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Abstract

Context Microclimate (fine-scale temperature vari-

ability within metres of Earth’s surface) is highly

influential on terrestrial organisms’ ability to survive

and function. Understanding how such local climatic

conditions vary is challenging to measure at adequate

spatio-temporal resolution. Microclimate models pro-

vide the means to address this limitation, but require as

inputs, measurements, or estimations of multiple

environmental variables that describe vegetation and

terrain variation.

Objectives To describe the key components of

microclimate models and their associated environ-

mental parameters. To explore the potential of drones

to provide scale relevant data to measure such

environmental parameters.

Methods We explain how drone-mounted sensors

can provide relevant data in the context of alternative

remote sensing products. We provide examples of how

direct micro-meteorological measurements can be

made with drones. We show how drone-derived data

can be incorporated into 3-dimensional radiative

transfer models, by providing a realistic representation

of the landscape with which to model the interaction of

solar energy with vegetation.

Results We found that for some environmental

parameters (i.e. topography and canopy height), data

capture and processing techniques are already estab-

lished, enabling the production of suitable data for

microclimate models. For other parameters such as

leaf size, techniques are still novel but show promise.

For most parameters, combining spatial landscape

characterization from drone data and ancillary data

from lab and field studies will be a productive way to

create inputs at relevant spatio-temporal scales.

Conclusions Drones provide an exciting opportunity

to quantify landscape structure and heterogeneity at

fine resolution which are in turn scale-appropriate to

deliver new microclimate insights.

Keywords Climate � UAV � Radiation � Vegetation

structure � Temperature � Topography

Introduction

Almost all terrestrial organisms are limited in what

they do and where they persist by the temperature and

humidity of the physical environment in which they

reside. However, many studies investigating the

relationships between species and climatic conditions

use coarse spatial resolution datasets that ultimately

bear little resemblance to conditions that organisms

experience in the wild (Potter et al. 2013). Heteroge-

neous landscapes with highly spatially variable
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temperature and water availability are influenced by

local terrain, vegetation and soil at fine (i.e. centime-

tre) scales. Additionally, microclimate is an important

driver of the landscape-scale distribution of species,

and should therefore be incorporated in relevant

analyses (i.e. species distribution models; Lembrechts

et al. 2019)). Thus, to investigate the direct links

between climate and the physiology, behaviour,

distribution and abundance of organisms, fine spatial

and temporal resolution climate data are required

(Kearney et al. 2012). In the face of climatic change on

a global scale, an understanding is required of how

microclimatic conditions mediate macro-climatic

responses (Pincebourde et al. 2016). Also, microcli-

matic heterogeneity arising from landscape topogra-

phy, can provide microrefugia for species facing

environmental change in a warming world (Suggitt

et al. 2018).

Remote sensing is now an established method for

obtaining data for use in ecological research and

monitoring (Pettorelli et al. 2015). Zellweger et al.

(2019) provide insight into the remote sensing

methodologies that have advanced and also have the

potential to advance microclimate modelling. These

include airborne Light Detection and Ranging

(LiDAR; (Vierling et al. 2008), aerial photography,

Terrestrial Laser Scanning (TLS; Ehbrecht et al.

2017), hyperspectral and thermal infra-red sensing.

Lightweight drones (sub-7 kg in weight; mentioned

briefly in the review by Zellweger et al. (2019)), and

platforms such as balloons and kites (hereafter prox-

imal sensing platforms) have increasingly established

themselves as a means by which to gather spatial data.

However, an exploration of what exactly to do with

these data within microclimate research, once cap-

tured, remains lacking. A key hindrance to progress

has been moving from detailed measures of the 3D

structure of terrestrial ecosystems or thermal compo-

sition of landscapes at the time of data capture, to

realistic measures of temperature and or humidity in

time and space. To achieve this, models that predict

the spatio-temporal dynamics of microclimates are

needed.

The affordability and ease-of-use of drones have

made them a democratising technological advance

giving researchers and environmental stakeholders a

self-service opportunity to capture data (Duffy et al.

2018). Lightweight drones with integrated cameras

can be acquired for\ £1000 and can be operated with

freely available software after a few hours of practice

and without requirement for specific training. As with

alternative remote sensing approaches, processing can

be a time-consuming process. With drones this is due

to the potential to capture large volumes of data in a

short period of time. Their flexible design and the ease

with which a range of sensors and payloads can be

attached make them ideally suited to capturing the

data required to drive microclimate models. The

timing of flights (i.e. data capture) can be tailored to

deliver insights during events specifically important in

understanding microclimate (e.g. leafing/senescence;

Klosterman and Richardson 2017). Here we explore

the opportunities and limitations of drone-based data

capture with specific emphasis on how such data can

be utilised once collected. Microclimate models have

a long history of application in agricultural and forest

science (i.e. MacHattie and McCormack 1961; Allen

et al. 1976), but have yet to be readily adopted by

biologists, at least in part because they have been

primarily applied to relatively homogeneous environ-

ments such as crop fields, where in situ measurement

of the required vegetation structure parameters is

practical. Moreover, in many instances, the focus of

research has been the nature of physical processes

within microclimatic variation, such as the character-

istics of turbulence within crop and forest canopies

(Raupach et al. 1996; Finnigan 2000). Biologists are

usually more interested in the application of the

microclimatic data and often require spatial data from

heterogeneous environments, and drones provide an

ideal means by which the required vegetation structure

parameters can be mapped in space. To date, appli-

cations of drones in research on microclimate include

thermography of potato fields with implications for

pest dynamics (Faye et al. 2016), thermal character-

ization of forest canopies (Webster et al. 2018) and

quantifying the effect of artificial structures in agri-

cultural landscapes on environmental conditions at the

microclimate scale (Tucci et al. 2019).

