Γ is Pareto efficient, f Γ
ih∗+1

(P̃S, P−S)Pih∗
f Γ
ih∗
(PN) implies that there exists k ∈ N \ {ih∗} such that

f Γ
k (PN) = f Γ

ih∗+1
(P̃S, P−S). The facts f Γ

ih∗+1
(P̃S, P−S)Pih∗

f Γ
ih∗
(PN) and f Γ

k (PN) = f Γ
ih∗+1

(P̃S, P−S) together imply

f Γ
k (PN)Pih∗

f Γ
ih∗
(PN) and f Γ

k (PN) ∈ A. It follows from the fact f Γ
k (PN) ∈ A that there exists a stage sk of f Γ at

PN such that k ∈ Wsk
(PN). Since ih∗ ∈ Wsh∗

(PN), k ∈ Wsk
(PN), and f Γ

k (PN)Pih∗
f Γ
ih∗
(PN), by Lemma D.3, we

have sk < sh∗ . This, together with the fact that sh∗ < sh∗+1, implies sk < sh∗+1. Since ih∗+1 ∈ Wsh∗+1
(PN),

k ∈ Wsk
(PN), and sk < sh∗+1, by Lemma D.2, we have

f Γ
k (PN) = f Γ

k (P̃ih∗+1
, P−ih∗+1

). (E.5)

Furthermore, the facts ih∗+1 ∈ Wsh∗+1
(PN), k ∈ Wsk

(PN), and sk < sh∗+1 together imply ih∗+1 6= k. Since

f Γ
k (PN) ∈ A and ih∗+1 6= k, (E.5) implies

f Γ
k (PN) 6= f Γ

ih∗+1
(P̃ih∗+1

, P−ih∗+1
). (E.6)

However, the fact f Γ
k (PN) = f Γ

ih∗+1
(P̃S, P−S) and Condition (iii) together contradict (E.6).

CASE 2: Suppose f Γ
ih∗+1

(P̃S, P−S) = f Γ
ih∗
(PN).

Since ih∗ ∈ Wsh∗
(PN), ih∗+1 ∈ Wsh∗+1

(PN), and sh∗ < sh∗+1, by Lemma D.2, we have

f Γ
ih∗
(P̃ih∗+1

, P−ih∗+1
) = f Γ

ih∗
(PN). (E.7)
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Furthermore, since f Γ
ih∗+1

(P̃S, P−S) = f Γ
ih∗
(PN), Condition (iii) and (E.7) together imply

f Γ
ih∗
(P̃ih∗+1

, P−ih∗+1
) = f Γ

ih∗+1
(P̃ih∗+1

, P−ih∗+1
) = f Γ

ih∗
(PN). (E.8)

However, by Claim E.1, we have f Γ
ih∗
(PN) ∈ A. Since f Γ

ih∗
(PN) ∈ A and ih∗ 6= ih∗+1, (E.8) implies that

f Γ(P̃ih∗+1
, P−ih∗+1

) is not an allocation, a contradiction.

Since Cases 1 and 2 are exhaustive, this completes the proof of Claim E.2. �

Now, we complete the proof of Proposition 7.1. By Claim E.2, we have s1 ≤ s2. Moreover, by (E.1b),

we have f Γ
i2
(P̃S, P−S)Pi1 f Γ

i1
(PN). Since s1 ≤ s2 and f Γ

i2
(P̃S, P−S)Pi1 f Γ

i1
(PN), using a similar logic as for Case 1

in Claim E.2, we get a contradiction. This completes the proof of Proposition 7.1. �

References

[1] Sophie Bade. Matching with single-peaked preferences. Journal of Economic Theory, 180:81–99, 2019.
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[8] Szilvia Pápai. Strategyproof assignment by hierarchical exchange. Econometrica, 68(6):1403–1433,

2000.
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