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Abstract. This paper presents a novel approach to the task of video-
based crowd counting, which can be formalized as the regression problem
of learning a mapping from an input image to an output crowd density
map. Convolutional neural networks (CNNs) have demonstrated strik-
ing accuracy gains in a range of computer vision tasks, including crowd
counting. However, the dominant focus within the crowd counting liter-
ature has been on the single-frame case or applying CNNs to videos in a
frame-by-frame fashion without leveraging motion information. This pa-
per proposes a novel architecture that exploits the spatiotemporal infor-
mation captured in a video stream by combining an optical flow pyramid
with an appearance-based CNN. Extensive empirical evaluation on five
public datasets comparing against numerous state-of-the-art approaches
demonstrates the efficacy of the proposed architecture, with our methods
reporting best results on all datasets.

1 Introduction

Crowd counting is a well-studied area in computer vision, with several real-
world applications including urban planning, traffic monitoring, and emergency
response preparation [1]. Despite these strong, application-driven motivations,
crowd counting remains an unsolved problem. Critical challenges that remain in
this area include severe occlusion, diverse crowd densities, perspective effects,
and differing illumination conditions.

The task of crowd counting is well understood: Given an arbitrary image
of a scene without any prior knowledge (i.e., unknown camera position, camera
parameters, scene layout, and crowd density), estimate the number of people
in the image. In general, there are two methodologies for estimating the per-
son count in an image: detection-based (e.g., [2–4]) and regression-based (e.g.,
[5–11]). Detection-based approaches leverage the rapid advancements of convolu-
tional neural network (CNN) object detectors, applying them to the specialized
task of identifying human bodies/heads. Although significant progress has been
made recently with detection-based approaches, they still perform better at lower
crowd densities, with accuracies degrading on challenging images with very high
densities, low resolution faces, and significant occlusions. In contrast, regression-
based approaches typically employ a CNN to produce a density map, represent-
ing the estimated locations of persons within the image. With regression-based
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Fig. 1. Overview of the proposed approach to video-based crowd counting. Motion
information is incorporated via a pyramid of optical flow that is computed from con-
secutive frames of the input video. The flow field is applied to multi-scale feature maps
extracted from the previous frame via an image warp, W , and injected as an addi-
tional source of information into the decoder portion of the baseline network, which is
described in Section 3.1.

methods, the overall person count can be attained by integrating over the entire
density map. Thus, with regression-based approaches, the detection challenge is
bypassed completely and the problem is transformed to that of training a CNN
to learn the correspondence between an input image and a crowd-density map.

Although most prior work on crowd counting has focused on determining
the number of people in a static image (e.g., [12, 8, 13–15, 6]), in most real-world
settings, a video-stream is available. In such settings, it is natural to consider
what techniques can leverage this additional temporal information and improve
count accuracies. Intuitively, motion information can effectively remove false
positives and negatives by combining information from neighboring frames, thus
producing more temporally-coherent density maps. Moreover, temporal infor-
mation can benefit occlusion scenarios where people are blocked from view in a
specific frame, but are visible in surrounding frames.

One of the most well-studied representations of motion information in com-
puter vision is optical flow, which can be computed using traditional (e.g., [16])
or deep learning (e.g., [17]) techniques. The fundamental idea explored in this
paper is to improve crowd counting estimates in video by utilizing the motion
information provided by explicitly-computed optical flow.

Figure 1 shows a conceptual overview of the proposed approach. The founda-
tion of the method is a baseline CNN that receives a single image as input and
produces a crowd density map as the output. In this work, a novel CNN is used
that consists of two sub-sections: a feature extractor and a decoder. As shown in
Figure 1, motion information is incorporated into the full system by computing a
pyramid of optical flow from consecutive video frames. The multi-scale pyramid
of flow is used to warp the previous frame’s feature maps (i.e., feature embed-
dings) from the decoder sub-network toward the current frame. These warped
feature maps are concatenated with the corresponding maps from the current
frame. By complementing the decoder sub-network with motion information, the
overall system is able to produce more temporally coherent density maps and
achieve state-of-the-art accuracies.
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There are four contributions of this paper:

– A novel video-based crowd counting system that incorporates motion infor-
mation via a multi-scale embedding warp based on optical flow. To the best
of our knowledge, integrating optical flow with a deep neural network has
not been attempted previously for region of interest (ROI) crowd counting.

