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Accurate modelling of local population movement patterns is a
core, contemporary concern for urban policymakers, affecting
both the short-term deployment of public transport resources
and the longer-term planning of transport infrastructure. Yet,
while macro-level population movement models (such as the
gravity and radiation models) are well developed, micro-level
alternatives are in much shorter supply, with most macro-
models known to perform poorly at smaller geographical
scales. In this paper, we take a first step to remedy this deficit,
by leveraging two novel datasets to analyse where and why
macro-level models of human mobility break down. We show
how freely available data from OpenStreetMap concerning
land use composition of different areas around the county of
Oxfordshire in the UK can be used to diagnose mobility
models and understand the types of trips they over- and
underestimate when compared with empirical volumes derived
from aggregated, anonymous smartphone location data. We
argue for new modelling strategies that move beyond rough
heuristics such as distance and population towards a detailed,
granular understanding of the opportunities presented in
different regions.

1. Introduction
Predicting human mobility is important for urban planning, traffic
control, and for the general management of a city. This question
has been addressed by a long tradition of mathematical models
of human mobility. Most state-of-the-art population mobility
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models fall under two traditions [1], namely the gravity-based models, dating back to Zipf [2] and

Carey[3], and the intervening opportunities models, such as Stouffer’s 1940 model [4,5], as well as the
celebrated parameter-free radiation model, by Simini et al. [6]. In gravity models, the leading
assumption is that the volume of trips going from one location to another should decrease with the
distance between origin and destination. Intervening opportunity models, instead, treat trip volume as
a function of the number of potential destinations between the two places.

Numerous studies have compared both classes of models [1,7–10]. In particular, a recent study using
census commuting data from France, Italy, Mexico, Spain, USA, UK, and also from commuting within
London and Paris, concluded that the gravity model performs better than other models at predicting
traffic flows at these spatial scales, but only by a small margin [11].

Despite their many successes at predicting large-scale commuting, the gravity and radiation models
are known to perform poorly in predicting traffic at spatial scales smaller than the ones described above.
The modified radiation model by Yang et al. meant to address that issue by introducing a scaling
parameter α representing the influence of small spatial scales in human mobility [12]. This extra
parameter, as described in the original paper, would be a way to address the separation between
population density and trip attraction rates that happens at small scales [12].

This problem of poor mobility predictions at small spatial scales has also been addressed by
considering the variation in the accessibility of different sites [13] as well as features like the topology
of urban spaces [14]. While there is no single definition of accessibility—it is often defined depending
on its particular application [15–18]—it typically relates the opportunity of accessing a specific
location to the cost of travel, which is essential to urban planning [18].

It makes sense to include fine-grained variables when predicting mobility at small scales, since the
smaller the scale of a system the harder it becomes for its variables to average out. For example, the
travel time between different neighbourhoods in a city depends not only on their distance but also on
their accessibility, while at a national scale one can roughly assume all cities are equally accessible
since there are major roads connecting most regions of a country and other accessibility differences
might average out. Note that it remains a very rough assumption, but the point is that it becomes a
safer assumption at larger scales. This behaviour is well known in the physical sciences, where larger
systems also tend to be more predictable than smaller systems due to asymptotic effects such as the
law of large numbers and the central limit theorem [19]. Take, for example, the diffusion of ink in a
glass of water: while the motion of any small group of ink molecules might show random
fluctuations, once one considers the whole ink solute, the randomness essentially disappears as the
solute gradually dissolves from high-concentration areas to low-concentration areas. Thus, in
chemistry, diffusion is described as a deterministic macroscopic phenomenon, despite its microscopic
random nature [20]. The same applies to human mobility: at large spatial scales, the differences
between different regions average out. At small spatial scales, more data are required.

Mobility models traditionally use demographic and geographical data as input, being typically
limited to the population of the zones of interest and the distance between them. In the last decades,
new sources of data have become available. In addition to traffic sensors that can estimate in real-time
the volume of vehicles flowing through the streets, many cities are now home to a variety of sensors
of traffic congestion, urban noise levels, air quality and other variables such as water and energy
usage. The technology used in urban sensing also includes video surveillance powered by computer
vision algorithms allowing the detection and classification of different types of vehicles as well as
cyclists and pedestrians [21].

