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Abstract: Cobalt is recognised by the European Commission as a “Critical Raw Material” due to its
irreplaceable functionality in many types of modern technology, combined with its current high-risk
status associated with its supply. Despite such importance, there remain major knowledge gaps with
regard to the geochemistry, mineralogy, and microbiology of cobalt-bearing environments, particu-
larly those associated with ore deposits and subsequent mining operations. In such environments,
high concentrations of Co (up to 34,400 mg/L in mine water, 14,165 mg/kg in tailings, 21,134 mg/kg
in soils, and 18,434 mg/kg in stream sediments) have been documented. Co is contained in ore and
mine waste in a wide variety of primary (e.g., cobaltite, carrolite, and erythrite) and secondary (e.g.,
erythrite, heterogenite) minerals. When exposed to low pH conditions, a number of such minerals are
known to undergo dissolution, typically forming Co2+

(aq). At circumneutral pH, such aqueous Co
can then become immobilised by co-precipitation and/or sorption onto Fe and Mn(oxyhydr)oxides.
This paper brings together contemporary knowledge on such Co cycling across different mining
environments. Further research is required to gain a truly robust understanding of the Co-system in
mining-affected environments. Key knowledge gaps include the mechanics and kinetics of secondary
Co-bearing mineral environmental transformation, the extent at which such environmental cycling is
facilitated by microbial activity, the nature of Co speciation across different Eh-pH conditions, and
the environmental and human toxicity of Co.

Keywords: cobalt; mine waste; tailings; erythrite; heterogenite; biogeochemistry

1. Introduction

Cobalt (Co) is a d-block transition metal and appears in the fourth period of the
Periodic Table between iron and nickel [1]. It is a naturally occurring element widely
distributed in rocks, soils, sediments, water, plants, and animals [2–4]. Since 2011, Co has
been recognised by the European Commission as a “Critical Raw Material” [5] and deemed
strategically important [6,7] due to increasing demand and use in rechargeable batteries.
Other uses of Co span multiple industries, from healthcare and as a high temperature alloy
in combustion engines to renewable energy such as solar and power, and data storage.
This is due to its many unique characteristics including magnetic properties and resistance
to high temperatures, wear, and corrosion [8].

Cobalt is an essential element necessary for the formation of vitamin B12 (hydrox-
ocobalamin) [2]. However, excessive Co exposure can result in a range of symptoms/
conditions in humans including goitre and reduced thyroid activity [9]. One major path-
way of Co exposure to humans and plants is from mining activity and associated waste
disposal/management. Therefore, a comprehensive understanding of the biogeochemistry
of Co in mining-affected environments is crucial in order to achieve sustainable mining
practices and remediation of Co contaminated soils and waters. This is important to safe-
guard against any potential adverse environmental and human health impacts that result
from Co exposure [10]. It has become apparent, however, that there are only a limited
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number of studies devoted to understanding Co mobility within tailings, soils, smelter
waste, and mine waters [10–12]. This paper will review the geochemistry, mineralogy, and
microbiology of Co in mining-affected environments. Within this, the major controls on
Co uptake and mobility in mine-affected waters, soils, sediments, plants, minerals, and
microbes are described, and a synopsis of the key areas for future research are included.