– An extensive evaluation on three video-based crowd counting datasets (UCSD
[18], Mall [19] and Fudan-ShanghaiTech [9]) showing the proposed model
outperforms all state-of-the-art algorithms.

– An illustration of the transfer learning abilities of the proposed approach,
whereby knowledge learned in a source domain is shown to effectively transfer
over to a target domain, using a small amount of training data. Here, the
source and target domains correspond to two different scenes/environments
observed in video datasets.

– Although not the primary focus, a secondary contribution is a new coarse-
to-fine baseline CNN architecture for image-based crowd counting. This
customized network is an extension of CSRNet [7], with a novel decoder
sub-network. In an extensive evaluation on two challenging image datasets
(UCF CC 50 [20] and UCF-QNRF [20]), as well as the abovementioned three
video datasets, this enhanced network meets or exceeds alternative state-of-
the-art methods.

2 Related Work

2.1 Counting in static images

In recent years, most crowd counting systems are based on convolutional neural
networks (CNNs). An early example of such an approach was that by Zhang et
al. [12], which introduced a cross-scene crowd counting method by fine-tuning a
CNN model to the target scene.

One of the major research directions within crowd counting is addressing
the challenge of scale variation (e.g., [8, 13, 15, 6, 21, 22]). Specifically, a crowd
counting system should produce accurate results regardless of the size of the
people within the image. One such work that addresses this challenge proposed a
multi-column architecture (MCNN) [8]. Other approaches have taken a different
tack whereby coarse-to-fine architectures are used to produce high-resolution
density maps (e.g., [15, 6]).

One work on image-based crowd counting by Li et al. [7] proposed a novel
architecture called CSRNet that provides accurate estimates in crowded environ-
ments. CSRNet shares a similar network architecture to the baseline proposed
here; however, their decoder sub-network uses dilated convolution to produce
density maps that are 1/8th of the input image size. In contrast, the proposed
decoder has a deeper network structure and employs transposed convolution to
attain density maps at the full image resolution.

Recently, PGCNet proposed a single column architecture to resolve intra-
scene scale variation with the help of an autoencoder-based perspective estima-
tion branch [23]. S-DCNet [22], which is another recent algorithm, operates in a
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divide-and-conquer fashion where feature maps are split until the person count
within any one division is no greater than a set value. The system then classifies
person counts into a set of intervals to determine the best count for each division.
In contrast to S-DCNet, our baseline does not require any classification stages
and is independent of assumptions regarding person counts within a division,
such as interval ranges.

2.2 Video-based counting methods

Most previous works in crowd counting focus on the single image setting; there
are much fewer examples of video-based crowd counting in the literature. Within
the video domain, two sub-problems have emerged for crowd counting: region of
interest (ROI) [11, 10, 9] and line of interest (LOI) [24–26]. For ROI counting,
the number of people within a certain image region (or, the entire image) is
estimated; whereas, for LOI counting, a virtual line in the image is specified and
the task is to determine the number of individuals that cross this line.

Several LOI works extract temporal slices from the line of interest to detect
the transient crossing events [27, 28, 26]. Challenges for these approaches include
foreground blob detection and processing, as well as disentangling confounding
variables (e.g., blob widths are affected by number of people as well as velocity).
More recent LOI counting work has considered using deep neural networks, in-
cluding one system that included an ROI counting sub-module [24]. Although
ROI and LOI counting share common challenges (e.g., perspective distortion,
scale variation, occlusions), the specialized problem definition tends to drive dif-
ferent technical approaches, which are not typically directly transferable. The
methods proposed in the current work focus on ROI counting, which will be
referred to simply as crowd counting in the remainder of the paper.