In fact, much of this sensing technology comes not in the form of dedicated devices located in strategic
spots on roads and buildings, but rather integrated to mobile devices. The ever-growing number of mobile
applications for urban routing, ride-sharing and sharing of geolocated information in social media, aided
by the ubiquity of mobile phones, have turned these devices into ‘floating sensors’ [22], a valuable source of
detailed geographical data. Recent studies in urban mobility have tapped into the potential of these new
data sources, achieving successful traffic prediction from mobile phone and social media data alone or
in combination with demographic and sensor data [1,23–25].

A third source of data is landuse data. There is avast literature on the links between landuse and transport
[25–27], often classifying landuse types at highlyaggregate levels, such as residential, commercial or industrial
areas. Historically, compiling land usage datasets has been an expensive and time-consuming task [28]. The
volunteered geographical information site OpenStreetMap, launched in 2004, can be seen as an alternative
solution to this problem: rather than being compiled by a single person or team, OpenStreetMap is the
outcome of a Wikipedia-like collaborative editing process that produces a free, open and detailed world
map, including details such as the location and classification of different types of residential and
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commercial structures. The accuracy and completeness of OpenStreetMap coverage has been assessed in

several studies [29–37], yielding positive but cautious results, particularly about road networks. In the
context of human mobility, it has been used to explain the volume of traffic incidents [24].

The diversity of new data sources for traffic prediction described above becomes a promising resource
once one considers that human mobility at smaller scales is less likely to behave according to laws as
simple as the ones proposed by gravity or radiation models. With that in mind, rather than using
these physics-based models of traffic prediction, one can use large amounts of data to train machine
learning models that hold little or no a priori assumptions about the system. This data-driven
approach has proved quite successful in traffic prediction [24,38–40]. The problem often raised about
this approach is that it does not always add explanatory power, as more complex machine learning
models are known to be ‘black boxes’ that work quite well but are quite challenging to explain or
interpret [41,42]. Additionally, these approaches have a strong historical bias, which could result in
poor predictions for areas undergoing rapid development or change [43,44].

An alternative to complex, non-interpretable machine learning models are human mobility models that
take into account very fine-grained details such as the topology of a city [14] or the accessibility of different
sites [13,18]. In contrast to purely data-driven approaches, these models often bring with them very
mechanistic assumptions about mobility, which makes it possible to evaluate such assumptions against
each other. The disadvantage is that they often require knowing quite a lot about a city and use data
that is not always available or easy to obtain. While there is a large increase in the availability of urban
data, such data remain unevenly distributed: there is a lot of data about major cities such as London,
New York, Paris and Tokyo, but much less data about smaller or poorer places [29,31,45].

This suggests that the failure of small-scale traffic prediction will be dominant in smaller cities, which
often also have smaller budgets. Dedicated sensors are not always an affordable choice for local
governments, and even social media data might be too scarce or expensive to obtain. In addition, ride-
sharing services and navigation applications are not available in smaller cities. All these considerations
make a point for models using open data, such as the OpenStreetMap described above, as an affordable
way to improve traffic prediction at small spatial scales.

In this paper, we use OpenStreetMap data in combination with public demographic data to explore
how different human mobility models perform at small spatial scales, comparing models against two
months of mobility data in the county of Oxfordshire, UK. First, we describe the dataset and the eight
classes of models used in this study. We then fit each class of models to the data and show that most
models fail at predicting trips at this spatial scale.

Next, we a propose a series of standard modifications to the models, such as using travel time instead
of physical distance and adding a multiplicative term to correct the underestimated urban-to-urban trip
volumes. We show that these modifications do not solve the inaccuracies in the models. We argue, in
agreement with the literature, that solving this problem requires more than using demographic and
distance data, and show the usefulness of OpenStreetMap data as a measure of what is present in the
origin and destination zones. In the end, we discuss the applicability of our method to different
locations and its relation to traffic modelling at different spatial scales.
2. Case study: Oxfordshire, UK
Our case study examines Oxfordshire, a county in South East England, with an area of 2605 km2, and a total
population of approximately 680 000 inhabitants. Counties in the UK are divided into electoral wards, or
simply wards, which are usually named after neighbourhoods, parishes, and other geographical marks.
The names and borders of different wards are defined by the local government, and may change over
time. We obtained ward-level mid-year population estimates for the 112 Oxfordshire wards, as defined
in April 2016, from the UK Office of National Statistics. Shapefiles describing the border of all
Oxfordshire wards were downloaded from the Digimap mapping data service [46].

