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Abstract

Blockchain technologies are at the heart of digitabvation and are a harbinger of Industry 4.0.
Consequently, popular press and academic researaliie have focused on its importance. Yet
blockchain technologies’ most promising effortsgjptocurrency and smart contracts, are underpinned
by blockchain mining. The blockchain mining servigeindergoing change, cryptocurrencies like
Ethereum and others are nearing the end of theitimgi Smart contracts are in their infancy. The
financial impetus for providing the mining servicas changed. Here, we add to the literature through
a deep financial analysis of blockchain mining regay its long-term financial viability. Our

methods include a financial cost analysis and atyars of the financial viability of cryptocurrency
through focus on Ethereum. It is found that bloakohminers, despite initial profitability, cannot
maintain sustainable financial viability withoutstiantial fees. This work is important to those
academics who focus on understanding how servitetdogies and products underpin Industry 4.0.
Finally, this paper contributes to the practitigielecision-making process to embrace blockchain

mining as a technological entrepreneur.

Keywords: blockchain mining, cryptocurrency, Industry 4.@h&eum, smart contract, technological

entrepreneurship

I. Introduction
Blockchain technology is an important element ef digital economic movement. Some authors
(Jensen et al. 2019) suggest that digitizationigesva broad technology solution where blockchain
technology plays a key role while others (Yang 208§uyen et al. 2016) have provided more

specific examples of how digitization is assistghgbal logistics in purchasing contracts such ag+o


https://core.ac.uk/display/372986097?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

term loan agreements and smart contracts. Furthierrmolmckchain is one of the technologies
underpinning Industry 4.0 (14.0) (Bodhke et al. @0Zor instance, Lin et al. (2018) discuss
blockchain’s role in underpinning smart factoriesl amart contracts, Viriyasitavat et al. (2018)esta
that blockchain is “The application ...that undergiitsoin” and Zhao et al. (2019) have proclaimed

that blockchain technology is the new digital temllbgy approach for 14.0.

14.0 is the first industrial revolution based ort naly physical technologies but also service
technologies like blockchain (White et al .20209 &ime Internet of Things (loT) (Islam et al. 2018).
As such, 14.0 provides new and greater opportunftie service-based products like smart contracts
and cryptocurrencies. One of the key questionsathse in the course of the commercialization of an
emerging technology is which product to develop BNWand Linton 2011). The focus of a hew
product is on solving problems that are importargdcieties and on generating financial viability.
this paper, we concentrate on the problem-solviilifyaand the financial viability of blockchain
technology-based activities as well as addressaiaader the questions centered on blockchain
technologies, such as that of who considers blaakchs a “technology in search of a problem” (Bull

2018).

It is appropriate to ask, what problems do blocktisalve? We will discuss the problem-solving
abilities of blockchain mining, cryptocurrenciegdamart contracts. The analysis of these three
activities is initiated by an examination of th&elience between service and physical products
(Linton and Walsh 2003) in our literature reviewe\ddso discuss the problems that each of these
service products solve. Thes2dentury problems that are addressed by blockdkahmologies

include the development of stateless currency, rnerato create smart contracts (Luu et al. 2016;
Cong and He 2019) and a pathway to validate nawvgsactions (Gaggioli 2018). 14.0 has challenged
the validity of the product development strategiefned by Porter (1980); as a result, instead of
Porter’s four business models, which firms traditity used to commercialize emerging technologies
like blockchain, there are many other models (Grarah Walsh 2013; Harms et al. 2015; Westerlaud
et al. 2014) that are being used for the same gerpall business models seek value creation,

stability, and financial viability in a variety efays.



We provide a financial analysis of blockchain miat the level of the miner. For example, Kroll et
al. (2013) state that digital currency “Dependsif®icorrectness and stability” on blockchain mgin
which is centered on the mechanism used in thenquifiihey further investigated the economics of
blockchain mining with the assumption that minemild behave according to the incentives. In our
methodological effort, we focus on the long-termaficial viability of blockchain mining using
Ethereum. We also take advantage of the work cfetlveho have analyzed the viability of
cryptocurrencies (White et al. 2020) and smartreats (Chang et al. 2019) to aid us in our purpose.
We also benefit from the economic models of bloekemining, which are often utilized by miners
to determine what to mine, proceed by developingathematical model describing the economics of
a mineable cryptocurrency and then specificallyfoan the economics of Ethereum blockchain

mining.

Our investigation on whether blockchain miningiighcially viable in the long run found serious
indicators that this process is moving toward faiahunviability without the use of financial trdes
fees. We find that high growth rates in the bloginhmining hash rate (which is proportional to the
network’s total mining power), coupled with evelinaited appreciation in cryptocurrency prices,
make mining operations unprofitable in the long. furthe dynamic models of both cryptocurrency
and the network hash rate, we find further evideghaé maintaining operational profitabiliiy the
long runis only possible with additional investment. Figalive also find increased investment by
many miners in mining capability leads to increasetivork hash rate, further reducing profitability

for miners.

Our work is relevant to those studying blockchammercialization and development. We utilize
scenarios to show that blockchain mining does methbp the sustainable economic profit that is
needed for financial viability. This is further imgtant for the blockchain technology product base
since if blockchain mining is not financially priEble, then the underpinning of the premise of
cryptocurrency as a stateless currency is calledguaestion and the promise offered by smart
contracts is unstable. We develop a blockchainitplufity model and incorporate cryptocurrencies,

smart contracts and blockchain mining into it.



