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Input–output maps are strongly biased towards
simple outputs
Kamaludin Dingle1,2,3, Chico Q. Camargo1,2 & Ard A. Louis1

Many systems in nature can be described using discrete input–output maps. Without

knowing details about a map, there may seem to be no a priori reason to expect that a

randomly chosen input would be more likely to generate one output over another. Here, by

extending fundamental results from algorithmic information theory, we show instead that for

many real-world maps, the a priori probability P(x) that randomly sampled inputs generate a

particular output x decays exponentially with the approximate Kolmogorov complexity ~KðxÞ
of that output. These input–output maps are biased towards simplicity. We derive an upper

bound P(x)≲ 2�a~KðxÞ�b, which is tight for most inputs. The constants a and b, as well as many

properties of P(x), can be predicted with minimal knowledge of the map. We explore this

strong bias towards simple outputs in systems ranging from the folding of RNA secondary

structures to systems of coupled ordinary differential equations to a stochastic financial

trading model.
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D iscrete input–output maps are widely used in science and
engineering. Many maps are intrinsically discrete, such as
models of the mapping from genotypes to discrete phe-

notypes in biology, or networks of Boolean logic functions in
computer science. But discrete maps also arise naturally by
coarse-graining continuous systems. Examples include differ-
ential equations, where the inputs are discretised values of the
equation parameters, and the outputs are discretised values of the
solutions for a given set of boundary conditions. Such a wide
diversity of map types might at first sight suggest that, without
knowing details of a particular map, there are no grounds for
predicting one output to be more likely than another.

On the other hand, a closely related problem has been studied,
albeit in an abstract way, in a field called algorithmic information
theory (AIT), founded by Solomonoff1,2, Kolmogorov3 and
Chaitin4,5. Central concepts in AIT include the universal Turing
machine (UTM), an abstract computing device that can compute
any function6, and the Kolmogorov–Chaitin complexity or sim-
ply Kolmogorov complexity KU(x) of a binary string x, defined as
the length of the shortest input program p that generates output x
when it is fed into a prefix UTM U. Technically the Kolmogorov
complexity is always defined with respect to a particular UTM,
but this is often ignored because of the invariance theorem7,8

which states that if KU(x) and KV(x) are the Kolmogorov com-
plexities defined w.r.t UTMs U and V, respectively, then we can
write KUðxÞ ¼ KVðxÞ þ Oð1Þ, where Oð1Þ denotes terms that are
asymptotically independent of x (or equivalently,
KUðxÞ � KVðxÞj j � MU ;V , where MU,V is a constant independent
of x). In the limit of large complexities these Oð1Þ differences can
be neglected and one speaks simply of the Kolmogorov com-
plexity K(x) which is a property of x only. We provide a short
pedagogical description of AIT pertinent to the current paper in
Supplementary Note 1. More complete accounts can be found in
standard textbooks7,8.

Historically, the first formulations of AIT, by Solomonoff1,2,
arose from studying the probability PU(x) that random input
programs fed into a UTM U generate output x. For technical
reasons, it is easiest to consider UTMs that only accept prefix
codes7 for which no program is a prefix of another. For such
codes, the probability that a random binary input program of
length l is chosen is 2−l. The most likely input that generates x is
then the shortest string to do so: by definition, a string of length
KU(x). Since there can also be longer inputs that generate x, this
means there is a lower bound 2�KU ðxÞ � PUðxÞ. Later Levin9 also
proved an upper bound in what is now called the AIT coding
theorem:

2�KðxÞ � PðxÞ � 2�KðxÞþOð1Þ; ð1Þ

where we have dropped the subscript U due to the invariance
theorem. The upper bound in the coding theorem is neither
obvious or straightforward. Intuitively, this fundamental result
means that ‘simple’ outputs, with smaller K(x), have an expo-
nentially higher probability of being generated by random input
programmes for a UTM than complex outputs with larger K(x).
This prediction is completely at odds with the naive expectation
that all outputs are equally likely.

