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Abstract 

The quality of administrative or longitudinal data used in education research has always been an 

issue of concern since they are collected mainly for recording and reporting, rather than research. 

The advancement in computational techniques in statistics could help researchers navigates many 

of these concerns by identifying the statistical model that best fits this type of data for research. 

The paper provides a comprehensive review of the statistical methods important for estimating 

education production function to recognize this. The article also provides an extensive overview 

of empirical studies that used the techniques identified. We believe a systematic review of this 

nature provides an excellent resource for researchers and academicians in identifying critical 

statistical methods relevant to educational studies. 
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Introduction 

A production function is defined as a technical relationship between input and output. The concept 

of production function has been applied widely to the different sectors of the economy, such as 

agriculture, energy and power, transportation, finance, education, and the healthcare sector, among 

others (see: Clark 1984;  Just et al., 1983; Boyd 2008; Sami et al., 2013; Koc 2004; Gyimah-

Brempong and Gyapong 1991). In the education sector, the production function is considered a 

powerful tool to understand the combination of school inputs that influence education outcomes 

(Espinosa 2017). Here the educational institution is analogous to transforming inputs into outputs 

through a production process (Worthington 2001). Unlike other industries, schools are treated 
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analytically as production units on the supply side when estimating education production function. 

With few exceptions, schools are not considered profit-maximizing firms, especially the public or 

private non-profit ones.  

According to Worthington (2001), the output in education production function may either 

be defined in terms of intermediate outcomes such as student test score (e.g., math or reading test 

scores, CGPA, number of pupils, number of graduates, and passing rates, etc.) or education 

outcomes (e.g., employment rates, starting salaries or acceptance rates into higher education). The 

author also noted that the typical inputs in education production function are the teaching and 

learning environment's characteristics. This comprises students' attendance and homework; 

expenditure on education; technology (equipment); teachers' experience, certification, salary; 

pupils/teacher ratio; class size; and parents' education and income levels.1, 2 

The estimation of education production function provides mechanisms through which 

researchers can understand productivity in schools or educational institutions described as 

improving student outcomes with little or no additional resources (Hanushek, 1979). This explains 

why education production function's policy relevance has long been stressed in the literature (Todd 

and Wolpin, 2006; Hanushek, 2007).  Unfortunately, the quality of administrative or longitudinal 

data used in education research has always been an issue of concern since they are collected mainly 

to record and report or provide necessary information about service users, rather than research. 

The advancement in computational techniques in inferential statistics has helped researchers 

identify the statistical methods that best fit their data over the years. This has led to a shift in the 

empirical strategies among the researchers. For example, there is an increasing move from simple 

multivariate statistical methods to more sophisticated techniques such as Bayesian, non-parametric 

regression, semiparametric regression, and machine learning applications, among others, in recent 

years. In contrast to other economic sectors, such as energy and power, transportation, finance, 

health, and agriculture, some of these methods are scarce in education research.  

 
1 The choices of output and input measures are driven by data availability. 
2 Although the purported relationship between key policy variables such as resource spending or educational 

expenditure and educational outcomes has been the subject of much inquiry (Hanushek, 1986), the quality of many of 

these measures is another concern when estimating education production function (Grosskopf et al., 2014). Most 

economists prefer the value-added measure that requires access to panel data on individual students to mitigate the 

quality problem in the education production function (Gronberg et al., 2011). None of these is the focus of this paper. 
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The application of statistical techniques that best fit an education data provides 

opportunities for researchers to accurately understand the dynamic relationship between education 

outcomes and associated factors such as students, schools, parents, and teachers' characteristics. 

Of course, determining appropriate statistical methods matter, as this validates estimated results 

for policy. Inferential statistical methods such as regression have always been used to fit education 

data. According to Hanushek (1997), regressions use a series of independent or descriptor variables 

to estimate the value of the dependent or, in this case, the outcome variable. Example of regression 

used in education research includes parametric regression models such as ordinary least square -

OLS, logistic regression, probit regression, multinomial regression, Tobit regression, fixed effect 

regression, mixed model, random effect regression and generalized method of moment regression, 

etc. Others include non-parametric regression, such as kernel regression and semi-parametric 

regression. 

Based on a systematic review of prior research works and literature, we observed that 

education research questions have always been framed in two ways highlighted below.  

1. What are the effects of students, schools, or teacher characteristics on education outcomes? 

2. What is the impact of educational programs or policies on education outcomes? 

 

The education production function is often used as the conceptual framework to address 

these questions in the literature empirically (Worthington, 2001). For example, education 

production function specified to link resource inputs (e.g., pupil to teacher ratios, technology, 

amount of homework, teacher experience, teacher education, teacher salary, school expenditure, 

teacher/pupil ratios, class size, etc.) with educational outcomes (e.g., reading and math test score, 

CGPA,  SAT, etc.) after controlling for student, parent, teacher, and school characteristics (e.g., 

student gender, age, and ethnicity, student attendance, teacher certification, etc.) is synonymous to 

the first question. This includes estimating schools' relative efficiency, among others (see; 

Scippacercola and Ambra, 2013; Halkiotis et al., 2018). Also, education production function 

specified to link treatment assignment ( e.g., STEM program, remedial program, honor program, 

or early learning education, etc.) with educational outcomes (e.g., reading and math test score, 

CGPA, SAT, etc.) after controlling for student, parent, teacher, and school characteristics (e.g., 

student gender, age, and ethnicity, etc.; parent education; teacher salary and experience, etc.) is 
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synonymous to the second question. This includes estimating the impact of early learning 

program/preschool on educational outcome among others (see; Hogrebe and Strietholt 2016; 

Atteberry et al., 2019) 

In recognition of this, the objective of this paper is two-fold. First, to identify the best 

statistical methods for estimating education production function that aligns with each of the 

research questions above. Second, to provide a detailed example of the studies that used the 

statistical methods identified within the context of education data.  

The paper is structured as follows. Section 2 provides essential guidelines for selecting 

statistical methods within the context of education data given the data generating process (DGP). 

Sections 3 and 4 identify statistical methods for estimating the education production function that 

aligns with the first and second research questions. While section 5 describes the available 

statistical software for analyzing the statistical techniques identified in the paper, section 6 

concludes. 

2.0. Essential guidelines for selecting statistical methods in education research 

Quantitative researchers seek to identify the statistical methods that best fit their studies' 

data. Understanding the data generating process (DGP) is crucial to achieving this, most 

importantly, the dependent variable. The model's selection depends on the outcome or dependent 

variable (Osgood, 2008).  For instance, it is vital to address the following questions: How is the 

dependent variable measured or constructed in the data? Is the dependent variable continuous or 

discrete? If the dependent variable is discrete, is it a binary, ordinal, categorical, proportional, 

percentage, or count variable?   

Osgood (2008) noted that despite the ordinary least square (OLS) violation of fundamental 

general linear model assumptions, the model is still used in educational research for count 

dependent variables. Liou (2009) also revealed that the statistical analysis's conclusions might 

influence their estimated standard errors and inferential statistics and invalidate the results due to 

errors in selecting the appropriate regression model. For example, a review of the literature shows 

that Ayalon and Yogev (1997) used hierarchical linear modeling to estimate the relationship 

between students’ characteristics and the types of courses that science and humanity students take. 

They also explore the effects of school characteristics on these relationships. At the student level, 
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the dependent variable was the number of course units’ students in science or humanities take in 

the study. Unfortunately, the authors employed a hierarchical linear model instead of a hierarchical 

count model (e.g., multilevel mixed-effects Poisson regression model). This is because the DGP 

of the dependent variable has a characteristic of count data. Hence, using a hierarchical linear 

model rather than a hierarchical count model may influence estimated standard errors and 

invalidate the results. 

Another important concern is the case of missing data. This is a common phenomenon in 

administrative or longitudinal data. Thus, quantitative researchers must understand the nature of 

the missing data, which could help identify statistical methods that best fit the data.  For example, 

it is important to note the missing cases could be random or non-random. If the missing is random, 

one could impute the missing cases using appropriate imputation methods available in the 

literature. However, if the missing cases are nonrandom, it cannot be imputed. The issue of 

nonrandom missing cases must be put into consideration when estimating the model. For instance, 

in the case of dependent variables with missing cases at nonrandom, the researchers must address 

the following questions. Is the dependent variable censored, truncated, or is it a corner solution or 

a problem of sample selection bias? Understanding the theoretical or empirical processes that 

create the zeros helps identify the appropriate model that best fits the data.  

3.0 Methods for addressing the first research question 

As earlier mentioned, an education production function can be specified to study the effects of 

students, schools, or teacher characteristics on education outcomes. The subsequent sub-sections 

describe inferential statistical methods that best fit the dependent variables of different forms often 

used to address this type's research question.  

3.1.0  A regression model with cross-sectional data  

A regression model is the most popular inferential statistic method used in applied research to 

answer research questions. While there are several types of regression models, identifying the 

appropriate regression model that best fits the data has enormous implications on the policy's 

validity.  
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3.1.1  Linear Ordinary Least Square (OLS) regression model 

The ordinary least square (OLS) regression model is prevalent in applied research. It is important 

to note that OLS is considered an unbiased estimator of a linear regression model (specification 

similar to equation 1 in the Appendix) with a continuous dependent variable. The dependent 

variable's precise nature is continuous, which is very important when selecting OLS as an 

estimator. However, OLS maintains stringent assumption of a normal distribution of error terms 

and linear functional relationship between dependent and explanatory variables. 

Kruger (1997) employed OLS to estimate an education production function to explore the 

effects of class-size assignments on the average percentile of standard achievement tests for 

kindergarten through third grade. This study's dependent variable is the standardized test score, a 

continuous variable. Fuller and Ladd (2013) used OLS to examine teacher quality's effects on 

students’ scores. The student test score in this study is also a continuous variable.  Other examples 

include Chakraborty and Jayaranman (2019) that employed the OLS regression model to explore 

the school feeding program's effect on children learning outcomes. 

3.1.2. Tobit, Heckman, and Double hurdle regression models 

The analytical method changes when the dependent is not continuous as described in the 

previous section but appears to be discrete such as censored or truncated at a point, exhibit corner 

solution, or sample selection bias problem with positive and zeros outcome due to missing data. 

Here, the dependent variable is assumed to follow a mixed distribution where there is a probability 

mass at zero and a continuous distribution for values greater than zero (Amore and Murtinu 2018). 

Tobit, Heckman, truncated, or Double hurdle regression is a particular case of models with a 

limited dependent variable. In this case, the zeros due to missing data cannot be imputed because 

they are assumed to not missing randomly. When the dependent variable is configured this way, 

OLS is considered biased (Maddala 1983). Thus, ignoring censoring or sample selection bias in 

OLS translates into a lower regression line slope and an inflated intercept. Tobit models, Heckman 

selection models, and the Double hurdle regression model may constitute a valid estimation 

approach depending on a clear understanding of the source of zeros or missing patterns in the data 

(see; Tobin, 1958; Heckman, 1979; Cragg 1971).  
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Tobit models’ assumption of zero observations in a limited dependent variable is due to 

censoring attributed to the corner solution problem, where zeros are considered true or genuine 

zeros. Data censoring in Tobit usually arises from data observability and should not be associated 

with sample selection bias (Amore and Murtinu 2019). Tobit model is traditionally referred to as 

censored regression (Wooldridge 2010). 

Heckman's sample selection model (see Heckman, 1979) and the double hurdle model (see 

Cragg 1971) are a generalization of the type 1 Tobit model (see Tobin, 1958). Heckman's model 

assumes zero observation is due to sampling selection bias rather than a corner solution problem. 

Here, zeros due to missing data are referred to as false zeros because it comes from a separate 

discrete decision rather than a corner solution as in the Tobit model. As a result, the Heckman 

model assumes two distinct outcomes that govern positive and zero observations. The first 

represents a selection equation that describes the probability of a non-zero (e.g., equation 4 in the 

Appendix). The second is the outcome equation that defines a positive observation (e.g., equation 

3 in the Appendix). If the two equations are independent, the model reduces to the Tobit model. 

The implication of this is that selection decisions influence the actual outcome (i.e., the positive 

values) do not hold.  As Heckman (1979) proposed, the first stage involves estimating the selection 

equation of probability of treatment similar to equation 4 of the Appendix to derive a bias 

correction variable in the form of inverse mills ratio (IMR). The second stage is the outcome 

equation (e.g., equation 3 of the Appendix), where the IMR is part of the explanatory variables. 

An example of this is a study of the effect of education on earnings only on data for public sector 

workers. Sample selection bias arises because zeros are associated with a focus on public sector 

workers. 

On the other hand, the double hurdle model allows for censoring due to the corner solution 

as a zero observations source. Nevertheless, zeros here have features of true and false zeros. 

However, the model assumes that two hurdles governed positive and zero observations. The first 

and second hurdles are sequential or simultaneous. The first hurdle deals with the binary decision, 

as the second hurdle deals with the positive outcome (e.g., equation 4 of the Appendix). 

Technically speaking, the first hurdle corresponds to the probability of non-zero observation, and 

the second hurdle corresponds to the level of positive observation (e.g., equation 7 of the 
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Appendix).  Residuals of the first and second hurdles are correlated in the Double Hurdle model, 

but the model reduces to the Truncated Hurdle model (see Cragg, 1971).  

A study that examined the effects of educational qualification or certification on earnings 

is a good example. Here, data on earnings has both positive and zero outcomes with the possibility 

of corner solutions, censoring, or sample selection problem in the data. In this example, due to the 

data provider's privacy concerns, earnings are not observed for the whole population (case of 

censoring problem). It is also possible some of the data providers are unemployed during the 

survey (selection bias problem). The nature of the dependent variable (earnings) shows that 

researchers cannot simply delete observations with zero earnings as this bias results from the 

policy. Likewise, selecting the ordinary least square (OLS) regression model is considered a biased 

estimator for this type of dependent variable. Double Hurdle, Tobit, Heckman, or sample selection 

models are possible methods of estimating such data, depending on a clear understanding of the 

data generating process (DGP). 