I1. Theoretical Background

Some state that the promise of cryptocurrencygislaal stateless instrument of exchange—whether
such an instrument was ever needed—should havedasted by the spectacular rise and fall of the
value of bitcoin (White et al. 2020). Yet the numbé&cryptocurrencies continues to increase, not
decrease. Further, we acknowledge the drawbaakyptfocurrencies (Islam et al. 2017, 2020).
Blockchain-based smart contract products are newlaralded as ushering in a new era in supply
chain transparency in finance (Du et al. 2020a)kivey (Dozier and Montgomery 2019) and
healthcare (Du et al. 2020 b). Blockchain minelgesthe problem of verification for all blockchain-
based final products (Li et al. 2019; Rifi et &12Z). They are individual suppliers providing seevi
products (McDermott et al. 2001; Linton and Walél02) to the emerging blockchain-based industry

(Qin et al. 2018).

One aspect of the relation between cryptocurreranésblockchain mining is further discussed in this
paper: the fact that buying a cryptocurrency isivaded by user intentions (Arias-Oliva 2019). There
are a multitude of user intentions that directghechase of cryptocurrency including its abilitybie
“fraud-proof” (Kramps and Kleinburgh 2018), to lomtbe risk of identity theft (Kim and Lee 2018),

to make you your own banker, to facilitate globettlement, to embrace a specific product (Al Shehhi
et al. 2014) and many more. Moreover, investorainkdryptocurrencies by buying the asset directly

and mining the cryptocurrency.

There are two ways to mine cryptocurrency and Hreydependent on the cryptocurrency you mine.
When the first cryptocurrency, Bitcoin, was develdpa transaction verification process was
required. The system created to verify Bitcoin wasProof of Work (PoW) system (Bentov et al.
2014). To mine cryptocurrencies, powerful compugeesutilized to solve cryptographic puzzles
(Duong et al. 2020; Xue et al. 2018). The solufmms part of a block, which are files that acaas

transaction ledger functioning as the cornerstdraebtockchain. As a reward for mining the block,

! See https://www.investopedia.com/terms/p/proof-work.asp




miners receive a distribution of cryptocurrencyisTlihcentivizes further mining investment because

the block reward is proportional to the computeagiqrower used.

Proof of StakgPoS) is another verification method being utilizedvercome some of the
shortcomings of POW (Zhang et al. 2020; Saleh 20209 PoSnining process was designed to
alleviate excessive electricity use (Li et al. 2048d increase the number of transactions thabean
processed at the same time. PoS was first adogtaatyptocurrency named Peercoin and Ethereum,
the second largest cryptocurrency network, is ngimg to adopt the process. In the last few years,
many miners have coalesced into mining pools,idiging risk and reward across a large number of

users.

A. Cryptocurrencies, Blockchain Mining and Smarh@acts

Given its status as an emerging asset class, a@adegearch into cryptocurrency has generally been
exploratory in nature. Operational frameworks hia@en established for Bitcoin (Nakamoto 2009)
and Ethereum (Wood 2014), the two most widely tdachyptocurrencies. A sweeping introductory
survey of the cryptocurrency product’s technologpgsaadigm has been provided by Narayanan et al.
(2016). A critical approach towards the nascenptagurrency market has also been provided by

Mukhopadhyay et al. (2016).

Further literature has focused on novel innovatiangyptocurrency, including PrimecofKing

2013), Spacecoin (Park et al. 2015), and somewhatausly, Darkcoin (Duffied and Hagan 2014).
The growth in blockchain mining has led to unfomesdemand (and consequences) for hardware and
network providers. The Bitcoin-mining processor @utike 1 was proposed to address some of the
technical challenges that is evident in blockchmining cryptocurrency (Barkatullah and Hanke
2015). In addition, legal and illegal Bitcoin satuts using non-customized hardware options have

been discussed by Dev (2014).

Given the recent growth in the population of diffier systems, intra-cryptocurrency dynamics are

important to consider. An analysis of intra-cryptoency competition, documenting Bitcoin’s



winner-take-all domination of the early cryptocuncg market, was performed by Gandal (2014).
Arbitrage effects on blockchain mining operatiathscumenting how profitable miners of altcoins
(non-Bitcoin cryptocurrencies) convert to Bitcotosperform transactions with the real economy, was
detailed by Hayes (2015). Dominant currencies Bkeoin have been conceptualized as
competitively coexisting with other cryptocurrergia a dynamic ecosystem by lwamara et al.

(2014).

Research has also examined the critical link batvtlee technological and financial characteristits o
cryptocurrency. Sovbetov (2018) finds that cryptoency values are strongly influenced by the
market beta, the trading volume, and volatility.i\{2018) finds that the predictability of
cryptocurrency returns is inversely related to meatiquidity. Wang and Vergne (2017) find evidence
that while cryptocurrencies do not behave like cadities, they remain fundamentally different
from speculative assets. White et al. (2020) fht Bitcoin is similar to other 14.0 technology
product paradigms that diffuse in a sigmoidal fasi{Marinakis et al. 2017a, b, ¢). This is not

consistent with the adoption of a financial insteun

Nakamoto’s Bitcoin protocol design (2009) relieseodecentralized blockchain mining network.
However, Eyal and Sirer (2014) propose that coliggiools of Bitcoin miners form an existential

risk to Bitcoin, citing the possibility of manipuiag the revenue structure in their favor and
undermining the entire system. Consolidation ofingrpools is a major problem; as Luu et al. (2017)
point out, 95% of Bitcoin and 80% of Ethereum’s imgnpower has less than ten mining pools. If a
pool exceeds half of the cryptocurrency hash eat®ordinated mining attack could effectively end
the security of the systefiVelner et al. (2017) propose that smart contreatseffectively

undermine the power of a mining consortium usitigelresources. In Lewenberg et al.’s study
(2015), mining pools were seen as being betteo@tdinating miners and collecting rewards than

individual miners. However, incentives exist fortpEpations to ‘switch’ between pools to maximize

2 As described in Luu et. al (2017), the mining group Dwarfpool controlled over 50% of Ethereum’s total mining capacity in
2016, but did not engage in a coordinated attack.



their cryptocurrency rewards. Scaling mining operet in this way is likely an economically rational

response to challenges in the mining environment.

