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Coastal fisheries provide livelihoods and sustenance for millions of people globally but

are often poorly documented. Data scarcity, particularly relating to spatio-temporal

trends in catch and effort, compounds wider issues of governance capacity. This can

hinder the implementation and effectiveness of spatial tools for fisheries management

or conservation. This issue is acute in developing and low-income regions with many

small-scale inshore fisheries and high marine biodiversity, such as Southeast Asia. As

a result, fleets often operate unmonitored with implications for target and non-target

species populations and the wider marine ecosystem. Novel and cost-effective

approaches to obtain fisheries data are required to monitor these activities and help

inform sustainable fishery and marine ecosystem management. One such example is the

detection and numeration of fishing vessels that use artificial light to attract catch with

nighttime satellite imagery. Here we test the efficiency and application value of nighttime

satellite imagery, in combination with landings data and GPS tracked vessels, to estimate

the footprint and biomass removal of an inshore purse seine fishery operating within a

region of high biodiversity in Myanmar. By quantifying the number of remotely sensed

vessel detections per month, adjusted for error by the GPS tracked vessels, we can

extrapolate data from fisher logbooks to provide fine-scale spatiotemporal estimates

of the fishery’s effort, value and biomass removal. Estimates reveal local landings of

nearly 9,000 mt worth close to $4 million USD annually. This approach details how

remote sensed and in situ collected data can be applied to other fleets using artificial

light to attract catch, notably inshore fisheries of Southeast Asia, whilst also providing

a much-needed baseline understanding of a data-poor fishery’s spatiotemporal activity,

biomass removal, catch composition and landing of vulnerable species.

Keywords: remote sensing, nighttime lights, data-poor fisheries, coastal fisheries, Myanmar, small-scale fisheries

INTRODUCTION

Small-scale coastal fishing fleets are known to exert pressure on marine ecosystems. Without
effective management even small-scale operations can deplete fish stocks (Wilson et al.,
2010), contribute to species declines through bycatch and intentional targeting (Mangel et al.,
2010; Alfaro-Shigueto et al., 2011; Aylesworth et al., 2018) and cause the degradation of
coastal habitats through high impact fisheries methods (Blaber et al., 2000; Thrush et al.,
2002; Fox and Caldwell, 2006; Shester and Micheli, 2011; Chan and Hodgson, 2017).
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Small-scale fisheries are also intrinsically linked to food security
and livelihoods. Twenty-two of an estimated 50 million fishers
globally are involved in small-scale operations (Teh and Sumaila,
2013). With annual yields close to 22 million tons (Pauly and
Zeller, 2016), these fisheries are estimated to contribute more
than half of reported landings in developing regions (World
Bank, 2012) yet are often considered poorly documented and
neglected by management authorities (Food and Agriculture
Organisation, 2015).

To monitor fisheries, larger vessels are often instrumented
with global positioning systems (GPS) including vessel
monitoring systems (VMS) and automatic identification
systems (AIS) (Witt and Godley, 2007; Jennings and Lee, 2012;
Kroodsma et al., 2018). This has allowed fisheries scientists to
quantify their spatial footprint (Natale et al., 2015; Kroodsma
et al., 2018) and assess the effectiveness of spatial management
efforts (White et al., 2017; Ferrà et al., 2018). Small-scale coastal
fisheries, notably in developing regions, often lack the capacity
to equip such systems or are not currently required to carry
them (Dunn et al., 2010; Breen et al., 2015; Kroodsma et al.,
2018). Despite being globally distributed, spanning a variety
of gear types, vessel sizes, target species, spatial profiles and
socioeconomic characteristics (Smith and Basurto, 2019), these
fleets largely lack data on spatial and temporal trends in activity
(Johnson et al., 2017; Selgrath et al., 2018). As small-scale fleets
primarily operate in inshore zones (Stewart et al., 2010), the
paucity of spatial data on vessel behavior can seriously hinder
effective coastal management, impacting both people and wildlife
(Ban et al., 2009; Metcalfe et al., 2017; Cardiec et al., 2020).

In the absence of traditional tracking technologies, a variety of
alternatemethods have been used to quantify small-scale fisheries
in time and space. These include self-reporting logbooks (Vincent
et al., 2007), sightings (Breen et al., 2015), participant mapping
and interviews (Léopold et al., 2014; Selgrath et al., 2018; Gill
et al., 2019), mapping known behaviors (Witt et al., 2012) or
combinations of these (Turner et al., 2015). These methods are
often only a snapshot in time and can host inaccuracies as a
result of observer bias (Brown, 2012, 2017). The novel application
of remote sensing systems offers a potential source of long-
term monitoring data (Chassot et al., 2011). Remote sensing
systems provide high resolution data over large spatial scales
and long temporal periods (Chassot et al., 2011; Klemas, 2013).
One example is the detection of vessels using sensors on weather
satellites at night (Croft, 1978) i.e., the Defense Meteorological
Satellite Program Operational Linescan System (DMSP OLS).
This has been demonstrated to be useful in detecting vessels
that use artificial light to lure fish or squid to the surface before
netting or hooking (Liu et al., 2015; Cozzolino and Lasta, 2016;
Paulino et al., 2017). More recently, the National Oceanic and
Atmospheric Administration’s (NOAA) Suomi National Polar
Partnership satellite primary imager, the Visible Infrared Imaging
Radiometer Suite (VIIRS) Day/Night Band, has captured a
variety of artificial light sources at the Earth’s surface (Elvidge
et al., 2015). The subsequent development of algorithms by the
Earth Observation Group (EOG) for the automatic detection
of fishing vessels from VIIRS imagery provides an open-source
repository of global nighttime fishing effort (Elvidge et al., 2015).

These data have proven highly effective for the monitoring
of fisheries closures (Elvidge et al., 2018), identifying fishing
grounds (Geronimo et al., 2018; Hsu et al., 2019), estimating
capacity of illegal, unreported and unregulated fisheries (Oozeki
et al., 2018) or combining with government landing statistics
to predict stock migration routes (Choi et al., 2008). However,
VIIRS imagery has yet to be combined with landings data
collected in situ to quantify fine-scale spatiotemporal trends
of effort, catch and value in data-poor scenarios. Combination
in this manner could enable real-time estimation of biomass
removal across large spatial scales and inform targeted fisheries
and conservation management.

Fishing fleets using artificial light operate throughout the
world’s oceans and are prominent across Southeast Asia where
these practices are known as “light-boat fishing.” Squid species
are generally targeted by these fleets, but small forage fish,
such as clupeids, are also targeted in coastal waters (Gorospe
et al., 2016). Light-boat fisheries, as with other fish aggregation
methods, are often considered high impact, associated with
landings of immature fish and have high bycatch rates of
vulnerable megafauna due to low-selectivity and small net mesh
sizes (Solomon and Ahmed, 2016). Myanmar is one of the
top ten fish producing countries of the world, with more than
three million metric tons of fish providing 43% of the country’s
consumed protein per year Food and Agriculture Organisation,
2014; Tezzo et al., 2018). Marine fisheries also provide direct
livelihoods to ∼1.4 million fishers (Department of Fisheries,
2017). Myanmar’s small-scale marine fisheries are characterized
as multi-gear, multi-species fisheries, with limited access to
external markets (Schneider and Thiha, 2014).

Myanmar is also an example of a country lacking capacity
to implement effective management and conduct long-term
monitoring. This has led to data on marine fisheries being
scarce, especially for the inshore fleet (Tezzo et al., 2018).
Government statistics reveal decadal (2003–2012) increases of
121% in landings (Pauly and Zeller, 2016) with small pelagic
fish stocks estimated to be at 10% of 1979 levels (Krakstad
et al., 2014). Few spatial management areas exist to aid
stock recovery (Boon et al., 2016) or protect Myanmar’s rich
biodiversity and species of conservation concern (Birch et al.,
2016). Some gear restrictions exist, including the ban of certain
trawl gears in inshore waters, however without enforcement
illegal fishing continues unabated (Wildlife Conservation Society,
2018). Whilst the Government of Myanmar has taken steps
toward monitoring its marine fisheries through the installation
of VMS, this is limited to offshore fishing vessels, with no
current monitoring of small-scale vessels. As Myanmar enters
a new phase of rapid globalization (Orlov, 2012; Prescott et al.,
2017), its marine environment is likely to experience increased
pressures in the future. Strengthening governance, improving
enforcement capacity and designing community-led initiatives
will all be required to resolve wider issues of management
capacity. Baseline data on fisheries landings and effort is therefore
an important first step to improved marine management for
the country.

To test the utility of VIIRS remotely sensed imagery in
quantifying the extent of a fishery, we focus on the inshore purse
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FIGURE 1 | Study region. (A) Myanmar, (B) Northern states of Rakhine and Ayeyarwady with the Inshore Fishery Zone highlighted (green line) and (C) Kyeintali region

including key landing sites, the Kyeintali Inshore Fisheries Co-Management Association zone (orange has) and the Maw She Key Biodiversity area (blue box). (D)

Image of light boat used by the local purse seine fleet.

seine fleet of Myanmar’s western seascape. In the study, GPS
tracking data and landings data are harmonized with VIIRS to
provide estimates of the spatial footprint of fishing effort and the
extent of biomass extraction within a key marine conservation
corridor (Wildlife Conservation Society, 2013). The application
of species-specific landings data ensures results have applied
management value. Without this baseline understanding the
management of key stocks, impact on vulnerable species and
wider ecosystem integrity remains difficult. To our knowledge,
this study represents the first example of applying VIIRS boat
detections (VBD) in this manner, providing an approach to
combine remote sensing and focused in situ data for light-boat
fisheries in data-poor, low capacity coastal regions.

MATERIALS AND METHODS

Study Area
The focal study area was Kyeintali sub-township, a unitary

authority in the state of Rakhine, northern Myanmar, which

contains 12 village wards (Figure 1). Kyeintali and adjacent

waters encompass the entire Maw She Key Biological Area

(KBA), designated due to the presence of several species
of conservation interest [e.g., hawksbill turtles (Eretmochelys

imbricata), Irrawaddy Dolphin (Orcaella brevirostris), dugong
(Dugong dugon) and whale shark (Rhincodon typus)] and

whole-site vulnerability (Wildlife Conservation Society, 2013).
The waters of Kyeintali also overlap the Rakhine Marine
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TABLE 1 | Fleet composition of Kyeintali sub-township landing sites surveyed in 2016 (Bicknell, 2019).

Gear type No. of vessels Proportion of fleet (%) Description

Purse seine 100 35.2 Inshore catch boat accompanied by one or two light boats (fish attractant) targeting small

shoaling fish.

Long line 43 15.1 Long main line, typically thick monofilament, with many smaller baited hooks attached.

Trammel net 30 10.6 Non-selective “entangling” net with slack small mesh inner between one or two layers of

large mesh netting.

Long line (set) 26 9.2 Targeted long line fishery for various grouper species.

Trawls 19 6.7 Large offshore boats targeting pelagic and other species by towing heavy cone-shaped

bag net over the seabed.