Ogundari and Aromolaran (2014) employed a double hurdle model to examine the effect 

of educational attainment on earnings in Nigeria. The income column has zero due to missing data 

for many of its data observations in the study. The authors assume two hurdles govern the zeros 

and non-zeros income with the possibility of zeros associated with true or false zeros in the study.  

Tsai and Xie (2011) used the Heckman selection model to model heterogeneity in college 

education returns in contemporary Taiwan. The data on earnings has zeros due to missing data, 

which the authors assume is due to sampling selection bias. The authors estimate a first-stage 

probit model for selection into labor force participation to derive inverse mills ration (IMR), which 

is then included in earnings function as an explanatory variable to correct selection bias. 

3.1.3. Univariate Probit and Logit regression models 

Univariate probit and logit regression models are models with the categorical dependent 

variables and are classic examples of regression models with the limited dependent variable. The 

dependent variable here is a dichotomy or binary response. An example of this is the participation 

in a STEM program or early learning program where participation is a binary response recorded 

in the data as 1 and 0 otherwise. The difference between the logit and probit model is the error 

terms' underlying distribution. Probit has a cumulative standard normal distribution, while logit 

uses cumulative standard logistic distribution. The two models produce similar results. OLS 
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application to a binary response-dependent variable may lead to predictions outside the range of 0 

and 1, and the residuals are also heteroskedastic by construction. 

Pyke and Sheridan (1993) employed logistic regression to analyze graduate student 

retention, where the dichotomous dependent variable was whether the student completed masters 

and Ph.D. degrees. Bautsch (2014) used a logistic regression model to explore the effects of 

concurrent enrollment in college-going and remedial education rates of Colorado’s High School 

students. This study's dependent variable is binary such that college enrollment or remedial is taken 

as 1 and 0 otherwise. 

3.1.4. Ordered and multinomial regression models 

Other limited dependent variable models of interest include the ordered and multinomial 

models. Ordered and multinomial models are two extensions of binary dependent models referred 

to as categorical models. However, the difference between these two models is how the dependent 

variable is structured as categorical data. The dependent variable in ordered response models takes 

several finite and discrete values that contain ordinal categorical data. Examples of these ordered 

models are the ordered probit and the ordered logit model.  However, the multinomial model's 

dependent variable takes finite and discrete values but does not have any ordinal information. The 

two standard models are the multinomial probit and multinomial logit model.  

Alauddin and Tisdell (2006) employed ordered probit to examine students’ evaluation of 

teaching effectiveness with ordinal dependent variable ranging from 1 to 5. In their specification, 

1 represents very poor, 2 for poor, 3 for good, 4 for very good, and 5 for outstanding, defining the 

ordinal dependent variable in the study. Stratton et al. (2005) employed a multinomial logit model 

to examine college stop out and dropout behavior. This study's dependent variable is a non-ordinal 

variable where continuous enrollment is recorded as 1, stop out as 2, and dropout as 3. Nguyen 

and Taylor (2003) also used a multinomial logit model to examine post-high school choice 

determinants. In this study, 1 to 5 represent the private four-year college, public four years, private 

two-year college, public two-year college, and employed, respectively, as the study's dependent 

variable. 
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3.1.5. Multivariate binary models 

 A typical example of this is a multivariate probit model, a generalization of the probit 

model discussed above and estimates several correlated binary outcomes jointly. For example, a 

bivariate probit regression model estimates two binary dependent outcomes believed to be 

correlated. A multivariate probit model can accommodate more than two dependent outcomes as 

an interdependent binary response. Even when the binary dependent outcomes are more than two, 

the joint prediction can be carried out individually.3 

 Using the data from South Africa, Chisadza (2015) employed a bivariate probit model to 

model the joint probability of school enrollment and work-study on the transition from school to 

work in the post-compulsory schooling period.  In this example, the dependent variable is 

“enrollment” and “working.”  The methodology is best appropriate given that there is a likelihood 

of having an individual working and, at the same time, enrolled in school in the dataset. Also, there 

might be individuals that are only working and not enroll in school and vice versa in the dataset. 

Evans and Roberts (1995) jointly modeled the probability of being a member of the catholic church 

and attending a Catholic school in a study to examine the effect of catholic secondary schooling 

on educational attainment. In this study, there is a high likelihood that the catholic church members 

are more likely to attend catholic schools and should be modeled accordingly. There is also the 

possibility of having an individual who attends a catholic school but not a catholic church member 

and vice versa.  Bowles and Jones (2004) employed the bivariate model to jointly model the 

probability of supplemental instruction and retention in a study that examined the effect of 

supplemental instruction on retention.   

3.1.6. Non-parametric Regression model 

A parametric model such as ordinary least square (OLS) and generalized linear model (GLM) has 

a strong assumption regarding a definite functional form concerning a subset of the regressors or 

the density of the errors that are assumed to be normally distributed. Taking a specific distribution 

of the error term beforehand might not work with most data given the data generating process 

 

3
 It is important to note that the interdependence of binary response in the multivariate setting should be taken into 

account during estimation. In the absence of interdependence, the model collapses to a univariate binary response 

model. 
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(DGP). Fan and Yao (2003) noted that when a wrong functional form is selected, the results are 

substantially biased compared to the other competitive models. Unlike OLS, non-parametric does 

not maintain the stringent prior assumption of a specific distribution of error terms and functional 

form relationships between the dependent and explanatory variables.  In non-parametric 

regression, the appropriate model is determined from the data set and can take any shape, which 

could be linear or nonlinear. 

Non-parametric regression models such as kernel smoothing regression, locally weighted 

scatterplot smoothing (LOWESS), Local regression (LESS), and Robust weighted local regression 

relaxed the stringent assumptions of the parametric models. The models are executed as a graph 

and are a valuable method in visualizing the relationship between education outcomes such as 

earnings and factors and conditions associated with it, such as educational level and experience. 

For example, nonparametric regression gives you a visual insight into the pattern of the 

relationship between earnings and education attained, which could be linear or non-linear. 

A literature review shows that the non-parametric regression model is not widely used in 

education research. However, we believe non-parametric regression could prove useful when 

examining the relationship between educational outcomes such as academic performance (e.g., 

test score and CGPA) and factors such as attendance and teacher experience, and salary, among 

others. It is important to note that both the education outcomes and the factors of interests are 

assumed to be a continuous variable when using non-parametric regression. 

3.1.7. Semi-parametric regression model 

The semi-parametric regression model combines the features of parametric and non-parametric 

models. This model has a parametric component) and an indefinite dimensional nuisance 

parameter (the nonparametric component). It is useful when fully, nonparametric models may not 

perform well or when the researcher wants to use a parametric model when the functional form of 

the regressors or the errors' density is unknown. This model includes regression splines, fractional 

polynomial regression model, and the Cox proportional hazards model.  

Goldhaber et al. (2007) employed a semi-parametric model to assess teachers' career 

transitions and their implications for the teacher workforce quality in North Carolina public 

schools from 1996 to 2002. Likewise, Feng and Sass (2011) used the Cox proportional hazards 
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model to study the relationship between teacher productivity and inter-school mobility. The 

students' demographic and economic backgrounds are included in the estimated hazard model. 

3..1.8. Other regression models/approaches 

a. A regression model with count dependent data 

The regression model for count data is an important model for investigating the relationship 

between factors and conditions associated with educational outcomes. While the regression model 

is an extension of GLM, OLS is considered unsuitable for analyzing discrete count data (Cameron 

and Trivedi 1998). The regression models used for handling count data include a zero-truncated 

Poisson regression model, zero-truncated negative binomial, zero-inflated Poisson, random effects 

count models, and Poisson regression.     

Desjardins (2015) employed four models: Poisson, negative binomial, Poisson hurdle, and 

negative binomial hurdle to explain variability in school days suspended. The number of school 

days suspended is a count dependent variable in the study. Eminita and Widiyasari (2019) 

employed Poisson and Binomial Negative Regression models to examine the factors affecting 

undergraduate students' quitting in their research. The authors used the number of courses that 

students failed in the semester as the dependent variable. Salehi and Roudbari (2015) employed 

Zero-inflated Poisson and negative binomial regression models to explore factors associated with 

students’ failure. 

b.  Multilevel regression model 

A multilevel regression model is an extension of the Generalized linear model (GLM)-a flexible 

generalization of the ordinary linear regression of OLS that allows for response variables with 

error distribution models other than a normal distribution. The multilevel regression model is also 

referred to as a Hierarchical linear model (HLM) or mixed level models. When observations on 

students are not entirely independent but rather clustered in the district, school, year, zip code, or 

other factors, simple regression such as OLS is often not the best strategy (Theobold 2018). OLS 

is biased because students within a cluster (e.g., schools or districts) share experiences that are not 

shared across the schools or districts in the data, as observations in the same cluster are most likely 

correlated.  



13 

 

One-way to account for this type of clustering or dependence is by fitting multilevel 

regression models that include both fixed effects (e.g., explanatory variables) and random effects 

(variables by which students are clustered such as schools, years, districts, etc.) components. 

Multilevel regression controls for non-independence of sampling due to variations at multiple 

levels with fixed effects and random effects components in the model. Pedhazur (1997) noted that 

a multilevel regression model or HLM estimates variance between groups as distinct from variance 

within groups. Thus, it solves aggregation bias problems and misestimated standard errors and 

heterogeneity of regression.  It is necessary to note that multilevel regression modeling does not 

correct the regression coefficient estimates' bias than an OLS model. However, it produces 

unbiased estimates of the standard errors associated with the regression coefficients when the data 

are nested and easily allows group characteristics to be included in individual outcomes models 

(O’Dweyer et al., 2014). 

Lee (2000) employed HLM to study school effects and social contexts on students’ 

academic development. Munoz et al. (2011) also used HLM to explore teacher effectiveness on 

student performance denoted by reading test.  Parker et al. (2014) employed a multilevel regression 

model to investigate the effects of students’ and school characteristics on a test of English 

proficiency. The authors clustered the data across the school level. This methodology is prevalent 

in education research because students' observations are clustered in schools, districts, zip codes, 

and administrative data years. A detailed discussion of this model in education research can be 

found in Theobald (2018) and O’Dweyer et al. (2014). 

Besides the continuous dependent variable, the multilevel regression model or HLM has 

been extended to other dependent variables with a binary outcome such as probit and logit 

regression models, Poisson regression model for count data, ordered logit/probit model, and 

proportional or fractional regression model among others. 

c. Structural Equation Model (SEM) 

SEM is a comprehensive and flexible statistical technique for analyzing the structural relationship 

between measured variables and latent constructs with multiple pathways. It combines factor 

analysis and multivariate regression analysis to estimate interrelations between outcome variables 

(Kline 2011) simultaneously. Of course, this allows researchers to analyze multiple associates 

between outcomes and related inputs. SEM consist of two components: measurement model and 
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structural model. The former deals with the relationship between the observed indicator variables 

and the latent variables/factors. The latter deals with the various relationships among latent 

variables based on theoretical frameworks. A common SEM application practice is constructing a 

diagram or path diagram for model specification. Each latent variable is defined with its observed 

indicators variables and the relationship between variables, including latent and observed 

variables. 4 

A review of the literature shows that McKeon et al. (2015) employed SEM to assess the 

determinants of child outcomes in a cohort of children in the free pre-school year in Ireland.  

Espinosa (2017) used SEM to investigate the relationship between child, school, and teacher 

characteristics and educational outcomes related to cognitive and non-cognitive skills. Rashkind 

et al. (2019) employed SEM to examine whether test psychosocial health mediates the association 

between food insecurity and academic performance. GPA is the measure of academic performance 

in the study. 

d. Latent Class Analysis (LCA) 

The latent class analysis (LCA) is a latent class modeling approach used to estimate the subject's 

latent class probabilities belonging to any classes ( or groups). This is subsequently related to the 

covariates and distant outcomes, mostly when latent classes (a group of respondents) are assumed 

to exist in data. Collins and Lanza (2010) described LCA as a modeling approach used to classify 

respondents' groups similar to some unobserved construct based on their observed response 

patterns. In this case, the conditional probability that potential outcomes reflect subgroups of cases 

in multivariate data. In LCA, group membership is not known or observed in the data but instead 

assumed to be unobserved (latent) while identifying groups of individuals who share common 

attributes. However, the dependent variable's underlying construct is a categorical outcome that is 

not observed ( or known beforehand) but with different ways to evaluate the probability of subject 

belonging to particular outcome groups.  

A review of the literature shows that Bowers and Sprott (2012) employed LCA to examine 

a typology of high school dropouts (i.e., Jaded, Quiet, and involved) as the latent classes considered 

in the study. Weerts et al. (2013) employed LCA to identify four student groups to estimate latent 

 
4 The application of SEM in education research can be found in Wang et al. (2017). 
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class probabilities (i.e., super engagers, social-cultural engagers, Apolitical Engagers, and Non-

Engagers) in the study. Denson and Ing (2014) employed LCA to classify students into latent 

groups on their pluralistic orientation at the start of college, with five classes identified in the study. 

Each study examines whether latent classes identified relate to the respondent’s demographic and 

background characteristics. Depending on the data generating process (DGP), LCA has always 

been estimated using logistic regression when two classes are identified or multinomial logistic 

regression when more than two categories are identified. 

e. Bayesian Regression models (Parametric and nonparametric) 

The standard regression models can provide misleading results because they make assumptions 

that are often violated by real data sets or are not enough for dealing with noisy data. The traditional 

regression model assumes that the error terms' distribution is independently and identically 

distributed (IID) and assumed a specific functional form. The Bayesian models provide another 

possible way to construct such a flexible model, defined by an infinite mixture of regression 

models, that makes minimal assumptions about data. The Bayesian estimator used Markov Chain 

Monte Carlo (MCMC) method for approximating prior distribution to generate posterior predictive 

inference (Denison et al., 2002). The use of prior distribution to estimate a posterior distribution 

is one of the most significant advantages of the Bayesian model, as it guaranteed coherent 

inference. 