Developing a mining economics model requires aretstending of the dynamics between hardware
demand and minable currency prices, the consatidgtiessure faced by individual miners that result
in their joining mining pools as well as the econoirade-off between treating the currency as both
an investment and something directly mineable.ex&tting research into cryptocurrency is still
nascentCurrencies possess value because enough econanits &glieve it cafKiyotaki 1989).

The rapid growth of the cryptocurrency market makesalue self-evident, even as the existing

framework for its economic success remains undeldped.

It was the introduction of blockchain technologtoisupply chain management that led to the
creation of the concept of smart contracts. Snantracts hold the promise of increasing the
transparency of cargo flow, facilitating inspectiand reducing fraud (Chen et al. 2017, Xu et al.
2018, Fu and Zhu 2019). Information asymmetry betwapstream producers and downstream
retailers has resulted in unwieldy solutions susfuat-in-time manufacturing and material
requirements planning. Information asymmetry afswaases the risk of extending credit. The
transparency of the ledgers in blockchain technplegds to reduced information asymmetry (Fu and
Zhu 2019). Much of the work on blockchain technglagsupply chains focuses on permissioned or
private blockchains (Caro et al. 2018, Li et all20Meng and Xian 2018, Xu et al. 2018), which

some argue are not blockchains at all but onlyeshbedgers.

[11. Methods

A. Financial Analysis

In order to develop a model, the equipment and#pital that are necessary to start a mining
operation have to be described; we have donertl$gction 3.1. Outside of the mining operation, the
cryptocurrency network possesses its own uniqueactexistics, as described in Section 3.2, that
force the establishment of viable assumptions &&tion 3.3). Finally, an integrated mining model i

created (Section 3.4) that may be applied to a&lawgnber of PoOW currencies. Due to its popularity,



liquidity and ease of mining, Etherewmas selected as a case study for the applicatitmeof

developed model.
B. Mining Operations
B.1 Equipment

The primary component of a mining operation isrtheing rig. It is dependent on the on the
algorithm used, the primary means of solving PoVRP@® cryptographic puzzles. Both are typically
central processing unit (CPU)- or graphics procesenit (GPU)-based. The components of a rig are
globally available at similar pricing, in both higlest countries like the U.S. or low-cost ones like
China and Russia where many miners are located.stinly focuses on a GPU-based mining
operation with an emphasis on understanding orghiomg-term sustainable growth. Typical GPU
mining equipment consists of a desktop computen ailded PCI-E riser cabfe§he PCI-E ports on
the motherboard communicate with the GPU throughP@I-E riser cables. Motherboards with
typically six (or more) PCI-E ports are uédor mining the major GPU coins (ETH, ZEC, XMR,

BTG). The components of the computer used in thédyais and the prices thereof are shown in

Table 1.
Table 1: Mining Rig Cost Estimation Framework
Component Description Cost
GPU Graphics Processing Unit $ 300.00
PSU Power Supply Unit (2x) $ 260.00
CPU Central Processing Unit $ 50.00
RAM Random Access Memory $ 60.00
Case Secures Components $ 20.00
Motherboard $ 150.00
PCI-E Cables $ 27.00
SSD/OS Solid State Drive & Operating System $40.00

Total Cost for 1 GPU $ 907.00

3 See https://cryptomining-blog.com/tag/pci-e-riser/ for more details.
4 This allows for as many GPUs to be added to the motherboard as there are PCI-E ports.




Total Cost of 6 GPUs $ 2,407.00

Since the mining rigs here are designed for GPUngjrcost savings are realized on other
components of the rig. Cost-saving assumptionseea in the CPU (InteICeleron®), the RAM (4

GB DDR4), and the case built from striped buildétgds. The operating system (ethOS) is a Linux
operating system that was built for the purpos&®U mining, which was selected in order to reduce
the operational costs associated with buying a dgigit Windows OS while allowing the typical
miner to start and scale the operation more quittidy if they were to purchase a hard drive, ihstal

and modify a free Linux distribution.

Higher costs are incurred with the motherboard pihveer supply unit (PSU) and the GPU. The price
of the motherboard is driven by demand and the faresix or more PCI-E ports. The price of the
PSU (2x EVGA 750W 80 PLUS Gold G2) is driven by tiezd for highly efficient energy use (80
PLUS Gold) for the large power supply of the GPLBY W/GPU). The GPU selection is driven by a
cost function that considers the maximum mininghhase drawing the lowest amount of power
(hash/$). For this model, we are using the AMD RXS@ries. The GPU prices are driven by current
demand due to increases in coin price (see Figurnad. are chosen as a constant $300 for the first
stage of the analysis. A setup with one GPU andmsipn room for five additional GPUs costs above
$900, whereas the total cost of a rig with allGRUs is just under $2500. Higher cost savings are
achieved using greater PCI-E ports per board,nguthe expenditure on the CPU, the RAM, the

motherboard, the hard drive and the?0OS

5 Small cost savings could be obtained by the purchase of a separate solid-state hard drive and personally modifying a free
Linux distribution. This would scale linearly for large mining operations.
6 Due to limited availability of 12-port PCI-E motherboards, we ignored this for our analysis.
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Figure 1: Price Relationship between Ethereum haddMD RX570 Graphics Card (X-axis: Date.