Bottom set gill net 17 6.0 Vertical panels of monofilament forming a net wall, normally set in a straight line and fixed

to the seafloor.

Drift gill net 12 4.3 Vertical panels of monofilament forming a net wall, normally drifting on the currents in the

top or mid-depths of the water column.

Beach seine 10 3.5 Long seine net operated by a group from the shore or in tidal areas.

Set gill net 3 1.1 Vertical panels of monofilament forming a net wall, normally set in a straight line in the top

or mid-depths of the water column.

Other 24 8.5 Unspecified gear types used or boats deploying multiple gear types interchangeably.

Conservation Corridor, one of just two in Myanmar (Wildlife
Conservation Society, 2013). Purse seining is the dominant
fishery locally (Table 1), with 35% of known vessels in the sub-
township involved. Purse seine activity predominantly occurs at
night, with up to two light-boats used to attract fish and one
fishing vessel using a net to circle and extract catch. Fishing
vessels anchor near a light-boat for ∼4 h, allowing shoaling fish
to aggregate, before hauling in nets. If a second light boat is
used the fishing vessel repeats this process enabling a second
haul from a single trip. Target species include sardine (Sardinella
spp.) and anchovy (Stolephorus spp. and Dussumieria spp.), but
fine mesh sizes (<3 cm) ensure everything attracted to the light
is landed. The fishery operates almost exclusively between the
months of October to May, which coincides with Myanmar’s
dry season. The fleet is licensed to operate in the inshore zone
(<10 nautical miles) under the Department of Fisheries zoning.
Inshore zones delineate areas for smaller vessel classes, typically
not longer than 9m (30 ft) and powered by 25 HP engines or
less (Department of Fisheries, 2016). Importantly, zonal licensing
excludes larger commercial or foreign light-boats from the study
area, however vessels may fish inshore grounds illegally due to a
lack of enforcement.

Data Collection
GPS Tracked Fishing Trips
Spatial tracking data were collected from GPS instrumented
purse seine vessels (n= 13) between October 2016 andMay 2019,
using Pelagic Data Systems’ (PDS) solar powered Vessel Tracking
System. Operating out of five key landing sites (Figure 1) located
in the Kyeintali sub-township, these vessels represent 13% of the
known local purse seine fleet (Bicknell, 2019). As multiple net
hauls often occur at separate light boats during a single fishing
trip, GPS loggers were attached to the fishing vessel, as opposed to
the light boats, to allow entire fishing trips to be tracked. Kyeintali
village was the home port for the largest number of vessels (n =

4), with the remaining vessels (n = 9) split amongst the other

landing sites of Kywe Gyaing (n= 2), Kadolay (n= 3), Kanpouk
(n = 1) and Ponenyat (n = 3). Vessel lengths ranged between 13
and 22 meters (mean: 18.3m) with a mean purse seine mesh size
of 1.6 cm (range: 0.64–2.54, ±sd 0.83 cm). Vessel owners were
not mandated to carry GPS and all did so on a voluntary basis,
we therefore believe participation in this study unlikely altered
vessel behavior.

Nighttime Light Imagery
VIIRS boat detections (VBD) occurring within the Exclusive
Economic Zone (EEZ) of Myanmar were sourced from
NOAA’s EOG repository (https://www.ngdc.noaa.gov/eog/viirs/
download_boat.html). VBD data were extracted from VIIRS
images taken each night [∼2 a.m. local time (Elvidge et al., 2015)],
by a single polar orbiting satellite with swath of 3,000 km (Hsu
et al., 2019). The satellite achieves a minimal global coverage
of one nightly image at the equator, increasing closer to the
poles, with Southeast Asia normally receiving two coverages per
night (Hsu et al., 2019). The algorithms used to extract VBD
from VIIRS imagery are described by Elvidge et al. (2015). Daily
data were downloaded for the periods October to May, 2016
to 2019, representing three fishing seasons. Each light detection
includes a unique identifier, geographic coordinates for the center
of each detection (pixel footprint 742m), a time stamp in hours
and minutes and seconds (UTC and MMT) and quality flag.
Quality flags indicate the sharpness of the VBDdetection (Elvidge
et al., 2015). VBD records with quality flags of 1, 2, 3, and
10 (see Table 2 for descriptors) are regarded as possible fishing
activities and were considered equal for analysis in this study
(Hsu et al., 2019).

Purse Seine Landings Data
Purse seine landings data were collated from 36 vessel owner
logbooks (including tracked vessels) between October 2016 and
May 2019 from eight villages within the Kyeintali sub-township.
Mean vessel length was 14.7 meters (range: 9.45–29.4m). All
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TABLE 2 | VBD quality flags.

Quality flag Description

1 Strong detections

2 Weak

3 Blurry

4 Gas flare

7 Glow

8 Recurring light

10 Weak and blurry

11 Platform

vessel owners volunteered their landings data. Collected on a
monthly frequency, these self-reporting logbooks represent 36%
of the known local purse seine fleet and contained data on the
number of hauls, species catch composition, weight, and value
for each trip.

Data Processing and Analyses
GPS Tracked Fishing Trips
GPS data were prepared for analysis by removing potential spatial
errors in the tracks. Spatial errors where determined by vessel
speeds which exceeded 20 knots (derived from the distance
traveled and time elapsed between two consecutive points).
The 20 knot threshold was used (99.9th data percentile) to
remove extreme outliers. Data were further filtered to eliminate
trips occurring outside night time hours (18.00–08.00 MMT).
Tracks lasting at least four consecutive hours were subsequently
retained. Trips where vessels intermittently relocated to landing
sites outside the Kyeintali area (n= 271) were not considered for
comparison against the VBD data. The high temporal resolution
of the PDS loggers often resulted in sub-minute sampling during
periods of high activity, or conversely, there were intervals
without spatial data for consecutive minutes during more static
periods. To apportion data evenly between trips and vessel
behaviors (i.e., transit, anchoring), sampling frequency was
standardized to 1min intervals. Sub-minute records were filtered
to retain the first record per minute and missing records were
interpolated using the adehabitatLT package in R (Calenge,
2006). For analysis against the VBD data, behavioral fishing
states were characterized for the GPS tracks. Vessel speeds of
below three knots were considered to represent behaviors of
anchoring, drifting, setting or hauling, and vessel speeds >3
knots were characterized as in transit. The three knot threshold
was determined by known vessel behaviors and confirmed using
the modpartltraj function in the adehabitatLT R package using
Markovmodels (Calenge, 2006). Any trips where the GPS tracked
fishing vessels were deemed to be in transit at the time of VIIRS
satellite overpass were removed from analysis as they would not
be identifiable in the VIIRS imagery due to the GPS tracked
fishing vessel traveling to or from a light boat location.

GPS to VBD Cross Matching
The precision of VIIRS imagery is known to be influenced
by variation in lunar brightness, cloud cover and between

fleets using light to attract catch (Cozzolino and Lasta, 2016;
Hsu et al., 2019). Error in detection rates can result in
underestimates of fishing effort if vessels are obscured by
cloud or lunar reflection, or overestimation if false positives
occur due to lunar glare. To determine the local accuracy
of the remote sensing imagery, the sample of GPS tracked
purse seine vessels were matched against VBD records using
a cross matching algorithm based on the methods described
in Hsu et al. (2019). If a VBD record of a fishing vessel
had an identical timestamp (to the nearest minute) to a GPS
record (within an 800m buffer), the fishing trip was recorded
as being matched to the VBD (Figure 2). Distance thresholds
were set to 800m to account for the footprint of the VBD
pixel (742m) and for the potential for the GPS instrumented
fishing vessel to be close, but not in identical proximity to
the spatial locations of the light boat whilst attracting catch
or setting nets. The sensitivity of the algorithm was limited
to ±1min as, whilst VBD data is recorded to the nearest
second, the GPS data were gathered at a resolution of one
location per minute. If multiple VBDs records fulfilled the time
and distance matching threshold for a single GPS point, or
multiple GPS tracks matched to a single VBD, then only the
closest (m) match was retained. This ensured VBD detections
were not matched multiple times resulting. Tracked vessels
can sometimes visit multiple light boats each night, as such
a GPS track could be matched to more than one VBD
light signature due to multiple satellite overpasses. To prevent
potential overestimation from this issue, matching results were
screened for trips with duplicate matches and only the best
match (m) retained.

In addition to the cross-matching algorithm, core fishing areas
from both the GPS and VBD data were identified using kernel
density estimation (KDE) analysis, performed in ESRI ArcGIS
version 10.6.0. VBD records were spatially filtered to a local
study area shapefile informed by the spatial coverage (Minimum
Bounding Geometry function ArcGIS) of the GPS tracked vessels
operating from the Kyeintali sub-township landing sites and
smoothed by approximate boundaries of neighboring townships
of Gwa (South) and Gyeiktaw (North). KDE output cell size
was set to 250 × 250m, with a search radius (bandwidth)
of 5,000m [considered to produce an output neither overly
fragmented nor overly smoothed (Gitzen et al., 2006)]. Core
fishing areas (50th percentile) were then extracted from the
maximum KDE value.

Predicted Fishing Effort
To estimate the monthly and annual purse seine fishing
effort (number of light boats), the VBD-GPS match rates
were used to predict the number of light boats unidentified
by the VBD data. This prediction was used to determine
the overall fisheries effort, recognizing that raw VBD
data does not provide a total synoptic overview due to
the impact of environmental variables (cloud cover and
lunar illumination) on detection accuracy. The monthly
mean detections were corrected (divided) by the monthly
match rates to calculate the total predicted fishing effort.
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FIGURE 2 | Visual example of one nights GPS to VBD matching. (A) Five successfully matched GPS tracked fishing trips (blue lines) and one unmatched trip (red line)

with predicted behavioral fishing states highlighted (pink lines). (B) VBD records (yellow points) with the pixel footprint (742m) overlaid (white square). (C) The GPS

location (points) of each vessel at the time of closest satellite overpass.

Predicted fishing effort is therefore calculated as follows
(Equation 1):

PE =

∑

(

vx

mx

)

where total predicted fishing effort (PE) is the sum of the mean
monthly VBD records (vx) divided by the monthly mean match
rate (mx).

Predicted Biomass and Value
To estimate the total biomass caught by the local purse seine
fleet, and its value, the logbook data were extrapolated by the
predicted fishing effort values (Supplementary Figure 1). For
analysis, value and weight per trip were averaged by the number
of hauls, to describe a mean catch at a single light boat. These
values were subsequently trimmed to remove extreme outliers
and possible reporting errors. Trimming removed the upper 5%
of the data by weight per haul. Monthly grand means were then
calculated, and for each month, the mean weight (kg) and value
($) per haul were multiplied by the predicted number of light
boats. Predicted fish biomass catch is therefore calculated as
follows (Equation 2):

PY =

∑

(

vx

mx
x

lx

1000

)

where total predicted biomass (mt yr−1) (PY) is the sum of the
mean monthly VBD (vx), divided by the monthly mean match
rate (mx) and multiplied by the mean weight (lx) (kg). Predicted
value is calculated as follows (Equation 3):

PV =

∑

(

vx

mx
x dx

)

where total predicted value ($ yr−1) (PV) is the sum of the
mean monthly VBD (vx), divided by the monthly match rate
(mx) and multiplied by the mean value (dx) ($). To provide
a comparison with the above estimates, biomass and value
calculations were repeated using the raw (uncorrected) VBD
data. To provide an indication of potential uncertainty in the
total biomass estimate, a bootstrappingmethodwas applied using
the boot package in R (Canty and Ripley, 2020). Bootstrapping
is often used to analyse fisheries data to account for the highly
dynamic and often variable distribution of landings data (Stewart
and Hamel, 2014; Schwamborn et al., 2019). The bootstrap
used a random sample (with replacement) replicated 10,000
times for each month. Respective minimum and maximum
bootstrap mean weight (kg) per haul were then applied to the
predicted mean number of light boats. Monthly values were then
summed to provide an upper and lower estimate of biomass
removal (mt yr-1).