While these results from AIT are general and elegant, their
direct application to many practical systems in science or engi-
neering suffers, unfortunately, from a number of well-known
limitations. First, due to the halting problem6, K(x) is formally
uncomputable, meaning that there cannot exist any general
method that takes x and computes K(x)7. Second, many key AIT
results, such as the invariance theorem or the coding theorem,
only hold up to Oð1Þ terms which are unknown, and therefore
can only be proven to be negligible in the asymptotic limit of

large K(x) values, while real-world applications frequently con-
cern systems that are not in the asymptotic limit. Third, many
input–output maps from science or engineering are computable,
that is all their inputs can be mapped to outputs so that they have
no halting problem and are not UTMs. Therefore many results
from AIT, which typically rely on special properties of UTMs,
may not be directly applicable.

On the other hand, the basic intuition behind the coding
theorem—complex outputs are harder to generate by random
sampling of inputs than simpler ones are—may be quite general.
Moreover, the coding theorem prediction is very strong: an
exponential decrease in probability upon a linear increase in
complexity. Such a strong relationship might be expected to have
influence even in situations where not all the conditions for its
derivation within an AIT context are met. These intuitions beg
the question of how the coding theorem, or closely related con-
cepts, can help make predictions about probabilities in concrete
real-world input–output systems.

In the next sections, we derive a weaker version of the coding
theorem, which approximately preserves the exponential pre-
ference for low complexity. In particular, this allows us to make
practical predictions for a broad class of maps. We explicitly
demonstrate the exponential bias towards low-complexity out-
puts in systems ranging from RNA folding to coupled ordinary
differential equations to a financial trading model.

Results
Coding theorem for computable functions. With these ques-
tions about practical applications in mind, we consider compu-
table maps of the form f:I→O, where I is a collection of input
sequences, and O is the corresponding collection of outputs,
which can also be described (either because they are discrete
objects, or by coarse-graining) as discrete sequences. We denote
the size of the input space I of the map by n, e.g., for binary
sequences of fixed length n the size is 2n possible inputs.

Following a standard procedure from AIT7,10, each output
x ∈O can be described with the following algorithm (see also
Supplementary Note 2 for a more detailed description): first
enumerate all inputs using n and map these inputs to their
outputs using the map f. Then print the resulting list of each
output x together with its corresponding probability P(x). If f and
n are given in advance, then the algorithmic cost of this operation
is Oð1Þ, demonstrating a well-known result from AIT that the
algorithmic complexity of a whole set can be much lower than the
complexity a typical individual member of the set. Given this set,
each output can now be described by an optimal
Shannon–Fano–Elias coding8 with prefix code-words E(x) of
length lðEðxÞÞ ¼ 1� log2PðxÞ which again can be specified in
an Oð1Þ operation. Since the Kolmogorov complexity of an
output x is by definition the shortest algorithm that generates x,
have provided a bound K(x|f,n) ≤ E(x), where K(x|f,n) can be
viewed (informally) as the length of computer code required
to specify x, given that the function f and value n are pre-
programmed. Thus, the probability P(x) that a randomly
chosen input from I, fed into a map f, generates an output x ∈ O
can be bounded by:

PðxÞ � 2�Kðxjf ;nÞþOð1Þ: ð2Þ

Note that in contrast to the full AIT coding theorem (1), Eq. (2)
only provides an upper bound. It can be viewed as a weaker form
of the coding theorem, applicable to computable functions (see
also Supplementary Note 2 and refs. 7,10).

On its own, Eq. (2) may not be that useful, as K(x|f,n) can
depend in a complex way on the details of the map f and
the input space size n. To make progress towards
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map independent statements, we restrict the class of maps.
The most important restriction is to consider only (1)
limited complexity maps for which Kðf Þ þ KðnÞ � KðxÞ þ
Oð1Þ in the asymptotic limit of large x (Supplementary Note 3).
Using standard inequalities for conditional Kolmogorov com-
plexity, such as KðxÞ � Kðxjf ; nÞ þ Kðf Þ þ KðnÞ þ Oð1Þ and
Kðxjf ; nÞ � KðxÞ þ Oð1Þ, it follows for limited complexity maps
that Kðxjf ; nÞ � KðxÞ þ Oð1Þ. Thus, importantly, Eq. (2)
becomes asymptotically independent of the map f, and only
depends on the complexity of the output.