The Bayesian regression model used prior probability distribution in suitable and plausible 

probability distributions rather than point estimates to find the single best value of the model 

parameters assumed to come from the same distribution. The necessary procedure for 

implementing Bayesian Linear Regression is to specify priors for the model parameters ( e.g., 

normal distributions). Others include creating a model mapping the training inputs to the training 

outputs and then have a Markov Chain Monte Carlo (MCMC) algorithm draw samples from the 

posterior distribution for the model parameters. The result is the posterior distributions for the 

estimated parameters. 

The Bayesian regression model has been extended to the basic linear regression model and 

nonlinear models. Besides the linear regression model, the Bayesian regression model has been 

extended to binary regression (probit and logit), ordinal regression, and multilevel regression 

model. The Bayesian regression model has been extended to censored regression, panel regression 
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model, and models used in the causal analysis, such as regression discontinuity design.  There is 

also a Bayesian nonparametric regression model. 

The advantages of the Bayesian model include the ability to incorporate prior information. 

It provides the entire posterior distribution of the model parameters and provides a more intuitive 

interpretation of the results in terms of probabilities. The significant problem is that it is 

computationally demanding. 

Subbiah et al. (2011) noted that an appropriate method that could incorporate the subjective 

nature of the available information in educational data would be an added advantage in dealing 

with the uncertainties involved in these processes. Of course, this can be found in Bayesian through 

a properly devised set of priors in the form of suitable and plausible probability distributions. 

A review of the literature shows that Zwick (1993) employed the Bayesian regression 

model to examine the degree to which GMAT scores and an undergraduate grade-point average 

(UGPA) could predict first-year average and final grade point average in doctoral programs in 

Business and management. Subbiah et al. (2011) employed the Bayesian regression model to 

evaluate the effects of qualification mark, gender, and types of degree for which you are applying 

(i.e., major in math, statistics, and other courses) on performance, which is represented by the 

results of the entrance exam in India. 

e. Machine learning regressions 

Much has been written in recent times on applying machine learning tools in applied research, 

given that ML has a better accurate predictive power than regular regression models (Athey and 

Imbens, 2019). Despite this, a few studies have raised concerns about transparency, 

interpretability, and identification of casual relationships in ML (Lazer et al., 2014). In contrast, 

Storm et al. (2019) argue that ML offers excellent potential for expanding tools in applied research 

or quantitative research in the long run.   

Machine learning is a subfield of artificial intelligence that enables computers to use an 

algorithm to find observed data patterns. The algorithm helps find the relationship of variables in 

the existing data without pre-programmed rules. Therefore, the learned link is applied to classify 

or predict with entirely new data using statistical methods (Kaliba et al., 2020). Using equation 1 

of Appendix 3 as an illustration, supervised learning goals is to learn the relationship between the 
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dependent variable and independent variables. The learned relationship from the raw data then 

predicts unknown values of a dependent as accurately as possible into distinct groups. In contrast 

to econometric or statistical tools mentioned earlier (e.g., OLS, GMM, GLS, etc.), ML tools 

manage to fit complex and very flexible functional forms to the data without overfitting 

(Mullainathan and Spiess 2017).  

Many machine learning tools are relevant in socio-science research, and many have already 

used ML in applied research (see Kaliba et al., 2020; Liu et al., 2013). ML tools for predicting 

models include shrinkage methods (ridge regression, least absolute shrinkage, and selection 

operator (LASSO) regression); Tree-based methods (classification and regression trees-CART or 

decision trees, random forests); Neural network (Neural convolutional network CNN, recurrent 

Neural network RNN). 

ML tools have also been extended to estimate causal inference besides ML tools as a 

predictive model. As part of growing literature aiming at assessing heterogeneous causal effects 

across observed covariates using ML, Athey, and Imbens (2016), Wager and Athey (2018), and 

Lecher (2019) employed regression tree and random forest method. For example, Athey and 

Imbens (2016) used recursive partitioning for heterogeneous causal effects based on the regression 

tree method across subgroups defined upon the splits. The ML for causal inference has been 

implemented in the R statistical software package “causalTree” by Athey et al. (2016). Surveys on 

ML methods for assessing causal inference are available in Powers et al. (2018) and Knaus et al. 

(2018). 

However, a literature review shows that many studies have employed ML in education 

research. Some of the ML tools used in education research include decision trees and random 

forest, among others, to predict students’ performance or success and study the impact of effective 

communication between students and teachers. They are also used as imputation methods for 

education data in an attempt to gain further insights that could help shape policy recommendation 

in the sector ( for detail see: Golino and Gomes, 2016; Shan et al., 2014; Al-Barrak and Al-Razgan, 

2016; Topirceanu and Grosseck, 2017; McDaniel 2018). Greene (2019) employed CART to assess 

differences between direct entry and transfer students and their progress towards a baccalaureate 

degree in Washington.  
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3.2. Regression with a panel or longitudinal data 

It is not clear how cross-sectional data based on a one-time measure of student outcomes and their 

characteristics coupled with the teacher, school, and parent characteristics, will adequately provide 

valuable student performance measures for effective policymaking. In contrast, longitudinal data 

have clear analytical advantages over cross-sectional data because it allows for measurement of 

change over time for robust and accurate inference for policymaking (Jyoti et al., 2005; Johnes et 

al., 2017). Hsiao (2007) noted that regression with panel data produces a more accurate inference 

of model parameters and a higher capacity to account for human behavior's complexity relative to 

cross-section data.  A model with panel data has two dimensions: time and individual-specific 

effects. Panel data estimation is more complicated than cross-section data estimation (Hsiao 2007).  

a. Linear Panel Data Model: Fixed and random effect regression models  

The random-effect (RE) model and fixed-effect (FE) model (within estimator) are the most 

common estimators applied to panel data.  The fixed effect estimator assumes unobserved 

heterogeneity to be arbitrarily correlated with time-varying explanatory variables. It also assumes 

the covariates are strictly exogenous concerning the time-varying idiosyncratic errors. The fixed-

effects estimator transformed the model by fully demeaned (mean-centered) data to remove the 

unobserved heterogeneity. The fixed effect estimator uses within-unit change and ignores 

between-unit variation in this process. The fixed-effect estimator is called the within estimator in 

this context. The unobserved heterogeneity can also be removed using the least square dummy 

variable regression (LSDV) approach, where the time-invariant characteristic is treated as a fixed 

parameter. With LSDV, a dummy variable is created for each sample unit and included as a 

regressor in the model. The estimation is carried out using OLS. 

The random effect assumes the explanatory variables are uncorrelated with unobserved 

heterogeneity and idiosyncratic errors. The RE used a feasible GLS estimator (FGLS) to exploit 

within-cluster correlation and transforms the data by “partially demeaning” each variable. While 

RE is more efficient than the FE model, the fixed-effect model, unlike the random effect model, 

considers all levels of characteristics measured or unmeasured. The RE estimator’s assumption of 

no bias concerning unobserved heterogeneity is more stringent. On the other hand, the fixed effects 
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model's inability to estimate the effect of any variable that does not vary within clusters is one of 

the significant drawbacks. 

There are tests to help select the appropriate model to fit the panel data. For example, F-

statistics can be used to choose between the pooled OLS and the Fixed effect model.5 Hausman 

test is a known test often used to identify the appropriate model between fixed effect and random 

effect model. Both estimators have been extended to a limited dependent variable, such as probit 

and logit models, among others. There are fixed and random effect probit and logit models, fixed 

effect Tobit, and fixed and random effects Poisson models for count data. 

The correlated random effect (CRE) model is another panel data model relevant to 

education research because it relaxes orthogonality conditions. CRE models the relationship 

between unobserved heterogeneity and the explanatory variables.  Given the advantage of random 

effect models over fixed-effect models, CRE explores within and between estimates in random-

effects models by focusing on the fixed and random effects estimation approaches' unification. 

This unique feature, coupled with its simplicity, is popular with empirical research (Wooldridge 

2019). The CRE model has been extended to unbalanced panel data in Wooldridge (2019) and 

Joshi and Wooldridge (2019). For the unbalanced panel data, the CRE can be estimated using 

modern software by including the time-varying explanatory variables as part of the variables with 

the random effect option (Wooldridge 2019). The CRE approach applies to commonly used 

models such as Tobit, probit, fractional or proportional data, and count data models. 

A literature review shows that Rodgers (2001) used panel data to study student attendance 

on university performance in Australia and North America.  Specifically, the author used fixed 

effect and random effect models and compared the results with pooled OLS results. Gottfried 

(2010) used panel data to evaluate the relationship between student attendance and achievement 

in urban elementary and Middle schools. The authors employed a fixed-effect model based on the 

LSDV regression model. Groninger et a. (2007) employed a random effect model to explore the 

relationship between teacher qualifications and early learning outcomes such as reading and 

mathematics achievement. Karl et al. (2013) employed a correlated random effects model to assess 

teachers and schools' contribution to the student’s academic growth effects based on longitudinal 

 
5 Pooled OLS (ordinary least square) model treats a dataset like any other cross-sectional data and ignores that the 

data has a time and individual dimensions. The assumptions are similar to that of OLS. 
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student achievement outcomes.  Using panel data from Michigan’s schools, Papke (2005) used a 

fixed-effect model to examine the impact of spending on test pass rates for a fourth-grade math 

test. 

b. A dynamic panel regression model with Generalized method of moment (GMM) 

A dynamic panel regression model uses lagged observations of the endogenous dependent 

variables as part of the specified model's explanatory variables. Because of the endogeneity 

problem created with lagged dependent variables in the explanatory variable, the Generalized 

method of moment (GMM) uses a first difference fixed effects analysis to explain the lags 

explanatory variables' variations instrument (Streeter et al. 2017)6. The underlying assumption 

here is that the differenced lags are correlated with the differences in the error terms. This model 

handles linear and non-linear models in panel data sets. The method does not require complete 

knowledge of the data distribution and uses assumptions about specified moments of the random 

variables instead of the entire distribution (for a detailed discussion, see Arellano and Bond 1991; 

Blundell and Bond 1998; Roondman 2009).  

Although the application of the dynamic panel regression model is prevalent in economics, 

we observe that the method is not widely used despite the availability of longitudinal data in 

education research. The technique could be a valuable research tool to generate more consistent 

and unbiased education policies. 

A literature review shows that Bernal et al. (2016) employed a dynamic panel GMM model 

to estimate school and teacher quality's effect on students’ performance. The authors used a 

dynamic specification where lagged student test score is included in the model as explanatory 

variables to capture achievement in the previous period. GMM estimator provides an unbiased 

estimate of school and teacher quality's impact on the study's students’ performance. Chang and 

Hsing (1996) employed a dynamic specification of higher education demand at private institutions 

in the U.S while using time series annual data. With the enrollment rate as a dependent variable, 

the author includes a lagged enrolment rate as an additional explanatory variable to create a 

dynamic specification in the study. Jyoti et al. (2005)  employed a dynamic model to examine how 

food insecurity affects the school’s children's performance, Weight Gain, and Social Skills. The 

 

6  Example of a dynamic specification of equation 3 in appendix 3: yit = 0 +yit-1 + Zit + it , where yit-1 is lagged of 

yit 
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authors include lagged mathematics and reading scores taken to measure academic performance 

and the explanatory variables considered in the specified model. 

4.0. Methods for addressing the second research question 

The two widely used to evaluate the program's impact in literature: experimental research design 

such as randomized control trial-RCT and quasi-experiment/non-experimental research design.  

The methodology for handling these forms of data design is outlined in the subsequent subsections. 

4.1. Experimental design: Randomized Control Trial -RCT 

The experimental design uses treatment and comparison groups that are assumed to be randomly 

selected. Participation in the program is uncorrelated with the outcome variable of interest, test 

scores (Angrist and Pischke, 2008). A typical example of this is the randomized control trial 

(RCT). Heinrich and Lopez (2009) noted that with the RCT approach, a program's impact could 

easily be obtained by comparing the potential outcome of interest for adopters and nonadopters 

using simple linear regression.  

With the random assignment of treatment and comparison groups, selection bias is 

eliminated in RCT, making the design a gold standard in causal analysis in the applied literature. 

In RCT, participants and non-participants have an equal opportunity of being selected to either the 

treatment or control group. The implication of this is that OLS parameters are unbiased given that 

treatment assignment “T” is assumed to be uncorrelated with the error term, which indicates the 

exogeneity of T (see equation 3 in appendix). The estimated impact is referred to as intent to treat 

(ITT) in the RCT setting. ITT compares outcomes across groups randomly assigned the treatment, 

without considering whether the subjects take up the treatment or not (Siddique, 2014). 

The primary concern with RCT is treatment noncompliance. Compliance here refers to a 

situation where individuals assigned to the treatment group comply with the study design. 

Otherwise stated, it means there is no individual in the treatment group that drops out, or there is 

no evidence that any member of the control group receives the treatment knowingly or 

unknowingly to the researcher in what is called the problem of a spillover effect. Using OLS to 

estimate ITT is biased in the presence of treatment noncompliance. With evidence of non-

compliance, the treatment assignment denoted by “T” (see equation 3 of the Appendix) and the 

actual “take up” or treatment delivery indicated now by “D” are not the same, which makes ITT 
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biased for policy.  Imperfect compliance results in a failure to identify the treatment effect for 

policy (Siddique, 2014).  For example, Atteberry et al. (2019) used RCT design to examine the 

impact of full-day prekindergarten on children’s school readiness. The authors observed that 

among those assigned to the half-day group, 62% participated in half-day classes. Among those 

randomly assigned to full-day pre-K, 86% attended the full-day program. Also, 2% of families 

assigned to full-day pre-K switched to the half-day program, and 9% of families who were initially 

assigned to half-day pre-K enrolled in the full-day program in the study. 