Spatial and Temporal Distribution of Catch
In addition to understanding the temporal trends in the landings,
it is also important to determine spatial “hotspots” of biomass
removal to inform management. To predict areas of acute
biomass extraction, we partitioned our study area into 5 ×

5 km grid cells. Using the spatial coordinates assigned to each
VBD record, a mean cumulative count of fishing effort was
calculated for each cell bymonth. These values were subsequently
corrected using the monthly VBD-GPS match rates to account
for undetected light boats. Finally, corrected fishing intensity
scores were combined with mean monthly landings data to
spatially estimate biomass removal. To contextualize spatial
estimates, monthly trends in species composition were calculated
from the logbook data. The proportion of total biomass per haul
for the five most landed species were calculated, with all other
species grouped together.
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TABLE 3 | Cross matching GPS and VBD data to predict total fishing effort.

Month GPS fishing

trips (n.)

Matched

trips (n.)

Match rate

(%)

sd Mean VBD

records (n.)

sd Predicted fishing

effort (n.)

sd

October 18 10 55.6 27.8 375 281 674 607

November 215 112 52.1 10.4 1706 353 3274 940

December 296 150 50.7 13.7 2224 434 4389 1463

January 461 237 51.4 14.3 2485 260 4833 1433

February 491 281 57.2 5.6 2527 345 4416 741

March 465 227 48.8 31.5 2494 416 5109 3404

April 359 172 47.9 5.7 1403 220 2928 577

May 77 32 41.6 3.7 594 459 1430 1111

Total 2,382 1,221 13,807 2,766 27,053 10,276

Note GPS fishing trips excludes the 75 estimated to be in transit at time of satellite overpass and excluded from the match rates.

To expand the spatial analysis to a regional scale, the coastal
waters of Rakhine and Ayeyarwaddy states (Figure 1) were
partitioned at a 20 × 20 km grid cell resolution and the relevant
VBD records spatially apportioned and corrected as above. The
average monthly landings data from Kyeintali landing sites were
extrapolated to estimate biomass removal regionally. Monthly
estimates for each grid cell were finally aggregated to estimate the
cumulative annual biomass extraction spatially.

RESULTS

GPS Tracked Fishing Trips
Processed GPS data resulted in 2,457 distinct fishing trips for
comparison. Ninety seven percent (n = 2,383) remained within
10 nm of the coastline and predominantly operated in waters
between 20 and 40m deep. Hardware failures resulted in only
321 trips being tracked during the 2017/18 season. These failures
may have occurred due to accidental damage from removal and
storage after the first wet season. The number of trips occurring
in the 2016/17 and 2018/19 season were more evenly distributed
with 959 and 1,177 tracks respectively. Across the three fishing
seasons the most trips occurred in February (n = 491) with the
fewest for a month (n= 18) occurring in October (Table 3).

Nighttime Light Imagery
The remote sensing imagery resulted in 569,436 VIIRS Boat
Detections recorded in the EEZ of Myanmar for the three
fishing seasons (October to May, 2016 to 2019). Locally, 41,422
detections were within the Kyeintali study area (2016/17: n =

12,185, 2017/18: n = 14,681 and 2018/19: n = 14,556). Of these
detections, 73.5% (n = 30,444) were assigned the highest quality
flag of 1, 26% (n = 10,800) flag 2 with quality flags 3 and 10
representing 0.1 and 0.3% of the data respectively. Local detection
rates peak in February with mean cumulative detections of 2,527
per month (Table 3). October andMay record low detection rates
and a high deviation from mean monthly values, reflecting the
dynamic nature of a seasonal fishery dictated by the onset of
the wet or dry season (Table 3). Detections within the Kyeintali
study area were widely distributed, however, ∼90% (n = 27,220)
occurred within the 10 nm inshore zone.

Purse Seine Landings Data
Fishing trips (n = 5,819) and 10,979 hauls (n = 10,979) were
recorded in logbooks, landing ∼1,900 mt, with a gross value of
$497,820 (Table 4). Fishing vessels recorded 1.9 (mean ± sd 0.1)
hauls per trip. The mean weight per haul remained relatively
consistent across months (range: 330–371 kg), except for January
and May (Supplementary Figure 2). January (185 kg) and May
(519 kg) showed markedly high variation from the overall mean
weight per haul (332 kg± sd 366). Mean value per haul peaked in
March at $207 (USD), down to $124 in January, and showed no
clear trend across months.

The landings data (Supplementary Table 1) revealed 102
distinct species were caught and landed. Cumulative frequency
distribution revealed just five species accounted for 65%
of the total landings by weight. These were: Goldstripe
sardinella (Sardinella gibbosa), Indian anchovy (Stolephorus
indicus), Indian mackerel (Rastrelliger kanagurta), White-
spotted spinefoot (Siganus canaliculatus) and Indian squid
(Uroteuthis duvaucelii). Landings (11%) were attributed to
“non-consumptive catch” (locally: “Trash-fish”), where fisheries
consolidate any small, unidentified and juvenile fish to be sold
as animal feed or fertilizer. The remaining 24% of landings were
comprised of less common target species and retained bycatch.
Fin fish species represented 95% of total catch. Indian squid were
the only cephalopod species of note and six species of shrimps
and prawns represented <1% of total landed weight. Species of
conservation concern were rarely reported as landed, except for
reef manta rays (Mobula alfredi) with 29 separate instances. A
landing ban on sharks in Myanmar may explain these reporting
rates, with species either discarded at sea or intentionally omitted
from logbooks. Goldstripe sardinella dominated landings in
the early season, typically accounted for 50% of daily landings
by weight (Figure 3). In contrast, Indian anchovy revealed
an opposite trend, and were proportionally the most landed
species in the final months of the season. January saw a lower
proportion of catch attributed to these five species. Total weight
composition was more evenly distributed between these, and
other species [i.e., kawakawa (Euthynnus affinis)], with no one
species responsible for more than 15% of total landings. The
absence of large landings of shoaling fish in January may be the
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TABLE 4 | Monthly mean weight and value per haul for the purse seine fishery calculated from logbook data of 36 vessels.

Month Reported

trips (n.)

Reported

catches (n.)

Total yield

(mt)

Total value

($)*

Mean yield per

catch (kg)

sd Mean value

per catch ($)*

sd

October 327 568 110.6 21,103 338.3 401.7 136 208

November 819 1505 296.4 44,018 361.9 372.2 143 231

December 907 1710 316.2 63,718 348.6 378.0 128 222

January 881 1675 163.0 51,996 185.0 245.0 124 232

February 1007 1917 332.7 96,927 330.4 359.5 170 250

March 990 1888 368.0 132,551 371.7 379.7 207 257

April 628 1220 214.6 55,191 341.8 358.9 146 170

May 260 496 135.0 32,316 519.1 424.2 168 157

*Exchange rate US$1 = MMK1401 as of 01/05/2020.

TABLE 5 | Estimates of the purse seine fishery total yield and value.

Month Raw VBD records Predicted fishing effort

Estimated

yield (mt)

sd Estimated

value ($)

sd Estimated

yield (mt)

sd Estimated

value ($)

sd

October 127 178 51,080 90,452 228 340 91,945 162,813

November 617 648 243,990 399,415 1185 1265 468,373 766,735

December 775 854 284,462 503,639 1530 1735 561,339 993,848

January 460 611 306,952 583,696 894 1213 597,068 1,135,374

February 835 915 430,778 636,485 1459 1606 752,712 1,112,150

March 927 960 516,525 726,640 1899 2316 1,058,079 1,488,491

April 480 509 204,407 241,893 1001 1069 426,640 504,882

May 308 347 99,580 121,413 742 837 239,615 292,149

Total 4,529 5,021 2,137,775 3,303,632 8,938 10,382 4,195,771 6,456,442

First showing monthly estimates of yield and value by combining the monthly mean yield per haul and mean value per haul with the mean raw VBD detections. Then these are repeated

using the predicted fishing effort values.

driver of the relatively low total weight (163 mt) and mean catch
per haul.

GPS to VBD Cross Matching
Of the 2,457 GPS tracked fishing trips considered for comparison
against the VBD data, 1,221 (50%) were matched to unique VBD
records. Of the unmatched trips, 75 were deemed to be in transit
at the time of satellite overpass, so were subsequently removed,
resulting in 1,221 trips matched from a possible 2,382 (51%).
Duplicate matches (caused by multiple satellite overpasses) that
may cause overestimation in match rates were not encountered
when data screening. To explore temporal variation in VIIRS
imagery efficiency, mean match rates were calculated for each
month of the fishing season (Table 3). Monthly match rates
revealed limited inter-monthly variation except for May, where
the match rate declined and only 42% of fishing trips registered
a match. Inter-annual variation was apparent, with a 57% match
rate during the 2016/17 fishing season, 52% in 2017/18 and a 43%
match rate in 2018/19. Months with higher match rates typically
had a greater proportion of matches from higher accuracy VBDs
(Supplementary Table 2).

KDE analysis of the VBD records reveal two distinct core
(50th percentile) fishing areas, together covering 647 km2

(Figure 4). GPS tracks were spatially clustered, with results
of the KDE analysis revealing two distinct core fishing areas,
cumulatively representing 177 km2. Of this, 170 km2 (96%)
spatially intersected the core area identified in the VBD data.

Predicted Fishing Effort
Predicted mean fishing effort achieved by adjusting raw VBD
detections and the VBD-GPS matching rates suggest 27,053
fishing events at light boats per annum (Table 3) within the
Kyeintali study area. December through March experience
relatively high levels of predicted effort, with the season estimated
to peak in March, with 5,109 fishing events on average. October
(n= 674) andMay (n= 1,430) experience relatively low and high
deviation from estimated effort means, reflecting the variation in
the start and end of the season.

Predicted Biomass and Value
Through extrapolation of the landings data with the predicted
fishing effort values, we estimate the total biomass extracted
by the Kyeintali sub-township purse seine fishery to be
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FIGURE 3 | Kyeintali purse seine fishing fleet landings data. Monthly mean proportion of yield (kg) per haul from the logbook landings data grouped by the top four

most landed species, non-consumptive catch grouping and all additional landed species grouped as “Other” (see Supplementary Table 1 for full list).