For our OpenStreetMap data, we downloaded the points of interest from the OpenStreetMap database
[47] in November 2017, which are geolocated points tagged with indications of the kind of land use
found in that location. We downloaded 1 071 877 points of interest within Oxfordshire, and selected
points tagged as amenity, building, land use (i.e. green spaces), leisure, office, shop and sport. All
points of interest also contain ‘minor’ subtags, such as pub, restaurant or cafe, all of which might have
the same major tag of amenity. In this paper, we chose to not use points of interest related to the
transport network, such as railway or street, due to their poor coverage. We also did not consider
categories with less than 100 points of interest in Oxfordshire. In total, there were 814 different types
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of tags, which were used 1106 147 times in our dataset. 174 of these types of tags had 100 or more

appearances in our data (i.e. they were used to describe at least 100 different points of interest). These
174 tags account for 1 094 970 of all observed tag uses in the dataset. So in total made use of 21% of
total tags but 99% of all tag uses. We used anonymized and aggregated GPS mobile phone data
provided to the Oxfordshire County Council by a major smartphone operating system.

Similar data have previously been validated and successfully used in San Francisco [48] and
Amsterdam [49]. The data contains estimated trip volumes for origin–destination pairs of wards in
Oxford for the January and February 2017 in hourly increments. We subset the data and only use trips
inferred to be made by vehicle (and not walking or cycling) and trips on weekdays made between
7.00 and 12.00.1 We calculate the centroid of each ward and compute the geodesic distance between
all centroid pairs. Finally, we obtained the travel time between the centroids of all 112 × 112
origin–destination pairs of wards using the Google Distance Matrix API, part of the Google Maps
Platform [50].
R.Soc.open
sci.6:191034
3. Human mobility models
Here, we explore eight classes of human mobility models, and analyse how well they perform in predicting
traffic between different wards (zones) within the county of Oxfordshire. We use four variations on the
gravity model [2,3]. In its simplest form, the traffic volume Tij from ward i to ward j can be expressed as:

Tij ¼ Anai n
b
j f(dij), (3:1)

where ni and nj represent the population of wards i and j, A is a normalization constant, and f(dij)
represents a weighting cost function indicating the relation between the number of commuters Tij and
the commuting cost dij, which is typically the distance or travel time between wards i and j. This
dependency is typically modelled f(dij) ¼ d�g

ij or f(dij) ¼ e�gdij . Finally, α, β and γ are tunable parameters.
The gravity model is often fit by constraining the total traffic going in (

P
i Tij) and out (

P
j Tij) of every

ward to have the same values as in the ground truth data, in what is called the doubly constrained
gravity model [51]. A common, simpler version of the model, more similar to the Newtonian law of
gravity, is found by setting the exponents of ni and nj to α = 1 and β = 1 [52]. In this paper, we use four
versions of the gravity model, given by the four permutations of the power function and the
exponential function for f(dij) and whether α and β are set to 1 or whether they are fit to the data.
While fixing α and β to values other than 1 or only fixing one of the two parameters is possible, such
variations are rare in the literature and not an avenue we pursue in this paper.

In addition to the gravity models discussed above, our analysis also includes the parameter-free
radiation model by Simini et al. [6]. In this model, shown in equation (3.2), the total traffic going from i
to j depends not only on the population in both wards, i.e. ni and nj, but also on the number of
opportunities between i and j, indicated by sij, and measured as the total population within a circle of
radius r = dij, where dij is the distance between wards i and j. This sij term, sometimes described as the
number of intervening opportunities [5], can be seen as a proxy for the number of alternative places
where a person from ward i could go with less cost than it would be to travel to ward j. Consequently,
large sij would lead to lower Tij. The name for this term is no coincidence, as the radiation model was
partially inspired by the intervening opportunities model [6]. The radiation model is defined as

Tij ¼ Ti
nin j

(ni þ sij)(ni þ n j þ sij)
: (3:2)

In the equation above, Ti ¼
P

j Tij. We also include Yang et al.’s one-parameter radiation model [12]

Tij ¼ Ti
[(ni þ n j þ sij)

a � (ni þ sij)
a](nai þ 1)

[(ni þ sij)
a þ 1][(ni þ n j þ sij)

a þ 1]
: (3:3)