Y-axis: Price in US dollars)

We compare the price of Ethereum to the RX570 Gif). 1). Demand for cryptocurrency mining
equipment causes increased demand for GPUs, r&dthbprices substantialfyThe ordinary least
squares (OLS) regressions performed on this relstiip suggested that a 18.57-day lag exists
between increases in Ethereum prices and the pomdsg increases in GPU prices with determined

by the equation:

Pricexso= 0.2 Pricem+ $234.5 and a coefficient of determination of #8.6

C. Network Hash Rate

Solving a cryptographic puzzle to mine a block ra@dom process, where the probability for success
of any user is determined as the fractional portibtihat miner’'s mining power to the total network
mining power Mining poweris measured using several metrics that are depéendehe

cryptographic algorithm. The most popular termrfoning power and the process of mining are the
hashandhashing respectively.Miners may increase the probability of solvinguazgle by

increasing the number of GPUs that are utilizedeumining as each GPU allows the business to test

more random hashes during a given block periodli8nmaining operations often form collective

7 Historical GPU data was taken from https://pcpartpicker.com/trends/price/video-card/
8 See https://motherboard.vice.com/en us/article/zmemza/cryptocurrency-mining-fueling-a-gpu-shortage
9 See Hayes (2017).




mining pools where profits are distributed accogdin the hashing power each miner provitfeBy
pooling resources, miners have a steady incomay@yerhead costs, ensuring that miners do not

need to run a full node that syncs with the bloekatas this requires greater technical knowhow.

Miners mineblocks a file that stores records of transaction, infation about the previous blocks,
and the solution to the mathematical puzzle that wsed to ‘solve’ the block. For mining blocks, the
reward is cryptocurrency.The greater a miner’s individual hash tatelative to the total hash rate

of the network, the greater the likelihood of mipis block. We assume that a pool method of mining
is used for this analysis to ensure income stgbilib determine the coin generation rate, a miner

must first determine the expected time to findahklusing Equation (1).

. . Network Hash Rat .
Time to Find Block = ——— =22 70%¢ o Block Time (1)
User Hash Rate

As seen in Equation (1), the time taken to findazkis inversely proportional to the probabilityat
the user finds a block (the probability being defiras normalizing the user’s hash rate by the
network hash rate). Typical cryptocurrencies hadefaned, consistertlock timewhich determines
how often a block on the blockchain is completed lay extension, how often a coin is distributéd.
Once the miner has determined the expected tirfiad@ block, the coin generation rate may be
determined based on the coin’s block reward. Albek rewards the cryptocurrency that is received
for mining a block and is specific to each coine®@mount of coin generated each week is then
determined by the block reward divided by the miseme to find a block as given by Equation

(2)14

Block Reward
(2)

Coin Generation Rate = — -
Time to Find Block

10 pool hosts often charge a 1% management fee.

1 For a cryptocurrency such as Bitcoin, the original award of 50 coins per block was halved every 210,000 blocks (or
roughly, every four years), ensuring a finite limit to the number of mined coins.

12 The higher the GPU processing power, the greater the miners’ hash rate.

13 The block time for Ethereum is set to roughly 15 seconds, whereas Bitcoin is roughly 10 minutes. See also
https://www.cryptocompare.com/coins/guides/why-is-Ethereum-different-to-bitcoin/

4 This analysis ignores payments for ‘uncle blocks’ in Ethereum, which result from two different miners trying to generate
a block at the same time. One of these blocks will be accepted and added to the ‘blockchain’, the other will be rejected.
While these are comparable to Bitcoin’s orphan blocks, Ethereum offers financial incentives for uncle block miners.



As the blockchain’s block time and block reward aperoximately constant, the two variables that
affect the coin generation rate are the user amdétwork hash rate. As additional miners join a
particular coin network, the network hash rateéases. If any miner does not increase hashing
capabilities in proportion to the growth in thewetk hash rate, the entire operation will observe a
decrease in the coin generation rate. The reldtiprizetween the individual miners and network hash

rates is an important element in this study.
D. Organic Growth Model

The organic growth model utilizes an initial capitevestment of $10,000. The strategy is to purehas
as many mining rigs as possible with the initialdstment: in this case, four rigs containing 24 GPU
leaving $372 for future reinvestment. Based oninft@l number of GPUs purchased, the miners’

total hash rate can be determined as well as tlo@i@inof coin generated during the first week.

We assume that at the end of the first week, timenwill sell all coins in hand at the timezsro

coin exchange rate to USD. The miner will then theypower bill, which is set at 160 W/GPU plus
100 W/Rig. The electricity rate is set at a restidg@mate of 10 cents/kWHh After paying the cost of
electricity, the miner will invest in additional ning hardware with the remaining funds subjecthto t

following two rules:
Rule 1: The miner must fill all free PCI-E ports e motherboard before purchasing another rig.

Rule 2: To purchase a new rig, the miner must rameigh money to cover the costs of the

components and one GPU.

Our first analysis assumes no lag time due to &hgppr shortage of supplies when purchasing and
that the prices of the components are constamgiyas in Table 1). Rule 2 ensures that the maximum

amount of money the miner can have at any tim@@¥ $the price of a rig plus GPU.