8,938 mt yr−1, worth in excess of $4 million (Table 5). This
compares to 4,529mt yr−1 when using the raw, uncorrected VBD
data. Results of the bootstrapping exercise indicated a minimum
estimated biomass removal of 7,674 mt yr−1 and a maximum of
10,315 mt yr−1 (Supplementary Table 3). March is estimated to
experience the highest mean landings, with an estimated 1,899
mt at a value of ∼$1 million. Despite having a relatively high
level of predicted fishing effort, January is estimated to experience
modest landings (894 mt) compared to other peak months.

Spatial and Temporal Distribution of Catch
Fishing effort was dispersed across much of the study area (147
of 202 cells experienced fishing activity; Figure 5). Most biomass
removal was predicted to occur in the north of the study area,
near Ponnyet (see Figure 1 for site names) and overlapped the
Maw She KBA boundaries. Only one grid cell south of Kywe
Gyaing was found to be in the top ten cumulatively most fished.
Extraction was concentrated in several clusters, with over 50%
of landings occurring in 24 grid cells (representing 12% of total
cells). The majority (88%) of biomass was landed within the
10 nm inshore zone (attributed by the centroid of the grid cell)
and predominantly in shallow water of <50m depth. Spatial
patterns of biomass extraction for the Kyeintali purse seine fleet
revealed relatively small variations between months (Figure 5),
but core areas were evident with six distinct cells found to
occur in the top ten most fished for all but 2 months. Regional
results reveal spatially distinct hotspots of biomass removal along
the coast (Figure 6). The wider Kyeintali region was estimated
to experience the highest levels of biomass removal by purse
seine vessels. Significant hotspots were also evident close to

the Rakhine state capital of Sittwe and adjacent to Ramree
Island. Most fishing occurred within the inshore zone (10 nmi)
and results indicated an effort of 53,243 light boat trips yr−1

(±sd 4,654) landing 33,988 mt yr−1 (±sd 38,998), although
extrapolation of landings at this scale must be treated with
additional caution.

DISCUSSION

This study analyzed more than 5,800 surveyed fishing trips, 2,500
GPS tracks and 724 days of nighttime imagery to quantify the
dynamics of a regionally important fishery in Myanmar. The
presented method explores the utility of combining remotely
sensed and in situ data to quantify a data-poor light-boat fishery.
Despite fitting the description of a small-scale fleet (Smith
and Basurto, 2019), results show the landings and economic
importance of the purse seine fishery to be far from trivial.
Key hotspots of biomass extraction are presented, notably
to the north of the study site overlapping the conservation
priority Maw She KBA reflecting the urgent need for improved
spatial management of this area. Regionally, Kyeintali and the
surrounding townships are estimated to be the most intensively
fished in northern Myanmar. This makes them a focal location
for future management, particularly in the context of conserving
stocks of small shoaling and juvenile fish. The remote sensing
products used here provide a long-term source of data, capable
of quantifying an entire fleet (with appropriate caveats to
interpretation) which would otherwise require extensive effort in
vessel tracking and catch monitoring.
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FIGURE 4 | Kernel density estimation (KDE) analysis and spatial biomass

removal. (A) The unprocessed GPS vessel tracks. (B) The raw VBD data

(October to May 2016–2019). (C) KDE of processed GPS tracks using a 250

× 250m grid cell and a 5 km search radius. (D) KDE of processed VBD data

using a 250 × 250m grid cell and a 5 km search radius. (E) Core activity areas

of each dataset using the 50th percentile of the data. (F) Annual biomass

removal estimate using a cumulative sum of monthly estimates at a 5 × 5 km

grid cell resolution, with KIFCA boundaries and zonal gear restrictions (mesh

size >1.5 cm) (blue hash). Key landing sites identified in Figure 1 shown (black

points).

Estimated State of the Fishery
Providing a quantitative baseline of fisheries effort and biomass
removal is important to developing long-term stock assessments
(Guénette and Gascuel, 2012). Using the corrected detection
rate, local purse seine fisher effort is predicted to be 27,053
hauls yr−1, 13,246 higher than when using the raw VBD data

alone (13,807 yr−1). In turn, predicted biomass removal may
be more than 8,900 mt yr−1, a benchmark that can be used to
measure changes in catch and effort against in the future. The
minimum (7,674 mt yr−1) and a maximum (10,315 mt yr−1)
estimates generated from bootstrapping provide a useful range
of uncertainty. The paucity of existing research or government
fisheries statistics in Myanmar makes comparison of these
values difficult. Data from small-scale purse seine fisheries in
the western Indian Ocean reveal comparable mean landings
data (349 kg per day ±sd 37.1) (Okemwa et al., 2017). As
these vessels also target small shoaling fish, use similar vessel
sizes (range: 8–15m) and operate in similar waters (between
2.6 and 10.5 nautical miles offshore) they provide a useful,
if geographically distinct reference for comparison (Okemwa
et al., 2017). The benefits of using fine-scale landings data, as
opposed to aggregated and often coarse annual estimates are
also apparent. For example, the month of March, despite having
similar levels of effort to January (mean = 2,494 and 2,485,
respectively), is predicted to yield almost double the catch (1,899
and 894 mt) and be the most economically important month of
the season. Maps of biomass extraction also provide a valuable
contribution to supportingmanagement efforts includingmarine
spatial planning, currently in development nationally (Pei Ya,
2016), or local co-management initiatives. The ten most fished
grid cells (250 × 250m) are estimated to support 4,378 mt of
biomass removal, ∼50% of total landings within 5% of mapped
fishing areas (Figure 4). This high level of fishing intensity
focused on relatively small geographic areas is likely to have
significant impacts on local ecosystems and marine food webs.
This is especially true given potential for hyperstability in catches
of small pelagic species, regardless of stock status (Cruz-Rivera
et al., 2019). Hyperstability occurs as the biological characteristics
of shoaling fish can result in large landings, even if stocks are
known to be depleted. If zones of concentrated fishing effort here
overlap with potential spawning or recruitment sites for these
species, stock declines may be challenging to establish from mass
of landed fish alone. Future research investigating trends in age
and size class is therefore required.

Considerations
Prior to discussing the state of the local fishery, it is important to
examine the caveats and strengths of the method presented here.
Acknowledging these caveats provides important context when
evaluating uncertainty in results and applying them to inform
local management efforts.

Government zonal licenses exclude larger industrial fishing
vessels from the majority of the Kyeintali study area. Given the
lack of capacity for monitoring and enforcement in Myanmar,
we are unable to definitively report that these vessels are
not fishing inshore waters. Larger vessels with capacity to
remove more biomass per unit effort (due to larger nets)
may lead to underestimates of landings within the study area.
This is an important consideration in regions where different
vessel classes share fishing grounds, or where multiple gear
types using light-boats operate. Notwithstanding this issue,
locally, fishers rarely report illegal fishing of inshore waters
by large transient vessels using lights at night. It is also
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FIGURE 5 | Monthly spatial fishing effort and biomass extraction. (A) KDEs show monthly VBD detections using 250 × 250m grid cells with a 5 km search radius

(October to May 2016–2019). (B) Estimates using a monthly mean of VBD records, corrected by monthly match rates and multiplied by mean monthly catch per haul

(kg) to estimate biomass removal at 5 × 5 km grid cell resolution.
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FIGURE 6 | Regional annual spatial fishing effort and biomass removal. (A) Kernel density estimate (KDE) of total VBD detections (01/10/2016 – 31/05/2019) in the

North of Myanmar, to highlight regional hotspots of fishing effort. KDE using a 1 × 1 km grid cell and a 20 km search radius and (B) spatial biomass yield estimates

using a cumulative sum of monthly estimates at a 20 × 20 km grid cell resolution. Key locations discussed in the text highlighted. Intervals as displayed using a Natural

Breaks (Jenks) function generated in ArcMap 10.6.1. Note the KDE symbology excludes the final 0.1% of data to improve visibility of hotspots.

worth noting that the VBD pixel footprint (742 × 742m) is
large enough to contain multiple vessels if operating in highly
clustered formations (Elvidge et al., 2015). The application
of VBD to produce high-resolution landings and effort data
as presented here is therefore more suited to regions with
spatially distinct gear types and individual vessels using light to
attract catch.

Environmental variables are known to impact the accuracy
of VIIRS imagery. Increased cloud cover and lunar brightness,
notably under full moon conditions, can reduce the ability
of VIIRS to detect vessels (Elvidge et al., 2015; Hsu et al.,
2019). These variables may also increase the proportion of low-
quality detections. Locally the month of May is considered the
beginning of the wet season. May experienced both lower match
rates and a large proportion (50%) of matches from detections
with “weak,” “blurry” or “weak and blurry” quality flags (Flags
2, 3, and 10). Peak dry-season months of December, January
and February achieved 87.3, 87.3, and 83.3% of their matches
with quality flag 1 detections, respectively. Given the prevalence
of wet or monsoon rains across the tropics, inter-monthly
variation in detection rates and accuracy of detections should
be considered when discussing certainty in fishery estimates.
Lunar glare on the sea surface may also result in false-positive
VBD detections and cause overestimation fishing effort (Elvidge
et al., 2015). At present we are unable to determine the exact
scale of this issue and additional algorithm development may
further minimize false detections. Our approach assumes that
all VBD matches are correctly attributed to GPS tracks of

vessels operating in proximity. Due to the spatially segregated
nature of the fleet (vessels distance themselves to ensure lights
attract and condense fish around one vessel) and the relatively
fine-scale matching parameters (VBD and GPS data must be
within 800m and 1min of each other), the chance of GPS
tracks false matching is believed to be low. Given the impact of
environmental conditions on VIIRS derived data, using a similar
cross matching exercise to that presented here is advisable.
Cross matching with the high-resolution GPS boat tracking
data revealed the potential for VBD data to underestimate the
potential true extent and magnitude of fishing effort for the
Kyeintali purse seine fleet by∼50%. These results are comparable
with detection rates of Indonesia purse seine vessels, using
lower resolution spatial data of large VMS tracked commercial
vessels (Hsu et al., 2019).

Our results rely on self-reporting of landings by fishers.
Whilst logbooks have been shown to be an accurate and
comprehensive source of landings data (Vincent et al., 2007;
Bastardie et al., 2010), they are inevitably subject to a level
of error or intentional misreporting. The removal of shark
species from logbooks due to a national ban on landings
is likely throughout Myanmar and requires future research.
Inspection of the landings data also revealed multiple large
(>10,000 kg) landings, suspected to be reporting errors by
fishers given the size and capacity of the vessels. To account
for this error local landings were trimmed, removing the top
5% of data by mass. Removal of outliers is often applied to
landings data (Gill et al., 2019), however, it may mask infrequent
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but legitimate large catches. Additional statistical methods,
including bootstrapping as performed in our study, can also
be applied to address uncertainty when extrapolating landings
data (Magnusson et al., 2013).