The shortcoming of RCT has led to increasing critiques of the methodology in recent times 

(Frieden, 2017; Deaton and Cartwright, 2018). The authors argue that RCT does not equalize 

everything other than the treatment in the treatment and control groups. It does not automatically 

deliver a precise estimate of the average treatment effect (ATE), and it does not relieve us of the 

need to think about (observed or unobserved) covariates. Debates on RCTs' usefulness center on 

concerns about internal and external validity, as Cartwright (2011) noted.  Despite this problem, 

useful information on treatment effectiveness for a policy can still be recovered from RCT data 

using the local average treatment effect (LATE), as suggested by Angrist et al. (1996). LATE 

works similarly as a traditional instrumental variable regression technique where assigned 

treatment in original RCT design is taken as an instrument for treatment delivery (for detail, see 

Angrist and Pischke, 2008). 

Although RCTs are challenging to conduct in the education sector because of cost of 

implementation, ethics, and or political differences (Cordero et al., 2017), a review of education 

research literature shows that RCT is still widely used in evaluating the impact of education 

programs. For instance, Cavalluzzo et al. (2012) employed RCT to investigate the impact of 

Kentucky virtual school’s hybrid program for algebra on grade 9 students’ math achievement. 

Atteberry et al. (2019) used RCT to explore the effects of full-day pre-kindergarten on children’s’ 

school readiness. 

4.2. Quasi-experiment on observational data /Non-experimental design 

Experimental evaluation based on RCT is widely considered the gold standard in evaluating social 

programs' impact (Fortson et al., 2012). RCT is not always feasible either because it is expensive, 

logical, or ethically impossible to implement. And this has led researchers to resort to a non-

experimental approach for estimating program impacts. Unlike RCT, however, the primary 
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concern when examining the effects of the social programs using quasi-experimental/ non-

experimental design is the issue of selection bias. Non-randomness of treatment and comparison 

groups in nonexperimental design poses a problem of selection bias, which may affect the 

estimated impact's reliability. OLS is biased since T representing treatment is likely to be 

correlating with the error term due to selection bias ( see Equation 3 in the Appendix).  The 

selection bias here is treated as omitted variables or measurement error problem. 

The selection bias problem can be observed and unobserved confounding or heterogeneity 

factors/ characteristics (Ogundari and Bolarinwa, 2018; Tucker, 2010). The first source of 

selection bias is one due to observed confounding characteristics. It arises from differences in 

socio-economic and demographic factors such as gender, age, employment, income, race, location, 

among others, which researchers can observe (Ogundari and Bolarinwa, 2018). For instance, in a 

study to examine the impact of catholic schooling on test scores, Altonji and Elder (2005) argued 

that selection bias due to observable factors could be driven by the school’s previous record of 

performance, location, or student’s demographic distribution among others. The second source of 

selection bias is unobserved family and child characteristics (Tucker 2010). These include a child’s 

ability and parents’ motivation, which cannot be measured and unknown to the researchers 

(Deschant and Goeman 2015). The term unobservable means factors affecting both the treatment 

(e.g., equation 4 of the Appendix) and outcome (e.g., equation 3 of the appendix). 

The validity of nonexperimental studies for the policy becomes a problem with selection 

bias. Because selection bias is associated with observed and unobserved characteristics, an attempt 

to control for one without accounting for the second is considered an insufficient proxy for the 

correction of omitted variables in causal inference. A literature review shows many quantitative 

methods available to control selection bias in a non-experimental /quasi-experimental design. 

Examples include instrumental variables regression (IV-reg), matching techniques (e.g., 

propensity score matching-PSM), endogenous switching regression (ESR), Heckman sample 

selection model, regression discontinuity (RD), the difference in difference (DID), local average 

treatment effect (LATE), and Heckman sample selection models among others. These techniques 

make the control group identical (identification process) to the treatment group by controlling for 

the unobservable or observable factors associated with selection bias using conditional 

independence assumption (CIA). Each method has different approaches to achieving the 
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identification process—a detailed discussion of each technique's underlying identification 

strategies is outlined below. 

RCT guarantees that individuals assigned to treatment and control groups are equal 

concerning observed and unobserved characteristics. As a result, both selection bias sources are 

simultaneously controlled in the data (Duvendack et al., 2011; Cordero et al., 2018).  Combining 

these methods is required to achieve this with non-experimental data (Ogundari and Bolarinwa, 

2018).  Researchers combined two or more of the approaches to accomplish this. For instance, IV-

reg and PSM are combined to control selection bias due to unobserved and observed 

characteristics, respectively, in quasi-experimental data ( see; Vandenberghe and Robin, 2004; 

Pfeffermann and Landman, 2011; Cornelisz 2013). Also, DiD and PSM are combined to control 

for selection bias due to unobserved and observed characteristics, respectively. When valid 

instruments are unavailable, ESR and PSM are combined to control for selection bias due to 

unobserved and observed characteristics, respectively. RD and IV combined to control for 

observed and unobserved heterogeneity, respectively (see; Kuzimina and Carnoy 2016; 

Konstantopoulos and Shen 2016; Li and Konstantopoulos 2016). 

4.2.1. Matching methods 

a. Propensity score matching (PSM)  

The PSM addresses the identification problem in nonexperimental data by relying on the estimated 

propensity score, thus using this to match treated and control units with the same propensity score. 

The first step is to calculate the propensity score conditional on observed socio-economic 

characteristics such as gender, age, income, ethnicity, race, and region, among others. The next 

step is to identify the control group identical to the treatment by matching the control group with 

the same propensity scores. Cordero et al. (2018) noted the idea behind PSM is that if two students 

have the same propensity score but are in different treatment groups, the assignment can be 

assumed to be random. The conventional full matching on the propensity score exists when the 

treated and control subject has a similar value of the propensity score (Austin and Stuart, 2017). 

 There are different algorithms for obtaining optimal pair matching in PSM, including 

nearest neighbor (NN) matching, radius caliper matching, and kernel matching. After obtaining a 

comparison group for each treated individual using these algorithms, it is necessary to ensure 
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common support for all matched observations and conduct posts estimation diagnostic tests such 

as balanced covariates and Rosenbaum sensitivity analysis. Although PSM mitigates selection 

problem by controls for observed confounding factors, the assumption of no unobserved 

differences between treated and control groups is unlikely to hold, necessitating Rosenbaum 

sensitivity analysis to provide further insights on this.7 PSM requires many observations with 

similar characteristics and a large explanatory variables that might be difficult to satisfy in most 

cases. 

A review of the literature shows that Fortson et al. (2012) employed PSM on 

nonexperimental data to examine the impact of charter school choice on student performance in 

maths tests and reading test scores. Hanauer (2019) used PSM to evaluate differences in public 

and private students ' self-control. The treatment and control groups here are private and public 

students, respectively.  Harris (2015) employed PSM to evaluate honor programs' impact on 

student academic performance. Here, the treatment and control groups are a student in honor and 

non-honor programs, respectively. Ponzo (2013) employed PSM to investigate the impact of 

bullying on educational achievement. In the study, the students experiencing bullying and those 

who have not experienced bullying are taken as treatment and control groups, respectively.  

Hogrebe and Striethholt (2016) employed PSM to investigate the impact of preschool 

participation on student reading achievement. The treatment and control groups are students and 

non-participant students in the preschool program. Gee and Cho (2014) employed PSM to 

investigate single-sex versus coeducational schools' impact on aggressive adolescent behaviors. 

Here the treatment and control groups represent students attending single-sex and coeducational 

schools, respectively. Dronkers and Avram (2010) employed PSM to estimate the impact of a 

private school on reading achievement. The treatment and control groups represent students in 

private and public schools. 

b. Coarsened exact matching (CEM) 

Unlike PSM, the CEM does not require estimating the propensity score as a first step. It reduces 

any imbalance in the covariates between treated and control groups chosen by ex-ante user choice 

 
7 Unfortunately, our systematic review shows that most PSM studies evaluating impact of interventions in education 

do not conduct these post estimation tests, which could have unexpected consequence on the validity of estimated 

results for policymaking.  
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rather than discovered through the usual laborious process of checking after tweaking the method 

and repeating the re-estimation process as done in PSM (Iacus et al., 2019).  CEM algorithm is a 

monotonic imbalance matching method, which allows bounding the higher level of imbalance in 

some characteristics of the distribution through an ex-ante (or coarsened) process. CEM is an 

improvement over PSM because the user initially coarsens data.  

The exact matching is based on the coarsened data, as the final analysis run on the un-

coarsened match data. Given this, CEM prevents the selection of only those variables that 

significantly affect treatment, as in the propensity score in PSM. Detailed discussion on CEM is 

available in Iacus et al. (2012) and Iacus et al. (2019). Please note that CEM controls observed 

confounding factors in non-experimental data. 

Umansky and Dumont (2019) employed CEM to study how English Learner Status Shapes 

Teacher Perceptions of Students and the moderating role of bilingual Instructional Settings in the 

United States.  Guarcello et al. (2017) also employed CEM in a study to assess the impact of 

supplemental instruction on student performance in the United States.   

c. Generalized propensity score (GPS) 

A generalized propensity score (GPS) is another example under this category. While the propensity 

score matching (PSM) is developed for binary exposures, GPS is used for quantitative or 

continuous exposures. Examples of continuous exposures include income or years of education. 

In the context of education research, a good example is using QRIS scores to assess the impact of 

early childcare center quality on child outcomes such as reading and math assessments. The QRIS 

score is a continuous variable indicating the quality of each early learning education center. Unlike 

PSM, GPS can handle binary outcomes. Detailed discussion on the application of GPS can be 

found in Austin (2018).  

A review of the literature shows that Doyle (2011) estimated a dose-response function after 

balancing on the generalized propensity score (GPS) to examine the effect of increased academic 

momentum on transfer rates. The number of credits used as quantitative exposure in the study. 

d. Regression Adjustment and Inverse Propensity Weighting   

Regression adjustment (RA) and Inverse Propensity Weighting (IPW) can also be applied to 

education data within the context of causal inference. Given that RA models the outcome 
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conditional on a set of explanatory variables, it does not say anything about the treatment 

mechanism like the first stage of PSM. The methodology accommodates linear, binary (logit or 

probit), and counts (Poisson) potential outcomes.  

In stark contrast to RA, IPW models both the outcome and treatment mechanisms by 

estimating the propensity score like the first stage of PSM and use the inverse as a weight to obtain 

a balanced sample of treated and control individuals. This approach increases the weights of those 

who received unexpected exposures in the outcome equation. According to Smerillo et al. (2016), 

weighting by the observed treatments' inverse probability allows observations with a low 

probability of their observed status to receive higher weight in the regression. The authors noted 

further that IPW regression adjustment minimizes selection bias, resulting from differences in 

baseline background characteristics. IPW is specified separately for treated and control groups. 

Subsequently, average predicted outcomes for treatment and control groups can be generated from 

the weighted regression because the differences provide an estimate of the average treatment 

effect. IPW accommodates only binary (logit or probit) outcome variables. Both the RA and IPW 

will bias (inconsistent) if the regression model is incorrectly specified. 

A literature review shows that Smerillo et al. (2016) employed IPW regression adjustment 

to assess the differences in academic performance between chronically and non-chronically absent 

children in Chicago. The concern of possible selection bias or omitted variable bias in the data and 

binary outcome influenced the model's choice. For a detailed comparison of these methods, check 

Elze et al. (2017) and Edwards et al. (2016).   

e. Doubly Robust Estimator 

This estimator includes inverse probability weighting regression adjustment (IPWRA) and 

Augmented inverse probability weighting (AIPW). IPWRA and AIPW model both the outcome 

equation and treatment mechanism, and they are consistent even if one of the models is 

misspecified. Like IPW, each estimator uses the inverse of the propensity score to compute the 

treatment-specific predicted outcomes' weighted mean. In stark contrast to RA and IPW, the 

doubly robust estimator offers protection against mismodelling even if the regression model is 

incorrectly specified. Still, the propensity model (treatment equation) is correct, or the propensity 

model is incorrect, but the regression model is correct. This estimator offers gains in precision of 

estimation over simple inverse weighting. Compared to the weighting methods, the doubly robust 
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estimator is less sensitive to the lack of overlap between treated and control groups (Uysal 2011). 

IPWRA and AIPW accommodate linear, binary (probit or logit), and count potential outcomes. 

A review of the literature shows that Kang et al. (2019) used the IPWRA method to analyze 

returns to Higher Education Subjects and Tiers in China. Zeiser et al. (2014) employed a doubly 

estimator to examine the effects of attending a deeper learning network school on postsecondary 

enrollment measures. 

4.2.2 Instrumental variable Regression and Local Average Treatment Effect (IV) 

The instrumental variable (IV) regression and local average treatment effect LATE required 

identification based on the valid instruments that can induce exogenous selection into treatment 

for a subset of the population under investigation. The two methods control selection bias due to 

unobserved confounding factors and depend on finding an additional variable related to the 

decision rule but not correlated with the outcome. The instrument should be a good determinant 

of the intervention or treatment while satisfying the exclusion assumption of being independent of 

the outcome variable (Angrist 1991). IV-regression and LATE allow the researcher to isolate the 

exogenous variation in the treatment to get unbiased estimates of the causal relationship between 

the outcome and the predictor (Cardero et al., 2018). Equations 7-9 of the appendix provide the 

framework for estimating IV regression for further consultation.  