The use of drones to acquire critical data for driving

microclimate models remains largely unexplored.

Here we briefly describe the principles of microcli-

mate modelling (Microclimate modelling using

energy balance equations section), with emphasis on

the key determinants of microclimate. We then outline

the parameters associated with such determinants

(Table 1) and discuss the potential of drone acquired

data to derive these parameters (Determining
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vegetation and terrain parameters from drone-derived

data section). Next, we discuss the potential ways in

which drones can be used to directly measure micro-

climate (Topography section). Lastly, we provide an

exemplar, showing how such data can be used for

radiative transfer modelling, to obtain fine-resolution

estimates of temperature (Canopy height section).

Each of ‘‘Determining vegetation and terrain param-

eters from drone-derived data’’, ‘‘Topography’’ and

‘‘Canopy height’’ sections address different facets of

the data required to drive microclimate models.

Microclimate modelling using energy balance

equations

The development of mechanistic microclimate mod-

elling has its origins rooted in work by Richardson

(1922), who demonstrated the basic laws that govern

wind and temperature profiles in the air immediately

above vegetation. While much has been done to refine

this work (Monin and Obukhov 1954; Goudriaan

1977; Monteith and Unsworth 1990; Campbell and

Norman 1998) and make it accessible to biologists

(see e.g.; Norman 1982; Monteith and Unsworth 1990;

Campbell and Norman 1998; Bennie et al. 2008;

Kearney and Porter 2017; Maclean et al. 2019), the

basic equations governing heat, vapour and

momentum transfer that influence these profiles are

still widely used.

Understanding of the exchange of vapour and heat

within canopies continues to be an area of active

research. Initial work in the 1970’s tried to relate

observed wind and temperature profiles to local air

flow using the same one-dimensional eddy diffusion

theory that is still used for determining temperatures

above canopy (see e.g. Goudriaan 1977). However,

more recently, several authors (e.g. Finnigan 1985;

Raupach 1989) have suggested that such theory is not

necessarily applicable below canopy, where larger but

infrequent winds are responsible for much of the heat

and vapour exchange. Despite limitations in their

theoretical applicability, it has been argued that they

are still applicable in practice (see e.g. Monteith and

Unsworth 1990), at least in terms of predicting how

temperature and moisture profiles are influenced by

canopy cover. The basic equations governing turbu-

lent heat exchanges are thus still widely used. Here the

temperature profile is described as follows:

T0 � Tairð Þ ¼ rHR=qCp

� �
Rnet � L� Gð Þ ð1Þ

where T0 is the aerodynamic temperature of the

canopy at the height of the heat exchange surface, Tair
is the temperature of the air, Rnet is the net radiation

flux at the surface, L is the energy flux through the

Table 1 Key components of microclimate and their associated environmental parameters

Microclimate parameter Vegetation/terrain parameter References

Canopy/ground surface parameters for

heat and momentum transfer above

canopies

Canopy height, plant area index Maki (1975) and Shaw and

Pereira (1982)

Within-canopy wind attenuation

coefficient

Leaf area index, canopy height, leaf shape, distance

between leaves. Roughness length governing

momentum transfer

Finnigan (2000, Goudriaan

1977 and Raupach et al.

(1996)

Leaf heat conductance Leaf size Cowan (1972) and Stokes

et al. (2006)

Stomatal conductance Photosynthetic capacity of leaves, Leaf area index Wong et al. (1979)

Reflected shortwave radiation Reflectance of canopy/ground Monteith and Unsworth

(1990)

Canopy radiation transmission Leaf area index, leaf distribution angle, gap-size

distribution, gap fraction

Campbell (1986) and

Kucharik et al. (1999)

Terrain-adjusted solar irradiance Topography: slope, aspect, horizon angle, sky view Hay (1993)

Wind sheltering Upwind slope angle, horizon angle, surface roughness Winstral et al. (2009)

Vegetation and terrain parameters are measurable properties of the natural environment that are required to calculate their associated

microclimate parameters
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exchange of latent heat, G is the energy flux to/from

the soil, rHR is the resistance for the loss of sensible

heat and qCp is the molar specific heat of air dependent

on temperature. Each of the components of this

equation are modified by properties of the micro-

environment, and it is the variation in the micro-

environment interacting with weather that drives

variation in microclimate (Monteith and Unsworth

1990).

Many of the processes driving microclimatic vari-

ation operate at multiple and interacting scales. While

proximal sensing cannot capture the minute microen-

vironments, such as the configuration of density of

stomatal apertures on a leaf, or the precise location and

angles of individual leaves, there are well-defined

rules that relate these properties to those of vegetation

and terrain that can be measured by sensors on-board

drones. For example, a variant of the Beer-Lambert

law can be used to relate canopy cover to radiation

transmission with the inclusion of just two parameters

describing leaf area and angle distribution (Campbell

1986). Similarly, an integration of this function over

the entire canopy enables conductance for single

leaves to be related to that of the entire canopy, based

on simple rules that govern stomatal responses to

photosynthetically active radiation (Kelliher et al.