We include three further simple restrictions, namely (2)
Redundancy: if NI and NO are the number of inputs and outputs
respectively then we require NI � NO, so that P(x) can in
principle vary significantly, (3) Finite size: we impose NO � 1 to
avoid finite size effects, and (4) Nonlinearity: We require the map
f to be a nonlinear function, as linear transformations of the
inputs cannot show bias towards any outputs (Supplementary
Note 4). These four conditions are not so onerous. We expect that
many real-world maps will naturally satisfy them.

We are still left with the problem that K(x) is formally
uncomputable. Nevertheless, in a number of real-world settings,
K(x) has been approximated using complexity measures based on
standard lossless compression algorithms with surprising suc-
cess7. That is to say, the approximations behave in a manner
expected of the true Kolmogorov complexity, and lead to verified
predictions. Example settings include: DNA and phylogeny
studies11–13, plagiarism detection14, clustering music15, and
financial market analysis16; see Vitányi17 for a recent review.
These successes suggest that K(x) can in some contexts be usefully
approximated18, even if the exact value of K(x) cannot be
calculated. Following the successful applications of AIT above, we
assume that the true Kolmogorov complexity K(x) can be
approximated by some standard method, such as the ones
described above. We will call such an approximation the
approximate complexity ~KðxÞ to distinguish it from the true
Kolmogorov complexity. We therefore need a final condition (5)
Well behaved: the map is ‘well behaved’ in the sense of not
producing, for example, a large fraction of pseudorandom outputs
such as the digits of π, which are algorithmically simple, but
which have large entropy and thus are likely to have large values
of the approximate complexity ~KðxÞ. For example, pseudoran-
dom number generators are designed to produce outputs that
appear to be incompressible, even though their actual algorithmic
complexity may be low. Here we mostly use a complexity
estimator we call CLZ(x) (Methods section and Supplementary
note 7), which is a slightly adapted version of the famous
Lempel–Ziv 76 lossless compression measure19. But there is
nothing fundamental about this choice. In Supplementary Note 7,
we show that our main results hold for other complexity
measures as well.

Finally, the presence of Oð1Þ terms is perhaps the least
understood limitation for applying formal AIT to real-world
settings. Nevertheless, important recent work applying the full
AIT coding theorem to very short strings20,21 has suggested that
the presence of Oð1Þ terms, both in the definition of K(x) and in
the coding theorem relationship between P(x) and K(x), does not
preclude the possibility of making decent predictions for smaller
systems.

Taken together, the arguments above allow us to make our
central ansatz, namely that for many real-world maps, the upper
bound in Eq. (2) can be approximated as:

PðxÞ≲2�a~KðxÞ�b; ð3Þ

where the constants a> 0 and b depend on the mapping, but not
on x. These constants account for the Oð1Þ terms and the

particularities of the complexity approximation ~KðxÞ. Just as for
the full coding theorem, there is a strong exponential decay in the
probability upper bound upon a linear increase in complexity.
This means that high-probability outputs must be simple (have
low ~KðxÞ), while high-complexity outputs must be exponentially
less probable. We call such phenomena that arise from Eq. (3)
simplicity bias.

In contrast to the full AIT coding theorem, the lack of a lower
bound in Eq. (3) means that simple outputs may also have low
probabilities. Furthermore (as shown in Supplementary Note 5),
we expect the upper bound to decay to a lowest value of about 1/
NO for the largest complexity, maxð~KðxÞÞ. This minimal value for
the bound is also the mean probability, and if P(x) is highly
biased, many outputs will have probabilities below the mean. In
other words, if an output x is chosen uniformly from the set of all
outputs, it is not likely to be that close to the bound. On the other
hand (Supplementary Note 5) if x is generated by choosing
random inputs, which naturally favours outputs with larger P(x),
then we can expect that P(x) is relatively close to the bound, at
least on a logarithmic scale. In short, the upper bound of the
simplicity bias Eq. (3) should be tight for most inputs, but may be
weak for many outputs (Of course if the mapping were a full
UTM, then Eq. (3) would simply revert to the full coding theorem
again with an upper and a lower bound.).