For video-based crowd counting, a significant open problem is how to best
leverage temporal information to improve count estimates. In one such work,
ConvLSTMs were used to integrate image features from the current frame with
those from previous frames for improved temporal coherency [11]. Further, Zhang
et al. [10] proposed the use of LSTMs for vehicle counting in videos. Most of
the LSTM-based approaches suffer from the drawback that they require a pre-
defined number of frames to use as ‘history’ and, depending on dataset, some of
these frames may provide irrelevant or contradictory information.

Fang et al. [9] updated their model parameters using information based on
dependencies among neighbouring frames, rather than via an LSTM. However,
in their approach, a density regression module was first used in a frame-by-
frame fashion to produce regression maps, upon which a spatial transformer was
applied to post-process and improve the estimates. Although focusing on LOI
counting, Zhao et al. used a convolutional neural network that processed pairs
of video frames to jointly estimate crowd density and velocity maps [24]. The
estimated velocity maps differ from dense optical flow in that they only have
non-zero values in the locations of pedestrians.

The sole work that we are aware of that has incorporated optical flow for
ROI crowd counting is a classical approach using traditional computer vision
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techniques (e.g., background subtraction and clustering the flow vectors) [29].
Their proposed system includes numerous hand-tuned parameters and employed
the assumption that the only moving objects in the scene are pedestrians, which
is not realistic in most scenarios. Differing from the above, our proposed approach
integrates optical flow-based motion information directly, by warping deep neural
network feature maps from the previous frame to the next.

2.3 Optical flow pyramid

Many recent works applying CNNs to video data have demonstrated the benefit
of including optical flow. Two-stream and multi-stream networks have already
shown effectiveness for action recognition [30, 31] and action detection [32–35].
These approaches mostly use optical flow as an additional, parallel source of
information which is fused prior to prediction. Other work has utilized optical
flow to warp intermediate network features to achieve performance speed-ups
for video-based semantic segmentation [36, 37] and object detection [36].

Most similar to the current work is an approach to semantic segmentation
in video that introduces a “NetWarp” module [38]. This module utilizes opti-
cal flow, modified by a learned transformation, to warp feature maps between
consecutive frames and subsequently combine them with maps from the current
frame, resulting in more stable and consistent segmentation results. In contrast,
our proposed solution adopts an optical flow pyramid to capture motion at mul-
tiple scales and applies the unmodified flow to the feature maps directly for the
task of crowd counting. To the best of our knowledge, no prior work has made
use of optical flow-based feature map warping for video-based crowd counting,
as proposed here.

3 Technical Approach

3.1 Crowd counting baseline network

The baseline network serves as a single-frame crowd density estimator and con-
tains two sub-modules: a feature extractor and a decoder. Although it is not
the primary technical contribution of this work, the baseline network extends
CSRNet [7], yielding a significantly more accurate density estimator. These ex-
tensions will be highlighted in the following.
Feature extractor: A customized VGG-16 network [39], initialized with Im-
ageNet [40] weights was selected as the feature extractor in order to perform
fair comparison with other methods [7, 6] using the same backbone network. To
avoid feature maps with small spatial extent, three maxpool layers were used,
which results in feature maps of 1/8th of the input image size at the bottleneck.
Differing from [7], ReLU activation functions were replaced with PReLU [41] for
each layer to avoid the ‘dying ReLU’ problem.
Decoder network: The decoder of CSRNet consists of six dilated convolution
layers followed by a 1×1 convolution, resulting in an output density map that is
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Fig. 2. System diagram for MOPN. The input image is passed through the feature
extractor and optical flow is computed between the previous and current frame. Multi-
scale feature maps from the previous frame are warped via the computed optical
flow and concatenated with the corresponding feature maps in the current frame.
This step combines complementary scale-aware motion based features with traditional,
appearance-derived features in the proposed network. The crowd count can be obtained
by summing over the entries in the predicted density map provided by the 1× 1 con-
volution layer.