1995). Below we summarise the key terrain and

vegetation parameters that are needed to drive micro-

climate models (Table 1).

In the following sections we discuss the potential to

characterise the key parameters defined in Table 1;

using fine-grained geospatial data captured from

drones. Further, we discuss the operations and com-

plexities of integrating such data into microclimate

models. Some parameters in Table 1 are grouped to

enable more coherent and less repetitive discussion in

the text. Following this we then discuss opportunities

for drones to capture other measurements of micro-

climate. Given that radiation is a key determinant of

microclimate, we also give an example of how drone

data can be ingested into radiative transfer models to

produce estimated radiation budgets, as influenced by

habitat heterogeneity.

Determining vegetation and terrain parameters

from drone-derived data

Topography

A quantitative measure of the topography of the

landscape is needed to quantify how much sunlight is

absorbed by an inclined ground surface and to

determine wind sheltering effects (Maclean et al.

2019). Just above ground in very short vegetation and

under calm, still conditions, where horizontal heat

fluxes are minimal, or below ground, close to the

surface where soil temperatures are highly sensitive to

variation in radiation, spatial variation in slope, aspect

and landcover type (e.g. vegetation/detritus/rock) over

the scale of a few centimetres is likely to be important

in determining microclimatic conditions (Monteith

and Unsworth 1990). Thus, measurements at very fine

spatial resolution can help to elucidate these variations

(Fig. 1).

For microclimate studies, both digital terrain model

(DTM) and digital surface model (DSM) products are

required. DTMs are spatial grids that represent the

variation in bare-Earth elevation of a landscape, whilst

DSMs quantify the height of any objects which

extrude from the Earth’s surface. DSMs, and in some

ecosystems DTMs, with sub-cm to mm spatial reso-

lution can be readily obtained from drone-derived

optical images through Structure-from-Motion Multi-

View Stereo (SfM-MVS) photogrammetry, which is

now a mature data processing technique (Smith et al.

2016; Anderson et al. 2019) due to the increased

affordability of high-performance software. The tech-

nique produces a 2.5-dimensional representation of an

environment in the form of a spatially explicit point

cloud or gridded raster product (usually a DSM unless

the ground is unvegetated). Accompanying these

standard products, are a point cloud, which describes

spatially varying spectral reflectance values, a trian-

gular mesh, built upon the point cloud, and spatial

orthomosaic products (Fig. 2). A detailed review of

the workflows involved in processing these data is

beyond the scope of this paper, but see Smith et al.

(2016) for an in-depth review of techniques, and

Forsmoo et al. (2019) for a comparison of the available

software options. A key consideration for those

wishing to use such data is that creating datasets with

SfM-MVS software can be a time-consuming process.

Although SfM-MVS typically produces a DSM, in
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some circumstances it is possible to discriminate

‘ground’ features from ‘surface’ features in areas

absent of dense vegetation canopies (Anders et al.

2019). This is best performed on the dense point cloud,

where points can be classified into two groups, and the

resulting DTM can be constructed based on one of

these groups. Alternatively, coarser spatial resolution

LiDAR derived DTMs can be integrated if discrim-

ination between ground and surface features is unfea-

sible (Meesuk et al. 2015). It is from this resulting

DTM that slope, aspect, horizon angle and sky view

can be calculated, by using widely available geospatial

software tools.

Coarser grained satellite and airborne derived

elevation products have routinely been used in

microclimate models to calculate slope and aspect

(e.g. Weiss and Weiss 1998; Moeslund et al. 2013) and

wind sheltering effects (Lapen and Martz 1993).

Sometimes the coarse spatial scale of these products,

masks the topographic heterogeneity of a landscape, in

both space and time. In contrast, drones provide the

opportunity to capture data at user-dictated times,

unlocking the ability to measure variation in land-

scapes over time due to natural (e.g. landslide; Seier

et al. 2018) or human-induced (e.g. removal of crops;

Holman et al. 2016) processes. Drone-derived topo-

graphic data also afford unprecedented opportunities

to model microclimate at scales relevant to even small

organisms (Choi et al. 2019).

Canopy height

Canopy height has an important bearing on microcli-

mate in several respects. Firstly, when below canopy,

but above ground estimates of microclimatic condi-

tions are needed, it informs the extent to which

radiation is attenuated for a given leaf area at any

given height, as close to the top of the canopy, only a

fraction of the total leaf area contributes to shading.

Second, within the canopy, the scaling of leaf area to

leaf spacing (a key determinant of within-canopy heat

exchange (Goudriaan 1977), is ultimately determined

by vegetation height. Also, the surface roughness

parameters that govern temperature and wind profiles

are difficult to measure directly, but reasonable

empirical relationships between these and canopy

height exist (Maki 1975; Shaw and Pereira 1982).

Different formulae are used depending on leaf-shape,

but the general principles in terms of relationship with

leaf area apply. Goudriaan (1977) provides a compre-

hensive overview of this along with the relevant

formulae.