In this model, α measures the influence of small spatial scales in human mobility, by changing the
coupling between population density and trip attraction rates at small distances [12]. We include two
versions of the modified radiation model: one with the parameter α fit to the data with no constraints,
and another with its value defined according to the average size of Oxfordshire wards using the
formula in [12] of α = (l/36[km])1.33, where l stands for the average size of Oxfordshire wards.
1We also experimented using the whole day and including weekend trips, but the overall results were qualitatively similar.



building

green space

leisure

office

shop

sport

amenity

Figure 1. Illustration of the difference in trip volumes between wards in Oxfordshire. In the figure, both destinations (Thames Ward
and Drayton Ward) have similar resident and working populations, and both are at approximately 11 km from Botley & Sunningwell
Ward. However, there are about twice as many trips from Botley to Drayton as there are from Botley to Thames. This might be
explained by the difference in the composition of both wards as shown by their points of interest on OpenStreetMap: Drayton Ward
is markedly more urban compared to Thames Ward.
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Finally, we also include the intervening opportunities model, as formulated by Schneider [5], one of
the original inspirations of the radiation model [6]. The intervening opportunities model is defined as

Tij ¼ e�gsij � e�g(sijþn j): (3:4)

Models with parameters to be fit to the data are fit using the normalized root mean squared error
between log Tij from the model predictions and from the ground-truth mobility data, using methods
from the Python scipy package [53]. Parameter values and log NRMSE scores are shown in appendix
E, and the performance of all eight models with the Oxfordshire traffic data is presented in figure 2.
4. Mobility at small spatial scales
Figure 1 illustrates a typical pair of trips within the Oxfordshire dataset. The figure shows three wards in
Oxfordshire: Botley & Sunningwell Ward, Thames Ward and Drayton Ward. The latter two have similar
resident and working populations, and both are at approximately 11 km from Botley & Sunningwell
Ward (distance measured from their centroids). The number of opportunities between the wards,
expressed as sij in the models in §3, is the only variable in the original models that varies between the
Botley–Drayton trip and the Botley–Thames origin–destination pairs: it is 60% higher for the Botley–
Drayton trip, which would suggest this origin–destination pair would have a lower volume of traffic
than the Botley–Thames pair. The data, however, show the opposite trend: the traffic volume for the
Botley–Drayton trip is approximately twice the volume for the Botley–Thames trip.

Out of many factors that could possibly explain the higher trip volume for the Botley–Drayton trip,
one simple explanation jumps out when plotting the OpenStreetMap points of interest for the Drayton
and Thames Wards. While Thames Ward is filled with points of interest classified as green space, with
no significant density as in other OSM categories, Drayton Ward shows a large number of points
marked as green space, but also a large number of points classified as building, indicating urban
locations. These urban centres correspond to the villages of Drayton and Milton, which together
account for most of the population of Drayton Ward. On the other hand, Thames Ward is composed
of a handful of smaller villages and hamlets, which altogether make a much less urban environment
despite a similar total population.
5. Model performance at small spatial scales
When used to predict mobility data for Oxfordshire, all classes of mobility models presented in §3
underestimate high-volume trips. As the 2% origin–destination pairs with the highest trip volume
correspond to 14% of all traffic volume, these trips cannot simply be discarded.

Figure 2a shows the predicted trip volume Tmodel
ij for every volume versus the trip volume Tdata

ij , both
plotted in logarithmic scale. Larger volume trips are consistently underestimated, having their y-values
below the diagonal line marking Tmodel

ij =Tdata
ij ¼ 1. In the figure, grey dots indicate the 2% trips with the

highest volume, while the coloured dots indicate the other 98%. Considering that the models presented in
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All models show a poor fit to the data, especially for high-volume trips. Grey dots indicate the 2% trips with the highest volume,
which correspond to 14% of all traffic volume, and dashed lines indicate the y = x identity line.
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§3 only take into account the population of different wards and the distance between their centroids, it is
not surprising that they ignore the details that make Thames Ward different from Drayton Ward, which
lie not in their aggregate demographics, but in their composition in terms of points of interest. Still, one
might suggest these differences could be addressed by incorporating measures of accessibility such as
travel time [15,54]. The reason for this is straightforward: for short trips, travel distance and duration
do not scale linearly (see appendix A), and thus distance is not always a good proxy for accessibility.
One could also try a more straightforward modification to the models, by adding a multiplicative
factor to modify the predicted volume for shorter trips. Drawing inspiration from the e�sij term in
Stouffer’s implementation of the intervening opportunities model, and considering that the number of
intervening opportunities sij grows with distance and travel time, we propose multiplying Tij by a
term depending on sij only, in such a way that large sij are not penalized, but low sij lead to an
increase in Tij. With this extra term, which includes free parameters to be fit by the data, we write a
modified expression for the trip volume Tij