Implications for Local Fisheries
Management and Conservation
Despite the discussed limitations the results presented here
provide the first comprehensive assessment of a key inshore
fishery in Myanmar. Our estimates are likely more representative
of true landings than high-level government statistic drawn
from large geographical regions (Mills et al., 2011). It
is increasingly recognized that adopting a diverse range
of management strategies in combination with legitimate
community engagement is essential for the effective management
of small-scale fisheries (Tilley et al., 2019). There has been a
recent move toward decentralization of fisheries and marine
management from federal to state level within Myanmar, with
the creation of community led local inshore fisheries co-
management areas. The first of which was established in the
Kyeintali sub-township in 2018 (Kyeintali Inshore Fisheries
Co-Management Association, KIFCA), with others planned in
adjacent sub-townships along the coast in Rakhine, Tanintharyi
and Ayeyerwady State. Without understanding the variation
in weight, value and locations of landings, local adaptive
management measures such as time-area closures are likely
to be poorly designed and could fail to deliver intended
benefits increasing uncertainty in food security for dependent
communities. Understanding what, where, when, how much and
the value of a fishery are fundamental to knowing its impact
on target and non-target stocks, the marine ecosystem they are
part of and the communities that depend on the fisheries or
marine environment for their livelihoods (Glaser et al., 2015).
These elements need to be balanced within local (e.g., KIFCA),
state or federal fisheries or marine management measures and
regulations, to produce positive and sustainable outcomes for
coastal communities, and to complement conservation efforts
within the region. The spatial estimates of biomass extraction
presented here will provide an important baseline understanding
of the purse seine inshore fishery in Rakhine and Ayeyerwady,
which is thought by many fishers to be in decline due to
overfishing (Wildlife Conservation Society, 2018).

The Kyeintali co-management area incorporates a range of
management measures, including small no-take zones, seasonal
closures and zonal gear restrictions. The success of the co-
management area is likely reliant on capacity building to design
and implement effective regulations. The voluntary engagement
by fishers in this study suggests an interest in designing informed
management measures. Data complimenting these measures
has, to date, been lacking. Improvements in data availability
can provide a quantitative baseline against which management
efforts can be assessed. For example, this study provides valuable
input to inform zonal gear restrictions potentially based on
minimum mesh sizes, notably in January and February, due to
higher levels of “non-consumptive catch” reported (mean 19.4
± sd 17.0). Mapping of extracted biomass reveals most fishing

occurs northeast of existing KIFCA gear restrictions during
these months (Figure 4). The expansion of minimum mesh
size requirements to these more intensively fished areas could
reduce the removal of juvenile fish and allow more individuals
to reach maturity and spawn (Graham et al., 2007). Whilst
these landings play an important part in the local economy and
indirectly underpin local food security (due to use as animal
feed or fertilizer), the removal of unidentified small and/or
juvenile and adult fish by nets with low selectivity in this
manner may have implications for the long-term sustainability
of stocks (Froese et al., 2016). Certain fishery harvest strategies
advocate for the retention or even targeting of small, productive
organisms in fisheries (Garcia et al., 2012). Whilst mixed harvests
of high fecundity species may be considered sustainable, data
on catch composition (size and age class) is still important for
monitoring stock status. For example, if landings were found
to be comprised of single-species juveniles, then these fishing
grounds may be important recruitment sites. If subsequent
expansion of gear restrictions were deemed necessary, new co-
management areas at adjacent sites could be informed by the
spatiotemporal data compiled here. This data would however
be most beneficial when used alongside other socioeconomic
[e.g., vulnerability of local fishers (Mizrahi et al., 2020)], and
biodiversity [e.g., benthic ecology (Vulcan, 2020)] considerations
to produce spatial measures that improve the sustainability of
small-scale fisheries livelihoods, and complement environmental
and species conservation efforts. Community involvement in
marine management is known to improve cooperation and trust-
building (Stewart et al., 2010). Community led initiatives should
therefore be conducted to compliment top-down approaches
when designing and implementing management strategies.

Our results can also provide species-specific context to
management that may be appropriate for long term sustainability
in the fishery. In the Bay of Bengal small shoaling fish species
are known to show distinct spatio-temporal trends in distribution
(Luther, 2001). This results in species remaining spatially distinct
and increases the likelihood of a single species dominating
landings at different stages of a season (Ghosh et al., 2013).
Consequently, time-area closures need to be well-informed to
ensure the effectiveness of management interventions for these
species. Locally, there is evidence of seasonality in landings
of two dominant species, goldstripe sardinella and Indian
anchovy. Together these species account for 51% of total reported
landings by weight, not accounting for any juveniles aggregated
by fisheries into non-consumptive catch. Hotspots of biomass
removal identified in October through December are relevant to
management of local goldstripe sardinella stocks, due to their
high contribution to landings during these months (mean 52%
±sd 28.2). Time-area closures or zonal total allowable catches are
more likely to benefit Indian anchovy from March through May
(mean 45% ±sd 24.7). Stocks of small shoaling fish such as these
have been overfished globally (Roux and Shannon, 2004; MacCall
et al., 2016) and are therefore susceptible to collapse (Eero et al.,
2012). As these species occupy a key trophic position as food for a
variety of predatory fish, reductions in their population may have
wide-ranging impacts on local marine ecosystems (Ghosh et al.,
2013). Whilst long term catch per unit effort calculations will
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help inform the status of local stocks, our results can provide a
high-resolution spatial baseline or be applied to catch-based stock
assessment tools, specifically designed for data-poor scenarios
(Free et al., 2017).

Landings of vulnerable marine species can also be addressed
using these data. Low fecundity and conservation concern species
which were recorded in the logbooks included longhead eagle ray
(Aetobatus flagellum), spinetail devilray (Mobula japonica), bull
shark (Carcharhinus leucas), toli shad (Tenualosa toli), fourfinger
threadfin (Eleutheronema tetradactylum) and gray bamboo shark
(Chiloscyllium griseum). Whilst catches of these species were
intermittent, true landings are likely to be higher given the level of
unsurveyed fishing effort shown to occur locally through VBDs.
The complete ban on shark fishing in Myanmar since 2009
(BOBLME, 2015) may also result in catches of certain species
being underreported in the sample of logbooks due to the worry
of potential consequences from fishery authorities (MacKeracher
et al., 2020). Landings of reef manta rays, a species globally
considered Vulnerable (IUCN) (Marshall et al., 2018), appear
more substantial. Caught almost exclusively between January and
February, the actual number of individuals harvested is unclear.
Many of the 29 landings represent processed weights, rather than
intact individuals (mean 280 kg range: 6.4–3,261). Application
of the VBD informed biomass maps with available GPS data
for a subset of these landings (n = 10) reveal they occurred
almost exclusively within a cluster of moderate to highly fished

grid cells (Supplementary Figure 3). Over the three months,
cumulative fishing effort estimated to occur in these grid cells
exceeds 2,700 net hauls. Given the high relative levels of fishing
effort within these areas, actual manta landings likely exceed
those reported here. The clustered nature of landings suggests
targeted interventions with fishers known to operate within
these areas and could help encourage lower retention rates of
bycaught individuals (Restrepo et al., 2016). However, the high
post-release mortality of mobulids (Stewart et al., 2018) suggests
release of boarded individuals will have limited conservation
benefits. In the absence of effective bycatch mitigation strategies
for these species (Stewart et al., 2018), further research is
warranted to determine the scale of manta landings both locally
and regionally. Additionally, the post-release survivorship of
bycaught rays and the collection of fine-scale spatial data to
inform distribution models and time-area closures should be
prioritized. Management of local manta populations should be
considered a conservation priority for the fishery given the
harvest and trade of manta productions is increasing across Asia
(O’Malley et al., 2017).

Wider Application
Extrapolation of local catch data to larger geographic scales
requires additional caveats to be considered, in part from
variation that could arise in fishing practices and catch
composition over the greater geographic scale. Supporting data

FIGURE 7 | VBD records across Southeast Asia. Showing cumulative detections recorded in 2019 at a 0.0042 degree (∼459m) grid cell resolution. Annual raster

data downloaded from the EOG repository (https://eogdata.mines.edu/vbd/), accessed 29/06/2020.
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from interviews conducted in 13 additional coastal villages in
southern Rakhine and Ayeyarwady state (Wildlife Conservation
Society, 2018) reveal similarity between the study regions.
They indicate that purse seine fleets regionally use similar size
boats and net mesh, fish the same season (October to May)
and target the same (sardinella, mackerel and anchovy spp.)
regionally. Birch et al. (2016) also document limited biotic and
abiotic variation between local and regional scales. Given these
similarities, it is worthwhile providing wider estimations of
the fishery’s footprint for such a data poor region, providing
increased uncertainty is acknowledged.

Whilst the extrapolation of Kyeintali landings to the regional
VBD records reduces certainty in predicted biomass values, the
hotspots identified here can guide resources, such as developing
locally managed marine areas, where they will be most effective
for the conservation of marine life. Given these waters encompass
the majority of the Rakhine Marine Corridor, a region identified
as a marine conservation priority area (Wildlife Conservation
Society, 2013), results provide a baseline characterization to
underpin conservation efforts. For example, the identification
of a fishing hotspot off Ramree Island may have specific
implications for marine turtle (Chelonioidea spp.) bycatch, as it is
known to support extensive nesting beaches of at least five species
(Birch et al., 2016).

Whilst this study tested the application value of the method
within Myanmar, its’ application value is far broader. Remote
sensing data products have been identified as a key tool for future
monitoring of Southeast Asian fisheries, with VIIRS imagery
specifically highlighted (Gorospe et al., 2016). The ubiquitous
nature of vessels using light across Southeast Asia are evident in
VIIRS imagery (Figure 7). One of the strengths of VIIRS data
is the ability of VBD algorithms to filter a specialized subset of
vessel types (Elvidge et al., 2015). Due to the high intensity of light
luminescence needed to be detected by VIIRS imagery, typically
only fishing vessels using very bright lights to attract catch (i.e.,
purse-seiners or squid jiggers) are detectable. This makes it
unlikely that detection data includes other fishing gear types or
most non-fishing vessels. VBD also has the potential to detect
IUU activities and dark fleets operating without AIS enabled
but with lights deployed at night (Elvidge et al., 2018; Oozeki
et al., 2018). Whilst VIIRS imagery captures both large pelagic
and small-scale fleets, numerous hotspots of inshore and remote
fishing are apparent. The synthesis of landings data with VBDs at
these sites have the potential to increase our ability to characterize
small scale, data-poor fisheries in a cost-effective manner.

CONCLUSION

Despite several limitations associated with remotely derived data
this study demonstrates how relatively low-cost concentrated
fishery landings surveys can be successfully combined
with open-source remote sensed data to provide a more
holistic characterization of a data-poor fishery. The approach
adopted in this study has provided a comprehensive baseline
characterization of a fishery, which could not be achieved by
applying either remoted sensing imagery, individual vessel
tracking or localized data in isolation. Moreover, the effort and

expense required to collect and combine such detailed spatial
effort and catch data over multiple years would be considerable,
highlighting the power in such an approach. Given the increased
uptake of VIIRS data to monitor fisheries, the method can serve
as an example for application to other coastal fleets using light
to attract catch but lacking capacity for long term data collection
(Geronimo et al., 2018). The results here provide a valuable
baseline in a region of Myanmar high in biodiversity, but lacking
data to inform effective management.