Note also that while simplicity bias means that a simple
output
x is exponentially more likely to appear when sampling over
inputs than a complex output y, this does not necessarily
mean that simple outputs are more likely than complex
outputs because there may be many more of the latter than
the former.

In Supplementary Note 8 we show that a can be approximated
as:

a � log2ðNOÞ
max
x2O

ð~KðxÞÞ : ð4Þ

It is typically within an order of magnitude of 1. Interestingly, this
connection between a and NO implies that the gradient can be
used to predict NO, and vice versa, if an estimate of maxð~KðxÞÞ
can be found, which for some maps can be achieved quite easily.
For b, we show in Supplementary Note 8 that the default or a
priori prediction is b ≈ 0. Alternatively, access to a relatively small
amount of sampled data is usually sufficient to fix b. Finally, even
if estimating a and b is difficult, Eq. (3) predicts whether P(y)> P(x)
or P(y)< P(x) for y, x ∈O just using the complexities of x and y.
In many cases, this prediction is of interest (Supplementary
Note 10).

All this raises the question of well the simplicity bias
predictions made above hold for real-world maps. The proof of
the pudding is in the eating, so we test our predictions for a
diverse set of maps described below and shown in Fig. 1.

Discrete RNA sequence to structure mapping. One of the best
studied discrete input–output maps in biophysics has as inputs
RNA nucleotide sequences (genotypes), made from an alphabet
of four different nucleotides, and as outputs the RNA secondary
structures (SS), phenotypes which specify the bonding pattern of
nucleotides22. We use the well-known Vienna package23 that
determines the minimum free energy SS for a given sequence
(Methods section). Since the binding rules are independent of the
length n of input RNA sequences, this is a limited complexity
map that satisfies our conditions for simplicity bias (Methods
section).

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03101-6 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:761 |DOI: 10.1038/s41467-018-03101-6 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


To estimate the complexity of an RNA SS, we converted a
standard dot-bracket representation (Methods section) of the
structure into a binary string, and then used our complexity
measure CLZ(x) to estimate its complexity. In Fig. 1a, we show P(x)
versus ~KðxÞ for the n = 55 RNA map (Methods section). To
compare to Eq. (3), the gradient magnitude a was estimated via
Eq. (4) by using previously estimated values of NO

24 together with
an estimated value for maxð~KÞ (Methods section). To estimate b,
we used the maximum probability within structures of the modal
complexity value (Supplementary Note 8). As can be seen in
Fig. 1a, the upper bound prediction of Eq. (3) is remarkably good.
All we need to fix its form is some very minimal knowledge of the
mapping. Even if we chose the default value b = 0, the prediction
is still reasonable. This map clearly exhibits the predicted
simplicity bias phenomenology.

We further use the RNA map in Supplementary Note 9 to
illustrate finite size effects using small system sizes (around
n = 10) where simplicity bias is much less clear. In Supplementary
Note 6, we use n = 20 RNA to illustrate an interesting prediction
of simplicity bias for inputs: low ~KðxÞ, low-P(x) outputs, e.g.,
outputs far from the upper bound, are generated by inputs that
have lower than average complexity.

Coarse-grained ordinary differential equation (ODE). ODE
models can be coarse-grained into discrete maps by discretising

both the input parameters and the outputs. As an example, we
take a well-studied circadian rhythm model25, a system of nine
nonlinear ODEs where the inputs are the values of the 15 para-
meters, and the output is a single-curve y(t) depicting a
concentration-time curve for the product at the end of the reg-
ulatory cascade (see also Supplementary Note 12). The inputs can
be discretised straightforwardly by setting a range and a number
of points per range for each parameter (Methods section), while
each output curve is (coarsely) discretised to a binary string by
using the ‘up–down’ method26,27: for discrete values of
t = δt, 2δt, 3δt …, if dy(t)/dt ≥ 0 at position t = jδt, then a 1 is
assigned to position j of the binary string, and otherwise a 0 is
assigned (Methods section). The complexity of this map does not
change with n and so it can be viewed as a limited complexity
map. As can be seen in Fig. 1b, the probability P(x) decays
strongly with increasing approximate complexity of the outputs.
Again the upper bound (calculated with Eq. (4)) works remark-
ably well, given the relatively small amount of information nee-
ded about the map to fix it. The majority of points generated by
random sampling of inputs are within one or two orders of
magnitude from the bound. This coarse-grained ODE map shows
the same broad simplicity bias phenomenology as the RNA map.