A canopy height model can be acquired from SfM-

MVS datasets, depending on the density of the plant

material, and the availability of ancillary datasets,

such as LiDAR terrain models. If well-distributed

‘true ground’ points are absent in a given point cloud

(i.e. when the surface expression is dominated by

vegetation), it can be difficult to correctly separate the

canopy from the underlying ground. When these

Fig. 1 Comparison of elevation models at varying spatial

resolution from different remote sensing platforms. a * 30 m

spatial resolution digital surface model (DSM) data from the

Shuttle Radar Topography Mission (SRTM; (van Zyl 2001).

b * 2 m spatial resolution DSM data from airborne LiDAR

surveys conducted by the UK Environment Agency.

c * 18 mm spatial resolution DSM derived with optical data

from a consumer grade camera on-board a 3DR Solo drone. Site

location near Gwithian, Cornwall, UK (- 5.392059,

50.226993)
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points are visible, or complimentary data describing

the ground are available, an effective subtraction of

the DSM from the DTM can produce measurements of

canopy height. Canopy height models of forest stands

have been successfully created using a combination of

SfM-MVS outputs (Fig. 3) and airborne LiDAR data

(Lisein et al. 2013). Such data fusion has been used to

track the change in canopy height over several months

in grasslands (Borra-Serrano et al. 2019), and to

measure crop heights in barley plots (Bendig et al.

2015). The reliance on complimentary ground or

airborne LiDAR data for computing canopy heights in

dense canopies may soon be reduced. Miniaturised

LiDAR sensors suitable as payloads for drones are

now emerging, opening opportunities for data capture

through canopies at fine spatial and temporal resolu-

tions (Dash et al. 2019). However, this technology is

only accessible to those with large budgets (minia-

turised LiDAR systems cost approximately 10–100

times more than a hobbyist drone equipped with an

optical camera). The ability to penetrate the canopy

with drone-based LiDAR overcomes one of the

shortfalls of SfM-MVS, which is the lack of sub-

canopy structural information in resultant datasets.

Canopy structure plays a key role in influencing the

temperatures close to the Earth’s surface, and the

ability to quantify height variation at fine spatial

resolution will allow measurement of microclimate

with a more realistic reflection of the natural

environment.

Fig. 2 Four example outputs from SfM-MVS processing of

images captured from a Ricoh GR II consumer grade camera

onboard a 3DR Solo multirotor drone, flying at 50 m altitude.

Images processed and spatial products produced with Agisoft

Metashape (Agisoft 2020). A dense point cloud, consisting of

points georeferenced in 3D space, each with associated red,

green and blue (RGB) values. B a mesh, created using the dense

point cloud. C a 15 mm spatial resolution georeferenced

orthomosaic. D a 28 mm spatial resolution DSM, with elevation

values above sea level displayed. Site location near Stithians,

Cornwall, UK (- 5.204639, 50.202037)

123

Landscape Ecol



Reflected shortwave radiation

The amount of radiation absorbed by the ground

surface and by vegetation, and hence the extent to

which sunlight heats these surfaces, depends on their

reflectance in different wavelengths. In static weather

station configurations, pyranometers are typically

used to measure changes in shortwave radiation over

time. Combining upward and downward facing pyra-

nometers and obtaining simultaneous measurements

allows for the calculation of albedo (the weighted

broad waveband reflectance in the shortwave spec-

trum). Ryan et al. (2017) have shown that miniaturised

versions of such equipment can be deployed on

lightweight drones to capture simultaneous upward

and downward facing measurements of shortwave

reflectance over relatively small spatial extents. A

similar system, utilising a static upward facing pyra-

nometer and a roaming downward facing device has

been demonstrated by Levy et al. (2018), who

successfully estimated heterogeneity in reflectance in

deciduous hardwood forests. Cao et al. (2018) show

that a consumer grade optical camera provides

reasonable estimates of reflectance in visible wave-

lengths, but not in shortwave wavelengths, which

require a multi-spectral camera. The positioning of the

drone mounted sensor (i.e. nadir or oblique) will also

influence measurements due to bi-directional reflec-

tance factors. For microclimate modelling, both

ground and canopy reflectance are important, and in

contrast to other platforms drones excel at differenti-

ating between the two. Lastly, user-dictated visit times

mean that changes in canopy colour (i.e. ‘‘greening’’),

which in turn influence reflectance, can be quantified

through time and at fine temporal resolutions (Hoff-

mann et al. 2016).

Leaf and plant area

The degree of canopy shading, wind profiles and

evapotranspiration are strongly affected by canopy

density and cover. The amount of sunlight penetrating

the canopy, for example, is often described using

equations similar to Beer’s law in which radiation

transmission through the canopy is inversely related to

the total one-sided leaf area per unit ground area

(Campbell and Norman 1998). Similar relationships

have been defined for wind profiles, whereby speed is

attenuated as a function of the spacing of leaves, and

hence the density of leaves (e.g. Inoue and Uchijima

1979). Much of the early ground-breaking theoretical

work on the influence of canopy density on microcli-

mate assumes that canopies are homogeneous or can

be described using a small number of parameters that

indicate variance. The spatially explicit nature of

canopy gaps, the influence of vertical structure on

patterns of absorption and scattering of radiation, and

variation in the translucence of leaves relative to

Fig. 3 Using SfM-MVS and multispectral data (Parrot

Sequoia) to characterise heterogeneous environments and assign

vegetation parameters. A a 20 mm spatial resolution georefer-

enced orthomosaic. D and C 1 m spatial resolution raster maps

of overstorey vegetation plots displaying B plant area index

(PAI) derived using an empirical model based on multispectral

data and field measurements and C canopy height of overstorey

vegetation plots derived from SfM-MVS data. Site location near

Stithians, Cornwall, UK (- 5.205158, 50.201545). Data are

author’s own
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woody vegetation is largely ignored. In reality, most

vegetated ecosystems comprise both woody and plant

material and are subject to disturbances such as fire,

extreme winds and herbivore grazing (e.g. Chazdon

2003). The severity of these disturbances influence

canopy closure, stand structure, regeneration dynam-

ics and plant community composition such that

canopies are highly heterogeneous in both time and

space. Commonly used measures used to characterise

vegetation are the leaf area index (LAI), the total one-

sided leaf area per unit ground area, and the plant area

index (PAI), which encompasses all plant structures

rather than just leaves.