DATA AVAILABILITY STATEMENT

VIIRS Boat Detection data product made available open access by
the Earth Observation Group, Payne Institute for Public Policy
(https://eogdata.mines.edu/vbd/). The other datasets presented
in this article are not readily available because data requests
need to be made directly to the WCS Myanmar offices.
Requests to access the datasets should be directed to WCS
Myanmar, wcsmyanmar@wcs.org.

AUTHOR CONTRIBUTIONS

OE, AB, RT, CK, and MW contributed to the conception and
design of the study. OE, AB, RT, MW, MM, MK, and TH
contributed to data collection. OE conducted analyses and OE,
AB, RT, CK, andMWdeveloped the first drafts of themanuscript.
All authors contributed to further manuscript revisions and read
and approved the final version.

FUNDING

Myanmar data collection was funded as part of the Darwin
Initiative grant (23-024) led by WCS. Open access publication
fees provided by the University of Exeter Library.

ACKNOWLEDGMENTS

Thanks to Rakhine Coastal Region Conservation Association
members for data collection and fieldwork logistics. We thank
M. Callow for initiating research and fostering collaborations
between WCS Myanmar, the RCA and the University of Exeter.
VIIRS Boat Detection data product made available open access
by the Earth Observation Group, Payne Institute for Public
Policy (see: Elvidge, Christopher D., Mikhail Zhizhin, Kimberly
Baugh, and Feng-Chi Hsu. Automatic boat identification system
for VIIRS low light imaging data. Remote sensing 7, no. 3
(2015): 3020-3036). Some Figures use map data from Mapbox
and OpenStreetMap and their data sources. To learn more,
visit https://www.mapbox.com/about/maps/ and http://www.
openstreetmap.org/copyright.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmars.
2020.625766/full#supplementary-material

Frontiers in Marine Science | www.frontiersin.org 15 January 2021 | Volume 7 | Article 625766

https://eogdata.mines.edu/vbd/
https://wcsmyanmar@wcs.org
https://www.mapbox.com/about/maps/
http://www.openstreetmap.org/copyright
http://www.openstreetmap.org/copyright
https://www.frontiersin.org/articles/10.3389/fmars.2020.625766/full#supplementary-material
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Exeter et al. Shining Light on Data-Poor Fisheries

REFERENCES

Alfaro-Shigueto, J., Mangel, J. C., Bernedo, F., Dutton, P. H., Seminoff,

J. A., and Godley, B. J. (2011). Small-scale fisheries of Peru: a major

sink for marine turtles in the Pacific. J. Appl. Ecol. 48, 1432–1440.

doi: 10.1111/j.1365-2664.2011.02040.x

Aylesworth, L., Phoonsawat, R., andVincent, A. C. (2018). Effects of indiscriminate

fisheries on a group of small data-poor species in Thailand. ICES J. Mar. Sci. 75,

642–652. doi: 10.1093/icesjms/fsx193

Ban, N. C., Hansen, G. J., Jones, M., and Vincent, A. C. (2009). Systematic marine

conservation planning in data-poor regions: socioeconomic data is essential.

Mar. Policy 33, 794–800. doi: 10.1016/j.marpol.2009.02.011

Bastardie, F., Nielsen, J. R., Ulrich, C., Egekvist, J., and Degel, H. (2010).

Detailed mapping of fishing effort and landings by coupling fishing

logbooks with satellite-recorded vessel geo-location. Fish. Res. 106, 41–53.

doi: 10.1016/j.fishres.2010.06.016

Bicknell, A. W. J. (2019). Darwin Initiative Project: Income and Landings Data.

Wildlife Conservation Society.

Birch, F. C. H., Pikesley, S. K., Bicknell, A. W. J., Callow, M., Doherty, P. D.,

Exeter, O., et al. (2016).Myanmar Marine Biodiversity Atlas. Exeter: University

of Exeter, UK.

Blaber, S. J., Cyrus, D. P., Albaret, J. J., Ching, C. V., Day, J. W., Elliott,

M., et al. (2000). Effects of fishing on the structure and functioning

of estuarine and nearshore ecosystems. iCES J. Mar. Sci. 57, 590–602.

doi: 10.1006/jmsc.2000.0723

BOBLME, Department of Fisheries, Myanmar, Fauna and Flora International

(2015). Guide to the Development of Myanmar’s National Plan of Action for the

conservation and management of sharks. Phuket, Thailand: Bay of Bengal Large

Marine Ecosystem Project (BOBLME).

Boon, P. Y., Callow, M., and Grantham, H. (2016). Marine Spatial

Planning for Myanmar. Yangon Myanmar: Wildlife Conservation Society

Myanmar Programme.

Breen, P., Vanstaen, K., and Clark, R. W. (2015). Mapping inshore fishing activity

using aerial, land, and vessel-based sighting information. ICES J. Mar. Sci. 72,

467–479. doi: 10.1093/icesjms/fsu115

Brown, G. (2012). Public Participation GIS for regional and environmental

planning: reflections on a decade of empirical research. J. Urban Regional

Inf. Syst. 24, 5–16.

Brown, G. (2017). A review of sampling effects and response bias in

internet participatory mapping (PPGIS/PGIS/VGI). Transact. GIS 21, 39–56.

doi: 10.1111/tgis.12207

Calenge, C. (2006). The package “adehabitat” for the R software: a tool for the

analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519.

doi: 10.1016/j.ecolmodel.2006.03.017

Canty, A., and Ripley, B. (2020). boot: Bootstrap R (S-Plus) Functions. R package

version 1.3-25.

Cardiec, F., Bertrand, S., Witt, M. J., Metcalfe, K., Godley, B. J., McClellan,

C., et al. (2020). “Too big to ignore”: a feasibility analysis of detecting

fishing events in gabonese small-scale fisheries. PLoS ONE 15:e0234091.

doi: 10.1371/journal.pone.0234091

Chan, A., and Hodgson, P. A. (2017). “A systematic analysis of blast fishing in

South-East Asia and possible solutions,” in 2017 IEEE Underwater Technology

(UT) (Busan: IEEE). doi: 10.1109/UT.2017.7890330

Chassot, E., Bonhommeau, S., Reygondeau, G., Nieto, K., Polovina, J. J., Huret,

M., et al. (2011). Satellite remote sensing for an ecosystem approach to fisheries

management. ICES J. Mar. Sci. 68, 651–666. doi: 10.1093/icesjms/fsq195

Choi, K., Lee, C. I., Hwang, K., Kim, S. W., Park, J. H., and Gong, Y. (2008).

Distribution and migration of Japanese common squid, Todarodes pacificus,

in the southwestern part of the East (Japan) sea. Fish. Res. 91, 281–290.

doi: 10.1016/j.fishres.2007.12.009

Cozzolino, E., and Lasta, C. A. (2016). Use of VIIRS DNB satellite images to

detect jigger ships involved in the illex argentinus fishery. Rem. Sens. Appl. Soc.

Environ. 4, 167–178. doi: 10.1016/j.rsase.2016.09.002

Croft, T. A. (1978). Nighttime images of the earth from space. Sci. Am. 239, 86–101.

doi: 10.1038/scientificamerican0778-86

Cruz-Rivera, E., Ramírez, C., H., and Vasilieva, O. (2019). Catch-to-stock

dependence: the case of small pelagic fishery with bounded harvesting effort.

Nat. Resour. Model. 32:e12193. doi: 10.1111/nrm.12193

Department of Fisheries (2016). Myanmar Fisheries Statistics. Department of

Fisheries, Ministry of Agriculture, Livestock and Irrigation.

Department of Fisheries (2017). Fisheries Statistics (2017). Myanmar: Department

of Fisheries.

Dunn, D. C., Stewart, K., Bjorkland, R. H., Haughton, M., Singh-Renton,

S., Lewison, R., et al. (2010). A regional analysis of coastal and

domestic fishing effort in the wider Caribbean. Fish. Res. 102, 60–68.

doi: 10.1016/j.fishres.2009.10.010

Eero, M., Vinther, M., Haslob, H., Huwer, B., Casini, M., Storr-Paulsen, M., et al.

(2012). Spatial management of marine resources can enhance the recovery of

predators and avoid local depletion of forage fish. Conserv. Lett. 5, 486–492.

doi: 10.1111/j.1755-263X.2012.00266.x

Elvidge, C. D., Ghosh, T., Baugh, K., Zhizhin, M., Hsu, F. C., Katada, N.

S., et al. (2018). Rating the effectiveness of fishery closures with visible

infrared imaging radiometer suite boat detection data. Front. Mar. Sci. 5:132.

doi: 10.3389/fmars.2018.00132

Elvidge, C. D., Zhizhin, M., Baugh, K., and Hsu, F. C. (2015). Automatic boat

identification system for VIIRS low light imaging data.Rem. Sens. 7, 3020–3036.

doi: 10.3390/rs70303020

Ferrà, C., Tassetti, A. N., Grati, F., Pellini, G., Polidori, P., Scarcella, G., et al. (2018).

Mapping change in bottom trawling activity in the mediterranean sea through

AIS data.Mar. Policy 94, 275–281. doi: 10.1016/j.marpol.2017.12.013

Food and Agriculture Organisation (2014). State of World Fisheries and

Aquaculture 2014. Food and Agriculture Organisation.

Food and Agriculture Organisation (2015). Voluntary Guidelines for Securing

Sustainable Small-Scale Fisheries in the Context of Food Security and Poverty

Eradication. Rome: FAO.

Fox, H. E., and Caldwell, R. L. (2006). Recovery from blast fishing on coral

reefs: a tale of two scales. Ecol. Appl. 16, 1631–1635. doi: 10.1890/1051-

0761(2006)016[1631:RFBFOC]2.0.CO;2

Free, C. M., Jensen, O. P., Wiedenmann, J., and Deroba, J. J. (2017).

The refined ORCS approach: a catch-based method for estimating stock

status and catch limits for data-poor fish stocks. Fish. Res. 193, 60–70.

doi: 10.1016/j.fishres.2017.03.017

Froese, R., Winker, H., Gascuel, D., Sumaila, U. R., and Pauly, D. (2016).

Minimizing the impact of fishing. Fish Fish. 17, 785–802. doi: 10.1111/faf.12146

Garcia, S. M., Kolding, J., Rice, J., Rochet, M. J., Zhou, S., Arimoto, T. et al.

(2012). Reconsidering the consequences of selective fisheries. Science 335,

1045–1047.

Geronimo, R. C., Franklin, E. C., Brainard, R. E., Elvidge, C. D., Santos, M.

D., Venegas, R., et al. (2018). Mapping fishing activities and suitable fishing

grounds using nighttime satellite images and maximum entropy modelling.

Rem. Sens. 10:1604. doi: 10.3390/rs10101604

Ghosh, S., Rao, M. V., Sumithrudu, S., Rohit, P., and Maheswarudu, G. (2013).