2. Geology and Characteristics of Co-Bearing Ore Deposits

The average crustal abundance of Co is approximately 25 ppm, making it one of the
least abundant elements [1]. In spite of this, many geological processes have locally concen-
trated Co to form economically viable deposits. Such deposits are hosted in rocks ranging
from Precambrian to Quaternary age and are typically between 0.1 and 0.4 wt. % Co
grade. Cobalt is almost always mined as a by-product of copper and nickel [1,13] with the
exception of the Bou Azzer deposit in Morocco, where it is the chief commodity [14,15]. Ac-
cording to Slack et al. (2017) [7], 34 Co minerals have been recognised in these deposits [7].
These are predominantly sulphides, arsenides, sulpharsenides, arsenates, cobaltiferous iron
sulphides, sulphates, and carbonates. The major Co-bearing ores mined across the globe
are cobaltite (CoAsS), cattierite (CoS2), carollite ((CuCo)2S4), sphaerocobaltite (CoCO3),
cobaltpentlandite [(Co-Fe)9S8], siegenite [(Ni,Co)3S4], linnaeite (Co3S4), smaltite (CoAs2),
safflorite [(Co,Fe)As2], and skutterudite [(Co,Fe,Ni)As2-3] [16–19]. Four principal geologi-
cal settings host the vast majority of currently economically viable Co deposits (Figure 1):
hydrothermal, magmatic, laterites, and chemical precipitate deposits.
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2.1. Hydrothermal Deposits

These deposits are formed when hydrothermal fluids interact with basement rocks.
These rocks are therefore invariably mafic and/or ultramafic [13] and rich in Fe–Mg [20].
In other cases, the deposits occur within sedimentary basins [21], in which they were most
commonly formed by the leaching of Co, Ni, Fe, and As from ultramafic rocks (serpen-
tinites, basalts, peridotites) by acidic magmatic fluids [14,22]. The principle Co-bearing ore
minerals of hydrothermal deposits are arsenides, sulpharsenides, and sulphides [23].

2.2. Magmatic Deposits

These deposits are produced by high-temperature magmatic processes in some mafic
and/or ultramafic intrusions or in volcanic flows [1]. Cobalt is mined as a by-product of
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Ni–Cu–PGEs (Platinum-Group Elements) sulphides in mafic-ultramafic intrusions [24].
The concentrations of Ni, Cu, and some recoverable by-product Co sulphides are typically
between 0.04 and 0.08 wt. % Co. Slack et al. (2017) [7] showed that ages of the deposits
ranged from Archean to Tertiary and are similar to those of their host rocks. The main
Co-bearing mineral in these deposits is pentlandite, and linnaeite also occurs in minor
amounts [24,25].

2.3. Laterites

Laterites are produced by deep humid weathering of bedrock, during which certain
elements such as Co and Ni are removed and then enriched by supergene processes.
These deposits typically contain 0.1–0.15 wt. % Co and range in age from mid-Tertiary
to Quaternary [26–28]. The most significant and/or economic enrichments have been
associated with ultramafic rocks [7]. The deposits range in thickness between 10 m and 40
m, and Co is hosted in the clays, goethite, erythrite, and heterogenite [29,30]. In a typical
lateritic profile, the highest grades of Ni are found in the saprolite, whereas the highest
grades of Co (~0.25 wt. %) are found in the oxidation zones [24,31].

2.4. Chemical Precipitates

These are an emerging and potential source of Co in the future [7]. The deposits
are associated with Fe and Mn precipitation [7] at the peripheries of seafloor hydrother-
mal systems, during the formation of Fe–Mn nodules and crusts on the ocean floor and
seamounts [32], or during weathering as at Mt. Tabor in Australia [33].

3. Geochemistry of Cobalt in Mine Wastes
3.1. Cobalt in Mine Waters

A wide range of geochemical conditions have been recorded in mine waters, resulting
in variable Co concentrations being reported (Table 1). High Co concentrations in ground-
water, adit water, and runoff are mainly attributed to the weathering and dissolution of
sulphide ores and secondary minerals in regions of acidic pH. The oxidation of pyrite,
and conversely the reduction of Fe, can cause Co and other trace elements to be released
from the tailings and other solid mine wastes. According to (Krupka and Serne, 2002) [34],
Co2+ (aq) tends to be the most dominant aqueous species under geochemical conditions,
typically encountered in the natural environment (Figure 2). Studies conducted in Kabwe,
central Zambia, where local Pb and Zn ores were mined and processed from 1903 to 1994,
have indicated that high concentrations of Co (34,400 mg/L) occur in water flowing from
the leach plant at pH 2.89 [35]. At such pH, the oxidation of carrolite ((CuCo)2S4) can act as
a source of dissolved Co in mine waters [35]. High concentrations of Co (0.5–2028 µg/L)
also have been recorded in surface waters in Cobalt (Canada) [36]. These have been at-
tributed to the dissolution of secondary minerals such as erythrite and annabergite at
pH ~2 [36,37]. According to Zhu et al., (2013) [37], erythrite solubility typically exhibits
a strong inverse correlation with solution pH. Cobalt and As dissolution is suggested to
proceed via the following reactions [37]:

Co3(AsO4)2·8H2O + 2H+ = 3Co2+ + 2HAsO4
2− + 8H2O (1)

Co2+ + HAsO4
2− = CoAsO4

− + H+ (2)

Co2+ + 2OH− = Co(OH)2 (3)
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In a separate study conducted at the Idaho Cobalt Belt (USA), aqueous Co concentra-
tions were also significantly higher in acidic mine water than those of adjacent circumneu-
tral pH stream waters (e.g., at Blackbird: 75,000 µg/L at pH 2.7, compared to <1.2 µg/L at
pH 7.4) [38]. The low pH in the waters proximal to the mines and tailings facilities has been
attributed to the weathering of pyrite and pyrrhotite and the subsequent dissolution of
cobaltite (CoAsS) [22,38]. In the Central African Copperbelt (Katanga, Democratic Republic
of Congo (DRC)), Co concentrations in mining effluent and water (pH ~6) from the Co–Cu
deposits have been reported to be as high as 3164 µg/L [39]. The study revealed that
the highest concentrations of Co were found in waters close to mining effluent discharge
zones [39]. Within this, it has been highlighted that a key mechanism that underpins such
Co release to the aqueous phase is heterogenite dissolution, which is particularly prevalent
in waters at pH < 6 [34].

Aqueous Co concentrations up to about 18,689 µg/L were reported for acidic
(pH 0.6–0.8) and hypersaline leachate seeping from a pyrite pile in the San Telmo mine,
Spain [40]. In the same region, Co concentrations in stream waters from the Peña de Hierro
abandoned pyrite–Cu mine area (Spain), displayed similar amounts (599–26,100 µg/L
in the most acidic (pH 0.7–3.5) streams) [41]. It has been suggested that this high Co
concentration comes from Co-bearing pyrite oxidation [41,48].
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Table 1. Concentrations of Co in mining-affected waters.

Mine/Region Ore/Deposit Type Period of Mining Type
Mean/Range Co
Concentration
(µg/L)

Reference

Kabwe mine,
Zambia Pb–Zn 1903–1994

Sludge resulting
from chemical
leaching

34,400,000 Sracek et al., 2010
[35]

Cobalt, Ontario,
Canada Ag–As–Bi–Co Not recorded Ground water

samples 140–1800 Percival, et al.,
1996 [36]

Cobalt, Ontario,
Canada Ag–As–Bi–Co Not recorded Surface water

samples 0.5–2028 Percival, et al.,
1996 [36]

Idaho Cobalt Belt
(ICB), USA Co–Cu–Au Early 1900s–1967 Mine water (adits

and open pits) 11,000 Gray and Eppinger,
2012 [38]

San Telmo mine,
Spain pyrite 1970–1989 Pyrite leachate, pH

0.61–0.82 18,689 España et al., 2008
[40]

Peña de Hierro
mine, Spain Pyrite–Cu Mid-19th

century–1966
Stream water from
the mine 599–6100 Romero et al., 2011

[41]

Savage River mine,
Tasmania,
Australia

magnetite 1967–1982 Pore waters from
old tailings 5000

Jackson and
Parbhakar-Fox,
2016 [42]

Katanga province,
DRC Co–Cu Before

1960–present
Mining effluent
and water 3164 Atibu et al., 2013

[39]

Rio Piscinas area,
Italy Pb–Zn beginning of 19th

century–1992
Groundwater
samples 1500–2900 Concas et al., 2006

[43]