1/8th the size of the input image. In contrast, the proposed decoder is comprised
of nine convolutional layers, three transposed convolution layers, followed by a
final 1× 1 convolution layer. This modified decoder design results in coarse-to-
fine feature maps and a high-resolution (i.e., same as input size) density map as
the final output. The ReLU activation functions in CSRNet were also replaced
with PReLU throughout the decoder.

The main motivation for these architectural changes was three-fold: i) The
proposed coarse-to-fine design eases the integration with the optical flow pyra-
mid in the full, proposed model. ii) By using transposed convolution, the decoder
output is full-resolution, making it more practical to resolve small humans within
the image. iii) The additional learnable parameters introduced by the extra con-
volutional layers and PReLU activation functions empirically leads to signifi-
cantly improved accuracies. In Section 4.2 and Section 4.3, the performance of
the proposed baseline network is compared against state-of-the-art methods.

3.2 Multi-scale optical flow pyramid network (MOPN)

The general philosophy of the proposed full model is to leverage complementary
appearance and motion information to improve counting accuracies.

One challenge with optical flow is effectively capturing large object displace-
ments while simultaneously maintaining accuracies for small movements. Video
camera configurations for crowd density estimation are varied: Some cameras
are high resolution and have frame rates of 30 fps (e.g., FDST Dataset [9]),
while others may be low resolution with frame rates of 2 fps or lower (e.g., Mall
Dataset [19]). For a 30 fps video, the inter-frame motion of objects tends to be
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small, but for cameras running at 2 fps, scene objects can move significantly
between consecutive frames.

To accommodate the range of inter-frame motion that may be encountered
in crowd counting scenarios, an image pyramid is utilized when computing op-
tical flow. With this method, large pixel displacements will be captured by the
coarse scales, which are subsequently refined to have higher precision at the finer
scales. This pyramid of multi-resolution optical flow maps is then applied to the
corresponding feature maps from the decoder network. With this approach, both
large and small displacements are modeled and addressed.

In detail, let fn and fn−1 represent the current and previous input video
frames, respectively. The proposed approach computes optical flow between fn
and fn−1 at three scales in an image pyramid, using a pixel subsampling factor of
two between pyramid layers. As shown in Fig. 2, Scale 1 (S1) captures large inter-
frame displacements found in the video, while Scale 3 (S3) effectively captures
small motions that would typically be found in 30 fps video. The middle scale,
S2, describes mid-range optical flow bounded by S1 and S3. FlowNet 2.0 [17]
is employed for computing the flow in the current work, although the overall
approach is agnostic to the specific optical flow algorithm adopted.

As shown in Fig. 2, once the multi-scale pyramid of optical flow is computed,
each flow map is applied as a warping transformation to the feature maps at the
corresponding pixel resolution from the previous frame. The warped feature map
is then concatenated with the corresponding embedding computed for the cur-
rent frame. By including the motion information via the previous frame’s warped
feature maps, MOPN achieves improved temporal consistency and robustness
when appearance information is unreliable (e.g., partial occlusions, objects with
human-like appearances).

3.3 Training details

The training method for the proposed MOPN system consists of two steps: base-
line network training and full model training. Baseline network training proceeds
by initializing the network with ImageNet weights, from which it is subsequently
updated. During this stage, a dataset is selected (e.g., UCSD [18]) and the net-
work is trained using samples from that dataset. Based on the validation samples,
the best model is selected and evaluated on the test samples. All images and cor-
responding ground truth are resized to 952 × 632. In Fig. 2, the upper portion
of the network depicts the baseline network.

For the full MOPN model, the parameters of the feature extractor portion
of the network, θz, are initialized with the corresponding baseline pretrained
weights, θP , and frozen. To incorporate motion information into MOPN, the
baseline decoder, D, is replaced with a trainable, motion-based decoder, D

′

.
For every frame, the image is first downsampled to create a three-level image
pyramid from which optical flow is calculated to yield flowj , where j is the
pyramid level.