IV regression is a more realistic estimate of the average treatment effect (ATE) of program 

intervention if the instrument is valid and relevant. However, LATE is the treatment effect 

obtained when individuals whose treatment status is influenced by changing an exogenous 

regressor satisfies an exclusion restriction (Imbens and Angrist 1994). In other words, when the 

available instruments represent an individual whose treatment status can be changed by the 

instrument (Angrist and Pischke 2008). However, the difference between ATE obtained via the 

traditional IV regression method, and the LATE method is the instrument used to establish causal 

inference. A typical example of LATE is when one uses the assignment variable as an instrument 

to deduce causal inference. Here, LATE is equivalent to the average treatment effect on the 

compliance population. 8 Heckman (1997) noted that treatment effect using LATE equals ATE 

 

8 With LATE, y = 0 +�̂� + Z +  where �̂� =  0 + D +Z + ; D is taken as instrument for T (treatment delivery) of 

equatiob 3 in Appendix 3. Valid instrument means Cov(T.D)≠ 0 and Cov(y.D)=0. 
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from traditional IV regression among those exposed to the treatment, only when they do not make 

decisions to react to the instrument based on the factor that also determines treatment gains.  A 

detailed discussion of LATE and application can be found in Becker (2016) and Angrist and 

Pischke (2008). 

A significant concern with the instrumental variable regression approach is finding an 

instrument with a sufficiently strong treatment association (i.e., relevance). Exclusion restriction 

is a stumbling block in many IV regression analyses (Streeter et al., 2017). However, there is a 

procedure to test the instrument's validity in IV-regression, such as overidentification restriction 

based on Sargan and Hansen tests, inconsistency test, and F-statistics to find weak instruments 

(See; Woodridge, 2010). The IV-regression and LATE can be implemented as a two-stage least 

square regression (2SLS) or s step GMM estimator. 

Choi et al. (2012) employed IV-reg to evaluate the impact of time spent on private tutoring 

on students' performance. West and Woessmann (2010) applied IV-reg to study the relationship 

between private school competition and students’ historical performance patterns as a natural 

experiment. Denny and Oppedisano (2013) employed IV-reg to estimate the marginal effect of 

class size on students' educational attainment. Evans and Schwab (1995) used IV reg to evaluate 

the impact of catholic school choice on academic performance using the catholic region as an 

instrument. Sakellariou (2007) employed LATE to derive returns to schooling estimates when 

applied to a subgroup of individuals affected by education policy reform relative to return to the 

average individual. The subset of individuals affected by education policy represents the compiler 

population taken as an instrument in the study. 

The IV regression can be combined with other methods to control for the selection bias in 

data.  For example, Wang et al. (2017) employed the combination of PSM and IV regression to 

examine the effect of earning an associate degree on community college transfer students’ 

performance and success at four-year institutions. This type of combination ensures that PSM 

controls for observed confounding factors, while IV regression controls unobserved confounding 

factors. 

4.2.3. Heckman sample selection model 

Heckman, a sample selection model, treats a selection bias problem as an omitted variable bias 

problem. In this case, correction bias term referred to inverse mills ratio (IMR) estimated through 
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the selection model, similar to equation 4 of the appendix, is included as an explanatory variable 

in the outcome equation identical to equation 3, as a missing variable. According to Tucker (2010), 

the Heckman sample selection model through this process addresses selection bias due to 

unobservable. 

4.2.4. Endogenous switching regression (ESR) model 

The endogenous switching regression (ESR) model ensured the control group is identical to 

treatment by first estimating the probability of selection into treatment. The probability of selection 

into treatment is then used in the outcome equation to estimate the outcome equation's parameters 

( e.g., equation 4 in the Appendix). The switching regressions model is a variant of the classical 

Heckman selection model discussed in the previous section. ESR fits a model with endogenous 

switching from two different regimes referred to as treatment and control groups and estimates 

two parts regression models as selection and outcome equations simultaneously (Lokshin et al., 

2004). Like Heckman's (1974) work, the selection equation is used to generate inverse mills ratio 

to control for selection bias associated with the unobserved confounding factors in the outcome 

equations. 

This method is popular in applied economics. It might be useful in estimating causal 

inference in education research, especially when a valid instrument cannot control the selection 

due to unobserved heterogeneity in the data. 

4.2.5. The Difference in Difference (DiD) 

The availability of panel data provides the opportunity to mitigate the identification problem in 

nonexperimental using the difference in difference (DiD) method. The DiD estimator is based on 

comparing treated and control units within the different periods under the assumption of a parallel 

time trend between the treated and control units (Imai and Kim, 2019). For example, when two 

individuals are observed in different periods, and one is exogenously exposed to treatment, and 

the other is not.  DiD is a valid estimator for controlling unobserved confounding factors in 

observational data. DiD operationalizes in regression as a period-treatment interaction. The first-

differencing yields bias-free fixed effects.   

Herbst (2016) employed DiD to identify the impact of quality rating and improvement 

systems (QRIS) on student academic performance by taking advantage of the differential timing 

in the roll-out  of QRIS across states in the United States. Cascio (2019) employed DiD to examine 
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whether universal preschool hit the set target using data on students attending universal versus 

targeted state-funded pre-K programs from 2001-2006. The DiD models control for unobserved 

state and temporary heterogeneity and state-specific time trends. 

It is a common practice in applied research to combine two approaches to provide a 

comparative result, with one controlling for selection bias associated with observable and the other 

controlling for unobservable factors. For instance, Fortson et al. (2012) combined DiD with PSM 

in the causal effects of offer into charter schools on student performance. 

4.2.6. Regression discontinuity (RD) 

RD is a pretest-posttest design to elicit causal effects of intervention by assigning cutoff to a 

continuous or running variable above or below a threshold. This method's critical point is that the 

probability of participating is determined by a specific cut-off value of a continuous or running 

variable (Cardero et al., 2017). The authors noted further that the method's basic idea is that the 

comparison of students or school within a reasonably small range above, and this cut-off point 

guarantees that both groups' characteristics are statistically similar, but only some of them receive 

treatment. An example of this is school lunch programs in the United States, where the program is 

assigned to children whose household income falls below a prespecified threshold (e.g., poverty 

line). The estimation of causal inference of such a program on student performance outcomes or 

health is a typical regression discontinuity design.  

An excellent example of research in education research using the RD method includes 

Duchini (2017). The author employed RD design to investigate college remedial education's 

impact on student precession and college performance. The author used the cutoff rule to assign 

students to remediation. Calcagn and Long (2008) also employed RD design to examine the impact 

of postsecondary remediation on students’ outcomes-based on predetermined policy cutoff. 

4.2.7. The fixed effects regression model  

With the availability of longitudinal data that contains multiple observations of cases over time, 

including before and after the intervention or program of interest, the fixed effects model is 

considered an ideal estimation method of causal inference. As noted by Angrist and Pischke 

(2009), the fixed-effect model is a valuable causal inference method with longitudinal or panel 

data in the social sciences. This model adjusts for unobserved time-invariant confounders when 

estimating causal effects from observational data. When data is available on treated and control 
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observations within the same unit and across periods to adjust for unobserved, unit-specific, and 

time-invariant confounders, causal inference is estimated under unit fixed effects regression 

models. A fixed-effects model implies that the counterfactual outcome for a treated observation in 

each period is estimated using the observed outcomes of different periods of the same unit (Imai 

and Kim, 2019). 

Fortson et al. (2012) used a fixed-effect model for causal inference to estimate the impact 

of charter school attendance on student academic performance. Xu et al. (2009) also employed a 

fixed-effect model to examine school mobility's effect on student outcomes using administrative 

data on North Carolina students and schools from 1997 to 2005. Again, Burke and Sass (2008) 

used a fixed-effects estimator to examine the relationship between classroom peer and student 

achievement using longitudinal data covering 1999/2000-2004/2005. 

4.2.8. Interrupted time series (ITS) design  

ITS design works similarly to DiD design. While DiD evaluates the program's impact by looking 

at whether the treatment group deviates from its baseline mean by a higher amount than the 

comparison group, ITS controls differences in the baseline mean and trends between the treatment 

and comparison groups. The ITS has more stringent data requirement than DiD design and require 

a sufficiently long time series. ITS is used to estimate the intervention's effect on outcome 

variables, either for a single treatment group or when compared with one or more control groups. 

With a single treatment group and no control group, the intervention trend is projected into the 

treatment period as counterfactual. The readers interested in the detailed discussion behind the 

model are referred to Somers et al. (2003). 

Henderson et al. (2008) employed ITS to assess school differences in mathematics 

performance changes based on benchmark comprehensive assessment practices between 

participating schools and comparison schools in Massachusetts. The comprehensive assessment 

system was introduced in 2005, representing the pre-intervention period in the study. Viglor (2008) 

used ITS to examine the impact of bonus programs on student achievement in North Carolina. The 

program was introduced in the 1996/97 school year. Hallberg et al. (2018) employed ITS to 

evaluate the impact of the school improvement grant (SIG) program on student performance in 

Ohio schools. The SIG program was implemented among 41 schools in 11 local education agency 

(LEA) in the 2010-2011 school year. The analysis spans the 2004-2014 data. 
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5.0. Available Statistical Software  

There are different software packages available to analyze the previous section models. 

Unfortunately, critical empirical results might be sensitive to the choice software, potentially 

weakening applied research (McCullough and Vinod (1999). Tomek (1993) noted that when 

researchers take results as foolproof, without rigorous cross-program testing and validation of 

parameter estimates, the implication drawn from these estimates may be flawed. 

 In recognition of this, Odeh et al. (2010) examined the reliability of ten statistical software 

packages widely used in quantitative research. They concluded that software packages 

improvement is required because some failed the reliability test. This observation underscores the 

importance of solving econometric or statistical problems using more than one statistical software 

package. The implication of this is that researchers need to familiarize themselves with at least two 

or more software packages in applied research. 

The choice of statistical software to use has always been guided by the speed, user-

friendliness, and availability of open-source software. Commonly used open-source statistical 

software packages such as R and Python can correctly estimate many of the previous sections' 

models. However, these software platforms are free but require extensive knowledge of 

programming.  Optimization software such as Matrix Laboratory (MATLAB) and the General 

Algebraic Modeling System (GAMS) is not user-friendly and requires a license to use them. The 

widely used statistical packages such as Statistical Analysis Software (SAS) and Stata also require 

licenses and are very expensive.  While SAS requires programming knowledge, Stata is user-

friendly. 

Other statistical software available for applied research includes WinBugs, GAUSS, SPSS, 

RATS, EViews, JMP, LIMDEP, SHAZAM, Mathematica, and MATLAB. Besides SPSS, JMP, 

EViews, and LIMDP that are user-friendly, RATS, GAUSS, SHAZAM, Mathematica, RATS, and 

EViews are appropriate for handling time series and panel data. WinBugs is primarily designed 

for Bayesian analysis using Markov chain Monte Carlo (MCMC) methods. 

6.0. Conclusions 

The complexity of administrative or longitudinal data used in education research has been stressed 

in the literature. This is because they are collected mainly for recording and reporting rather than 
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research. And this has increased support for sophisticated statistical methods that could mitigate 

some of the challenges associated with this type of data. This paper provides a comprehensive 

review of the statistical techniques important for estimating education production function. It also 

provides an extensive overview of empirical studies that used the methodologies identified within 

the context of education data 

It is crucial researchers should be concerned with the validity of their research results since 

such estimates could be an important input in designing policy programs in the future. However, 

this observation points to the need for statistical methods that best fit different data generating 

processes. In this manner, our systematic review of the literature reveals a wide range of statistical 

methods that provide operational resources for prospective researchers in education research. For 

instance, we identify relevant regression techniques for estimating cross-sectional data such as 

ordinary least square-OLS, logistic regression, or ordered probit, among others, and panel data 

such as fixed effect or random-effect model. We also identify regression techniques for estimating 

multilevel data, while different inferential statistical methods for causal inference, given the data 

generating process, are also highlighted.  

 

 

 

 

 

 

 

 

 

 

 



35 

 

References  

 

Alauddin. M and C. Tisdell (2006). Student’s Evaluation of Teaching Effectiveness: What Surveys 
tell and what, the University of Queensland, Economic Theory, Applications, and 

Issues Working Paper No.42. Queensland Australia. 

Al-Barrak. M.A and M. Al-Razgan (2016). Predicting Students Final GPA using decision trees: A 

case study. International Journal of information and Education Technology, Vol. 6(7): 

528-533. 

Altonji. J, T. Elder, and C.R. Tabler (2005). Selection on Observed and Unobserved Variables: 

Assessing the Effectiveness of Catholic Schools, Journal of Political Economy, Vol. 

113: 151-184. 

Amore. M. D and S. Murtinu (2019). Tobit models in strategy research: critical issues and 

applications. Global Strategy Journal. DOI:10.1002/gsj.1363 

Angrist. J. D and J. Pischke (2008). Mostly Harless Econometrics: An empiricist’s companion. 
Princeton University Press. 

Andrew, R., J. Li, M. Lovenheim (2012). Heterogenous paths through college: Detailed patterns 

and relationships with graduation and earnings. National Centers for Analysis of 

Longitudinal Data in Education Research, Working paper No. 83, Washington, DC. 

An. G., J. Wang, Y. Yang, and X. Du (2018). A study on the effects of students’ STEM academic 
achievement with Chines parents’ participative styles in school education. Educational 

Sciences: Theory & Practices, Vol. 19(1): 41-54. 

Arrelano, M and S. Bond (1991). Some tests of specification for panel data: Monte Carlo evidence 

and an application to employment equations. Review of Economic Studies, Vol. 58: 

277-297. 

Atteberry, A., D. Bassok, and V. C. Wong (2019). The effects of full-day Pre-kindergarten: 

experimental evidence of impacts on children’s school readiness. Educational 
Evaluation and Policy Analysis, Vol. 41(4): 537-562. 

Athey. S and G. Imbens (2016). Recursive partitioning for heterogeneous causal effects. 

Proceeding National Academic of Science, Vol. 113(27); 7353-7360. 