Pyrite–uranium
mine at Rudki,
Poland

pyrite–U Early 1900–1968
Acid pool waters
from the mine
tailings

303–1439 Migaszewski et al.,
2015 [44]

Darrehzar
porphyry copper
mine, Iran

Cu Not recorded
Mine water
flowing from the
mine

831 Soltani et al., 2014
[45]

Haveri mine,
Finland Au–Cu 1942–1961 Ground and

surface water 10–866 Parviainen, 2009
[46]

Banjas area,
northern Portugal As–Au 1864–1890

Spring and
groundwater
proximal to the
mine

11 Carvalho et al.,
2014 [47]

Acidic Co-bearing mine waters which undergo pH neutralisation have been recorded
to result in Co precipitation via a range of reactions including co-precipitation with iron hy-
droxides and structural substitution onto Fe (oxyhydr)oxides and clay minerals [44,49,50].
For example, groundwater from a legacy Pb–Zn mine in the Rio Piscinas area (Sardinia,
Italy) exhibited Co concentrations (2900 µg/L) higher than those of stream waters flowing
from the tailings at pH <4.73 (1500–2700 µg/L), whereas even lower values (<1 µg/L) were
recorded in distal stream samples (pH 7.67–8.02) [43]. In south-central Poland, acid mine
tailings pool waters (pH 2.6–4.0) at a legacy low-grade pyrite–uranium tailings repository
had significantly higher concentrations of Co (303–1439 µg/L) than those in adjacent farm-
ers’ wells (pH 7.2–8.0; 0.134–0.466 µg/L) [44]. Soltani et al., (2014) [45] reported average
Co concentrations of 831.55 µg/L in mine water flowing from the Darrehzar porphyry Cu
mine, Kerman province, Iran. Carvalho et al. (2014) [47] tabulated lower Co concentrations
of up to 11.91 µg/L in spring and groundwater (pH ~6.1) proximal to the abandoned
As–Au mine (Banjas area, Portugal). In SW Finland, at the abandoned Haveri Au–Cu mine,
most samples from ground and surface waters had a Co concentration less than 10 µg/L,
while some had higher dissolved concentrations of up to 866 µg/L [46]. These variations
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between mine site and downstream water were attributed to (a) dilution by surface and
groundwater, (b) precipitation or co-precipitation of metallic cations as hydroxides and
sulphates; and (c) adsorption of metallic cations by organic and inorganic sediments and
aquatic plants [51].

Existing guidelines for Co in irrigation, surface, and ground water are summarized in
Table 2. These are relatively limited at present. For example, the World Health Organisation
drinking water guidelines for Co are yet to be established [36,52–54]. Co concentrations of
the mine waste-affected waters presented exceed guideline values for aquatic life in surface
irrigation by many orders of magnitude. Only a few are listed below in the guidelines set
for livestock watering.

Table 2. Environmental guideline values for Co.

Type of Limit Limit Value (mg/kg) Organisation Reference

Drinking water No data CCME CCME, 2010 [53]

Surface water 5 NYSDEC NYSDEC, 1986 [55]

Freshwater for aquatic life 5 NYSDEC NYSDEC, 1986 [55]

Agriculture 50 Irrigation
1000 Livestock CCME CCME, 2010 [53]

Residential soil quality guidelines 23 USEPA USEPA, 2011 [56]

Industrial soil quality guidelines 300 USEPA USEPA, 2011 [56]

Sediment Quality Guidelines for the Protection
of Aquatic Life 35 CCME CCME, 2010 [53]

CCME: Canadian Council of Ministers of the Environment
NYSDEC: New York State Department of Environmental Conservation
USEPA: United States Environmental Protection Agency

