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Among all tools used to understand collective human behavior, few tools have been

as successful as agent-based models (ABMs). These models have been particularly

effective at describing emergent social behavior, such as spatial segregation in

neighborhoods or opinion polarization on social networks. ABMs are particularly common

in the study of opinion and belief dynamics, being used by fields ranging from

anthropology to statistical physics. These models, much like the social systems they

describe, often do not have unique output variables, scales, or clear order parameters.

This lack of clearly measurable emergent behavior makes such complex ABMs difficult to

study, ultimately limiting their application to cases of empirical interest. In this paper, we

introduce a series of approaches to analyze complex multidimensional ABMs, drawing

from information theory and cluster analysis. We use these approaches to explore

a multi-level agent-based model of ideological alignment introduced by Banisch and

Olbrisch to extend Mäs and Flache’s argument communication theory of bi-polarization.

We use the tools introduced here to perform a thorough analysis of the model for small

system sizes, identifying the convergence toward steady-state behavior, and describing

the full spectrum of steady-state distributions produced by this model. Finally, we show

how the approach we introduced can be easily adapted for larger implementations, as

well as for other complex agent-based models of social behavior.

Keywords: complex systems, agent-based modeling, computational social science, opinion dynamics, belief

dynamics, social influence, polarization, cognitive-evaluative maps

1. INTRODUCTION

Over the last decades, computational social science has risen as a strongly empirical discipline,
drawing on data science methods to tackle high-dimensional large data sets that cannot be
understood with simple analytical tools. This is particularly true in the study of public attention and
public opinion dynamics: there are multiple studies looking at large-scale trends in Internet search
queries, online petitions, and forums, as well as applying natural language processing methods to
news articles and social media activity. It is now possible to quantify, to a degree, what people care
about, and what they think of it.

This increasing availability of data on individual and public opinion calls for realistic,
theory-informed models. Models of opinion change and belief dynamics have traditionally been
studied by a large number of disciplines, including but not limited to economics [1–3], political
science [4], sociology [5], anthropology [6], philosophy [7], and psychology [8] among others.
There is also a tradition in statistical physics, dating back to the voter model [9–12], but also
considering models such as the majority rule model [13], the Sznajd model [14], and a number
of bounded confidence models [15]. Each model typically describes opinion change through
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a fixed strategy, where an agentmight update their beliefs tomore
accurate values [16–18], or perhaps might seek conformity by
following either the majority around them [13], or by copying the
mean opinion [4]. The effects of social influence might vary with
the distance between one’s own opinion and the advocated one
[19–21], on the details of how the new information is presented
[22] or even to meta-information [23–25]. Opinion dynamics
models often also take into account the structure of the social
networks where agents are embedded. In these models, opinion
formation is often described as a result of the combination
of social structure and behavior, as agents in different parts
of a social network will be exposed to different sources of
information, while the social network itself might change over
time, as agents choose to change their own connections according
to the behavior and opinions of their neighbors [11, 26, 27].

Rather than producing an exhaustive list of models and
modeling choices, this study aims to develop methods that
allow for a thorough exploration of complex models. Many
of the models presented above, much like the social systems
they describe, have multiple output variables, often displaying
divergent behavior in one coarse-graining scale while displaying
convergent behavior in another. This makes such complex
models hard to study, particularly as their application into
questions of empirical interest requires expanding models
to multidimensional landscapes and parameter spaces, where
emergence and convergence are difficult to identify in first place.

With these problems in mind, in this paper we introduce a
series of tools that provide a scalable way to explore the parameter
space of complex agent-based models. As a case study, we use an
multi-level opinion dynamics agent-based model which contains
all of these features—no clear output variable, multidimensional
parameter space and output space. We perform a thorough
analysis of the model for small system sizes, and show how the
same analysis could be performed for larger implementations of
other complex models.

The agent-based model we use as a case study was originally
introduced as a toy model of opinion polarization. In recent
years, the spread of information on social networks has been
described a driving force behind political polarization, through
mechanisms of homophily leading to “filter bubbles” or “echo
chambers” [11, 28, 29]. While a more robust body of evidence
is needed to clarify the many roles of online social networks in
political polarization, the role of homophily and social influence
in the process of opinion polarization is already well-described
by concepts such as the argument communication theory of bi-
polarization, introduced by Mäs and Flache [30]. This theory
proposes to account for the emergence of a bi-modal distribution
in opinions through an amplification of small differences between
individuals. It draws from the theory of informational influence,
or persuasive argument theory [16–18], while assuming that
homophily with respect to an individual’s opinions [28, 31–
34] will be the main factor behind communication and opinion
change. As argued by Mäs and Flache, the cognitive-social bias
of homophily is a sufficient mechanism to account for the
emergence of a bimodal opinion distribution.