Athey. S., G. Imbens, Y. Kong, and V. Ramachandra (2016). An introduction to recursive 

partitioning for heterogeneous causal effects estimation using causalTree package. 

https://github.com/susanathey/causalTree. 

Austin. P.C (2018). Assessing the performance of the generalized propensity score for estimating 

the effect of quantitative or continuous exposures on binary outcomes.  Statistics in 

medicine, Vol. 37: 1874-1894. 

Austin. P.C and E. A. Stuart (2017). Estimating the effect of treatment in binary outcomes using 

full matching on the propensity score. Statistical methods in Medical Research, Vol. 

26(6), 2505-2525. 

Ayalon, H., and A. Yogev (1997). Students, schools, and enrollment in science and humanity 

courses in Israeli secondary education. Educational Evaluation and Policy Analysis, 

19(4), 339-353. 

Bautsch. B (2014).  The effects of concurrent enrollment on the college-going and remedial 

education rates of Colorado’s High School students. Colorado Department of Higher 
Education (CDHE) Working paper. 

https://github.com/susanathey/causalTree


36 

 

Becker. S.O. (2016). Using instrumental variables to establish causality. IZA World of Labor  

2016: 250. Doi:10.15185/izawol.250 

Berk. R and J. M. MacDonald (2008). Overdispersion and Poisson regression. Journal of 

Quantitative Criminology, Vol. 24: 269-284. 

Bernal. P., N. Mittag, and J. A. Qureshi (2016). Estimating the effects of school quality using 

multiple proxies. Labour Economics, Vol. 39: 1-10. 

Bifulco. R (2012). Can nonexperimental estimates replicate estimates based on Random 

Assignment in the evaluation of school choice? A within-study comparison. Journal 

of Policy Analysis and Management, Vol. 31(3): 729-751. 

Blundell, R and S. Bond (1998). Initial conditions and moment restrictions in dynamic panel data 

models. Journal of Econometrics, Vol. 87(1): 115-143. 

Borrego. M., E. P. Douglas, C. T. Amelink (2009). Quantitative, Qualitative, and Mixed Research 

Methods in Engineering Education. Journal of Engineering Education, Vol. 109(3): 

53-66. 

Bowles, T. J, and J. Jones (2004). The effect of supplemental instruction on retention: a bivariate 

probit model. Journal of student retention, Vol. 5(4): 431-437. 

Burke, M.A, and T.R. Sass (2008). Classroom peer effects and student achievement. National 

Center for Analysis of Longitudinal Data in Education Research Working Paper No. 

18, Washington DC. 

Boyd. G.A. (2008). Estimating Plant Level Energy Efficiency with a Stochastic Frontier. The 

Energy Journal, Vol. 29(2):  23-43. 

Browers, A. J, and R. Sprott (2012). Examining the multiple trajectories associated with dropping 

out of high school: a growth mixture model analysis. The journal of Educational 

Research, Vol. 105(3): 176-195. 

Collins, L. M, and L.S.T (2010). Latent Class and Latent Transition Analysis, With applications 

in the social, behavioral, and health sciences. New York: Wiley. 

Clark. J.A ( 1984). Estimation of Economies of Scale in Banking Using a Generalized Functional 

Form. Journal of Money, Credit, and Banking, Vol. 16(1): 53-68. 

Calcago. J.C and B. T. Long (2008). The impact of postsecondary remediation using a regression 

discontinuity approach: Addressing endogenous sorting and noncompliance. National 

Bureau of Economic Research (NBER) working paper No. 14194, Cambridge, MA. 

Canaan. S and P. Mouganle (2018). Returns to Education Quality for Low-Skilled Students: 

Evidence from a Discontinuity," Journal of Labor Economics, Vol. 36 (2): r: 395-436. 

Card. D (1999). The causal effect of education on earnings. Handbook of Labor Economics, Vol. 

3. Pp. 1801-1863. 

Cartwright, N. (2011). A philosopher’s view of the long road from RCTs to 
effectiveness. Lancet, 377, 1400–1401. 

Cascio. E. U (2019). Does universal preschool hit target? Program access and preschool impacts. 

National Bureau of Economic Research Working Paper 2315, Cambridge, MA. 

Cavalluzzo, L., D. L. Lowther, C. Mokher, and C. Fan (2012). Effects of the Kentucky Virtual 

Schools’ hybrid program for Algebra I on grade 9 student mat achievement. Institute 
of Education Sciences, National Center for Education Evaluation and Regional 

Assistance (NCEE) Working paper No. 2012-4020. U.S. Department of Education, 

Washington, DC 



37 

 

Chakraborty. T and R. Jayaraman (2019). School feeding and learning achievement: Evidence 

from India midday meal program. Journal of Development Economics, Vol. 139: 249-

269. 

Chisadza. S (2015). A bivariate probit model of the transition from school to work in the post-

compulsory schooling period: a case study of young adults in the cape area. DNA 

Economics. 

Choi, A., J. Calero, and J.O. Escardibul (2012). Private tutoring and academic achievement in 

Korea: an approach through PISA-2006, KEDI Journal of Educational Policy, Vol. 

9(2): 299-302. 

Cragg. J. G (1971). Some statistical models for limited dependent variables with application to the 

demand for durable goods, Econometrica, Vol. 39: 828-844. 

Croninger, R. G. J. K. Rice, A. Rathbun, and M. Nishio (2007). Teacher qualifications and early 

learning: effects of certification, degree, and experience on first-grade student 

achievement. Economics of Education Review, Vol 26: 312-324. 

Cornelisz, I (2013). Relative private school effectiveness in the Netherlands: A reexamination of 

PISA 2006 and 2009 data, Procedia Economics and Finance, Vol. 5: 192-201. 

Cordero. J.M., V. Cristobal, D. Santin (2017). Causal inference on education policies: A survey of 

empirical studies using PISA, TIMSS, PIRLS. Munich Personal RePEc Archive Paper 

No. 76295.Online at https;//mpra.ub.uni-muenchen.de/76295/ 

Chang. H.S, and Y. Hsing (1996). A study of Demand for higher education at private institutions 

in the US: A Dynamic and General Specification, Education Economics, Vol. 4(3): 

267-278. 

Denson. N and M. Ing (2014). Latent Class Analysis in Higher Education: An illustrative example 

of Pluralstic orientation. Research Higher Education, Vol. 55: 508-526. 

Denny, K., and V. Oppedisano (2013). The surprising effect of larger class sizes: Evidence using 

two identification strategies, Labour Economics, Vol. 23: 57-65. 

Deaton. A and N. Cartwright (2018). Understanding and misunderstanding randomized controlled 

trials. Social Science and Medicine, Vol. 201: 2-21. 

Denison. D. G (2002). Bayesian method for nonlinear classification and regression. Chichester 

England New York NY 

Deschant, N and K. Goeman (2015). Selection bias in educational issues and the use of Heckman’s 
sample model. In: Kristof De Witte (Ed), Contemporary Economic Perspective in 

Education. Leuven University Press pp. 35-51. 

Desjardins. C. D (2015). Modeling Zero-inflated and overdispersed count data: an empirical study 

of school suspensions. The Journal of experimental education, Vol. 84(3): 449-472. 

Doyle. W. R (2011). Effect of increased academic momentum on transfer rates: An application of 

the generalized propensity score. Economics of Education Review, Vol. 30 (1): 191-

200. 

Dronkers, J and S. Avram (2010). A cross-sectional analysis of the relations of school choice and 

effectiveness differences between private-dependent and public schools. Educational 

Research and Evaluation, Vol. 16(2): 151-175. 

Duchini. E (2017). Is college remedial education a worthy investment? New evidence a worthy 

investment? New evidence from a sharp regression discontinuity design. Economic 

Education Review, Vol 60: 36-53 

Duvendack, M., R. Palmer-Jones, J.B. Coperstrake, L. Hoope, Y. Loke, and N. Rao (2011). What 

is the evidence of the impact of microfinance on the well-being of the poor? EOO 1-



38 

 

center social science research unit, Institute of Education, University of London, 

London. ISBN 978-1-907345-19-7. 

Edwards. J. K., S. R. Cole, C. R. Lesko, W. C. C, Mathews, R. D. Morre, M. J. Mugavero, and D. 

Westreich (2016). An illustrative on inverse probability weighting to estimate policy-

relevant causal effects. American Journal of Epidemiology, Vol. 184(4): 336-344. 

Elze. C., J. Gregson, U. Baber, E. Williamson, S. Sartori, R. Mehran, M. Nicholas, G. W. Stone, 

and S. J. Pocock (2017). Comparison of propensity score methods and covariate 

adjustment. Journal of the American College of Cardiology, Vol. 69(3): 345-357. 

Eminita. V and R. Widiyasari (2019). Analysis of factors affecting the undergraduate student quit 

the study. Journal of Physics: Conference Series 1157 doi:10. 1088/1742-

6596/1157/3/032105. 

Evans. W. N and R. N. Schwab (1995). Finishing High school and starting college: Do Catholic 

Schools Make Difference? Quarterly Journal of Economics, Vol. 110: 941-974. 

Espinosa.A.M.G(2017). Estimating the education production function for cognitive and non-

cognitive development of children in Vietnam through structural equation modeling 

using the Young Lives data base. A thesis submitted in partial fulfillment of the 

requirements for the degree of Master of Science in Quantitative Research Methods at 

University College London. 

Fan, J, and Q. Yao (2003). Nonlinear time series: nonparametric and parametric methods. 

Springer: New York. 

Frieden. T. R (2017). Evidence for health decision making—beyond randomized, controlled trials 

N. Engl. J. Med., 377 (2017), pp. 465-475 

Fuller, S. C, and H. F. Ladd (2013). Schooled-based accountability and the distribution of teacher 

quality across grades in elementary schools. National Centers for Analysis of 

Longitudinal Data in Education Research, Working paper No. 75, Washington, DC.,  

Gronberg, T., D. W. Jansen, and L.L. Taylor (2011). The adequacy of educational cost functions: 

lessons from Texas, Peabody Journal of Education, Vol. 86(1): 3-27. 

Gee, K, and R. M. (2014). The effects of single-sex versus coeducational schools on adolescent 

peer victimization and perpetration. Journal of Adolescence, Vol. 3: 1237-1251. 

Golino. H. F and C. M. A. Gomes (2016). The random forest as an imputation method for 

education and psychology research: its impact on item fit and difficulty of the Rasch 

model. International Journal of Research and Methods in Education. Vol. 39(4): 345-

348. 

Grosskopf. S., K. J. Hayes, and L. L. Taylor (2014). Applied efficiency analysis in education, 

Economics and Business Letters, Vol. 3(1): 19-26. 

Gyimah-Brempong, K., and A. Gyapong (1991). Characteristics of Education Production 

Functions: An application of Canonical Regression Analysis. Economics of Education 

Review, 10(1), pp. 7-17. 

Gottfried. M. A (2010). Evaluating the relationship between student attendance and achievement 

in Urban Elementary and Middle Schools: An instrumental variables approach. 

American Educational Research Journal, Vol. 47(2): 434-465. 

Greene. T (2019).  The impact of the transfer on Baccalaureate competition. Education Research 

and Data Center (ERDC) Working paper, Olympia Washington. 

Guarcello. M.A., R. A. Levine, J. Beamer, J. P. Frazee, M. A. Laumakis,  and S. A. Schellenberg 

(2017). Balancing student success: Assessing supplemental Instruction Through 

Coarsened Exact Matching. Tech Know Lean, Vol. 22: 335-352. 



39 

 

Hanushek, E. (1979). Conceptual and Empirical Issues in the Estimation of Educational Production 

Functions. The Journal of Human Resources, 14(3), pp. 351-388 

Hoyle, R. (2012). The model specification in structural equation modeling. In: R. Hoyle, ed. 

Handbook of structural equation modeling. New York: Guilford Press, pp. 126-144. 

Hallberg, K., R. Williams, A. Swanlund, and J. Eno (2018). Short comparative interrupted Time 

series using aggregated school-level Data in Education Research, Educational 

Researcher, Vol. 47(5): 295-306. 

Hardman. J., A. Paucar-Caceres, and A. Fielding (2012). Predicting students’ Progression in 
Higher Education by using the Random Forest Algorithm. Systems Research and 

Behavioral Science, Vol. 30: 194-203. 

Harris. D and T. Sass (2007). Teacher training, teacher quality, and student achievement. National 

Centers for Analysis of Longitudinal Data in Education Research, Working Paper No. 

3, Washington, DC. 

Hanauer, Matthew (2019) "Using Propensity Score Matching to Evaluate Differences in Public 

and Private Students on Self-Control," International Journal of School Social Work: 

Vol. 4: Iss. 1. https://doi.org/ 10.4148/2161-4148.1034  

Harris, Heather D., "Propensity score matching in higher education assessment" (2015).Masters 

Theses. 55. https://commons.lib.jmu.edu/master201019/55 

Heckman. J (1997). Instrumental variables: a study of implicit behavioral assumptions used in 

making program evaluations. Journal of Human Resources, Vol. 32(3): 441-462. 

Heckman. J (1979). Sample selection bias as a specification error, Econometrica, Vol. 47: 153-

161. 

Hanushek, E. (2007). Education Production Functions, Stanford: Hoover Institution, Stanford 

University. 

Hanushek, E. A (1986). The economics of schooling, production, and efficiency in public schools, 

Journal of Economic Literature, Vol. 24: 1141-1177. 

Halkiotis, D., I. Konteles, and V. Brinia (2018). The technical efficiency of high schools: The case 

of a Greek Prefecture, Education Sciences, Vol. 8(84):  DOI:10.3390/educsci8020084 

Henderson, S., A. Petrosino, S. Gukenberg, and S. Hamilton (2008). A second follow up year for 

measuring how benchmark assessments affect student achievement (REL Technical 

Brief, REL 2008-002). Washington, DC: US. Department of Education, Institute of 

Education Sciences, National Center for Education and Regional Assistance, Regional 

Educational Laboratory Northeast and Islands. 