Ornstein–Uhlenbeck stochastic financial trading model. In
mathematical finance, the Ornstein–Uhlenbeck process, also
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Fig. 1 Simplicity Bias. The probability P(x) that an output x is generated by random inputs versus the approximate complexity ~KðxÞ for a the discrete
n= 55 RNA sequence to SS map (<0.1% of outputs take up 50% of the inputs24), b the coarse-grained circadian rhythm ODE map (2% of the outputs take
up 50% of the inputs), c the Ornstein–Uhlenbeck financial model (0.6% of the outputs take up 50% of the inputs), d L-systems for plant morphology (3%
of the outputs take up 50% of the inputs), e a random 32 × 32 matrix map, and f a limited complexity 32 × 32 matrix map (both with <0.1% of the outputs
taking over 50% of the inputs). Schematic examples of low and high-complexity outputs are also shown for each map. Blue dots are probabilities that take
the top 50% of the probability weight for each complexity value while yellow dots denote the bottom 50% of the probability weight (only green was used
for a, the RNA map, because the output probabilities were calculated using the probability estimator described in ref. 35). The bold black lines denote the
upper bound described in Eq. (3), while the dashed red lines represent the same upper bound, but with the default b= 0. For f, the upper bound line
(orange) was fit to the distribution. All limited complexity maps exhibit simplicity bias, while the random matrix map does not
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known as the Vasicek model28, is used to model interest rates,
currency exchange rates, and commodity prices, and is applied in
a trading strategy known as pairs trade29. This stochastic process
for St is governed by dSt = θ(μ − St)dt + σdWt, where μ represents
the historical mean value, σ denotes the degree of market vola-
tility, θ is the rate at which noise dissipates, and Wt is a Brownian
motion, which is taken as the input to this map. The outputs xt
are sequences over n time steps where xj = 0 if Sj ≤ 0, and xj = 1
otherwise. The changes between 0 and 1 in the output sequence
correspond to changes in the pairs trading strategy: ‘0’ means St is
below its equilibrium value, so that a trader would profit by
buying more of it, while ‘1’ means St is above its equilibrium
value, and therefore the trader would profit by selling it.

We measure the complexity of these binary output strings
using CLZ(x). As shown in Fig. 1c, this map shows basic simplicity
bias phenomenology, and the predicted upper bound slope a
based on Eq. (4) also works well.

L-systems. L-systems30 are a general modelling framework ori-
ginally introduced for modelling plant growth, but now also used
extensively in computer graphics. They consist of a string of
different symbols which constitute production rules for making
geometrical shapes. We confined our investigation to non-cyclical
graph (i.e., topological tree) outputs. We enumerated all valid L-
systems consisting of a single starting letter F, followed by rules
made of symbols from {+, −, F} and length ≤9 (Methods section).
The rule set defining the L-systems is independent of input
length, and hence this is a limited complexity map. The outputs
were coarse-grained to binary strings (Methods section) and
again, as can be seen in Fig. 1d, L-systems exhibit simplicity bias.
The prediction of the slope a based on Eq. (4) again works well.