E. Governing Equations

15 Data for March 2018 suggests average US electricity prices are about 10.37 cents/kWh across all sectors and 12.99
cents/kWh for residential users. See
https://www.eia.gov/electricity/monthly/epm table grapher.php?t=epmt 5 6 a




Understanding the economics of an organic minirgyaton is essential to running one effectively.
One distinct element of mining operations is thieo$avell-defined relationships that determine
profitability. In Tables 2 and 3, we outline thst$ of symbols and constants that we use to define

these relationships:

Table 2: List of Symbols

Symbol Value Unit Description
GPU - GPU The total number of GPUs in the miningragion
Network The total hash rate of the blockchain
- Hash/s
HR
User HR - Hash/s The total hash rate of the busines
t - Seconds Time

Table 3: List of Constants

Symbol Value Unit Description
AvgCoStGPU 240716 $ The average cost to add 1 GPU of mining power
GPU
s . . .
blockTime 15 e blockchain target time to mine one block

block blockchain reward for mining one block

blockReward 3
ethereum
. $ The cost of electricity
ePrice 0.1/3600
KW xs
Hash rate per GPU
GPU HR 27
$ Power per GPU
GPU Power 0.16 -
KW
288133782*10 Time zero network Hash rate
HR‘?Letwo‘rk 6 Hash/s

In its simplest form, the profit from the business be quantified using the difference between
revenue and expense. Since mining is a continupeisibon, it is useful to treat profit here as afipr

rate or profit per unit time as shown in Equati8hif the unit of $/s.

Profit = Revenue — Expense (3)



The interest of the present study is to understandrganic growth operation where the assumption is
that all profit is reinvested in business growthmiing business growth can be measured by its
ability to produce more coin on the network. Tor@ase the mining hash rate, the purchase and
addition of GPUs to the business is required. Westiute therate of profitfor therate of GPU
growthand convert the revenue and expense model inte ahPU by multiplying using the

average cost to add one GPU [AvgCostGPU]. The resklquation (4) in unit of GPU/s.

aGPU _ 1
ax AvgCostGPU

* (revenue — expense) (4)

The rate of revenue growth is related to the don@'treleased by the blockchain multiplied by the
fraction of network hash rate the user is contrmigytmultiplied by the current coin exchange rate.

This relationship is shown in Equation (5):

blockReward HRyser
blockTime HRpetwork

Revenue = * USDExchangeRate (5)

The mining operations expense is defined here lgsmeiuding the cost for power as shown in
Equation (6):

Expense = e Price x userPower (6)
Substituting Equations (5) and (6) in Equation (48,get Equation (7):

0GPU _ 1 N (blockReward " HRyser
at AvgCostGPU

* USDExchangeRate — e F « userPower) (7

blockTime HRyser

In Equation (7), botidR,se anduserPowerare functions of the miner's GPU capacity, asrofi

below in Equations (8) and (9):
HRyser = GPU * HRgpy  (8)
userPower = GPU * Powergpy (9)

Substituting these in Equation (7), we have a dirder ordinary dilerential equation (ODE)

describing a mining businesses growth.



O0GPU _ GPU " (blockReward N HRgpy

= * USDExchangeRate — e Frice x PowerGPU)
dat AvgCostGPU

blockTime HRpetwork

(10)

Assuming all variables except the GPU are constamta have a separable ODE of the form given

below:

dGPU

= GPU * A
dt i
(11)
_ 1 blockReward HRgpy __ _-P
= wacostary * ( P * TR * USDExchangeRate —e™" * PowerGPU) (12)
The separable ODE has the following solution:
46PY — GPU * A (13)
dt
2P _adt  (14)
GPU

J, GPU)=2t+c  (15)

GPU(t) = c * exp [, (At) (16)
GPU(0) = GPUy =c¢ (17)
GPU(t) = GPU, = exp [, (At) (18)
Thus, we have our basic equation for the growth wiining operation.
I'V. Results and Discussion

A. Financial Analysis

Using historical data obtained fragtherScan.idor Ethereum (ETH), we examine the
cryptocurrency over a fifty-two-week period afteriaitial $10,000 investment. Using our

framework, we held Ethereum prices (at $400 peam)cas well as the network hash rate growth to be



constant. Additions to the miner’s hash rate ateconsidered as increasing the network hash rate as
the hash rate of the network is much greater thatash rate of the user. In Figure 2, the resfilts

the fifty-two-week mining simulation are detailadfour subplots. All subplots in Figure 2 have an
abscissa representing time in weeks. The topdilst in Figure 2 has an ordinate axis of coin
(ETH) with the equivalent in USD shown on the oppg%rdinate. The top right subplot of Figure 2
displays the coin generated per week and the deuivimn USD. This plot provides insight into the
rate at which the miner is producing Ethereumhinlower left subplot, the “bank” shows how much
money the miner has each week after paying expdheasgy only that of power in this case). The
change in the number of rigs, PCI-E ports and @flUs is shown in the bottom right subplot of

Figure 2. All markers in the subplots are indicatof two-week intervals.