3.2. Cobalt in Tailings and Mine-Affected Soils and Sediments

Concentrations of Co in mine tailings also vary, and selected examples are summarised
in Table 3. These variations have been attributed predominantly to the differences in
the processing technologies used and to variations in the geology of the ore deposit.
For example, in the Central African Copperbelt, Co was recovered historically from Cu
flotation concentrates by a Roast–Leach–Electrowin (RLE) process. This technology was
ineffective for Co, with recoveries typically from 40 wt. % up to 80 wt. % for oxides
and sulphides, respectively [57]. This resulted in substantial amounts of Co being lost to
the tailings [58] in dams in the DRC and Zambia (Table 3). Geogenic factors account for
the lower Co concentrations reported in Table 3. For example, 57.8 mg/kg Co has been
recorded in the tailings resulting from mining Zn–Cu in the Skellefte district sulphide
ore field (Sweden) [59]. According to Gavelin (1955) [60], these deposits predominantly
contained up to 2 wt. % Zn and 0.001–0.01 wt. % Co. In contrast, higher Co concentrations
were found in tailings derived from the mining, processing, and treatment of Co-bearing
ores such as the Cu–Co stratiform deposits of DRC and Zambia at 1.9 wt. % Co [16] and
0.5 wt. % Co [17], respectively.

Table 4 summarises the concentrations of Co in mine-affected soils and sediments.
Most of these exceed residential soil guideline values (Table 2). According to Pourret et al.
(2016) [61], soils accumulate Co due to one or more of the following processes: (i) weath-
ering of soil metal-bearing minerals; (ii) weathering of Co bearing deposits; and (iii)
deposition of atmospheric fall-out from ore smelters. The highest concentrations of Co
(6.4–21,134 mg/kg) in mining-affected soils occur in the Democratic Republic of Congo
(DRC), the largest producer of Co in the world. Narendrula et al. (2012) [62] concluded that
due to the mining and processing of Cu and Co, this region is one of the most contaminated
mining areas in the world.
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Table 3. Concentrations of Co in tailings.

Mine/Region Ore/Deposit Type Period of Mining Tonnage/Type
Mean/Range Co
Concentration
(mg/kg)

Reference

Kabwe mine,
Zambia Pb–Zn 1903–1984 Oxidised tailings

pond 14,165 Sracek et al., 2010
[35]

Katanga province,
DRC Co–Cu Before

1960–present
Freshly processed
tailings 6100 Lutandula and

Maloba, 2013 [58]

Haveri mine,
Finland Au–Cu 1942–1961 1.5 Mt Oxidised,

weathered 24–329 Parviainen 2009
[46]

Algares area,
Portugal Pb-As sulphides 1963–1971 Oxidised zone 97–157 Bobos et al., 2006

[63]

pyrrhotite mine,
Morocco pyrrhotite 1964–1981 >0.4 Mt Oxidised

tailings 60–80 Hakkou et al., 2008
[64]

Azegour mine,
Morocco Cu–Mo–W 1932–1971

850,000 t oxidised
tailing
impoundments,

40–440 Goumih et al., 2013
[65]

Skellefte district
sulphide ore field,
Sweden

Zn–Cu Not recorded Freshly processed
tailings 57.8 Gleisner and

Herbert, 2002 [59]

The Aljustrel mine
(SW Portugal pyrite Not recorded Tailings from

roasting pyrite 59 Candeias et al.,
2011 [66]

Virgina Au–pyrite
belt, USA Au–pyrite 1909–1945

120,000 t primary
unoxidised and
oxidised

44 Seal II et al., 2008
[67]

Rio Piscinas area,
Italy Pb–Zn beginning of 19th

century–1992 Not described 15–43 Concas et al., 2006
[43]

Kidston gold mine,
Australia Au 1985–2001 Un-oxidised

tailings 2.32–29.20 Edraki et al., 2019
[68]

Table 4. Concentrations of Co in mining-affected soils and sediments.