Tmod
ij ¼ Tij � (1þ Ae�sij=b): (5:1)

These two possible model modifications, i.e. using travel time in place of distance and having the
extra dependency on sij, when considered separately or jointly, make a total of three additional models
in addition to the original unmodified Tij. These three possible modifications, when combined with
the eight types of mobility models presented above, give a total of 32 possible mobility models: the
eight original models, plus 24 possible modifications (three per model).

We assess the performance of different models using two traditional goodness-of-fit measures for
human mobility models. The first is the Common Part of Commuters (CPC) [55,56], based on the
Sørensen index [57]

CPC(Tmodel, Tdata) ¼
2
P

i,j min (Tmodel
ij , Tdata

ij )P
i,j T

model
ij þPi,j T

data
ij

: (5:2)

When the total number of commuters N is preserved, the expression for the CPC can be written as a
function that decreases with the absolute difference between Tmodel and Tdata

CPC(Tmodel, Tdata) ¼ 1� 1
2N

X
i,j

jTmodel
ij � Tdata

ij j: (5:3)
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We also define the Common Fraction of Commuters (CFC), a measure analogous to CPC, but for the
ratio between Tmodel

ij and Tdata
ij , in a way that higher values of Tij do not skew the sum, and every (i, j ) pair

counts equally, regardless of the traffic volume on that origin–destination pair

CFC(Tmodel, Tdata) ¼ 1
N

X
i,j

min
Tmodel
ij

Tdata
ij

,
Tdata
ij

Tmodel
ij

 !
: (5:4)

The expression for the CFC can also be written as a function that decreases with the absolute
difference between logTmodel

ij and logTdata
ij . We provide the full derivation in the appendix C, and the

final expression here

CFC(Tmodel, Tdata) ¼ 1
N

X
i,j

exp � 1
2

��� logTdata
ij � logTmodel

ij

���� �
: (5:5)

The comparison of how well the 32 models described above predict trips in Oxfordshire can be seen
in figure 3. Figure 3a,b show values for CPC and CFC, respectively, for all combinations of the eight
models against the three modifications, plus the unmodified models. Each row represents one of the
model classes presented in §3, and columns labelled with Original, T, S and T+S, respectively,
represent the original models, followed by models fit using travel time rather than distance, models
including the sij modification, and models including both modifications.

The first result to be noticed from this figure is that both CPC and CFC result in very similar heat maps.
Even though the twomeasures might differ in their individual values, they follow an approximately linear
relation where CFC≈ 1.018 × CPC− 0.104, as shown in appendix B. Still, according to both measures, the
best fit is obtained by the gravity models with exponents α and β fit to the data.

Besides the difference between both goodness of fit metrics, one can also compare different columns
within the same heatmap. Overall, changes in CPC and CFC are minimal, usually less than 1%, except for
cases when the original value was already low. There is almost no difference between the non-modified
models (Original) and the models modified with travel time (T), which suggests that swapping travel
distance by travel time does not have any noticeable effect on trip prediction in our setting. The sij
modification alone (S) produces a large improvement in both CPC and CFC for the one-parameter
radiation models—particularly with a fixed α value—, while having a small effect on all other models
(less than 1% CPC and CFC). Using both modifications to the models, (T+S) offers no further
improvements. The one-parameter radiation models with fixed α show an improvement over the
original models but that improvement is accounted for by the modified sij term alone. The intervening
opportunities model shows a decrease in performance with both modifications, while for the majority
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of models, the difference is within +1%. We also estimated 95% confidence intervals by bootstrap
sampling 10 000 samples of size 10 000 each with replacement. As the width of all confidence intervals
was under 10−4, we did not show them in figure 3.