A.1 Case 1: Constant Ethereum Price, Constant Né&tiWash Rate

For this base case (Fig. 2), the miner managesotiupe 1.17 more Ethereum by reinvesting the
earnings in new equipment (see “Eth Generatedf) #ighout reinvestment. In the coin generation
plot in Figure 2, a stair-like behavioral pattesrobserved with respect to the weeks. Each timena n
“stair” is climbed, it is implied that a new GPUshleen purchased for the mining operation, thereby
increasing the rate at which the miner is ablectoegate Ethereum. This purchase of a new GPU can
be viewed in the bottom left subplot of Figure 2hie miner’s “bank”. In this case, the bank lingarl
increases in value each week until enough monepéeas generated to purchase a GPU (if free PCI-
E ports exist) or a rig plus one GPU (if all PCpé&ts are full). This base case shows the initial
purchase of one rig and then the next fifty-two keeare spent filling the PCI-E ports of this neg ri

In this case, the total number of GPUs are showtheteft ordinate while the free PCI-E ports and

total rigs are shown on the right ordinate.
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This base case is an over-simplified version oftiir@ing operation as it fails to consider \ chaniges

the price of Ethereum and those in the network naish However, it provides the insight that with a

$10,000 investment, even after fifty-two weeks, tiiaer has not made back the investment with or

without reinvestment in the coin. Arguably, the erihas hardware that can be salvaged; this is

ideally a net profit on investment of the pendiatpsf the rig components. In the coming sections,

the model complexity will be increased to demoristrehat happens when considering additional

changes, first in price and second in network ath It is expected that for increasing or dedngas

the price of the Ethereum, the right ordinate aheglot representing USD increases or decreases

accordingly near the beginning of the simulatiod bacause the Ethereum generated in the early

months was worth more, reinvestment would become pifitable. In the next section, three price

trends of Ethereum will be suggested based onottleedisting of historical data.

A.2 Case 2: Dynamic Ethereum Price, Constant Nekwiarsh Rate



In the base model, we created at least one signifiaversimplification: holding the price of the
Ethereum constant. The high volatility associatét wryptocurrency since 201%has made

variability a hallmark of the entire market and Wastly increased the difficulty in making predieti
assumptions on future prices. Since most pricindatsouse some measure of historical price growth
and volatility data, many of the resulting modeisduced irrationally high values. In particular,
Monte Carlo simulations were notably ineffectiv@nSequently, we settled on a reduced variance
model (Fig. 4) to provide a more reasonable estomatinge for Ethereum prices. The forecast was
run as a Holt-Winters exponential smoothing onhiséorical price of Ethereum. As may be expected,
due to the high volatility of Ethereum, the ressh®wn in Figure 3 predicts that the price will
gradually rise over the next year, with 90% confickeintervals bounded by zero and just above the

peak that was observed in January 2018.

—— Ethereum Price
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Figure 3. Predictive Model Used in Forecasting Eg¢bm Prices

We incorporate this revised estimation of futuneggrowth into the next iteration of our Ethereum
mining model. We sort our expectations into thieautations: A low forecast ETH price model, a
mid-forecast ETH price model and a high forecadtifgfice model. Predicting future price changes
is uniquely challenging, but the broad range ahegies (i.e., heroic gains, moderate gains and

absolute crash) incorporates most likely scenaviésuse these projections to inform a revised model

(Fig. 4).

16 One-year rolling betas for Bitcoin exceeded 10.0 at times, while three-year rolling Betas exceeded 7.0. (White et al. 2018)



Figure 4 considers the consequences of the forewadt| prices depicted in Figure 3 on the
previously discussed mining operation. The forecakte (moderate price gains) is shown at the top
of Figure 4, with the lower bound confidence intr{price crash) depicted in the bottom left argl th
upper bound confidence interval (heroic price gesf®wn in the bottom right. This model does not
consider an increase in the network hash ratereghect to time. The first-year increase in the
forecast price leads to a slightly higher coin gatien rate than in Figure 4 because the Ethereum
generated is worth $500 more than that generatéttinase with the constant price. The higher price
of Ethereum allows the business to grow more quiakla new rig can be purchased in the thiry-sixth

week.

In the bottom left of Figure 4, we show the modethie lower bound of the 90% confidence interval.
In this case, Ethereum continually decreases W @i$e and the mining operation become
unprofitable within the first ten weeks. The coengration rate never increases past the first week
because there is no money to reinvest. Lastly,hegvgdhe upper bound estimate in the bottom right
of Figure 5. In this case, reinvestment is a cjejarbfitable strategy. The number of rigs has
increased to twelve by the end of the first yeaae are able to collectively generate over twenty

Ethereum. The business change was measured usifig/ldwing equation:
(GPUfinar — GPUsnitia1)/ GPUinitiar * 52 weeks (19)

It was calculated to be 3.7%, 0.96% and —34% pekJer the high, expected and crash markets,
respectively. For the price crash, measuring tlaagl in GPU is not reflective of the loss as the
simulation was not set up to sell equipment (thisild introduce hardware salvaging uncertainty
etc.). Therefore, the net loss was converted tobeuraf GPUs at the purchase price. In the next

section, we consider the historical network hash aad integrate this into a dynamic price model.
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Figure 4. Organic Growth of an Ethereum Mining Gyien: Dynamic Price Model (Forecast)

A.3 Case 3: Dynamic Ethereum Price, Dynamic Netwtakh Rate

The previous scenario depicts an ostensible vieanairganic growth business which is driven solely
by market demand forces. The high, moderate aneplie gains returned proportional business
growths (3.7%, 0.96, —34%). However, as demonstrat&quation (5), the revenue is calculated as a
fraction of the total network hash rate or the $yppf hashing) market forces. Figure 5 demonssrate
that the network hash rate growth coincides witheE#um price increases in this case. The promise
of large, speculative gains for passive work l@esncreasing number of miners into the market. As
the number of miners increases, the fractionalmegdor any one miner decreases (as given in
Equation 5). Figure 5 also shows that while inaeeas Ethereum’s price lead to growth in the

network hash rate, losses in price coincide wittelogrowth in the network hash rate.
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Figure 5. Normalized Network Hash Rate and EtherBuce

To model the change in network hash rate, thewasasmoothed by considering a 200-day moving
average. Then, a historical weekly percent charagaalculated (Fig. 6). The descriptive statistits
the historical network hash rate growth were fotmtde consistent regardless of the smoothing time,
period of gain or specific time period consideredy(, 2016, 2017). The data in Figure 6 has a mean

of 5.3% and a standard deviation of 2.3%. The mimmand maximum are 1.5% and 10.4%,



respectively. This weekly percentage growth in hasé implies that for the model business to

maintain its profitability, it would need to add 5%n average) to its total hash rate every week.