While ground-based techniques such as the use of

hemispherical photography (Zhao et al. 2019) or

specialised scientific instrumentation such as the

LiCOR LAI-2000 (Calders et al. 2018), can poten-

tially be used to measure this heterogeneity, they are

limited in their spatial extent, and in their ability to

capture spatially explicit variation. Drone platforms

offer an exciting though unproven means by which to

bridge the gap between in situ measurement, and

wider spatial coverage, compared to informative

structural information provided by satellite data

(Fig. 4). From a top-down perspective, satellite-

derived vegetation indices such as the Normalised

Difference Vegetation Index (NDVI) work moder-

ately well for estimating LAI values between 0 and 3

(Carlson and Ripley 1997)—the relationship, effec-

tively a normalised ratio between red and NIR

reflected light, is based on the fact that the differential

between red absorption and NIR reflection is greatest

when there are larger amounts of photosynthetic

material present (Carlson and Ripley 1997). However,

the presence of even a small proportion of bare ground

as opposed to an even distribution of vegetation, may

complicate the interpretation of multispectral data in

deriving estimates of leaf area due to non-linearities in

the processes that govern radiative transfer in different

wavelengths (Sellers 1985). Multispectral sensors on-

board a lightweight drone have been used to investi-

gate the relationship between LAI and various NDVI-

derivative measures in structurally complex mangrove

forests (Tian et al. 2017) and offer considerable

advantage over satellite-based products in being able

to quantify heterogeneity at fine spatial resolution

(Fig. 3). Alternatively, vegetation indices such as the

Excess Green Vegetation Index have also been utilised

as a proxy for LAI (Liu and Wang 2018). This index

does not require near-infrared data in its calculation

and therefore provides a potentially cheaper sensor

setup on the drone platform, though the theoretical

basis for this relationship is not as well-established.

Aside from purely multi-spectral measurements, LAI

has been calculated from voxelised output from SfM-

MVS point data. A study on sweet potato plants

showed that there was greater correlation between

field and SfM-MVS derived LAI measures at lower

LAI values (\ 0.4) than higher (Teng et al. 2019).

Novel approaches are being used to extract LAI from

individual fine spatial resolution optical images, by

utilising the viewing geometry of obliquely captured

images (Roth et al. 2018), with multiple, well-

distributed viewing angles providing more accurate

LAI measurements compared to ground-based mea-

sures (Roosjen et al. 2018). This technique is partic-

ularly suited to drones, where viewing geometry can

be calculated from on-board autopilot accelerometer

measurements. Furthermore, pioneering work com-

bining SfM-MVS outputs with bidirectional spec-

troscopy measurements to obtain LAI in salt marsh

environments (Badura et al. 2019), shows that a

modified chlorophyll absorption ratio index correlated

well with LAI across differing plant densities. This is

another example of how proxy spectral measurements

can provide a means of acquiring information about

the structure of vegetation from drone mounted

sensors. Hemispherical photos from a drone platform

have also been used to infer canopy structure and

associated measures such as the one-sided area of both

dead and live vegetation (Brüllhardt et al. 2020). This

work also showed the power of multi-sensor

approaches, combining SfM-MVS data with top-down

hemispherical photos for rapid data acquisition at fine

spatial and temporal scales. Time-series studies

involving sensors mounted on drones require careful

methodological design and consideration. For exam-

ple, retrieval with the Parrot Sequoia multispectral

camera can vary with illumination angle and flying

height, showing that measurement variation may be

introduced with the use of drones (Stow et al. 2019).

Drones afford opportunities to map LAI values across

space and time and identify canopy gaps, though

reliable means of doing so are still in their infancy.

This is an active area of research, in which further

testing of different environments with varying vege-

tation characteristics will reveal the limits to such

techniques. Saturation effects, due to the difficulty of

123

Landscape Ecol



acquiring optical data through dense canopies, can

lead to erroneous measures of plant and leaf area.

Drone mounted LiDAR sensors provide a potential

solution in these situations, by acquiring structural

information through whole canopies (Moeser et al.

2014).

Leaf size, structure and distribution angles

Leaf angles influence both the absorption of radiation

and its transmission through the canopy, such that for

vertically-orientated leaves, far less radiation pene-

trates the canopy when the sun is low above the

horizon (Campbell and Norman 1998). Size and

structure influence the patterns of air flow along the

surface of a leaf, and hence how much heat is

exchanged with the air (Grace and Wilson 1976).

The size and shape of leaves also governs their spacing

in relation to leaf area, which in turn affects the wind

regimes within vegetated canopies. In consequence,

all these parameters have a bearing on microclimatic

conditions within the canopy. Much as in microcli-

mate modelling more generally, methods exploring

the measurement and acquisition of plant growth traits

from data captured by drone-mounted sensors appears

to be focussed on agricultural applications. Low-flying

drones with on-board optical sensors make an ideal

platform for field-based high-throughput phenotyping

(Zhao et al. 2018), providing measurements of crop

structure and size over larger spatial extents than

ground-based observations. Kim et al. (2018) acquired

predictive measures of leaf width & height (vegetation

fractions and plant heights) from a combination of

RGB spectral and SfM-MVS produced structural data.