The simplicity of Mäs and Flache’s theoretical model is also
its limitation, in that it focuses on the emergence of polarization
around a single issue, or a single pair of opposing issues on

FIGURE 1 | Representation of the agent cognitive-evaluative map, adapted

from Banisch and Olbrich [35]. In this example, agents form attitudes on N = 2

different issues, represented by the squares in (A). Their attitudes are based

on their beliefs M = 6 facts, represented as circles with ones indicating the

presence of a belief and zeros indicating its absence. Beliefs may contribute

positively (black solid lines), or negatively (gray dashed lines) to the attitudes, or

may not contribute at all (no line). The mapping from beliefs to attitudes is

summarized by the matrix C, shown in (B). Respectively, −1, 1, and 0 s

represent positive, negative, and null contributions.

an axis. This limitation has been addressed by an extended
computational model proposed by Banisch and Olbrich [35],
who draw from structural theories of attitude dynamics [36–
38] to make a distinction between individual beliefs held by an
agent and their attitudes toward multiple issues. The relations
between beliefs and attitudes are framed by Banisch and Olbrich
as cognitive-evaluative maps shared by a population [39]. In their
computational model, an individual’s beliefs are encoded as a
vector x of binary values, while their attitudes are represented
as another vector y, this one with integer values, which depend
on the belief vector but also on a cognitive-evaluative matrix C,
through the linear equation y = C · x (in the notation used
here). In the example shown in Figure 1A, a total of six beliefs
determines an agent’s attitude toward two issues. Each issue is
affected positively by two issues, negatively by two others, and is
not affected by the last two. This can be represented as a bipartite
graph where every belief is connected to an opinion, which can
be summarized by the adjacency matrix shown in Figure 1B.
The separation between belief and attitude makes this network
different from other network models of belief dynamics [40],
where beliefs affect each influence each other directly. In this two-
level model, in principle, unless two agents interact, one agent
does not have access to another agent’s beliefs—while the decision
to interact might be based on attitudes only.

As described above, Banisch and Olbrich’s model of
ideological alignment is a multi-dimensional agent-based model
which can exhibit emergent behavior in more than one level,
posing an interesting challenge for current methods of analysis
of ABMs. In the next sections, we explore the parameter space
of this model by investigating the ensemble of all cognitive-
evaluative maps for systems with small numbers of beliefs and
attitudes. We then introduce different approaches to analyze the
convergence of the model, as well as the range of steady-states it
can produce. Finally, we argue how these approaches can easily be
applied to other complex agent-based models of social behavior.

2. METHODS

2.1. Multi-Level Agent Based Model
Following Banisch and Olbrich’s model [35], we define the
cognitive-evaluation matrix relating M beliefs to N issues as
a N × M matrix C. We limit entries cij to values within
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{−1, 1, 0}, corresponding to the attitude toward an issue j being
affected negatively, positively, or unaffected by a belief i. This
implies a total of 3MN possible cognitive-evaluative matrices.
The exponential growth with M and N is a product of the
combinatorial nature of the problem, since a priori the relation
between a pair of beliefs i1 and j1 does not impose any constraint
on the relation between any pair i2 and j2. Consequently, the
number of possible Cmatrices quickly grows beyond what would
be effectively enumerable. For M = 2, N = 2, there is a
total of 34 = 81 possible matrices, while for larger systems
such as M = 10 beliefs affecting N = 3 issues, this number
grows to 330 ≈ 2 × 1014. When considering the output of
every agent based model, we take into account how multiple
matrices might be equivalent under symmetry operations. These
operations, which represent all permutations of an agent’s beliefs
and opinions (e.g., replacing belief i for belief j), result in a smaller
set of isomorphic graphs connecting beliefs to opinions, thus
mitigating the exponential growth described above. In this brief
study, we focus on three case studies where a thorough study of
the matrix ensemble is possible, once such symmetries are taken
into consideration: namelyM = 4, N = 2 andM = 3, N = 5.