For each epoch, i, training of the MOPN motion-based decoder proceeds as
follows. The feature maps for the previous frame, n − 1, and current frame, n,
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are computed using, F(n−1)j = Z
′

j(fn−1, θD′

n−1

) and Fnj = Z
′

j(fn, θD′

n−1

), re-

spectively. The term Z
′

j denotes the nonlinear network function that produces
the feature maps at network layer j for an input image. Warped versions of
the feature maps from the previous frame are calculated according to Fwj =
WARP(F(n−1)j , f lowj) which are then concatenated with Fnj , the feature maps
of the current frame. Feature map concatenation results in the formation of
higher dimensional maps, Fm

j , which are subsequently used to update the mo-
tion decoder and obtain a new set of parameters θD′

n

. Intuitively, the intermedi-
ate layer outputs from every frame are propagated forward to the next frame in
order to train the decoder of MOPN. Note that for the special case of n = 2, the
baseline decoder network is used for feature map generation, as the shared pa-
rameters within the MOPN decoder are initialized by the frozen baseline decoder
parameters, θD.

Regarding the loss function, the difference between the predicted density map
and ground truth is measured by Frobenius Norm. Namely, the loss function is:

L(θ) =
1

2N

N
∑

n=1

||M(fn, θ)−MGT
n ||22, (1)

where, N is the number of training frames, M(fn, θ) is the predicted density
map and MGT

n is the corresponding ground truth.

For all experiments in the paper, we use the following hyperparameter set-
tings across all the datasets: learning rate = 0.00001, number of epochs = 2000,
batch size = 2 (two consecutive frames at a time) with the Adam optimizer
[42]. A summary of the training procedure for updating the MOPN decoder is
provided in Algorithm 1.

Ground truth generation: For crowd density estimation, ground truth gener-
ation is very important in order to ensure fair comparison. To remain consistent
with previous research, the same approaches described in [6, 7, 11, 9] were used
to generate the ground truth density maps in the current paper. For the datasets
in which a ROI mask is provided, the ROI was multiplied with each frame to
allow density maps to be generated based on the masked input images.

4 Experiments

4.1 Evaluation metric

Following previous works [8, 5–7], Mean Absolute Error (MAE) and Mean Square
Error (MSE) are used as evaluation metrics. Let N be the number of test im-

ages, C
(n)
gt the ground truth count, and C(n) be the predicted count for the

n-th test image. These two evaluation metrics are defined as follows: MAE =

1
N

∑N

n=1 |C
(n) − Cgt(n)| and MSE =

√

1
N

∑N

n=1 |C
(n) − Cgt(n)|

2
.
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Algorithm 1: MOPN training procedure.

Input: Frame sequence {fn}
N
n=1 with ground truth density maps {MGT

n }
Output: Trained parameters θD′

/* θz denotes parameters of the MOPN feature extractor */

/* θD′ denotes parameters of the MOPN decoder */

/* θP denotes parameters of base network */

1 Initialize θz and θD′ with θP
2 Freeze θz

/* T denotes the maximum number of epochs. */

3 for i = 1 to T do

4 for n = 2 to N do

5 Extract {F(n−1)j}
3
j=1 from f(n−1)

6 Extract {Fnj}
3
j=1 from fn

/* {Fnj}
3
j=1 denotes F as the feature map output for the nth

frame with jth scale */

7 for j = 1 to 3 do

8 flowj = Optical flow(f(n−1)j , fnj)
9 Fwj = WARP (F(n−1)j , f lowj)

10 Fm
j = Fwj ⊕ Fnj

/* From Eq. 1 */

11 lossbest = argmin[L(θ)]
12 Backpropagate and update θD′

4.2 Crowd Counting in Images

UCF CC 50: The UCF CC 50 dataset [20] is a benchmark for crowd counting
in static images focusing on dense crowds captured from a wide-range of loca-
tions around the world. The images in this dataset do not come from a video
camera, meaning that it can not be used to test the full, proposed MOPN model;
however, the proposed baseline model is evaluated on this dataset. To ensure a
fair comparison, 5-fold cross validation was performed, as was done for S-DCNet
[22]. As shown in Table 2, the propoed baseline attains the best MAE and second
best MSE scores against the alternative approaches. Only DRSAN [43] slightly
outperforms our baseline under the MSE mertic.