One such study outside of the agricultural realm,

studied the measurement of leaf angle distributions

from drones. McNeil et al. (2016) compared drone-

derived leaf angle distribution with ground based-

measurements and showed that the two methods are

comparable across several broadleaf tree species.

Apart from these examples, published studies aiming

to attain measures of leaf size, structure and distribu-

tion are in their infancy. Future work will require

careful validation, and testing to investigate perfor-

mance across different vegetation types.

Photosynthetic capacity

The photosynthetic capacity of leaves is strongly

related to stomatal conductance, a key determinant of

vapour loss from leaves, and hence the latent heat

components in Eq. (1) (Table 1). Photosynthesis is

stimulated by radiation in the same waveband as

human vision, and this waveband is referred to as

Photosynthetically Active Radiation (PAR). As a rule

of thumb, the number of moles of carbon dioxide fixed

in photosynthesis is closely proportional to the number

of moles of photons absorbed in the PAR waveband, at

least for low light levels. However, many develop-

mental processes in green plants have been found to

Fig. 4 Comparison of Normalised Difference Vegetation Index

(NDVI) values at varying spatial resolution from different

satellite and drone platforms. A 30 m spatial resolution data

from the Landsat program, collected on 21/06/2019. B 15 m

spatial resolution data from the Sentinel-2 program, collected on

27/06/2019. C 80 mm spatial resolution data from a Parrot

Sequoia multispectral sensor, on board a 3DR solo drone,

collected on 21/06/2019. Site location near Stithians, Cornwall,

UK (50.202037, - 5.204639)
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depend on the state of the pigment phytochrome which

exists in two photo-interconvertible forms that absorb

radiation in wavebands centred at 660 nm (red light—

the Pr form) and 730 nm (far-red light—the Pfr form)

(Kasperbauer 1987). In consequence, as for leaf area,

NDVI has been used as a proxy measurement for

photosynthetic capacity, for example with data from

satellite platforms (Coops et al. 1998). However, as

with estimating leaf area, this approach requires

homogenous green vegetation cover, or further param-

eterisation describing heterogeneity in the vegetated

canopy, to account for variation in vegetation green-

ness in space (Sellers 1985). Whilst NDVI is a widely

used index for monitoring plant status such as biomass

estimation, it is very generalised, suffers saturation

issues in high biomass conditions, and it becomes

difficult to differentiate between leaf area per se and

the photosynthetic capacity per unit leaf area. How-

ever, reasonable models relating photosynthetic

capacity to radiation transmission, and hence to leaf

area have been developed (e.g. (Kelliher et al. 1995)).

Other indices such as the Soil Adjusted Vegetation

Index (SAVI) and the Enhanced Vegetation Index

(EVI) have been developed to optimize the signal from

vegetation, by accounting for atmospheric and soil

background effects (Jiang et al. 2008). While such

indices are useful for satellite derived data with

relatively coarse spatial resolutions, the scales at

which drone data are typically collected minimises the

effects of atmosphere and soil background effects.

More sophisticated methods, relying on more detailed

spectral information are now available, and poten-

tially, deployable on drones. Hyperspectral imaging

sensors have been used to measure Chlorophyll

a ? b and carotenoids (leaf pigments associated with

photosynthesis) in vineyards (Zarco-Tejada et al.

2013). These measures offer a potential way to

understand the photosynthetic capacity of leaves in a

generalisable way that can potentially be scaled up to

satellite metrics. Of particular relevance to microcli-

mate studies are advancements in remote estimation of

light use efficiency (LUE) and solar induced fluores-

cence in plants. Both can potentially/or already have

been measured from drone platforms (Garzonio et al.

2017), although these approaches are not yet well

established at the time of writing. One such example,

in an agricultural setting, shows that drone-mounted

modified consumer-grade RGB cameras (converted to

capture NIR wavelengths) can be used to derive

measures of absorbed photosynthetically active radi-

ation (Tewes and Schellberg 2018). While promising,

further work is required to understand how such

measures of photosynthetic activity can be achieved in

more heterogeneously vegetated scenarios.

Direct micro-meteorological measurements

from drones

Whilst there are plentiful suggestions in the preceding

sections for methods of integrating drone-scale data

into microclimate research, there is also potential for

direct measurements to be acquired from drone-

platforms.

Understanding and quantifying the spatially vari-

able wind environment near to the ground is challeng-

ing with other technologies—yet from drones this can

be achieved relatively straightforwardly. Comprehen-

sive microclimate models require hourly or sub-hourly

wind speed and direction measurements as inputs.

Typically, these data are available from sensors at

fixed locations (e.g. land surface observations in the

MIDAS dataset (Met Office 2012)) or historically as

modelled values (often at coarse spatial resolution;

e.g. ERA5 global climate dataset (Copernicus Climate

Change Service 2017). Obtaining near real-time,

spatially explicit measurements with sensors on-board

drone platforms enables precise quantification of the

conditions that influence temperatures within and

beneath the canopy (Fig. 5). Such data could improve

the ways in which wind speed and direction are

influenced by terrain and the environmental structures.