For every matrix C in each matrix ensemble, we run a total
of 20 simulations with different random seeds. For every random
seed, we initialize 1,000 agents with random sets of beliefs, i.e.,
initializing their beliefs as random vectors x ∈ {0, 1}M , and
mapping them to y ∈ Z

N attitude vectors through y = C · x. We
then iterate every simulation through 15,000 time steps, which
we show is enough for model convergence. In every time step, for
every agent a1 in themodel, we select another agent a2 at random,
measure the homophily between them, and if this homophily is
above a given threshold, agent a1 selects a random belief from
a2’s beliefs, and copies it. With 1,000 agents and 15,000 time
steps, every simulation runs for a total of 15 × 106 interactions
between agents.

As described above, the similarity or homophily between
agents can be measured in multiple ways. In this study, we define
homophily as measured by oneminus the normalizedManhattan
distance between the attitudes of a pair of agents. The reasons for
this choice are many. First, if the distance between agents were to
be measured in belief space, i.e., according to their belief vectors
only, the dynamics of the agent based model would be trivial:
agents wouldmove toward each other, aggregating in a few points
in belief space, and no other kind of dynamics would be possible.
In other words, agents would concentrate in a finite number of
x ∈ {0, 1}M points in belief space.

This kind of dynamics corresponds to a series of bounded
confidence models in opinion dynamics, such as the ones
introduced byDeffuant et al. [15] and by Krause and Stöckler [41]
and Hegselmann and Krause [42], both of which were expanded
by many following works [43–48]. In this category of models,
for high enough homophily thresholds, agents might cluster in
a few points, while for lower thresholds they would eventually
all collapse into a single set of beliefs x, depending on the initial
distribution of a agents in the opinion space, but not depending
on the cognitive-evaluative matrix C. If one were to assume, for
example, that every set of beliefs is equally likely a priori, thus
defining the initial conditions of the simulation as a uniform

distribution over {0, 1}M , then every point in belief space would
be equally likely to become the steady state of the system, upon
a random perturbation to the uniform initial condition of the
model. The corresponding dynamics in attitude space y ∈ Z

N

would also be one of aggregation toward a few attitude vectors
y, and the likelihood of convergence toward a specific attitude
vector would be proportional to the fraction of x vectors that map
to y through y = C · x. Other than that, unless the combination
of a particular initial distribution over belief space and the right
homophily threshold could allow to the formation of two clusters,
measuring homophily as a function of belief homophily would
only lead to the formation of homogeneous steady states where
all agent have exactly the same opinions and beliefs.

Given that the dynamics induced by any distance metric in
belief space will inevitably lead to agents aggregation in both
belief and attitude space, what is left is to investigate the dynamics
produced by metrics in attitude space. For this choice, if one
were to use the Euclidean or L2 norm to measure the distance
between attitude vectors y, for a given set of y1 = (0, 0),
y2 = (1, 1), and y3 = (0, 2), one would obtain dist(y1, y2) <

dist(y1, y3). Were one to use the Manhattan or L1 norm, they
would find dist(y1, y2) = dist(y1, y3). In the absence of reasons
to argue that y1 differs more from y3 than from y2, we will
pick the simplest assumption, and use the Manhattan norm
for simplicity.

2.2. Measuring Simulation Outputs
To test whether simulations with the same C matrix but
initialized with different random seeds might produce different
steady-state distributions, we first assess the variability within
multiple runs of the same matrix, as shown in Figure 2. Since
every run of the model produces 1,000 trajectories over a M-
dimensional belief space and a N-dimensional opinion space, we
represent the state of an individual run over time with a set of
summary statistics: its centroid ycentroid ∈ R

N , its covariance
matrix 6ij, and its maximum width in each of its principal axes,
which can be identified by decomposing 6ij into its scaling and
rotational components.

We measure the spread of agents over time for every run in
two ways. First, we calculate the mean distance from the centroid
of a simulation run at a given time step and the centroid of
its steady state (i.e., its centroid after 15,000 steps). Second, we
measure the effective number of states over time for each run. The
effective number of states is a measure inspired in entropy-based
measures of diversity, which have their origin in information
theory [49, 50]. We define it as 2 to the power of the entropy
of the distribution of agents over multiple states, as shown in
Equation (1).