Reproductive biology and population characteristics of Sardinella gibbosa and

Sardinella fimbriata from North West Bay of Bengal. Indian J. Geo-Marine Sci.

42, 758–769. Available online at: http://nopr.niscair.res.in/handle/123456789/

24812

Gill, D. A., Oxenford, H. A., Turner, R. A., and Schuhmann, P. W. (2019).

Making the most of data-poor fisheries: low cost mapping of small island

fisheries to inform policy.Mar. Policy 101, 198–207. doi: 10.1016/j.marpol.2017.

10.040

Gitzen, R. A., Millspaugh, J. J., and Kernohan, B. J. (2006). Bandwidth selection for

fixed-kernel analysis of animal utilization distributions. J. Wildl. Manage. 70,

1334–1344. doi: 10.2193/0022-541X(2006)70[1334:BSFFAO]2.0.CO;2

Glaser,M., Breckwoldt, A., Deswandi, R., Radjawali, I., Baitoningsih,W., and Ferse,

S. C. (2015). Of exploited reefs and fishers–a holistic view on participatory

coastal and marine management in an Indonesian archipelago. Ocean Coastal

Manage. 116, 193–213. doi: 10.1016/j.ocecoaman.2015.07.022

Gorospe, K. D., Michaels, W., Pomeroy, R., Elvidge, C., Lynch, P.,

Wongbusarakum, S., et al. (2016). The mobilization of science and

technology fisheries innovations towards an ecosystem approach to fisheries

management in the coral triangle and southeast asia. Mar. Policy 74, 143–152.

doi: 10.1016/j.marpol.2016.09.014

Graham, N., Ferro, R. S., Karp, W. A., and MacMullen, P. (2007). Fishing practice,

gear design, and the ecosystem approach—three case studies demonstrating the

effect of management strategy on gear selectivity and discards. ICES J. Mar. Sci.

64, 744–750. doi: 10.1093/icesjms/fsm059

Frontiers in Marine Science | www.frontiersin.org 16 January 2021 | Volume 7 | Article 625766

https://doi.org/10.1111/j.1365-2664.2011.02040.x
https://doi.org/10.1093/icesjms/fsx193
https://doi.org/10.1016/j.marpol.2009.02.011
https://doi.org/10.1016/j.fishres.2010.06.016
https://doi.org/10.1006/jmsc.2000.0723
https://doi.org/10.1093/icesjms/fsu115
https://doi.org/10.1111/tgis.12207
https://doi.org/10.1016/j.ecolmodel.2006.03.017
https://doi.org/10.1371/journal.pone.0234091
https://doi.org/10.1109/UT.2017.7890330
https://doi.org/10.1093/icesjms/fsq195
https://doi.org/10.1016/j.fishres.2007.12.009
https://doi.org/10.1016/j.rsase.2016.09.002
https://doi.org/10.1038/scientificamerican0778-86
https://doi.org/10.1111/nrm.12193
https://doi.org/10.1016/j.fishres.2009.10.010
https://doi.org/10.1111/j.1755-263X.2012.00266.x
https://doi.org/10.3389/fmars.2018.00132
https://doi.org/10.3390/rs70303020
https://doi.org/10.1016/j.marpol.2017.12.013
https://doi.org/10.1890/1051-0761(2006)016[1631:RFBFOC]2.0.CO;2
https://doi.org/10.1016/j.fishres.2017.03.017
https://doi.org/10.1111/faf.12146
https://doi.org/10.3390/rs10101604
http://nopr.niscair.res.in/handle/123456789/24812
http://nopr.niscair.res.in/handle/123456789/24812
https://doi.org/10.1016/j.marpol.2017.10.040
https://doi.org/10.2193/0022-541X(2006)70[1334:BSFFAO]2.0.CO;2
https://doi.org/10.1016/j.ocecoaman.2015.07.022
https://doi.org/10.1016/j.marpol.2016.09.014
https://doi.org/10.1093/icesjms/fsm059
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Exeter et al. Shining Light on Data-Poor Fisheries

Guénette, S., and Gascuel, D. (2012). Shifting baselines in European fisheries: the

case of the Celtic Sea and Bay of Biscay. Ocean Coastal Manage. 70, 10–21.

doi: 10.1016/j.ocecoaman.2012.06.010

Hsu, F. C., Elvidge, C. D., Baugh, K., Zhizhin, M., Ghosh, T., Kroodsma, D., et al.

(2019). Cross-matching VIIRS boat detections with vessel monitoring system

tracks in Indonesia. Rem. Sens. 11:995. doi: 10.3390/rs11090995

Jennings, S., and Lee, J. (2012). Defining fishing grounds with vessel monitoring

system data. ICES J. Mar. Sci. 69, 51–63. doi: 10.1093/icesjms/fsr173

Johnson, A. F., Moreno-Báez, M., Giron-Nava, A., Corominas, J., Erisman,

B., Ezcurra, E., et al. (2017). A spatial method to calculate small-

scale fisheries effort in data poor scenarios. PLoS ONE 12:e0174064.

doi: 10.1371/journal.pone.0174064

Klemas, V. (2013). Fisheries applications of remote sensing: an overview. Fish. Res.

148, 124–136. doi: 10.1016/j.fishres.2012.02.027

Krakstad, J., Michalsen, K., Krafft, B., Bagøien, E., Alvheim, O., and Strømme,

T. (2014). Cruise Report “Dr Fridtjof Nansen” Myanmar Ecosystem Survey 13

November – 17December 2013. Bergen: Institute of Marine Research.

Kroodsma, D. A., Mayorga, J., Hochberg, T., Miller, N. A., Boerder, K., Ferretti, F.,

et al. (2018). Tracking the global footprint of fisheries. Science 359, 904–908.

doi: 10.1126/science.aao5646

Léopold, M., Guillemot, N., Rocklin, D., and Chen, C. (2014). A framework for

mapping small-scale coastal fisheries using fishers’ knowledge. ICES J. Marine

Sci. 71, 1781–1792. doi: 10.1093/icesjms/fst204

Liu, Y., Saitoh, S. I., and Hirawake, T. (2015). Detection of squid and pacific

saury fishing vessels around Japan using VIIRS day/night band image. Proc.

Asia-Pacific Adv. Netw. 39, 28–39. doi: 10.7125/APAN.39.3

Luther, G. (2001). Management of Lesser Sardine Fishery Resources Along North

Andhra Coast. Souvenir issued on the Occasion of the inauguration of

Visakhapatnam RC of CMFRI 17 October 2001, 5–9.

MacCall, A. D., Sydeman, W. J., Davison, P. C., and Thayer, J. A. (2016). Recent

collapse of northern anchovy biomass off California. Fish. Res. 175, 87–94.

doi: 10.1016/j.fishres.2015.11.013

MacKeracher, T., Mizrahi, M., Bergseth, B., Maung, K. M. C., Phyu, E. T.,

Simpfendorfer, C. A., et al. (2020). Understanding non-compliance in small

scale fisheries: shark fishing in Myanmar’s Myeik Archipelago. AMBIO.

doi: 10.1007/s13280-020-01400-1. [Epub ahead of print].

Magnusson, A., Punt, A. E., and Hilborn, R. (2013). Measuring uncertainty in

fisheries stock assessment: the delta method, bootstrap, and MCMC. Fish Fish.

14, 325–342. doi: 10.1111/j.1467-2979.2012.00473.x

Mangel, J. C., Alfaro-Shigueto, J., Van Waerebeek, K., Cáceres, C., Bearhop,

S., Witt, M. J., et al. (2010). Small cetacean captures in Peruvian artisanal

fisheries: high despite protective legislation. Biol. Conserv. 143, 136–143.

doi: 10.1016/j.biocon.2009.09.017

Marshall, A., Bennett, M. B., Kodja, G., Hinojosa-Alvarez, S., Galvan-Magana,

F., Harding, M., et al. (2018). Mobula birostris (amended version of 2011

assessment). IUCN Red List Threatened Species 2018:eT198921A126669349.

Metcalfe, K., Collins, T., Abernethy, K. E., Boumba, R., Dengui, J. C.,

Miyalou, R., et al. (2017). Addressing uncertainty in marine resource

management; combining community engagement and tracking technology to

characterize human behavior. Conserv. Lett. 10, 460–469. doi: 10.1111/conl.

12293

Mills, D. J., Westlund, L., de Graaf, G., Kura, Y., Willman, R., and Kelleher,

K. (2011). “Under-reported and undervalued: small-scale fisheries in the

developing world,” in Small-Scale Fisheries Management: Frameworks and

Approaches for the Developing World, eds R. S. Pomeroy, and N. L. Andrew

(Wallingford, CT: CABI), 1–15. doi: 10.1079/9781845936075.0001

Mizrahi, M., Duce, S., Khine, Z. L., MacKeracher, T., Maung, K. M. C., Phyu, E. T.,

et al. (2020). Mitigating negative livelihood impacts of no-take MPAs on small-

scale fishers. Biol. Conserv. 245:108554. doi: 10.1016/j.biocon.2020.108554

Natale, F., Gibin, M., Alessandrini, A., Vespe, M., and Paulrud, A. (2015).

Mapping fishing effort through AIS data. PLoS ONE 10:e0130746.

doi: 10.1371/journal.pone.0130746

Okemwa, G. M., Maina, G. W., Munga, C. N., Mueni, E., Barabara, M. S.,

Ndegwa, S., et al. (2017). Managing coastal pelagic fisheries: a case study of the

small-scale purse seine fishery in Kenya. Ocean Coastal Manage. 144, 31–39.

doi: 10.1016/j.ocecoaman.2017.04.013

O’Malley, M. P., Townsend, K. A., Hilton, P., Heinrichs, S., and Stewart, J. D.

(2017). Characterization of the trade in manta and devil ray gill plates in China

and South-east Asia through trader surveys. Aquat. Conserv. 27, 394–413.

doi: 10.1002/aqc.2670

Oozeki, Y., Inagake, D., Saito, T., Okazaki, M., Fusejima, I., Hotai, M., et al. (2018).

Reliable estimation of IUU fishing catch amounts in the northwestern Pacific

adjacent to the Japanese EEZ: potential for usage of satellite remote sensing

images.Mar. Policy 88, 64–74. doi: 10.1016/j.marpol.2017.11.009

Orlov, V. (2012). Don’t miss a tiger waking up. Secur. Index Russ. J. Int. Secur. 18,

1–4. doi: 10.1080/19934270.2011.644444

Paulino, C., Aroni, E., Xu, H., Alburqueque, E., and Demarcq, H. (2017). Use of

nighttime visible images in the study of the spatial and temporal variability

of fishing areas of jumbo flying squid (Dosidicus gigas) outside Peruvian EEZ

2004–2015. Fish. Res. 191, 144–153. doi: 10.1016/j.fishres.2017.03.009

Pauly, D., and Zeller, D. (2016). Catch reconstructions reveal that global marine

fisheries catches are higher than reported and declining. Nat. Commun.