Overall, figure 3 shows that replacing the distance between the centroids of each ward by the travel
time between them or trying to artificially increase the predicted trip volume for short trips by modifying
the functional form of human mobility models does not solve the fact that current mobility models do not
perform well at this spatial scale, as presented in figure 2.
6. Using OSM data to diagnose the problem
The first step towards identifying where current mobility models fail is to observe their prediction
accuracy is considerably different for the trips of the highest volume, which lie on the right side of
every panel in figure 2. In the eight panels, the grey dots indicate the 2% trips with the highest
volume, while the coloured dots indicate the other 98%. Having split our dataset into two groups, we
can then investigate whether the trips in both groups differ in any other attributes, such as their
average travel distance, number of intervening opportunities (sij), or the density of any point of
interest present in OpenStreetMap. This is a way of addressing the difference illustrated by the trips to
Drayton Ward and Thames Ward, as presented in figure 1, where two origin–destination pairs
of comparable distance and population actually led towards of very different composition in terms of
OpenStreetMap points of interest.

Figure 4 compares the composition of destination wards between the top 2% high-volume trips,
shown in red, versus the remaining 98% of trips, shown in blue.2 The figure shows the average
distance travelled between wards, as well as the average density of a series of OSM tags in the
destination ward, for all OSM categories whose density varies more than 1% between both groups of
trips. In this plot, the length of a bar shows the relative difference between the average value of a trip
attribute for all high-volume trips from the average value for all other trips. For example, the number
of points of interest tagged as clothes is 250% higher for the destinations of high-volume trips
compared to the destinations of all other trips. Similarly, the average distance of high-volume trips is
approximately 150% lower than that of all other trips. In short, the figure shows that high-volume
trips are often short-distance trips between urban centres.

Figure 5 shows how OpenStreetMap data can be used to reveal where human mobility models fail. For
the remainder of this section, we focus on the best-performing model, the gravity model with a power
2Tags corresponding to origin wards result in lower values, but show a similar trend.
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function and α and β fit to the data (without any modifications), but the analysis could be conducted with
any mobility model. Figure 5a,b shows scatter plots for the ratio Tmodel

ij =Tdata
ij , which indicates the error

made by the model. A ratio greater than one indicates overestimation and lower than one indicates
underestimation. In both plots, dot size and colour indicate the magnitude of the real trip volume Tdata

ij ,
with small blue dots indicating low trip volumes and large red dots indicating large trip volumes.

On figure 5a, the overestimation ratio is plotted against the density of the OpenStreetMap minor tag
farmyard in the destination ward, i.e. the number of occurrences of points of interest with that tag, divided
by ward population. Most trips are placed around Tmodel

ij =Tdata
ij ¼ 1, meaning little or no overestimation

and cover the whole range of values in the x-axis, corresponding towards with a varying density of
points of interest tagged as farmyard. By comparison, the high-volume trips, marked by the red dots,
are all placed at the lowest densities of farmyard points of interest, and the volumes of these trips are
consistently underestimated.

The same underestimation of high-volume trips is present in figure 5b, which shows the density of
points of interest tagged as parking along the x-axis. In this case, the trend for high-volume trips is the
opposite of the trend present in figure 5a: while most trips are distributed over the whole range of
parking density, high-volume trips are biased towards the higher end of the range. The comparison
between figure 5a,b suggests that the destination wards of high-volume trips are more likely to have
parking lots and less likely to have farmyards.

The analysis present in figure 5a,b can be repeated for any other OpenStreetMap tag. Figure 5c shows
the result of producing the same scatter plots for the overestimation as presented in the other panels, but
for all the OpenStreetMap tags shown in figure 4. This bar plot is produced after first splitting trip
predictions two groups: one group has the 2% trips with the lowest overestimation ratio,
corresponding to trips with Tmodel

ij =Tdata
ij , 0:686, and the other group has the remaining 98% of trips
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with an overestimation ratio above this value.3 In this bar plot, as in figure 4, the length of a bar shows the

relative difference between the average value of a trip attribute or number of points of interest between
the two groups, in this case, the 2% most underestimated trips on the left and the rest of the dataset
on the right. For example, the density of points of interest tagged as cafe is nearly 200% higher for the
highly underestimated trips, while the density of points of interest tagged as soccer is approximately
50% higher for the non-overestimated trips. As a whole, the bar plot indicates that the model
underestimates urban trips, characterized by a higher density of points of interest tagged as clothes
shops, cafes and general retail.
 .org/journal/rsos