UCF-QNRF: UCF-QNRF [44] is a large crowd counting dataset consisting
of 1535 high-resolution images and 1.25 million head annotations. This dataset
focuses primarily on dense crowds, with an average of roughly 815 persons per
image. The training split is comprised of 1201 images, with the remaining left for
testing. During training, we follow the data augmentation techniques described
in [22]. Also, we resized the images to 1/4

th
of their original size.

The results on this dataset from the proposed baseline are impressive, at-
taining the best result for both MAE and MSE. This result clearly indicates the
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Table 1. Performance comparisons on UCF CC 50 [20] and UCF-QNRF [44] datasets.
For this and subsequent tables throughout the paper, blue numbers refer to the best
result in each column, while red numbers indicate second best.

UCF CC 50 UCF-QNRF
Methods

MAE MSE MAE MSE

Idrees et al. [3] 468.0 590.3 315 508

Context-Aware Counting [45] 212.2 243.7 107 183

ADCrowdNet [46] 257.1 363.5 - -

MCNN [8] - - 277 426

CMTL [15] - - 252 514

Switching-CNN [6] - - 228 445

Cross Scene [12] 467.0 498.5 - -

IG-CNN [47] 291.4 349.4 - -

D-ConvNet [48] 288.4 404.7 - -

CSRNet [7] 266.1 397.5 - -

SANet [49] 258.4 334.9 - -

DRSAN [43] 219.2 250.2 - -

PGC [23] 244.6 361.2 - -

TEDnet [50] 249.4 354.5 113 188

MBTTBF-SCFB [51] 233.1 300.9 97.5 165.2

S-DCNet [22] 204.2 301.3 104.4 176.1

Proposed baseline (w/o optical flow) 181.8 260.4 78.65 140.63

effectiveness of the proposed baseline network, as it is able to outperform the
latest state-of-the-art methods on large-scale datasets with dense crowds.

Table 2. Comparative performance of the proposed baseline and full model (MOPN)
against state-of-the-art alternatives on three standard datasets.

UCSD MALL FDST
Methods

MAE MSE MAE MSE MAE MSE

Switching CNN [6] 1.62 2.10 — — — —

CSRNet [7] 1.16 1.47 — — — —

MCNN [8] 1.07 1.35 — — 3.77 4.88

Count Forest [52] 1.60 4.40 2.50 10.0 — —

Weighted VLAD [53] 2.86 13.0 2.41 9.12 — —

Random Forest [54] 1.90 6.01 3.22 15.5 — —

LSTN [9] 1.07 1.39 2.03 2.60 3.35 4.45

FCN-rLSTM [10] 1.54 3.02 — — — —

Bidirectional ConvLSTM [11] 1.13 1.43 2.10 7.60 4.48 5.82

Proposed baseline (w/o optical flow) 1.05 1.74 1.79 2.25 3.70 4.80

Full proposed model (MOPN) 0.97 1.22 1.78 2.25 1.76 2.25

% Improvement: MOPN over Baseline 7.6% 29.9% 0.6% 0.0% 52.4% 53.1%
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4.3 Crowd Counting in Videos

UCSD Dataset: The UCSD dataset consists of a single 2,000 frame video
taken with a stationary camera overlooking a pedestrian walkway. The video
was captured at 10 fps and has a resolution of 238× 158. The provided ground
truth denotes the centroid of each pedestrian. Following the common evaluation
protocol for this dataset (e.g., [18]), Frames 601–1,400 are used for training,
while the remaining images are used during testing.

The MAE and MSE results for the baseline (without optical flow) and MOPN
are shown in Table 2. The full proposed model, MOPN, attains second-best MAE
and MSE, slightly behind while the baseline has second-based MAE results. For
MAE, MOPN offers a 9% improvement over the third best result (MCNN [8] and
LSTN [9]), while a 10% decrease in MSE is observed compared to the second-
best results (of MCNN [8]). Compared to the baseline, the full proposed model
provides a 7.6% and 29.9% improvement for MAE and MSE, respectively. This
final result demonstrates clearly the benefits of incorporating motion informa-
tion to complement the appearance cues that are traditionally used for crowd
counting.