This 5% growth value is prohibitively high for miise as demonstrated in Section 4.1.2 and Figure 4.
In the upper confidence interval of the no hasé gaowth model, the business growth was only
3.7%/week. To inform our model, two price forecdsten Figure 4 are considered (moderate gains

and heroic gains) with two hash rate weekly growithsiimum and mean).

10 A

Weekly Change in Network Hashrate [%]

2016-04 2016-07 2016-10 2017-01 2017-04 2017-07 2017-10 2018-01 2018-04 2018-07
Date

Figure 6. Weekly Percent Change of the 200-Day kigwverage of Network Hash Rate

The results of the four simulations are depicteBigure 7. The columns in Figure 7 are the minimum
hash rate growth (left) followed by the high haatergrowth (right). The rows reflect moderate price
gains (top) and heroic price gains (bottom). Th&t base scenario for a miner would be the highepric
gains and low hash rate growth depicted in theoboteft of Figure 7. The business does not
immediately go insolvent, but will eventually failie to the inability to contend with hash rate
growth. The most probable scenario incorporatesanatd price gains and the high network hash rate
growth, depicted in the top right of Figure 7. istscenario, the coin generation rate deterioisies
substantially that the business quickly fails tearoweekly expenses. Organic mining growth is only
profitable in the unlikely scenario of high priceogth paired with low hash rate growth.the

colorful words of noted mining author T.A. Rickafé\n unprofitable mine is fit only for the

sepulcher of a dead mule.”



Predicted Price at 1.5% Weekly Hash Rate Growth
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Figure 7. Organic Growth of an Ethereum Mining Gyiein: Dynamic Price Model & Dynamic Hash

Rate

Although this research is the first to systemalycatidress the dynamics of cryptocurrency mining,
we believe the assumptions of the model have nfsihoted previously, there is a strong positive
correlation between the price growth of Ethereunhttue growth in hardware prices. Therefore, in the
best-case scenario depicted in Figure 7, the detlicoin generation rate would be higher as the
large gains in Ethereum price would, in turn, ils® hardware demand, raising hardware prices. We
also limit the scope of expenses in this analysialy the price of power generation. Reasonable
additional expenses include fixed costs of shelterinternet. While an initial investment of $1M00
was made, it is fairly irrelevant as the miner wilver be able to keep up with the network hash rat
growth. Figure 8 depicts a simulation with an adi6000 GPUs ($2M plus), $0 in the bank and the

price of electricity at $0.01/kWh for moderate prgains and an average hash rate growth.
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Figure 8. Organic Growth of an Ethereum Mining Gyien: Dynamic Price Model (Moderate Gains)

& Dynamic Hash Rate (Average) for $2M+ Investmemd ower Costs at $0.1

This seems at odds with the practical knowledgeEtzereum mining is traditionally profitable. One
of the model's assumptions regards the use of dammi@s: by converting them into USD as soon as
possible, we forego the secondary benefits of neizoyy capital gains on invested earnings. Since
our focus in on the mining implications of crypto@ncy alone, we feel comfortable with this

simplification.

If we re-run the model again using a buy-and-halategy where miners recognize the appreciation
in the value of their mined coins, the period bagig in 2015 was remarkably profitable for

Ethereum miners (Fig. 9).

ETH Price & B/E Price through 2018-06-28
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Figure 9. Ex-Post Ethereum Mining Profitability Aysis

In this retrospective scenario, Ethereum’s breadagurice hovers slightly above $200 based on the
mining and the appreciation of the value of itmeoMWhy is our retrospective simulation profitable

for miners but our predictive simulation not so?

First, the retrospective simulation incorporatesiaprecedented growth in the value of Ethereum. If
this value is sustainable, it's likely that miniwgjl continue to be sustainable. However,

incorporating a much slower price growth diminispesfitability substantially. Second, the rapid



growth in hash rates experienced in the last yeaeased the traditional costs associated with
mining. Modern computing power simply does not masanuch Ethereum as in prior years. Third,
the dynamics of hash rate growth and the Etherenint to a finite life for mining profitability with

current market dynamics.

Forward-looking mining strategies were always aliiyi profitable. It was only after an extended
period (between 5 and 12 months) that mining gresebecame unprofitable. This delay obfuscates
the true long-term profitability of this strategyrfmany miners, making switching costs to other
currencies more difficult. The customization of mionrigs means that the substantial hardware could
go unutilized for other consumer purposes. Miniagld be more profitable if there were a sustained
period of stagnation (or even reduction) in thehhae growth. However, miners have little
incentives teswitch offgiven the expensive infrastructure that has beessted for mining coins if
future price gains are expected. When mining besaimerofitable, mining rigs should gradually
diminish and the hash rate should revert to whatdemarket determines is palatable. We expect
this to ultimately self-correct, but we lack a futiderstanding of the frictions that keep mineosnfr

engaging in more profitable strategies.