R.Soc.open
sci.6:191034
7. Discussion
In this paper, we presented eight classes of human mobility models, including the gravity, radiation and
intervening opportunity models. After calibrating all models using two months of aggregate and
anonymous smartphone mobility data for the county of Oxfordshire, UK, we showed that most
models give poor predictions of traffic volume at this spatial scale. We also showed that typical
modifications applied to mobility models, such as exchanging travel distance for travel time or adding
extra parameters to correct for poor performance at small spatial scales, do not generally result in any
significant improvement in the model fits, which we measured using the CPC and the CFC. While the
CPC and CFC scores were not particularly poor, our analysis showed that the 2% of trips with
the highest volume were consistently underestimated by even the best-performing model.

Of course, one possibility raised by our results is that OSM data could be used not only to diagnose
problems with mobility models but potentially also provide means of improving them. The possibility
of enhancing traffic models with more data is in fact explored in a number of recent works, which have
used new data sources such as road configurations [58], city block shapes [14], travel cost and number of
opportunities [18], among many variables which provide a more fine-grained description of how regions
of a city differ from each other. We believe these approaches are important, as they repeatedly show that
describing human mobility at small spatial scales in urban environments requires further differentiating
between regions which might otherwise be similar at an aggregate level. The approach described here
could be used to help test and diagnose possible modifications such as those mentioned above.

OSM data specifically could provide a number of potential further enhancements in this area. For
example, a count of OSM points of interest (or other features such as buildings) could substitute nj in
the gravity model (equation (3.1) above), replacing the idea of people ‘gravitating’ towards other
people with the idea of them gravitating towards features which might be of interest to them.
Relatedly, these feature counts could also be used to estimate the number of intervening opportunities
between two points of interest (sij in the models described in equations (3.2) and (3.3) above). Indeed,
one could even imagine making use of granular types of points of interest for measuring different
types of population flow: for example, office blocks and industrial estates might indicate commuting,
while shopping and leisure activities might be used to estimate weekend travel. These avenues would
be promising subjects for future work.

Our method using OpenStreetMap data provides a more thorough diagnosis of where mobility
models fail than aggregate error measures such as CPC and CFC. In Oxfordshire, our analysis
revealed that the trips of highest volume have a specific profile in terms of their density of points of
interest. The 2% trips with the highest volume trips have a high density of points labelled as
university facilities, clothes and other forms of retail, cafes, restaurants, and other urban landmarks,
with densities sometimes over 200% higher than all other trips. High-volume trips are also typically
over much shorter distances.

We also showed that those high-volume trips are severely underestimated even by the best-
performing mobility models, sometimes being predicted at only approximately 12.5% of the actual
traffic volume. Taking the mobility model with the best performance for further analysis, we split
trips into the 2% most underestimated and the remaining 98%, and show that the origin–destination
pairs for which the model performs worst are indeed the most urban ones, characterized by the same
OpenStreetMap tags as the set of trips of highest volume.

In this paper, we show how to use OpenStreetMap data to diagnose where and how mobility models
fail, but it may be possible to also use OpenStreetMap data to improve mobility models. Population (or
3The top 2% of overestimated trips is similar to the top 2% of trips by volume. The overlap between these two sets is 94% over all
origin–destination pairs.
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working population) is often used to calculate the attractiveness of a region (i.e. ni and nj) as well as for

calculating the number of intervening opportunities (sij). Our work suggests that OpenStreetMap points
of interest and their distributions, as a fine-grained indications of land use, could be promising to directly
incorporate into mobility models. This is an idea, however, that we leave for future work.

Unlike data sources that might only be available at a specific time or location or that might incur the
expense of deploying large numbers of urban sensors, the OpenStreetMap dataset used in this paper is
freely available worldwide. As long as there is enough coverage, OpenStreetMap data can be a powerful
and easily applicable tool when combined with other demographic and geographical data to diagnose
the performance of multiple human mobility models. This is in stark contrast with more expensive
approaches requiring traffic sensors or opaque methods, which might not be viable options for local
governments, for reasons of time, skills, or budgetary constraints. Assuming some ground truth data
is available, the diagnosis method we describe here does not require any expensive computation,
sensor deployment or proprietary data. As explained above, this method is flexible and easily
applicable to multiple human mobility models as long as there is enough OpenStreetMap coverage in
the region. Who contributes to OpenStreetMap and the biases of the data are important to consider.
While more urban or populous locations are likely to have more detailed coverage [45,59,60],
volunteered geographical information is still much more widespread and available than fixed-sensor,
ride-sharing and other similar data.