Herbst. C. M (2016). The impact of quality rating and improvement systems in families’ childcare 
choices and childcare labor supply.  Institute for the Study of Labor (IZA) Discussion 

Paper No. 10383. 

Hogrebe, N and R. Strietholt (2016). Does-non participation in preschool affect children's reading 

achievement? International evidence from propensity score analyses. Large scale 

assessment in education, Vol. 4(2): DOI 10.1186/s40536‑016‑0017‑3 

Hsiao. C (2007). Panel data analysis-advantages and challenges. Test: 16: 1-22. DOI 

10.1007/s11749-007-0046-x 

Iacus, S. M., G. King, G. Porro (2012). Causal inference without balance checking: coarsened 

exact matching. Political Analysis, Vol. 20: 1-24. 

Iacus, S. M., G. King, G. Porro (2019). A theory of statistical inference for matching methods in 

causal research, Political Analysis, Vol 27: 46-68 

https://commons.lib.jmu.edu/master201019/55


40 

 

Imbens. G.W and J. D. Angrist, 1994). Identification and Estimation of Local Average Treatment 

Effects. Econometrica, Vol. 62(2): 467-475. 

Joshi. R and J. M. Wooldridge (2019). Correlated random effects models with endogenous 

explanatory variables and unbalanced panels. Annals of Economics and Statistics, 

Vol. 134:243-268. 

Just. R. E.,  D. Zilberman, and E. Hochman (1983). Estimation of Multicrop Production Functions. 

American Journal of Agricultural Economics, Vol. 65(4): 770-780. 

Johnes, J., M. Portela, and E. Thanassoulis (2017). Efficiency in education, Journal of Operational 

Research Society, Vol. 68: 331-338. 

Jyoti. D.F., E.A. Frongillo, and S. J. Jones (2005). Food insecurity affects school children’s 
academic performance, weight gain, and social skills. Journal of Nutrition, Vol. 135: 

2831-2839. 

Kaliba. A. R., R. J. Mushi, A. G. Gongwe, and K. Mazvimavi (2020). A typology of adopters and 

nonadopters of improved sorghum seeds in Tanzania: A deep learning neural network 

approach. World Development, Vol. 127 

Karl. A. T., Y. Yang and S. L. Lohr (2013). A correlated random effects model for nonignorable 

missing data in the value-added assessment of teacher, Journal of Educational and 

Behavioral Statistics, Vol. 38(6): 577-603. 

Knaus. M., M. Lechner, and A. Strittmatter (2018). Machine learning estimation of heterogeneous 

causal effects empirical Monte Carlo evidence. Working paper, University of St. 

Gallen. 

Kuzmina, J and M. Carnoy (2016). The effectiveness of vocational versus general secondary 

education: Evidence from the PISA for countries with early tracking, International 

Journal of Manpower, Vol. 37(1): 2-24. 

Konstantopoulos, S, and S. She (2016). Class size effects of reading achievement using Cyprus: 

Evidence from TIMSS. Educational Research and Evaluation, Vol. 22: 86-109. 

Krueger. A. B (1997). Experimental estimates of education production functions. National Bureau 

of Economic Research (NBER) working paper 6051. Cambridge, MA 

Koç. C (2004). The productivity of health care and health production functions. Health Economics, 

Vol. 13(4): 739-747. 

Kline, R., (2011). Principles and Practice of Structural Equation Modeling. 3rd ed. New York: 

Guildford Press. 

Kang. L.,  F. Peng, and Y. Zhu (2019). Returns to Higher Education Subjects and Tiers in China: 

Evidence from the China Family Panel Studies. Studies in Higher Education, 

https://doi.org/10.1080/03075079.2019.1698538 

Lazer, D., R. Kennedy. G. King and A. Vespignani (2014). Big data. The parable of Google Flu: 

traps in big data analysis. Science, Vol. 343: 1203-1205. 

Lechner. M (2019). Modified causal forests for estimating heterogeneous causal effects. CEPR 

Discussion Paper No. DP13430. 

Lee. V. (2000). Using Hierarchical linear modeling to study social contexts: The case of school 

effects. Educational Psychologist, Vol. 35(2): 125-141. 

Linden. A (2015). Conducting interrupted time series analysis for single and multiple group 

comparisons. The Stata Journal, Vol. 15(2): 480-500. 

Liou. P-Y (2009). Model comparison for count data with a positively skewed distribution with an 

application to the number of University courses completed. Paper presented at the 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Ko%C3%A7%2C+%C3%87a%C4%9Fatay
https://doi.org/10.1080/03075079.2019.1698538


41 

 

Annual Meeting of the American Educational Research Association San Diego, April 

16, 2009. 

Liu. Z., A. C.A. Kanter, K. D. Messer, and H.M. Kaiser (2013).  Identifying significant 

characteristics of organic milk consumers: a CART analysis of an artefactual field 

experiment. Applied Economics, Vol. 45(21): 3110-3121. 

Li, W, and S. Konstantopoulos (2016). Class size effects on fourth Grade Mathematics 

Achievement: Evidence from TIMSS 2011. Journal of Research on Educational 

Effectiveness, Vol. 9(4): 503-530. 

Lokshin, M., and Z. Sajai (2004). Maximum likelihood estimation of endogenous switching 

models. The Stata Journal, Vol. 4(3): 282-289.  

Maddala. G. S (1983). Limited dependent and qualitative variables in Econometrics. Cambridge 

(UK): Cambridge University Press. 

McDaniel. T (2018). Using random forests to describe equity in higher education: a critical 

quantitative analysis of Utah’s Postsecondary Pipelines. Butler Journal of 
Undergraduate Research, Vol. 4, Article 10. 

Mckeown. K., T. Haase, and J. Pratschke (2015). Determinants of child outcomes in a cohort of 

children in the Free pre-school year in Ireland, 2012/2013. Irish Educational Studies, 

Vol. 34(3): 245-263. 

Mullainathan. S and J. Spiess (2017). Machin learning: An applied Econometric Approach. Journal 

of Economic Perspective, Vol. 31(2): 87-106. 

Mundlak, Y (1978). On the pooling of time series and cross-section data. Econometrica, Vol. 46: 

69-85 

Munoz, A.M., J. R. Prather, and J. H. Stronge (2011).  Exploring teacher effectiveness using 

hierarchical linear models: Students- and Class level predictors in elementary school 

reading. Planning and Changing, Vol. 42 (3/4): 241-273. 

Nguyen. A. N and J. Taylor (2003). Post-High School Choices: New Evidence from a multinomial 

logit model. Journal of Population Economics, Vol. 16(2): 287-306. 

Niu. L (2017). Family socioeconomic status and choice of STEM Major in College: An analysis 

of a National Sample. College Student Journal, Vol. 51(2): 298-312. 

O’Dwyer, L. M., and Parker, C. E. (2014). A primer for analyzing nested data: 

multilevel modeling in SPSS using an example from a REL study (REL 2015–046). 

Washington, DC: U.S. Department of Education, Institute of Education Sciences, 

National Center for Education Evaluation and Regional Assistance, Regional 

Educational Laboratory Northeast & Islands. Retrieved from 

http://ies.ed.gov/ncee/edlabs. 

Ogundari. K and O.D. Bolarinwa (2018). Impact of agricultural innovation adoption: a meta-

analysis. Australian Agricultural and Resource Economics, Vol. 62(2): 217-236. 

Ogundari. K, and A. B. Aromolaran (2014). Impact of education on household welfare in Nigeria. 

International Economic Journal, Vol. 28(2): 345-364.  

Oreopoulos. P (2006). Estimating Average and Local Average Treatment Effects of Education 

when Compulsory Schooling Laws Really Matter. The American Economic Review, 

Vo. 96(1): 152-175. 

Papke. E. L (2005). The effects of spending on test pass rates: evidence from Michigan. Journal 

of Public Economics, Vol. 80: 821-839. 

Parker, C. E., O’Dwyer, L. M., & Irwin, C. W. (2014). The correlates of academic performance 
for English language learner students in a New England district (REL 2014–020). 

http://ies.ed.gov/ncee/edlabs


42 

 

Washington, DC: U.S. Department of Education, Institute of Education Sciences, 

National Center for Education Evaluation and Regional Assistance, Regional 

Educational Laboratory Northeast Islands. http://eric.ed.gov/?id=ED546480. 

Pedhazur, E. J. (1997). Multiple regression in behavioral research: Explanation and prediction. 

London: Wadsworth. 

Pfeffermann, D, and V. Landsman (2011). Are private schools better than public schools? 

Appraisal for Ireland by methods for observational studies. The Annals of Applied 

Statistics, Vol. 5(3): 1726. 

Ponzo. M (2013). Does bullying reduce educational achievement? An evaluation using matching 

estimators. Journal of Policy Modeling, Vol. 35: 1057-1078. 

Power. S., J. Qian, K. Jung, A. Schuler, N. H. Shan, T. Hastie, and R. Tibshirani (2018). Some 

methods for heterogeneous treatment effect estimation in high dimensions. Sta. Med, 

Vol. 37: 1767-1787. 

Rodgers. J. R (2001). A panel-data study of the effects of student attendance on University 

performance. Australian Journal of Education, Vol. 45(3): 284-295. 

Raskind. I. G., R. Haardörfer, and C. J.Berg (2019). Food insecurity, psychosocial health and 

academic performance among college and university students in Georgia, USA. Public 

Health Nutrition: 22(3), 476–485. 

Roodman, D (2009). How to do xtband2: an introduction to differences and system GMM in Stata. 

The Stata Journal, Vol. 9(1): 86-136. 

Sakellariou. C (2007). Education policy reform, local average treatment effect, and returns to 

schooling from instrumental variables in the Philippines. Applied Economics, Vol. 

38(4): 473-481 

Salehi. M and M. Roudbari (2015). Zero-inflated Poisson and negative binomial regression 

models: application in education. Medical Journal of the Islamic Republic of Iran, Vol. 

29:  297 

Shan. S., C. Li, J. Shi, L. Wang, and H. Cai (2014). Impact of effective communication 

Achievements sharing and positive classroom environments on learning performance. 

Systems Research and Behavioral Science system Research, Vol. 31: 471-482. 

Siddique. Z (2014). Randomized control trials in an imperfect world. IZA World of Labor Working 

paper No. 110. DOI: 10.15185/izawol.110  

Silver. D., M. Saunders, and E. Zarate (2008). What factors predict high school graduation in the 

Los Angeles United School District. California Dropout Research Project Report # 14, 

University of California, Santa Barbara. 

Smerillo. N.E., A. J. Reynolds, J. A. Temple, and S. Ou (2019). Chronic Absence, Eighth-Grade 

Achievement, and High School Attainment in the Chicago Longitudinal Study. 

Journal of School of Psychology, Vol 67: 163-178. 

Somers. M., P. Zhu, R. Jacob, and H. Bloom (2003). The validity and precision of the comparative 

interrupted time series design in educational evaluation. MDRC Working Paper on 

Research Methodology. 

Storm. H., K. Baylis, and T. Heckelei (2019). Machine learning in agricultural and applied 

economics. European Review of Agricultural Economics.@doi:10.1093/erae/jbz033. 

Stratton. L.S., D. M. O’Toole, and J. N. Wetzel (2005). A multinomial Logit model of college Stop 
out and Dropout Behavior. Institute for the Study of Labor (IZA) Working paper No. 

1634. Bonn, Germany. 

http://eric.ed.gov/?id=ED546480
mailto:Economics.@doi:10.1093/erae/jbz033


43 

 

Streeter. A. J., N. X. Lin, L. Crathorne, M. Haasova, C. Hyde, D. Melzer, and W. E. Henley (2017). 

Adjusting for unmeasured confounding in nonrandomized longitudinal studies: a 

methodological review. Journal of Clinical Epidemiology, Vol. 87: 23-34. 

Subbiah. M., M.R. Srinivasan, and S. Shanthi (2011). Revisiting higher education data analysis: 

A Bayesian perspective. International Journal of Science and Technology Education 

Research, Vol. 12(2): 32-38. 

Sami. J., F. Pascal, and B. Younes (2013).  Public Road Transport Efficiency: A Stochastic 

Frontier Analysis, Journal of Transportation Systems Engineering and Information 

Technology, Vol. 13(5): 64-71. 

Scippacercola, S, and L. D’ Ambra (2013). Estimating the relative efficiency of secondary schools 
by Stochastic Frontier Analysis. Procedia Economics and Finance   17  ( 2014 )  79 – 

88. 

Theobald. E (2018). Students are rarely independent: What, Why, and How to use random effects 

in Discipline-Based Education Research. CBE-Life Sciences Education, Vol. 17: 1-

12. 

Tobin. J (1975). Estimation of relationships for limited dependent variables. Econometrica, Vol. 

46: 24-36. 

Todd, P., and K. Wolpin (2006). The Production of Cognitive Achievement in Children: Home, 

School, and Racial Test Score Gaps, Philadelphia: University of Pennsylvania. 

Topirceanu. A and G. Grosseck (2017). Decision tree learning used for the classification of student 

archetypes in online courses. Paper presented at the 21st International Conference on 

knowledge-based and intelligent information and engineering systems, KES2017, 6-8 

September, Marseilles, France. 

Tsai. S and Y. Xie (2011). Heterogeneity in Returns to College Education: Selection Bias in 

Contemporary Taiwan, School Science Research, Vol. 40(3): 796-810. 

Umansky. H and H. Dumont (2019). English Learner Labeling: How English Learner Status 

Shapes Teacher Perceptions of Students and the moderating role of Bilingual 

Instructional Settings. (EdWorkingPaper: 19-94). Retrieved from Annenberg Institute 

at Brown University: http://www.edworkingpapers.com/ai19-94 

Uysal. S. D. (2011). Three Essays on Doubly Robust Estimation Methods. Ph.D. Dissertation 

submitted to the University of Konstanz. 