7:10244. doi: 10.1038/ncomms10244

Pei Ya, B. (2016). Marine Spatial Planning for Myanmar. Strategic Advice for

Securing a Sustainable Ocean Economy. Yangon: Wildlife Conservation Society

and Department of Fisheries.

Prescott, G. W., Sutherland, W. J., Aguirre, D., Baird, M., Bowman, V., Brunner,

J., et al. (2017). Political transition and emergent forest-conservation issues in

Myanmar. Conserv. Biol. 31, 1257–1270. doi: 10.1111/cobi.13021

Restrepo, V., Dagorn, L., andMoreno, G. (2016).Mitigation of silky shark bycatch in

tropical tuna purse seine fisheries (ISSF Technical Report 2016-17).Washington,

DC: International Seafood Sustainability Foundation.

Roux, J. P., and Shannon, L. J. (2004). Ecosystem approach to fisheries

management in the northern Benguela: the Namibian experience. Afr. J. Mar.

Sci. 26, 79–93. doi: 10.2989/18142320409504051

Schneider, H., and Thiha, S. (2014). Socioeconomic Baseline Assessment,

Thayawthatangyi and Langann Islands Myeik Archipelago, Myanmar.

Myanmar: Fauna and Flora International.

Schwamborn, R., Mildenberger, T. K., and Taylor, M. H. (2019). Assessing sources

of uncertainty in length-based estimates of body growth in populations of fishes

and macroinvertebrates with bootstrapped ELEFAN. Ecol. Modell. 393, 37–51.

doi: 10.1016/j.ecolmodel.2018.12.001

Selgrath, J. C., Gergel, S. E., and Vincent, A. C. (2018). Incorporating spatial

dynamics greatly increases estimates of long-term fishing effort: a participatory

mapping approach. ICES J. Mar. Sci. 75, 210–220. doi: 10.1093/icesjms/fsx108

Shester, G. G., and Micheli, F. (2011). Conservation challenges for small-scale

fisheries: bycatch and habitat impacts of traps and gillnets. Biol. Conserv. 144,

1673–1681. doi: 10.1016/j.biocon.2011.02.023

Smith, H., and Basurto, X. (2019). Defining small-scale fisheries and examining

the role of science in shaping perceptions of who and what counts: a systematic

review. Front. Mar. Sci. 6:236. doi: 10.3389/fmars.2019.00236

Solomon, O. O., and Ahmed, O. O. (2016). Fishing with light: Ecological

consequences for coastal habitats. Int. J. Fish. Aquat. Stud. 4, 474–483. Available

online at: https://www.fisheriesjournal.com/archives/2016/vol4issue2/PartF/4-

2-62.pdf.

Stewart, I. J., and Hamel, O. S. (2014). Bootstrapping of sample sizes for length-

or age-composition data used in stock assessments. Can. J. Fish. Aquat. Sci. 71,

581–588. doi: 10.1139/cjfas-2013-0289

Stewart, J. D., Jaine, F. R., Armstrong, A. J., Armstrong, A. O., Bennett, M. B.,

Burgess, K. B., et al. (2018). Research priorities to support effective manta

and devil ray conservation. Front. Mar. Sci. 5:314. doi: 10.3389/fmars.2018.

00314

Stewart, K. R., Lewison, R. L., Dunn, D. C., Bjorkland, R. H., Kelez, S., Halpin, P. N.,

et al. (2010). Characterizing fishing effort and spatial extent of coastal fisheries.

PLoS ONE 5:e14451. doi: 10.1371/journal.pone.0014451

Teh, L. C., and Sumaila, U. R. (2013). Contribution of marine

fisheries to worldwide employment. Fish Fish. 14, 77–88.

doi: 10.1111/j.1467-2979.2011.00450.x

Tezzo, X., Belton, B., Johnstone, G., and Callow, M. (2018). Myanmar’s fisheries in

transition: current status and opportunities for policy reform. Mar. Policy 97,

91–100. doi: 10.1016/j.marpol.2018.08.031

Thrush, S.imon F., and Paul, K., Dayton. (2002). Disturbance to marine benthic

habitats by trawling and dredging: implications for marine biodiversity. Annu.

Rev. Ecol. Syst. 33, 449–473. doi: 10.1146/annurev.ecolsys.33.010802.150515

Tilley, A., Hunnam, K. J., Mills, D. J., Steenbergen, D. J., Govan, H.,

Alonso-Poblacion, E., et al. (2019). Evaluating the fit of co-management

Frontiers in Marine Science | www.frontiersin.org 17 January 2021 | Volume 7 | Article 625766

https://doi.org/10.1016/j.ocecoaman.2012.06.010
https://doi.org/10.3390/rs11090995
https://doi.org/10.1093/icesjms/fsr173
https://doi.org/10.1371/journal.pone.0174064
https://doi.org/10.1016/j.fishres.2012.02.027
https://doi.org/10.1126/science.aao5646
https://doi.org/10.1093/icesjms/fst204
https://doi.org/10.7125/APAN.39.3
https://doi.org/10.1016/j.fishres.2015.11.013
https://doi.org/10.1007/s13280-020-01400-1
https://doi.org/10.1111/j.1467-2979.2012.00473.x
https://doi.org/10.1016/j.biocon.2009.09.017
https://doi.org/10.1111/conl.12293
https://doi.org/10.1079/9781845936075.0001
https://doi.org/10.1016/j.biocon.2020.108554
https://doi.org/10.1371/journal.pone.0130746
https://doi.org/10.1016/j.ocecoaman.2017.04.013
https://doi.org/10.1002/aqc.2670
https://doi.org/10.1016/j.marpol.2017.11.009
https://doi.org/10.1080/19934270.2011.644444
https://doi.org/10.1016/j.fishres.2017.03.009
https://doi.org/10.1038/ncomms10244
https://doi.org/10.1111/cobi.13021
https://doi.org/10.2989/18142320409504051
https://doi.org/10.1016/j.ecolmodel.2018.12.001
https://doi.org/10.1093/icesjms/fsx108
https://doi.org/10.1016/j.biocon.2011.02.023
https://doi.org/10.3389/fmars.2019.00236
https://www.fisheriesjournal.com/archives/2016/vol4issue2/PartF/4-2-62.pdf
https://www.fisheriesjournal.com/archives/2016/vol4issue2/PartF/4-2-62.pdf
https://doi.org/10.1139/cjfas-2013-0289
https://doi.org/10.3389/fmars.2018.00314
https://doi.org/10.1371/journal.pone.0014451
https://doi.org/10.1111/j.1467-2979.2011.00450.x
https://doi.org/10.1016/j.marpol.2018.08.031
https://doi.org/10.1146/annurev.ecolsys.33.010802.150515
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Exeter et al. Shining Light on Data-Poor Fisheries

for small-scale fisheries governance in timor-leste. Front. Mar. Sci. 6:392.

doi: 10.3389/fmars.2019.00392

Turner, R. A., Polunin, N. V., and Stead, S. M. (2015). Mapping inshore

fisheries: comparing observed and perceived distributions of pot fishing activity

in Northumberland. Mar. Policy 51, 173–181. doi: 10.1016/j.marpol.2014.

08.005

Vincent, A. C., Meeuwig, J. J., Pajaro, M. G., and Perante, N. C. (2007).

Characterizing a small-scale, data-poor, artisanal fishery: seahorses in the

central Philippines. Fish. Res. 86, 207–215. doi: 10.1016/j.fishres.2007.06.006

Vulcan (2020). Allen Coral Atlas. Available online at: https://allencoralatlas.org

(accessed November 2, 2020).

White, T. D., Carlisle, A. B., Kroodsma, D. A., Block, B. A., Casagrandi,

R., De Leo, G. A., et al. (2017). Assessing the effectiveness of a large

marine protected area for reef shark conservation. Biol. Conserv. 207, 64–71.

doi: 10.1016/j.biocon.2017.01.009

Wildlife Conservation Society (2013). Myanmar Biodiversity Conservation

Investment Vision Report. Yangon: Wildlife Conservation Society.

Wildlife Conservation Society (2018). Characterisation of Fisheries and Marine

Wildlife Occurrence in Southern Rakhine and Western Ayeyarwady Region.

Yangon: Wildlife Conservation Society.

Wilson, S. K., Fisher, R., Pratchett, M. S., Graham, N. A. J., Dulvy, N. K., Turner, R.

A., et al. (2010). Habitat degradation and fishing effects on the size structure of

coral reef fish communities. Ecol. Appl. 20, 442–451. doi: 10.1890/08-2205.1

Witt, M. J., and Godley, B. J. (2007). A step towards seascape scale conservation:

using vessel monitoring systems (VMS) to map fishing activity. PLoS ONE

2:e1111. doi: 10.1371/journal.pone.0001111

Witt, M. J., Sheehan, E. V., Bearhop, S., Broderick, A. C., Conley, D. C.,

Cotterell, S. P., et al. (2012). Assessing wave energy effects on biodiversity:

the Wave Hub experience. Philos. Transact. R. Soc. A 370, 502–529.

doi: 10.1098/rsta.2011.0265

World Bank (2012). Hidden Harvest: The Global Contribution of Capture

Fisheries. Available online at: http://documents.worldbank.org/curated/en/

515701468152718292/Hidden-harvest-the-global-contribution-of-capture-

fisheries (accessed November 30, 2020).

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Exeter, Htut, Kerry, Kyi, Mizrahi, Turner, Witt and Bicknell.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Marine Science | www.frontiersin.org 18 January 2021 | Volume 7 | Article 625766

https://doi.org/10.3389/fmars.2019.00392
https://doi.org/10.1016/j.marpol.2014.08.005
https://doi.org/10.1016/j.fishres.2007.06.006
https://allencoralatlas.org
https://doi.org/10.1016/j.biocon.2017.01.009
https://doi.org/10.1890/08-2205.1
https://doi.org/10.1371/journal.pone.0001111
https://doi.org/10.1098/rsta.2011.0265
http://documents.worldbank.org/curated/en/515701468152718292/Hidden-harvest-the-global-contribution-of-capture-fisheries
http://documents.worldbank.org/curated/en/515701468152718292/Hidden-harvest-the-global-contribution-of-capture-fisheries
http://documents.worldbank.org/curated/en/515701468152718292/Hidden-harvest-the-global-contribution-of-capture-fisheries
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles

	Shining Light on Data-Poor Coastal Fisheries
	Introduction
	Materials and Methods
	Study Area
	Data Collection
	GPS Tracked Fishing Trips
	Nighttime Light Imagery
	Purse Seine Landings Data

	Data Processing and Analyses
	GPS Tracked Fishing Trips
	GPS to VBD Cross Matching
	Predicted Fishing Effort
	Predicted Biomass and Value
	Spatial and Temporal Distribution of Catch


	Results
	GPS Tracked Fishing Trips
	Nighttime Light Imagery
	Purse Seine Landings Data
	GPS to VBD Cross Matching
	Predicted Fishing Effort
	Predicted Biomass and Value
	Spatial and Temporal Distribution of Catch

	Discussion
	Estimated State of the Fishery
	Considerations
	Implications for Local Fisheries Management and Conservation
	Wider Application

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