Already, drones have been used to quantify wind

parameters, including the degree of turbulence above

ground. Specifically, wind speed and direction have

been estimated both directly with an anemometer

mounted on a lightweight hexacopter (e.g. Fig. 5), and

indirectly, utilising attitude information from inertial

measurement unit (IMU) sensors within the drone

autopilot (Palomaki et al. 2017), and modified turbu-

lence and temperature sensors on-board a fixed wing

platform (Lawrence and Balsley 2013). Another such

application could be to use video and image analysis

techniques to understand how wind changes the shape

and size of vegetation canopies on fine temporal

scales, and the degree of wind fraction. The motion of

broadleaf trees in the wind has been modelled using

3D tree models derived from TLS data (Jackson et al.
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2019), and a comparison or combination with drone-

derived data is a potential avenue of research.

While much scientific research focuses on the use

of optical sensors, there is also potential for drones to

make in situ measurements with alternative sensors,

for example to measure air temperature and humidity.

Such approaches have been demonstrated with the

measurement of water temperature (Sørensen et al.

2017), air temperature in vertical profiles from ground

level to * 1000 m a.g.l (Cassano 2014), and air

temperature using recorded sound (Finn et al. 2019).

Techniques such as these could be particularly valu-

able in topographically challenging and/or inaccessi-

ble environments (e.g. coastal or mountainous

settings), where obtaining in situ measurements would

be challenging. Lightweight drone platforms also offer

potential for the deployment of in situ sensors for

longer-term data acquisition. Measurement devices

such as temperature loggers could be deployed with

high positional accuracy, in a similar way that has

been demonstrated with GPS tracking devices on

icebergs (McGill et al. 2011). Furthermore, remote

download of data from loggers in outlying areas could

also be utilised (Fig. 5). This technique is already

being applied in wildlife research, where physically

obtaining data from loggers is not a feasible option

(especially on a regular basis; Cao et al. 2017).

Lastly, thermal infrared cameras can be used to

measure the thermal infrared energy emitted by a

given object. If the user knows the emissivity of the

object(s) they are imaging, a temperature estimation

can be made. In the natural environment, emissivity

varies by only small amounts (i.e. 0.97–0.98 for plants

(Chen 2015) and 0.93–0.96 for soil (Campbell and

Norman 1998). Therefore, if required, constrained

estimations of emissivity can be made, with little

chance of introducing much error into the measure-

ments. As with many areas of research involving

drones, we expect continued innovation in their use to

measure environmental variables that are pertinent to

microclimate modelling.

Incorporating drone-scale observations

into models of radiative transfer

In most instances, variation in the radiation regime is

the primary determinant of variation in microclimatic

conditions. However, most microclimate models make

spatially implicit assumptions about very fine-scale

heterogeneity in vegetation characteristics, particu-

larly in vertical structure. So rather than explicitly

trying to quantify the position of every leaf within a

canopy in order to determine the absorption, reflection

and scattering of radiation, simple metrics such as leaf

area, leaf-angle distributions and clumpiness metrics

are used to model the behaviour of radiation implic-

itly. There is great potential to use processed drone-

Fig. 5 Two novel ways drones could be used to collect

environmental data relevant to microclimate modelling. Drones

with remote download capability could collect data from

deployed sensors. Also, drones can be mounted with equipment

to measure wind speed and direction, in this case below the

canopy. Drone icon from www.vecteezy.com
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derived data as inputs to 3D radiative transfer models.

Doing so would afford the opportunity to model

spatial heterogeneity in microclimate explicitly by

providing fine spatial resolution representations of the

environment in multiple dimensions. Radiative Trans-

fer (RT) modelling is novel in the context of micro-

climate modelling research, yet is relatively well-

developed in the broader field of remote sensing as it is

used to infer how vegetation structure influences the

electromagnetic signals detected by satellites. The

ingestion of drone-scale data into such models would

represent a new step that could benefit both fields of

research.

RT models vary in complexity from basic turbid

medium models (e.g. PROSAIL; Jacquemoud et al.

2009) to fully three dimensional models (e.g. Discrete

Anisotropic Radiative Transfer (DART; Gastellu-

Etchegorry et al. 2015) and FLIGHT (North 1996)).

Their utility to microclimate research lies in the

reversal of the approaches normally used to under-

stand satellite signals (i.e. instead of being used to

understand the behaviour of reflected radiation they

are instead used to infer incoming solar radiation).

Drone-derived datasets can dovetail with existing RT

model architecture to explore how fine-scale spatial

and structural variation in the environment can affect

solar radiative transfer budgets. Drone-derived prod-

ucts which allow fine-scaled parameterisation of these

models include SfM-MVS derived DTMs and canopy

height models, in turn resulting in a realistic repre-

sentation of the scene geometry. Besides canopy

volume, leaf area index within the canopy may be

acquired from multispectral data (Wang et al. 2005;

Yao et al. 2017) and smaller canopy gaps may be

quantified on the basis of fine spatial resolution RGB

orthomosaics (Getzin et al. 2014).

To illustrate the potential utility of RT models, we

provide an example where the 3D RT model DART

was parameterised using fine-grained observations of

canopy structure and reflectance captured from a

drone (Fig. 6). A photogrammetric point cloud

(Fig. 6b) was used to describe canopy geometry while

LAI was derived from an empirical relationship

between drone acquired NDVI image data and

in situ hemispherical photography. The model pro-

duces a 3D radiative budget product from which the

interception, transmission and absorption of radiation

within the canopy and on surfaces can be extracted

(Fig. 6c).