ENS(t) = 2−
∑

i pi(t) log2 pi(t) (1)

In Equation (1) above, the entropy term is summed over the
proportion pi(t) of agents occupying state yi at time t, for all
states yi in attitude space. In essence, the effective number of
states is a measure of the diversity of sets of attitudes taken by
the agents in a run at a given point in time: in other words, of
how their attitudes are divided between multiple simultaneous
states (or sets of attitude values y), weighed according to how
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FIGURE 2 | Multiple measures of model convergence. (A) Shows the trajectory of the centroid for 20 runs of the same M = 4, N = 2 matrix, plotted for the first

coordinate in attitude space, over time, reaching three possible values at t =15,000. (B) Shows the L1 distance between the centroid of every run at time t and the

centroid of the same run at t =15,000, for all M = 4, N = 2 matrices. (C) Shows the effective number of states over time, for 1,000 runs of the same M = 4, N = 2

matrix, while (D) shows the effective number of states over time for runs of all M = 4, N = 2 matrices. (E–H) Show the same analysis, for M = 5, N = 3 matrices.

many agents adopt them at that point in time. This measure is
highest when agents are evenly distributed across many states
and lowest when they concentrated at a single state. In the social
sciences, equivalent approaches have been used to describe the
effective number of parties in a parliament [51], as well as the
effective number of issues from a political agenda receiving public
attention at the same time [52].

Finally, in addition to analyzing every simulation for every
C matrix, we also cluster groups of steady-state distributions
according to which points in attitude space are occupied at
t =15,000 by a given run.

3. RESULTS

In this section, we present the results of simulations for the three
case studies mentioned above:M = 4, N = 2 andM = 3, N = 5.
Unless specified, we use a distance threshold of β = 1. Unlike
Banisch and Olbrich’s study [35], which shows the results for
a selected set of matrices that could produce a varied set of
behaviors, we focus on the behavior emerging from the whole
ensemble of matrices defined by a given (M,N) pair.

3.1. Studying Model Convergence
Figure 2 displays an analysis of convergence for this agent-based
model, for system sizes of M = 4, N = 2, and M = 5, N = 3.
In summary, it shows that different runs of the same matrix
can produce different results, that convergence typically happens
before t =15,000 steps, and that this convergence is usually to a
single point in attitude space.

The figure compares the full ensembles of M = 4, N = 2
and M = 5, N = 3 matrices with the matrices C2×4 and C3×5

specified in Equation (2):

C2×4 =
[

−1 0 0 1
0 1 1 0

]

C3×5 =





0 −1 1 1
1 −1 0 1
0 0 −1 0



 (2)

The first point is illustrated by Figures 2A,E. Both panels show
the trajectory of the first coordinate of the centroid of 20 different
runs of the same C matrix. In plotting these time series, a small
increment of 0.01 was added to the y-value of each run, to
make visible the many horizontal lines that otherwise would be
overlaid. The panels indicate that most centroids converge to a
value before 15,000 steps, but that the value itself varies across
runs. For this particular choice of Cmatrices, centroids stabilized
at values of −1, 0, and +1 for C2×4, and −2, −1, 0, +1, and +2
for C3×5. The fact that the values of 2 and −2 are not observed
for C2×4 and that neither 3 or −3 is observed for C3×5 is likely
due to these specific maps. Still, the diversity of centroid values
presented in both panels is enough to show the kind of behavior
that would be erased if one were to average multiple runs for the
same Cmatrix.

Naturally, displaying the results of a single pair of matrices is
no argument for general convergence. The model convergence
around 15,000 time steps for these (M,N) pairs is further
presented in all other panels in Figure 2. Figures 2B,F show the
L1 distance between the centroid of the distribution of agents
in attitude space at time t and the same distribution at time
t =15,000, averaged over all M = 4, N = 2 and M = 5, N = 3
matrices, respectively for each panel. Shaded areas represent the
25–75 and 5–95% intervals of the distribution of the distance to
steady-state centroids, showing that the convergence observed at
t =15,000 is not an average phenomenon, and also not unique to
C2×4 and C3×5, but rather that convergence is observed for both
whole matrix ensembles.
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FIGURE 3 | Examining all steady-state distributions for 20 runs of every M = 5, N = 3 matrix. (A) Shows a rank plot indicating the range of cluster sizes, i.e., the

number of runs producing each steady-state distribution. (B,C) Show a breakdown of the number of states (i.e., points in attitude space) per cluster: the number of

clusters with a single state is over one order of magnitude above the number of clusters with two or more states, and those one-state steady states are also the ones

corresponding to the largest number of runs, as shown in (C). (D–F) Count the number of clusters according to their width in each cluster’s widest axis [Width 1, (D)],

followed by its second and third widest axes [widths 2 and 3, (E,F), respectively]. In order, red, green, and blue bars indicate clusters with width 1,
√
2, and

√
3, as

indicated by the insets in (D). (G) Shows the frequency of different steady-state distributions, when clustered only on their shape, but not on their position in attitude

space.