This work also adds to the discussion of how to model human mobility at different spatial scales.
While the dataset in this paper describes traffic within the perimeter of a region of roughly 2605 km2,
mobility models have been tested and compared across different scales [13,61], including their many
successful applications describing cross-country migration [6,23,56,62]. At a national scale, many of
the modifications discussed here should not be necessary, since travel time scales with travel distance
for larger scales (see appendix A), but also since large, city-sized regions are likely to contain wider
distributions of OpenStreetMap points of interest, rather than the very uneven distributions observed
for different Oxfordshire wards.

Given the importance of understanding human mobility at small spatial scales for urban planning, it
is vital to have tools that can flexibly incorporate diverse sources of land use and accessibility data into
model diagnosis and traffic prediction. Here we have shown how OpenStreetMap can be one such tool,
providing useful insights to the study of how people move in urban landscapes.
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Appendix A. Scaling of measures of travel distance
Figure 6 shows how different metrics for travel distance scale with each other. Figure 6a shows how trip
duration in minutes and the distance in kilometres between wards scales in an almost linear fashion,
with a Pearson coefficient of r = 0.94 (p < 10−16) differing only for trips shorter than 10 km or less than
15 min driving. Two fits are also shown on the figure: a linear fit showing trip duration can be
approximated by δtij = 0.95 × dij + 10.87 and a nonlinear fit estimating trip duration as
dtij ¼ 4:99� d0:61ij . For both fits, δtij is the trip duration measured in minutes, and dij is the distance in
kilometres between wards i and j.

Figure 6b shows trip duration in minutes on the x-axis and the number of intervening opportunities
between wards i and j, given by the variable sij, on the y-axis. The plot shows a clear positive correlation
between both variables (r = 0.86, p < 10−16). In figure 6a,b, smaller lighter dots indicate trips with a lower
trip volume (i.e. lower Tij), while larger darker dots indicate higher trip volumes.
Appendix B. Scaling of CPC with CFC
Figure 7 shows the scaling between the CPC and the CFC for the model variations shown in figure 3. The
variables follow an approximately linear relation, with CFC≈ 1.018 × CPC− 0.104.

https://zenodo.org/record/3383443
https://zenodo.org/record/3383443
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Appendix C. Derivation of how CFC is the L1 norm on log Tij
When defining the CFC, we state that equation (5.4) can also be written as a function of
j logTdata

ij � logTmodel
ij j, as shown in equation (5.5). This can be seen below

1
N

X
ij

min
T0

T1
,
T1

T0

� �
¼ 1

N

X
ij

min (elnT0�lnT1 , elnT1�lnT0 )

¼ 1
N

X
ij

exp [min ( lnT0 � lnT1, lnT1 � lnT0)]

¼ 1
N

X
ij

exp � 1
2
j lnT0 � lnT1j

� �
:

The last line uses the fact that min (x, y) = (x + y− |x− y|)/2. Note the last line is a sum of absolute-value
differences between ln T0 and ln T1, making CFC close to a L1 norm on the log Tij.
Appendix D. The threshold for high traffic is robust
Figure 8 shows a series of bar plots similar to figure 4, but for different high-volume cut-offs, ranging
from 2% to 8%. It shows no meaningful variation in the properties of the high-volume trips and the
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Figure 9. NRMSE and parameter values for all models. (a) The heatmap shows the log10 NRMSE for all combinations of the eight
models against the four modifications, including the non-modified models. (b) The parameters of every model, ordered in the same
way, with the C indicating a normalization parameter, present in all models. Columns labelled as Original, T, S and T+S,
respectively, represent the original models, followed by models fit using travel time, models including the sij modification, and
models with both modifications.
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properties of all other trips in terms of OpenStreetMap points of interest. In all cases, high-volume trips
are on average shorter and go to more urban places than do other trips.
4

Appendix E. Parameter values and NRMSE scores
The heatmap in figure 9a shows how log 10 NRMSE varies over all combinations of the eight models
against the four modifications. Figure 9b shows the final parameter values obtained when fitting each
of the models.
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