B. Robustness Cases and Revised Scenarios

Since our initial research, we have been closelyitoong and evaluating Ethereum’s price and hash
rate dynamics. Despite changes in price and dememfhund that our initial models were consistent
with Ethereum’s price and hash rate. During 20ti@eg generally fell after attaining their apogee i
the beginning of the year. Meanwhile, the hashgeteth did not diminish by the same margin.
During much of 2020 (Figure 10), the hash raternetd to near-peak levels despite prices remaining

much more consistent.

Modeling the hash rate has several implicationstHower hash rates can potentially make mining
more profitable as this reduces the need to sugbdjtional hardware (GPUs) and improves the

economics of scaling mining rigs. The hash ratengha between October 2018 and October 2020



averaged 1.5%; coincidentally, this was approxitgatee weekly growth during the most recent

period for which there is data (Figure 10, bottceme).
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Figure 10. Historical Price and Network Hash RdtEtbereum (top) and Weekly Change in Network

Hash Rate (%) (bottom) through October 2020

However, following months of reduced hash rate ghpwthereum reduced thdock rewardfrom 3
ETH to 2 ETH in February 2019. The economic beradflower hash rates was overwhelmed by the
more adverse economic outcome of a lower block méwaodeling these new values in both the
fixed and dynamic models, we found that in all sageofitability was substantially reduced. In
moderate price scenarios, mining Ethereum was poofitable that inevergenerated sufficient

coins to purchase a second mining.¥ig

If we assume that Ethereum’s reduction of blockarglinever happened, we can observe a different
dynamic. Assuming a 1.5% average hash rate gravettiind that coin generation approaches a limit
after approximately one year, when the financiabtgces of the mining operation are exhausted

(Figure 11). Prices have to be extraordinarily hagld hash rates consistently low to ensure organic

mining profitability, an untenable economic sitoatifor most cryptocurrencies.

17 Due to space constraints, these models are available from the authors upon request.
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Figure 11. Organic Growth of an Ethereum Mining @gien: Dynamic Price Model (moderate

gains), 1.5% Hash Rate (low) and power costs df/B0!.

We further updated our price prediction model (Fégi2) to include data for 2019 and 2020 and
extended that forward to 2022. The October 2020t $385 used in our robustness models is

slightly below the $400 assumption we made twoy@aor and well within our original forecast

estimation.
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Figure 12: Updated Ethereum Price Prediction, Ndwem2020—-February 2022
B.1Transaction Costs

During 2020, transaction costs became a much mgsertant component of miner income than in
prior periodst® reaching 40% of income in August 2020. Every cotapon that miners perform is
compensated witkthereum Gasa measure of effort that includes all data opamatfrom smart
contracts to initial coin offerings. Ethereum gasuides incentives for miners to utilize and work
with Ethereum and has been the subject of somandsésee Grech et al. 2018). While the focus of
this paper is the profitability of the mining opeoa itself, transaction costs merit some discussi®

well.

The recent increases in gas prices have beenudgtitto widespread ‘scaling’ issues surrounding the
Ethereum Virtual Machin& Decentralized finangeor DeFi, applications rapidly expanded during
2020, providing cryptocurrency investors a seriggnancial instruments utilizing cryptocurrencies.
However, the rapid increase in on-chain DeFi praitemporarily drove up the transaction prices
for Ethereum; these fees, in turn, substantialbpgded during the month of Octold€ias demand for
DeFi products dropped. As the block reward is redutransaction fees become a proportionately
greater source of revenue for miners. Howeveriztbereum (or any cryptocurrency) to be ultimately
successful, transaction fees must be as low ash@$s encourage the greatest number of
applications. Consequently, we anticipate thattireent increase in transactions fees is tempaoichl a

that forthcoming technological protocols will ultately reduce these fees.
V. Conclusion

In this paper, we described in detail the economésnd cryptocurrency mining in Ethereum. We

find that despite historical precedence, curreshhrate growth coupled with Ether’s price growth

18 See https://www.theblockcrypto.com/linked/77126/over-40-of-ethereum-mining-revenue-in-august-came-
from-fees

19 See https://cointelegraph.com/news/ethereum-scalability-issues-exposed-as-high-gas-fees-stall-defi-boom
20 See https://www.coindesk.com/ethereum-fees-plummeted-65-in-october-as-defi-volumes-fell-back-to-
earth




currently make it difficult to generate profitalsténing operations for more than a year utilizing

organic growth.

Using the framework developed in this research¢rgated an ODE that describes the economics of
cryptocurrency mining, adaptable to any mineabheericy. This model can be used to investigate
specific forms of cryptocurrency investment, sushmaner-friendly cryptocurrency or novel forms of
compensation for users. Our work is consistent tighincreased presence of mining pools over the
last few years. Without organically growing a mimioperation, users can join consortiums of other
users to increase their viability and generate isterst profits. If these strategies fail due to
unfavorable economic conditions, the risks assediatth concentrated mining operations (Luu et al.

2017) are likely to become more pertinent.

Many limitations for the proposed model exist (sasHorecast price and hash rate, limited expense
model, etc.) and an ex-post analysis finds thatrgifor Ethereum has been historically profitable.

We posit that organic growth from mining operaticas be profitable, but subject to two opposing
caveats: first, the weekly growth in the networkihaate must approach 1%; second, the appreciation
of cryptocurrency prices must be high enough topemsate for both power consumption and capital
investment. Based on these findings, we develogazharalized ODE that can be used to model the

profitability of a mining operation in any GPU-bdsaryptocurrency.

Future research will benefit from a deeper undaditay of market frictions and behavioral analysis
specific to cryptocurrencies. Further analysishid type could look at the effects of novel mining
compensation programs and updates to this rese@glappear as changes to mining compensations

take place.
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