Random matrix map with bias but not simplicity bias. Finally,
we provide an example of a map that exhibits strong bias that is
not simplicity bias. We define the matrix map by having binary
input vectors p of length n that map to binary output vectors x of

same length though xi =Θ((M ⋅ p)i), where M is a matrix and the
Heaviside thresholding function Θ(y) = 0 if y< 0 and Θ(y) = 1 if
y ≥ 0. This last nonlinear step, which resembles the thresholding
function in simple neural networks, is important since linear
maps do not show simplicity bias. In Fig. 1e, we illustrate this map
for a matrix made with entries randomly chosen to be −1 or +1.
The rank plot (Supplementary Fig. 17) shows strong bias, but
in marked contrast to the other maps, the probability P(x) does
not correlate with the complexity of the outputs. Simplicity bias
does not occur because the n × n independent matrix elements
mean that the mapping’s complexity grows rapidly with
increasing n so that the map violates our limited complexity
condition (1). Intuitively: the pattern of 1s and 0s in output x is
strongly determined by the particular details of the map M, and
so does not correlate with the complexity of the output.

To explore in more detail how simplicity bias develops or
disappears with limited complexity condition (1), we also
constructed a circulant matrix where we can systematically vary
the complexity of the map. It starts with a row of p positive 1s and
q − 1s, randomly placed. The next row has the same sequence, but
permuted by one. This permutation process is repeated to create a
square n × n matrix. Thus the map is completely specified by
defining the first row together with the procedure to fill out the
rest of the matrix. In Fig. 2, we plot the ratio of the mean
complexity sampled over outputs (~Ko) divided by the mean
complexity sampled over all inputs (~Ki), as a function of the
complexity of the first row that that defines the matrix, ~KðrowÞ. If
the ratio ~Ko=~Ki is significantly larger than one, then the map
shows simplicity bias. Simplicity bias only occurs when ~KðrowÞ is
very small, i.e., for relatively simple maps that respect condition
(1). The output of one such simple matrix maps is shown in
Fig. 1f. In Supplementary Note 12, we investigate these trends in
more detail as a function of matrix type, size n, and also
investigate the role of matrix rank and sparsity.

Discussion
While the full AIT coding theorem has been established only in
the abstract and idealised setting of UTMs and uncomputable
complexities, nonetheless a general inverse relation between
complexity and probability is intuitively reasonable. We recast a
weaker version of the coding theorem for computable maps into
the practical form of Eq. (3) for limited complexity maps. The
basic simplicity bias phenomenology this equation predicts holds
for a wide diversity of real-world maps as demonstrated in Fig. 1
with further maps shown in Supplementary Note 12.

Nevertheless, many questions remain. For example, our deri-
vations typically suffer from Oð1Þ terms that are hard to explicitly
bound except in the limit of large x. So it is perhaps surprising
that Eq. (3) works so well even for smaller systems that are not in
this limit. We conjecture that, just as is found elsewhere in science
and engineering, our results for asymptotically large x approxi-
mately apply well outside the domain where they can be proven
to hold.

We argue that the bound (3) should be valid for limited
complexity maps, and provide as a counter-example a random
matrix map that shows bias which is not simplicity bias. We can
also vary the complexity of this matrix map by making it simpler
so that simplicity bias emerges. Nevertheless, a more general
theory of how and when this crossover to simplicity bias occurs as
a function of map complexity still needs to be worked out.

Kolmogorov complexity is technically uncomputable and we
approximate it with a compression-based measure. There may be
classes of maps, such as pseudorandom number generators, for
which such approximations breakdown. Also, while it is true that
most outputs generated by random sampling of inputs are likely
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to be close to our upper bound, in contrast to the original AIT
coding theorem for UTMs which has an upper and lower bound
which are asymptotically close, our computable maps have many
outputs that fall well below the upper bound. Understanding why
these particular outputs fall far below the bound is an important
topic of future investigation.

One way to answer some of these questions may be to sys-
tematically investigate a hierarchy31 of more abstract machines
with less computational power than a UTM—ranging from
simple finite state transducers32 to context free grammars (e.g.,
RNA33) to more complex context sensitive grammars—and so to
search for more general principles. A completely different
direction for investigation may be to study individual maps in
much more detail. For some simpler maps (see e.g., the random
walk and polynomial examples in Supplementary Note 12),
explicit probability-complexity relations that resemble the bound
of Eq. (3) could be derived using, for example, well established
links between Shannon entropy and Kolmogorov complexity7.