Mine/Region Ore/Deposit Type Period of Mining Material Type
Mean/Range Co
Concentration
(mg/kg)

Reference

Kolwezi district,
Province of
Lualaba, DRC

Co–Cu Before
1960–present Stream sediments 19.4–18,434 Atibu et al., 2018

[69]

Kolwezi district,
Province of
Lualaba, DRC

Co–Cu Before
1960–present Soil samples 6.4–21,134 Atibu et al., 2018

[69]

Katanga province,
DRC Co–Cu Before

1960–present Stream sediments 59.7–13,199 Atibu et al., 2013
[39]

Idaho Cobalt Belt
(ICB), USA Co–Cu–Au Early 1900s–1967 Stream sediments 14–520 Gray and Eppinger,

2012 [38]

Idaho Cobalt Belt
(ICB), USA Co–Cu–Au Early 1900s–1967 Soil samples 29–940 Gray and Eppinger,

2012 [38]

Rio Piscinas area,
Italy Pb–Zn beginning of 19th

century–1992 Stream sediments 9–38 Concas et al., 2006
[43]
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Table 4. Cont.

Mine/Region Ore/Deposit Type Period of Mining Material Type
Mean/Range Co
Concentration
(mg/kg)

Reference

The Kettara Mine,
Morocco Ochre–pyrrhotite 1933–1982 Soil samples 25.14 El Amari et al.,

2014 [70]

The Kettara Mine,
Morocco Ochre-pyrrhotite 1933–1982 Stream sediments 27.62 El Amari et al.,

2014 [70]

Maldon, Victoria,
Australia Au 1850s–not reported Soil samples 25 Abraham et al.,

2018 [71]

Hagan Mine,
Egypt Bay, Maine,
USA

Cu–Ag 1877–1885 Soil samples 1.9–21.3 Osher et al., 2006
[72]

Panasqueira mine
area, Portugal Sn–W 1898–2001 Soil samples 7–8 Candeias et al.,

2015 [73]

Alto da Várzea
radium mine,
Portugal

Ra–U 1911–1922 Stream sediments 3.8–4.8 Antunes et al.,
2018 [74]

Such contamination has in part been attributed to extensive exploitation and smug-
gling of secondary Cu–Co ores by artisanal and unlicensed miners [10] and to a lack of
land reclamation programs to address environmental degradation [10]. The few results
that do not exceed guidelines include soils from around Hagan Mine, Egypt Bay, Maine,
USA (1.9–21.3 mg/kg) [72], and the Panasqueira mine area, Portugal (7–8 mg/kg) [73].
These lower concentrations can be attributed to the fact Co is not enriched in the parent
rocks and ore minerals of these regions [72,73]. According to Bradl (2004) [75], adsorption
to Fe and Mn (oxyhydr)oxides also plays an important role in metal(loid) retention in soils.
Generally, Co metal adsorption is negligible at low pH and then increases at near neutral
pH (~5.5) to almost complete adsorption over a relatively small pH range (up to 8) [75].
This phenomena is observed, for example, in the Sudbury region, Canada where Co con-
centrations in the soils (pH < 4.5) range from 1.6 to 37.9 mg/kg, whereas soils in the DRC
region have higher pH (5.7 to 7) with a higher concentration of Co [62].

The sediment quality guideline set by CCME (2010) [53] for the protection of aquatic
life is 35 mg/kg Co (Table 2). Cobalt concentrations in stream sediments from the mining
regions of DRC [39,69] and the Idaho Cobalt Belt in the USA [38] are many orders of magni-
tudes higher than this guideline value. Some of the stream sediments from mining regions
reported in Table 4 do not exceed this guideline. Studies have shown that concentrations
of Co in stream sediment decrease with increasing distance from the mines (Figure 3),
suggesting considerable downstream sediment dilution [38,69]. Adsorption onto river
beds and accumulation into the hyporheic zone as a function of low pH [76] have also
been used to explain downstream decreases in Co concentrations in stream sediments.
Fuller and Harvey (2000) [77] demonstrated that about 52% Co was removed from stream
sediments into the hyporheic zone by sorption to manganese oxides.
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3.3. Cobalt in Mine-Affected Plants