Mall Dataset The mall dataset is comprised of a 2,000 frame video sequence
captured in a shopping mall via a publicly accessible camera. The video was
captured at a resolution of 640 × 480 and with a framerate of less than 2 fps.
As was done in [19], Frames 1 – 800 were used for training, while the final 1,200
frames were considered for evaluation.

As Table 2 indicates, MOPN and the proposed baseline achieve the best and
second best results on this dataset, respectively. Although the MAE with MOPN
is better than the baseline, in this case the improvement from motion-related
information is marginal. This result is expected, as the frame rate for the Mall
Dataset is low. With such a low frame rate, the inter-frame motion of people
in the scene can be quite large (e.g., one quarter of the image), meaning that
only the scales of the optical flow pyramid corresponding to large displacements
are contributing to the full network. The results from the Mall Dataset are
encouraging, as they indicate that even in low framerate settings when motion
cues are less effective, the full model can rely on the appearance information
provided by the baseline network to still achieve state-of-the-art accuracies.

Fudan-ShanghaiTech Dataset The Fudan-ShanghaiTech (FDST) dataset [9]
is currently the most extensive video crowd counting dataset available with a
total of 15,000 frames and 394,081 annotated heads. The dataset captures 100
videos from 13 different scenes at resolutions of 1920× 1080 and 1280× 720.

Following the evaluation protocol defined by the dataset authors, 60 of the
videos are used for training while the remaining 40 videos are reserved for test-
ing. Table 2 shows the results for the FDST dataset. Since this dataset is new,
only three alternative state-of-the-art approaches have reported results for com-
parison. MOPN has the lowest MAE and MSE, while the proposed baseline was
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third-best. MOPN achieves a 47% and 49% improvement over the second-best
performer, LSTN [9], for MAE and MSE, respectively. To attain this signifi-
cant of an accuracy increase on the largest video-based crowd counting dataset
illustrates the importance of combining both appearance and motion cues.

4.4 Qualitative Results

To demonstrate the qualitative performance of the proposed system, Fig. 3 shows
a zoomed image from the FDST dataset along with superimposed density maps
corresponding to ground truth, proposed baseline, and MOPN. The qualitative
results show that MOPN produces much more accurate count estimates than the
baseline. It can be seen that the baseline model (third column) does not detect
three individuals (denoted by red circles); whereas, MOPN (fourth column) is
able to detect these individuals (highlighted with green circles).

   

Fig. 3. Qualitative example of density maps. From left to right, the columns correspond
to a cropped input video frame from the FDST dataset [9], ground truth density map,
density map from the proposed baseline (without optical flow), and the density map
from the full MOPN model. Superimposed red and green circles highlight certain false
negatives and true positives, respectively. Best viewed in color and with magnification.

4.5 Transfer Learning

The goal of this experiment is to consider the performance tradeoffs when only a
portion of the network is fine-tuned on a target domain dataset. This scenario can
be relevant in situations in which the amount of data in the target domain is lim-
ited and therefore it may be more effective to train only a specific portion of the
network. The transfer learning experiment is setup as follows. First, the baseline
model is trained on a source domain dataset. Once this source domain baseline
is in place, the trained model is evaluated on a target domain test dataset. In
the finetuning setting, we simply update the decoder of our baseline model. Ta-
ble 3 shows the results for this evaluation, where alternative methods that have
considered such transfer learning experiments have been included. In addition
to several deep learning-based approaches detailed earlier, some methods that
do not involve deep learning are also included, as follows: Feature Alignment
(FA) [55], Learning Gaussian Process (LGP) [56], Gaussian process (GP) [57],
Gaussian Process with Transfer Learning (GPTL) [57]. The proposed fine-tuned
baseline model achieves the best MAE compared to the other models on the
transfer learning experiment.
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Table 3. Results from the transfer learning experiment using the Mall and UCSD
datasets. The finetuned baseline model attains best results when completing the trans-
fer learning task from UCSD to MALL, as well as from MALL to UCSD.