The remaining panels show the evolution of the effective
number of states over time, for 1,000 runs of C2×4 and C3×5

(Figures 2C,G) and for single runs of all matrices in that (M,N)
pair (Figures 2D,H). The effective number of states, described in
Equation (1), measures the diversity of points in attitude space
occupied by the multiple agents in a model over time. In all
panels, this effective number quickly converges to approximately
1.0, both on average and as a whole, as indicated by the shaded
areas. This convergence implies that most runs ultimately lead to
steady states occupying a single point in attitude space, for both
M = 4, N = 2 andM = 5, N = 3 matrices.

3.2. Analyzing Steady States
In the previous section, we established that the model usually
converges before 15,000 steps, that a typical run converges to a
single point in attitude space, but that different runs of the same
matrix might result in path-dependent symmetry breaking. In
this section, we examine the range of steady-state distributions
produced by multiple runs of this model for many C matrices,
clustered according to which points in attitude space (i.e., which
states) are occupied at t =15,000 by a given run.

The results of the clustered by steady-state distributions are
shown in Figure 3 for 20 runs of every M = 5, N = 3 matrix.
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Figure 3A shows a rank plot indicating the range of cluster sizes,
i.e., the number of runs producing each steady-state distribution.
As evidenced by the log-scale on the y axis, this is a long-
tail distribution: most runs produce the same few steady-state
distributions, while most steady states are only observed for 10
runs or less.

From Figure 3B, we see that most steady-state clusters
correspond to single states, while the number of clusters with two
or more states is over an order of magnitude smaller. Figure 3C
compares the number of states with the number of runs falling
into each cluster, i.e., the cluster size: it shows that most large
clusters are single-state clusters, followed by two-state clusters.

As indicated by the top three panels, most runs of this
model result in a few single-state clusters, while wider steady-
state distributions correspond to a small proportion of all
resulting steady-states of the model, with many distributions
corresponding to only a few model runs each. Figures 3D–F

investigate this range of wider distributions, binning clusters
according to their width in each cluster’s principal axes, obtained
by decomposing each their covariance matrices 6ij into scaling
and rotational components. Principal components are shown in
Figures 3D–F from most important to least important (namely,
Widths 1, 2, and 3), with the height of every bar indicating the
number of clusters with a particular width in each principal axis.

Figures 3D–F also show red, green, and blue bars. These
bars indicate the number of steady-state clusters with particular
widths, namely 1,

√
2, and

√
3. The high cluster count at

these particular (Euclidean) distance values is a consequence of
the discrete grid-like nature of the agent-based model, which
produces steady states such as the ones indicated by the insets
in Figure 3D, which have widths of 1,

√
2, and

√
3.

Finally, Figure 3G shows the frequency of different steady-
state clusters, when grouped only regarding their shape, and
therefore also aggregating over orientation and centroid position.
It confirms what is indicated by the other six panels: the largest
fraction of steady-state distributions is point-like, representing
all 1,000 agents converging toward the same point in attitude
space, a phenomenon which happens for 96% of all model runs,
including C matrices with all kinds of symmetry and levels of
interdependency between issues. Steady-state distributions two
or more states together only take 4% of all runs of the model.

It is important to note that Figure 3G is a two-dimensional
representation of a three-dimensional model. This is only
possible because the frequency of three-dimensional steady states
distribution is under 1%, which is comparable to the frequency
of other two-dimensional steady states shown in the figure. This
is in agreement with Figure 3F, which shows that <1% of all
steady states have a non-zero width in their third main axis.
In other words: zero-dimensional (point-like) steady states are
by far the most common, corresponding to 96% of all model
runs, followed by one-dimensional, two-dimensional and three-
dimensional steady states, in order of decreasing frequency.

Finally, the reviewer might notice that steady-state
distributions such as the bottom left in Figure 3G should
not be absorbing states under the model with β = 1. Rather,
given enough time, this distribution should converge to the
point-like distribution on the top left of Figure 3G, which is

an absorbing state. This 1% of all steady-state distributions
likely corresponds to runs which are still in their transient state
by t =15,000. Preliminary runs of (M = 10, N = 2) and
(M = 10, N = 3) show a similar pattern: these system sizes tend
to show polarized one-dimensional distributions for timescales
longer than 15,000 time steps, only converging to absorbing
states after over 50,000 time steps. In their paper, Banisch and
Olbrich argue these transient distributions should become more
empirically relevant as population sizes grow–we explore this
point in more detail in the section 4.