Very few studies have reported concentrations of Co in mining-affected plants. Some
existing data are presented in Table 5. A study in the DRC showed that concentrations of
Co as high as 5050 mg/kg had accumulated in the leaves of the plant Phalaris arundinacea
L. Such plants are also known to thrive in pH ranges between 7.3 and 8.8 and to survive
persistent anoxic phases [78]. As such, these have been suggested to be potentially useful for
the remediation of Co contaminated soils [69]. Their relatively shallow root systems (often
<60 cm depth), however, dictate that such technology may only be useful for near-surface
Co extraction (Comes, 1971) [79]. These plants have been classified as hyperaccumulators
because the dry weight Co concentration in their tissue exceeds 1000 mg/kg (Zayed et al.,
1998) [80]. Other Co hyperaccumulators have been reported including Crotalaria cobalticola,
Crassula vaginata, and Haumaniatrum robertii (Bakkaus et al., 2005) [81].

In a separate study, Kříbek et al. (2014) [82] compared the concentration of Co in
Cassava leaves grown on contaminated and uncontaminated soils in the Copperbelt,
Zambia. The study showed that concentrations of Co were up to three times higher in the
plants grown on contaminated soils. In Morocco, El Hamiani et al. (2015) [83] noted that
Co concentrations were also higher in plants growing on soils within the vicinity of an old
Co–Ni mine than those growing in the vicinity of an Mn mine and a Cu mine. According
to Luo et al. (2010) [84], the soil-to-plant transfer factor for Co was also higher for the
Co–Ni mine and in certain plant species (Vicia faba and Rosmarinus officinalis), exceeding
the Agency for Toxic Substances and Disease Registry (ATSDR) range of 0.01–0.3 [2].
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4. Mineralogy of Cobalt in Mine Wastes

Co-bearing minerals most commonly detected in mine waste are summarised in Table
6. Amongst the most frequently identified is the sulpharsenide cobaltite. Cobaltite is one
of the major minerals found in the wastes of epigenetic Cu–Co–Ni deposits [85,86], the
five-element (Ag–Bi–Co–Ni–As) vein deposits [87,88] and many massive sulphide deposits
such as the Lousal Mine in the Iberian Pyrite Belt, Portugal [89], in Cu–Au–Ag deposits
of greenstone belts [90], and in Au–As–Cu polymetallic deposits of Poland [91]. Soils
affected by mine activities in Spain were found to contain small cobaltite crystals (<10 µm)
at concentrations of up to 1.8% Co [86]. Using QEMSCAN® with energy dispersive
spectrometer (SEM-EDS) analysis, Rollinson et al. (2018) [92] documented primary cobaltite
(0.41–50.05 volume/area %) and a secondary phase, erythrite, up to 5.9 volume/area %
on the northeastern coast of Cornwall, UK. The cobaltite was mainly associated with
chalcopyrite and erythrite [92]. Other Co-bearing minerals found in mine wastes elsewhere
include primary arsenides safflorite and skutterudite [93]. In mine tailings in Cobalt,
Canada, Clarke (2017) [93] observed these mineral phases as fine grained aggregates.

At low pH, Co-bearing arsenides and sulpharsenides undergo oxidative dissolution,
releasing aqueous Co into the environment. When the pH is increased to near neutral by
the presence of, for example, carbonates, the dissolved Co reacts with soluble As oxyanions
to form the secondary arsenate phase erythrite [93,94]. Clarke (2017) [93] observed this
phase as precipitation rims on silicates and carbonates in a sample taken from high grade
tailings from Cobalt, Ontario, Canada. The oxidation of cobaltite resulting in the formation
of secondary erythrite has been suggested to follow the reaction steps summarised in
Equations (4) and (5) [94].