In this paper, we have focussed on maps that satisfy a number
of restrictions. In particular, it will be interesting to study maps
that violate our condition (5) of being well behaved. In parallel,
another interesting open question remains: how much of the
patterns that we study in science and engineering are governed by
maps that that are simple and well-behaved. Another possible
future research direction would be to explore connections to
leaning theory, including links to the minimum description
length (MDL) principle first introduced by Rissanen34, which has
been applied in the context of statistical inference and data
compression. Similar to our work here, MDL theory has been
advanced in an attempt to apply ideas from AIT to practical
concrete problems, and thus there may be more connections to
explore.

Finally, our prediction of an exponential decay in probability
with a linear increase in complexity is strong and general. We
expect many different applications of simplicity bias across sci-
ence and engineering. Working out the implications for indivi-
dual systems will be an important future task.

Methods
Complexity estimator. We approximate the complexity of a binary string
x = {x1...xn} as

CLZðxÞ ¼
log2ðnÞ; x ¼ 0n or 1n

log2ðnÞ 12 Nw x1 ¼ xnð Þ þ Nw xn ¼ x1ð Þ½ � otherwise

(
; ð5Þ

where n ¼ xj j and Nw(x) is the number of words (distinct patterns) in the dic-
tionary created by Lempel–Ziv algorithm19. The reason for distinguishing 0n and
1n is to correct an artefact of Nw(x), which assigns complexity 1 to the string 0 or 1
but complexity 2–0n or 1n for n ≥ 2. The Kolmogorov complexity of such a trivial
string scales as log2 (n) as one only needs to encode n. In this way, we ensure that
our ~KðxÞ ¼ CLZðxÞ measure not only gives the correct behaviour for complex
strings in the limn →∞, but also the correct behaviour for the simplest strings. Taking
the mean of the complexity of the forward and reversed string makes the measure
more fine grained in the sense of having more different possible complexity values.
We discuss this complexity estimator in more detail in Supplementary Note 7.

RNA secondary structure. This map is determined by basic physiochemical laws,
and does not grow with n. Furthermore, the number of inputs (sequences), which
grows as 4n, is much larger than the number of relevant secondary structures22,24,
and so NI � NO . For large enough n, where finite size effects are no longer
important (Supplementary Note 9), this system satisfies our conditions for sim-
plicity bias. In our analysis, folding RNA sequences to secondary structures was
performed using the Vienna package23 with all parameters set to their default
values (e.g., the temperature T = 37 °C). Total of 20,000 random RNA sequences
were generated, then folded. Due to the large size of this system (455 ≈ 1.3 × 1033

inputs and ~1013 outputs24), it is impractical to determine probabilities by sam-
pling and counting frequencies of output occurrence. Instead, to determine P(x) for
each sampled structure, we used the neutral network size estimator (NNSE)
described in ref. 35, which employs sampling techniques together with the inverse
fold algorithm from the Vienna package. We used default settings except for the
total number of measurements (set with the -m option) which we set to 1 instead of

the default 10, for the sake of speed. More details of our methods can also be found
in ref. 24. By random sampling, we likely have only reached a small fraction of all
the outputs, so it was not possible in Fig. 1a to calculate what the top 50% of
outputs were. But in ref. 24 we calculate that for this length, only 0.1% of outputs
take up over 50% of inputs, so the map is highly biased with most inputs mapping
to outputs relatively close to the upper bound.

To estimate the complexity of an RNA SS, we first converted the dot-bracket
representation of the structure into a binary string x, and then used CLZ(x) to
estimate its complexity. To convert to binary strings, we replaced each dot with the
bits 00, each left-bracket with the bits 10, and each right-bracket with 01. Thus an
RNA SS of length n becomes a bit string of length 2n. As an example, the following
n = 12 structure yields the displayed 24-bit string

ððð¼ ÞÞÞ¼ ! 101010000000010101000000:

The gradient magnitude a = 0.32 in our upper bound was estimated via Eq. (4)
by using our estimated values of NO from ref. 24, in addition to an estimated value
for maxð~KÞ. For the latter quantity, we made the approximation that
maxð~KÞ ¼ CLZðζ2nÞ, where ζ2n is a random bit string of length 2n made up of
randomly choosing n pairs 00, 10 and 01. This choice of randomisation is due to
observing that a first order approximation to a random RNA structure is a uniform
sampling of dot, left-bracket, right-bracket, which we them write in binary, as
described. We took the largest complexity over 250 random bit string samples. To
estimate b = 3.2, we used the sampled data to find the maximum probability within
outputs with complexity equal to the mode complexity value (Supplementary
Note 8).