4. DISCUSSION

The aim of this article was to provide a good illustration of
the complexity involved in studying an agent-based model of
human behavior that is actually guided by social and cognitive
psychology. The theoretical details and model choices made by
Banisch and Olbrich [35] to model Mäs and Flache’s argument
communication theory of bi-polarization resulted in a model
which is simple to define and to run, but which requires careful
analysis, as its outputs are inherently multidimensional and
dependent on a number of factors. It is this sort of system which
often limits linear and analytical approaches, since the relevant
part of the behavior happens at an emergent level. Through a
complete enumeration of the M = 4, N = 2 and M = 5, N =
3 cognitive-evaluative matrices, we find that most runs of the
model, for all cognitive-evaluative matrices, move toward a few
steady-state distributions. We find that the clusters of steady-
state distributions in attitude space corresponding to most runs
are often pointwise steady-state distributions, where all agents
converge toward the same vector y in attitude space. Steady states
composed of two or more attitude states take over approximately
4% of all runs of the model, with distribution with 2 states being
the most frequent.

Our analysis of small of Banisch and Olbrich’s model for small
M andN suggests that the most likely result after many iterations
of the model is consensus, and that any deviation from consensus
would hardly be described as “polarization.” These are, however,
small systems: matrices with larger M and N allow for a larger
spread of agents in attitude space, which allows for the emergence
of distributions polarized along one axis. We observe that in
preliminary runs of matrices with (M = 10, N = 2) and
(M = 10, N = 3), which display one-dimensional distributions
of agents in attitude space for longer than 15,000 time steps,
only converging after over 50,000 time steps. This suggests
that larger systems should take longer to converge, allowing
for the sustained existence of social dynamics within transient
population states. Distributions displayed during the transient
period should be particularly relevant for larger population sizes,
a point also made by Banisch and Araújo when talking more
broadly about opinion dynamics models [47].

The main result of this work, beyond producing insights
about small systems, is a methodological contribution. As
described in more detail in section 2 this multi-level agent-
based model does not have any clear output variables, nor a
clear aggregation scale, order parameter or measurable outcome.
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Its emergent behavior is the product of countless interactions
where agents update their beliefs and attitudes, but there is
no clear metric assessing when such emergent behavior has
happened, or even to tell apart the model transient from its
steady state.

This paper introduced a number of approaches to address this
problem: in Figure 2, after establishing that individual runs of
the model for the same cognitive-evaluative matrix should not
be averaged without losing significant information, we observe
the distribution of agents in attitude space over time, plotting
the distance between the agents’ centroid over time and the final
position of their centroid, as well as looking at the effective
number of states of every run. This effective number of states, just
like its equivalent measures from other multidimensional models
of social behavior, takes an approach from information theory
to quantify the diversity of states in the model. With these tools
combined, we are able to establish model convergence around
t =15,000 steps.

The analysis presented in Figure 3 presents further methods
which can be applied to complex agent-based models: by using
a combination of cluster analysis and PCA-like methods to
establish the main directions of variation of all the steady states
produced by 20 runs of the model for every M = 5, N = 3.
These states were then aggregated in multiple ways, leading to a
thorough description of the full spectrum of outputs produced by
this model.

The methods presented here open many doors for future
research. Firstly, they allow for a more careful exploration
of Banisch and Olbrich’s model, at system sizes of empirical
relevance. Moreover, the full enumeration approach used here
might also be ideal—further research is needed to identify the
correct ensembles of matrices to represent the mapping between
opinions and attitudes. One might also want to consider the

interplay of social network structures and cognitive-evaluative
maps, as the separation between beliefs and attitudes might
lead to stronger separation between agents in different parts of
a network.

Most importantly, this work introduces a scalable way to
explore the parameter space of complex agent-based models such
as the one studied in this paper. Methods such as the effective
number of states or the clustering by steady-state are most
appropriate for models which resemble real-life social behavior,
particularly the dynamics of beliefs, opinions and attitudes, where
emergent phenomena are not static, easily measurable or even
clearly defined—and where there usually is no order parameter
that identifies different regimes of the model. Here we have
introduced not an order parameter, but a set of analysis tools,
which can bring more power and clarity to future complex
models of social behavior.
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