Worthington, A (2001). An empirical survey of frontier efficiency measurement techniques in 

education,  Education Economics, Vol. 9(3): 245-268. 

Wager. S and S. Athey (2018). Estimation and inference of heterogeneous treatment effects using 

random forests. Journal of American Statistics Association, Vol. 113: 1228-1242. 

Wang. J., A. Hefetz, and G. Liberman (2017). Applying structural equation modeling research. 

Culture and Education, Vol. 29(3): 563-618. 

Wang, X., Y. Chuang, and B. McCready (2017). The effect of earning an associate degree on 

community college transfer students’ performance and success at four-year 

institutions. Teachers' College Record. 

West, M.R., and L. Woessmann (2010). Every catholic child in a catholic school: Historical 

resistance to state schooling contemporary private competition and student 

achievement across countries. The Economic Journal, Vol. 120(546): 229-255. 

Weerts, D. J., A. F. Cabrera, and P. P. Mejias (2013). Uncovering categories of civically engaged 

college students: a latent class analysis. The review of Higher Education, Vol. 37: 141-

168.  

https://www.sciencedirect.com/science/journal/15706672
https://www.sciencedirect.com/science/journal/15706672
http://www.edworkingpapers.com/ai19-94


44 

 

Wooldridge, J. M (2002). Econometric Analysis of cross-section and panel data. MIT Press, 

Cambridge, MA. 

Wooldridge, J.M (2019). Correlated random effects models with unbalanced panels, Journal of 

Econometrics, Vol. 211(1): 137-150. 

Xu. Z., J. Hannaway, and S. D’Sounza (2009). Student transience in North Carolina: The effect of 

school mobility on student outcomes using longitudinal data. National Center for 

Analysis of Longitudinal Data in Education Research Working Paper No. 22, 

Washington DC. 

Vigdor. J. I (2008). Teacher salary bonuses in North Carolina (Working paper 15). Washington, 

DC, National Center for Analysis of Longitudinal Data in Education Research. 

Vandenberghe, V, and S. Robin (2004). Evaluating the effectiveness of private education across 

countries: a comparison of methods. Labour Economics, Vol. 11(4): 487-506. 

Zwick. R (1993). The validity of the GMAT for the prediction of Grades in Doctoral Study in 

Business and Management: An empirical Bayes approach. Journal of Educational 

Statistics, Vol. 18(1): 91-107. 

Zeiser. K.L., J. Taylor, J. Rickles,  M. S. Garet, and M. Segeritz (2014).. Evidence of deeper 

learning outcomes: Technical appendix. (Report #3 Findings from the study of deeper 

learning: Opportunities and outcomes). Washington, DC: American Institutes for 

Research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 



1 

 

Appendix  

i. Model development for cross-sectional data 

Model development is a mathematical visualization of relationships among variables to address 

research questions or study objectives in research. An analytical model has always been designed 

to understanding factors and conditions associated with educational outcomes. It could be research 

to understand the effects of teaching quality, teacher's certification, availability of teaching aid, or 

student absence from school on a potential education outcome such as student performance (grade 

in math or reading).  

A generalized analytical framework to understand factors and conditions associated with 

educational outcomes for cross-sectional data could take the form. 𝑦𝑖 = 𝛿0 +  𝛽𝑋𝑖 +  𝜑𝑍𝑖 +  𝜀𝑖        1 

where 𝑦𝑖  is the dependent variable which could be earning or participation in STEM program for 

i-th respondent given an example above; X represents the level of education attained by the i-th 

respondent; Z is a vector of demographic factors for i-th respondents; 𝛽 and 𝜑  are parameters to 

be estimated; 𝛿0 is the intercept ; 𝜀𝑖  represents the error term assumed to have mean zero and 

constant variance. 

Specific examples from the literature include: 

Example1: To examine the effects/impact of educational attainment on earnings while controlling 

for demographic factors of the respondents in the sample (Ogundari and Aromolaran, 2014; 

Andrews et al.,2012).  

Example 2: To examine the effects of respondents' socio-economic and demographic factors in 

participating in the STEM program (An et al., 2018; Niu 2012). 

Example 3: To investigate the impact of teaching aids as Virtual school hybrid Algebra I 

development on students' math performance (Cavalluzzo et al., 2012). 

Example 4: To investigate the impact of teacher quality and training on students' performance 

(Fuller and Ladd, 2013; Harris and Sass 2007). 
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ii. Analytical model development for Panel data 

The availability of a longitudinal survey that extends beyond one period or extends back to 2 to 

more years provides an opportunity to examine the trends in the potential outcomes of interest. In 

this case, there is a need to remodify the above model specification to consider the data's time 

dimension, as shown below. 𝑦𝑖𝑡 = 𝛽𝑋𝑖𝑡 +  𝜑𝑍𝑖 + 𝛿𝑖 + 𝜀𝑖𝑡         2 

where 𝑦𝑖𝑡 is the dependent variable for i-th respondent in the t period, which could be students test 

scores ( See Fuller and Ladd, 2013); Xit represent time-varying explanatory variables which could 

be an indicator of teacher quality and Zi is a vector of time-invariant control variables such gender,  

ethnicity, individual, country, regional or specific fixed effect, etc. for i-th respondents; 𝛽 and 𝜑  

are parameters to be estimated; 𝛿𝑖 is the unobserved heterogeneity;  𝜀𝑖𝑡 represents the idiosyncratic 

error term. 

iii.  Analytical model development for estimating causal Inference 

The evaluation of the impact of programs such as pre-school, remedial education, or early learning 

programs, among others, on cognitive outcomes (e.g., reading scores, math scores) is important to 

guide policymakers on whether these programs worth investment or assessing the effectiveness of 

these programs. A typical model specification to evaluate the impact of programs on potential 

outcomes of interest as often used in agriculture, health, education, transportation, etc., can be 

specified. 𝑦𝑖 = 𝛿0 +  𝛽𝑇 +  𝜑𝑍𝑖 +  𝜀𝑖         3 

where 𝑦𝑖  represents potential outcome ( e.g., test score) for i-th respondent; T is  the indicator 

representing assignment into treatment for the  i-th respondent1; Z is a vector of socio-demographic 

factors for i-th respondents; 𝛽 and 𝜑 are parameters to be estimated, where 𝛽 represents estimated 

impact of interest ; 𝛿0 is the intercept ;   𝜀𝑖 represents the error term assumed to have mean zero 

and constant variance.  

 
1 It is important to note that, in the evaluation literature, “treatment” conventionally refers to the individuals who 
participate in the program. 
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While equation 3 is referred to as an outcome equation, the selection equation similar to the first 

stage equation described in Heckman (1979) or first hurdle described in Cragg (1971) can be 

defined below 𝑇𝑖 = Ω0 +  𝜎𝑍 +  𝜋𝑋𝑖 +  𝜐          4 

where 𝑇𝑖  and 𝑍 are as defined earlier; X is additional variables that could be a valid instrument to 

identify the process. 𝜎, Ω0, and 𝜋 are parameters to be estimated. 𝜐 is the error term assumed to 

have mean zero and constant variance. 

With the availability of panel data, equation 3 can be re-specified to reflect this as follows 𝑦𝑖𝑡 = 𝜑0 +  𝜂𝑇 +  𝜏𝑍𝑖𝑡 +  𝜁𝑖𝑡 , t=1, 2,……Time      5 

 where 𝑦, T, and Z are as defined earlier; 𝜑, 𝜂, 𝑎𝑛𝑑 𝜏 are parameters to be estimated   ; 𝜁𝑖𝑡 

are random disturbances.  

 The difference in difference (DiD) specification in Equation 5 can be defined as 𝑦𝑖𝑡 = ⍵0 +  𝜗𝑇𝑖𝑚𝑒 + 𝜋𝑇 + 𝜏(𝑇𝑖𝑚𝑒 ∗ 𝑇) +  𝜏𝑍𝑖𝑡 + Ω𝑖𝑡 , t=1, 2,……Time  6 

where 𝑦, T, and Z are as defined earlier; 𝜏 is the coefficient of DiD estimator; Ω𝑖𝑡 are the random 

disturbances.  

iv. Endogeneity problem in education production function: The role of instrumental 

variable estimator  

There are five commonly encountered situations where the regression model's endogeneity 

problem exists. This includes simultaneous causality, omitted variable, errors in variables, sample 

selection, and functional form misspecification. The existence of endogeneity problems in 

regression biased the policy results, so education researchers must consider this in their research.2  

A typical example of this is estimating the effect of attendance on student performance, or the 

impact of education attained on earnings, or the impact of programs such as early learning 

education on student performance. The problem here is that attendance, education achieved, or 

 
2 There is a test often perform to test whether a regressor is actually endogenous and is called Durbin-Wu Hausman 

test. There are some regressors that are obviously predetermine from economic theory that are endogenous. Example 

of this is education in this example. Education or regressors generally can be tested using this Durbin-Wu Hausman 

test. 
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participation in early learning education is not exogenous (or is endogenous), which violates the 

classical assumption of linear regression that an explanatory variable should be exogenous. In 

practice, what this means is that attendance, education attained, or participation in early learning 

education should not be correlating with the error terms. The existence of the endogeneity problem 

asymptotically biases the results. 

The endogeneity problem is widespread in education research, and researchers have not been pay 

attention to this. Equation 3, with treatment assignment T- representing early learning participation 

or STEM program participation, is a typical example of an endogeneity problem due to selection 

bias. The specification below is the impact of education achieved by year of schooling on earnings 

while controlling for respondents' characteristics. 𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠𝑖 = ⍵0 +  𝜗𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑌𝑒𝑎𝑟 +  𝜏𝑍𝑖 + Ω𝑖     7 

where Earnings is the wage rate per hour; EducationYear is the year of schooling attained; Z is 

respondents' characteristics such as age, gender, ethnicity, etc.  𝜗, ⍵, and 𝜏 are parameters to be 

estimated; Ω𝑖𝑡 is a random disturbance.  The parameter of interest here is 𝜗, which captures returns 

to education. 

The problem here is that year of education is endogenous because education attained depends on 

so many factors such as ability, parent education, school quality, etc., which are omitted in equation 

7, perhaps due to lack of data. Therefore, the estimation of equation 7 without controlling for this 

problem bias the estimated return to education 𝜗 for policy. 

There are various approaches to mitigate the endogeneity problem in IV regression, including two-

stage least square (2SLS), 2 stage GMM, and Limited information maximum likelihood (LIML) 

estimators. While 2SLS and 2 step GMM are very popular among researchers, the computational 

difficulty of LIML makes limits its usage. Unlike 2SLS, 2 stage GMM is robust to 

heteroskedasticity. In the absence of heteroskedasticity, 2SLS is consistent as 2 stage GMM> 

Other methods include control function or, in some cases, the Heckman selection model depending 

on the data generating process. We discussed Heckman's selection bias in detail in the main text. 

Our focus here is to describe the specification of 2SLS for IV regression. 

The solution to the endogeneity of education year in equation 7 above is to find an instrument (m) 

that is correlated with earnings but not correlated with the error term (i.e., Cov (earnings, m)≠0 & 
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Cov(m, Ω𝑖)=0).3 The IV regression uses the instrument to estimate first stage regression where 

endogenous regressor (e.g., EducationYear) is expressed as a function of the instrument (e.g., m)  

and other explanatory variables (e.g., Z), as shown below. 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑌𝑒𝑎𝑟 = 𝜐0 +  𝜎𝑚 +  𝛼𝑍𝑖 +  𝛷𝑖      8 

After that, the predicted value from the first stage (equation 8) denoted by 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑌𝑒𝑎𝑟̂  

replaces the original variable in equation 7 as specified below 𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠𝑖 = 𝜚0 +  𝜁 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑌𝑒𝑎𝑟̂ +  𝜍𝑍𝑖 + 𝜖𝑖     9 

Equation 9 is called a reduced equation. Unlike 𝜗 in equation 7, the estimated return to education 𝜁 in equation 9 is unbiased and reliable for policy inferences since the instrument (m) introduces 

an element of randomness into the assignment, which approximates the effect of an experiment 

(Vandenberghe and Robin, 2004). This explained why the IV estimator is also a popular causal 

inference method for mitigating selection bias problems in data. We discuss this in detail in the 

main text. Besides, the linear IV estimators described above, it is important to note that it can be 

extended to a binary response-dependent variable such as IV probit for binary variable or IV Tobit 

for censored dependent variable. 

As noted by Woodridege (2002), the problem here is finding the instrument (m) that is uncorrelated 

with the error term of the original equation (i.e., Cov(m, Ω𝑖)=0) and at the same time correlated 

with the endogenous variable (i.e., Cov(m, Education Year)≠0). Thus, it is vital to check the 

validity of the instrument (m), also called the relevance test, and a test of overidentification using 

the Sargan test. The instrument's relevance is based on the estimated F statistics from the first stage 

(equation 8). As a rule of thumb, a critical F-statistic of 10 and above shows that the instrument is 

sufficiently strong (Wooldrideg 2002). With the instruments' k-number, the Sargan test is essential 

to assess whether the instruments are over-identified or just identified. A detailed discussion of 

this method is available in Angrist and Pischke (2008).  

Vandenberghe and Robin (2004) evaluate the effectiveness of private education Vs. Public 

education on student performance across countries, where the authors used a dummy, equals 1 if 

a pupil attends a school located in a big city and 0 otherwise. Gottfried (2010) evaluates the effect 

 
3 The illustration here is similar to the one describes in the footnote 3. 
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of attendance on student achievement. The author used the distance in exact miles a student lives 

from school as an instrument to control for the endogeneity of attendance in the study.  Card (1999) 

employed IV regression to estimate the effect of education on earnings. The author used a dummy, 

equals one if born in the university's neighborhood, and 0 otherwise as an instrument for years of 

schooling in the study. 

 

 

 

 

 

 

 

 

 

 