We also note that the random sampling of genotypes will strongly favour
outputs with larger P(x). We have therefore only sampled a tiny fraction of the
whole space of outputs for n = 55 RNA (Supplementary Fig. 5 and ref. 24). There
are likely many more low-probability outputs, even at the lower complexities.
However, the overall probability of generating these outputs will be low24, and so
should not affect our main conclusions.

Coarse-grained ODE. For the ODE system used in the circadian rhythm map, we
set the possible input values for each of the 15 parameters by multiplying the
original value25 by one of {0.25, 0.50, …, 1.75, 2.00}, chosen with uniform prob-
ability. The total number of inputs is then NI = 815 ≈ 3 × 1013. In Supplementary
Note 12, we show that this choice of input discretisation and sample size and initial
conditions does not qualitatively affect our results.

To generate the plot in Fig. 1b, 106 inputs were sampled, and outputs were
discretised with δt = 1 and t ∈ [1, 50], thus producing a 50-bit output string from
the concentration of the product at the end of the regulatory cascade over time. The
slope a = 0.31 was obtained via Eq. (4), using the values of NO and maxð~KÞ from
the full enumeration of inputs, while b = 1.0 was fit to the distribution.

Ornstein–Uhlenbeck financial model. For the Ornstein–Uhlenbeck model pre-
sented in Fig. 1c, the parameters were S0 = 1, θ = 0.5, μ = 0.5 and μ = 0, and 40 time
steps. 106 samples were made, and given that the Brownian motion dWt allows for
steps of any size (even at a low probability), the possible outputs O are all 240

binary strings of length 40, making it possible to calculate maxð~KðxÞÞ and NO. The
slope a = 0.60 was obtained via Eq. (4), and b = −4.38 was obtained using the modal
complexity value. In Supplementary Note 12, we show that the same behaviour
obtains for different parameter combinations, and we show that under certain
conditions, the model reduces to a simpler random walk return problem treated in
Supplementary Note 12 for which simplicity bias is also obtained.

L-systems. All valid L-systems consisting of a single starting letter F, followed by
rules made of symbols from {+, −, F} and length ≤9 were generated. The outputs
were coarse-grained using a method suggested in ref. 36 to associate binary
strings to any non-cyclical graph with a distinguished node called the ‘root’
(these graphs are known as rooted trees). Specifically, by walking along the
branches, starting right, and recording whether it is going up (0) or down (1), a
binary string representation of the tree is made. The slope a = 0.13 was
obtained via Eq. (4), using the values of NO and maxð~KÞ from the full
enumeration of inputs, while b = 2.41 was obtained using the modal complexity
value, as above.

Matrix map. For the matrix map represented in Fig. 1f, we took a 32 × 32 matrix
with all entries chosen uniformly from {−1, 1}, and sampled 109 out of 232 ≈ 4 × 109

inputs. Further examples of this random map can be found in Supplementary
Note 12. For the circulant matrices used in Figs. 1e and 2, we generated the first
row, which determines the map, with entries chosen uniformly from {−1, 1}. For
the simple map in Fig. 1e, we chose a first row with a low complexity ~KðrowÞ. In
this map the estimate of the slope from Eq. (4) did not work well possibly because a
large fraction of the inputs map to a single-output vector made up of all 0s. So in
Fig. 1e, the slope was simply fit to the data. Further discussion of the circulant
matrix map can be found in Supplementary Note 12.
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Data availability. The data sets generated during and/or analysed during the
current study are available from the corresponding authors on reasonable request.
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