UCSD to MALL MALL to UCSD
Methods

MAE MAE

FA [55] 7.47 4.44

LGP [56] 4.36 3.32

GPA [57] 4.18 2.79

GPTL [57] 3.55 2.91

MCNN [8] 24.25 11.26

CSRNet [7] 14.01 13.96

Bidirectional
ConvLSTM [11]

2.63 1.82

Proposed baseline
(w/o optical flow)

6.18 12.21

Finetuned baseline model 2.36 1.55

4.6 Ablation Studies

Component analysis: Table 4 shows a study regarding the performance gains
due to the individual extensions of the proposed baseline over CSRNet. The
first row from Table 4 corresponds to a network comparable to CSRNet, while
the fourth row is the proposed baseline. Rows two and three show the indi-
vidual contributions of transposed convolution and PReLU, when integrated
into the decoder portion of the baseline network. As shown in the table, both
modifications contribute evenly to the accuracy gains. Also, the alterations are
complementary, leading to further improved results when combined (Row 4).

Table 4. Individual contributions of network components in the baseline network.

UCSD
Methods

MAE

ReLU (w/o transposed convolution) 1.26

ReLU (with transposed convolution) 1.18

PReLU (w/o transposed convolution) 1.14

PReLU (with transposed convolution) 1.05

Multi-scale pyramid: One of the main parameters of MOPN is the number of
layers in the optical flow pyramid for warping the feature maps. Table 5 shows
the proposed method’s performance on UCSD as a function of the number of lev-
els in the optical flow pyramid. With only a single pyramid level, the warping and
feature concatenation can be performed at low, mid, or high resolution, corre-
sponding to specialization in capturing large, medium, and small-scale motions.
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The table shows that the multi-scale optical flow pyramid indeed yields best
accuracies. When using just a single scale of optical flow, Scale 3 (small inter-
frame displacements) performs slightly better than Scale 1 (large inter-frame
displacements), but the difference is minimal.

Table 5. The effect of modifying the number of optical flow pyramid levels.

UCSD
Methods

MAE MSE

Proposed with Scale-1 1.07 1.34

Proposed with Scale-3 1.04 1.30

Proposed multi-scale 0.97 1.22

Effect of optical flow warping: Another ablation study considers providing
the full proposed network with two frames of input images without any explicit
optical flow. This experiment was performed by concatenating the unwarped
feature maps from the previous frame with those of the current frame. For the
UCSD dataset, this configuration yielded MAE/MSE = 1.12/1.97 compared to
0.97/1.22 for MOPN (Table 2). Also note that this two-frame configuration is
worse than the proposed baseline (1.05/1.74 from Table 2). This finding exempli-
fies the importance of optical flow to the proposed approach. Without warping,
features from previous and current frames are misaligned, which confuses the
network, as it is not provided with the necessary motion information to resolve
correspondences across the feature maps. With MOPN, optical flow removes this
ambiguity, constraining the solution space and yielding less localization error.

5 Conclusion

In this paper, a novel video-based crowd density estimation technique is proposed
that combines a pyramid of optical flow features with a convolutional neural net-
work. The proposed video-based approach was evaluated on three challenging,
publicly available datasets and universally achieved best MAE and MSE when
compared against nine recent and competitive approaches. Accuracy improve-
ments of the full proposed MOPN model were as high as 49% when compared
to the second-best performer on the recent and challenging FDST video dataset.
These results indicate the importance of using all spatiotemporal information
available in a video sequence to achieve highest accuracies rather than employ-
ing a frame-by-frame approach. Additionally, results on the UCF CC 50 and
UCF-QNRF datasets, which focus on images of dense crowds, show that the
proposed baseline network (without optical flow) achieves state-of-the-art per-
formance for crowd counting in static images.
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