Further structural properties such as canopy layer-

ing, clumping, branch structure and leaf angular

distribution which have considerable impact on light

transmission require further assumptions or field-

based measurements. Drone-derived LiDAR data

promises major advances in this regard by providing

datasets comparable to TLS which have been used to

represent accurate canopies for 3D radiative transfer,

though hardware, data acquisition and processing

remains more expensive both financially and compu-

tationally (Mlambo et al. 2017).

3D radiative transfer through a vegetated scene

represented in all its complexities remains a compu-

tationally intensive process and therefore unsuit-

able for the operational modelling of the radiation

microclimate. Opportunities lie instead in using out-

puts for validating simpler models and identifying the

key drivers of small scale variability to improve model

assumptions.

Conclusions

Comprehensive microclimate modelling requires

understanding and measurement of a suite of environ-

mental parameters (Table 1). Often, existing remote

sensing datasets, from satellite, airborne or ground-

based platforms offer usable data, but commonly at

coarser resolutions than is desirable or mismatched in

time. Proximal sensing technologies such as drones

offer the opportunity for more scale-appropriate

measurements, in turn providing a more realistic

representation of the natural environment. Such

nuanced differences in the structure of the natural

environment and the meteorological conditions can

strongly influence the temperatures experienced near

the Earth’s surface. This paper explores the way in

which drone-data can be used to acquire such envi-

ronmental parameters, and how one makes the tran-

sition from raw drone-derived data, to useful estimates

of microclimatic conditions. While the acquisition of

data relating to some parameters is more achievable

than others, there is no doubt this is an exciting time

for research involving microclimate. Drones are a

democratising technology, with great flexibility in

where and when data are captured (Table 2). They

present an opportunity to bridge the scale-mismatches

between existing remote sensing datasets and the

processes governing temperature close to the ground
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(Milling et al. 2018). This is crucial when studying

environmental and biological processes that vary at

very fine scales (e.g. plant abscission or insect

metamorphosis), and ultimately for understanding

the temperatures that many organisms actually expe-

rience. Although data captured with drones will often

be over limited spatial extents, they can provide

insight into the heterogeneity of the wider landscape

through the sampling of different environments.

Caution should be exercised with regards to the

volume of data produced by drone-mounted sensors.

Users must carefully consider the time and resources

required for processing drone-derived data. For exam-

ple, SfM-MVS workflows can take several days to

Fig. 6 Illustration of an approach to model radiative transfer of

a vegetated scene based on a SfM-MVS dense point cloud.

A Drone RGB image showing the modelled scene focused on an

isolated oak tree. B Dense SfM-MVS point cloud of the scene,

coloured by normalised point height over ground. C 3D

radiative budget output from the DART model depicting the

amount of shortwave radiation intercepted per cell (resolution:

1 9 1 9 0.25 m). Model was run for 22nd of July at 12:00 BST

assuming fully direct irradiance conditions

Table 2 A summary of the key advantages and limitations of using drone technology to collect data useful for microclimate

modelling

Advantages Limitations

Democratising—data collection in the hands of the researcher

interested in microclimate. Reduced reliance on large agencies

for remote sensing data that is typically used for microclimate

modelling

Legislation—the rules and regulations surrounding drone

operations varies between countries, and can hinder the ability

to operate in some areas. However, non-urban areas tend to be

more accessible and likely the focus of most microclimate

research

Flexibility (design)—different sensors and instruments can be

attached to a variety of airframe designs, allowing for a wide

range of data to be collected

Sensor cost—although some consumer grade sensors are easy to

acquire and relatively affordable (\ £1000), some such as

LiDAR are still very expensive, limiting access to such

technology

Flexibility (operation)—data collection can take place at user-

dictated times, and in response to environmental and ecological

processes (e.g. bud burst)

Processing overheads—substantial time and computing resources

can be required to process and analyse the fine-grained data

typically collected with drones. This is especially the case at

the fine spatial resolution scales relevant to microclimate

modelling

Complimentary—drones can be used to collect data

representative of the wider environment. Such data can then be

combined with other remote sensing or in situ measurements.

Furthermore, such data can be used in workflows such as

radiative transfer modelling

Software costs—software used to process drone data (especially

for SfM-MVS) can be prohibitively expensive, and sometimes

more than the cost of a drone and sensor

123

Landscape Ecol



complete for\ 5 ha. This is likely to become more of

an issue as the availability of miniaturised sensors

increases, and the ability to capture a fusion of data

from several sensors in a single flight becomes a

reality (Sankey et al. 2017). For those wishing to

investigate microclimate over wide spatial extents, the

best use of drone technology would be to sample the

breadth of habitats and environments capturing vari-

ation in the vegetation and terrain parameters, in turn

producing representative sets of parameters for such

habitats or environments (Table 2). Furthermore, an

approach integrating in situ measurements, with

remote sensing data from multiple platforms could

be used to infer fine-scale temperature differences

over larger spatial extents than is achievable solely

with field measures or drone data alone (Reichenau

et al. 2016). Looking forward, a multiscale approach,

utilising multiple remote sensing platforms (including

fine scale data from drones) alongside field measure-

ments (Alvarez-Vanhard et al. 2020) will likely be the

most productive approach to microclimate modelling.
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