4CoAsS + 13O2 + 6H2O = 4CoSO4 + 4H3AsO4 (4)

3CoSO4 + 2H3AsO4 + 8H2O = Co3(AsO4)2·8H2O (erythrite) + 3H2SO4 (5)

Markl et al. (2014) [95] demonstrated, using PHREEQC modelling, the precipitation
of erythrite from dissolution of Co arsenide phases (safflorite-skutterudite) and concluded
that this reaction could scavenge Co from natural solutions. This can be summarised in a
two-step reaction as follows [95]:

CoAs2 (safflorite) + 2H2O + 3O2 = Co2+ + 2H2AsO4
− (6)

3Co2+ + 2H2AsO4
− + 8H2O = Co3(AsO4)3.8H2O (erythrite) + 4H+ (7)

A number of studies have reported that Co precipitates as a trace element in other
mineral phases such as Fe(III) oxyhydroxides and Cu sulphides (Table 7) in acid oxidis-
ing mine wastes. Sracek et al. (2010b) [96] demonstrated that Fe(III) oxyhydroxides in
tailings contained up to 1.89 wt. % Co. With the aid of X-ray diffraction, Sracek et al.
(2010a) [35] studied precipitated efflorescent salts resulting from chemical leaching of
Cu–Co concentrates.

It was shown that Co was present in bloedite (2.28 wt. %) and also in moorhouseite
(CoSO4·H2O), but the concentration of Co in the latter was not reported. In a similar study
in the DRC, crusts of the pinkish efflorescent salt hexahydrite (MgSO4·6H2O) had high
Co/(Co + Mg) values up to 25 at. % [104]. Between 0.005 and 0.03 wt. % Co has also been
recorded in Fe oxyhydroxides in sulphide tailings at Stekenjokk in northern Sweden [105].
Trace amounts of Co (0.030, 0.121, and 0.175 wt. %) were detected in bornite, chalcocite,
and covellite, respectively, in Texeo mine waste in Spain [85]. About 0.66 wt. % Co was also
detected in the grains of Fe metal, 0.83 wt. % Co in pyrite and 0.08 wt. % Co in sphalerite
in the slag at Hopewell mine, Pennsylvania, USA [111].
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Table 5. Concentrations of Co in mining-affected plants.

Mine/Region Ore/Deposit Type Period of Mining Type
Mean/Range Co
Concentration
(mg/kg)

Reference

Kolwezi district,
Province of
Lualaba, DRC

Co–Cu Before
1960–present

Phalaris arundinacea
L. 9–5050.80 Atibu et al., 2018

[69]

Copperbelt
Province, Zambia Co–Cu Before

1960–present

Cassava leaves
(Manihot esculenta
crantz)

24 Kříbek et al., 2014
[82]

Co-Ni-mine,
Southern Morocco

Co–Ni Not reported

Parsley
(Petroselinum
vulgare)

20.2–69.4
El Hamiani et al.,
2015 [83]

Rosemary
(Rosmarinus
officinalis)

39.1–54.4

Fava bean (Vicia
faba) 74.6

Ishiagu, South East
Nigeria Pb–Zn Not reported

Roots
(Clotalariaretusa
and Andropogontec-
torum)

13.40–89.75 Ogbonna et al.,
2015 [97]

Stems
(Imperatacylindrica
and
Alchorneacordifolia)

2.20–78.20

Palão and Pinheiro
mines, Portugal Pb–Zn Not reported Elatine macropoda 127.8 Prasad et al., 2006

[98]

Shangla District,
Pakistan Cr Not reported Roots (N. cataria) 23 Nawab et al., 2015

[99]

Sukinda chromite
mine, India Cr Not reported Solanum surattense 9.9 Samantaray et al.,

2001 [100]

Table 6. Co-bearing minerals in mine wastes.

Mineral Name Elemental Composition References

Cobaltite (Co,Fe)AsS Harris et al., 2003 [101]; Kelly et al., 2007 [87]; Percival et al., 2007 [88];
Loredo et al., 2008 [85]

Carrollite CoCu2S4 Chen et al., 2016 [102]

Sphaerocobaltite CoCO3 Vítková et al., 2010 [103]

Cobaltpentlandite (Co-Fe)9S8 Vítková et al., 2010 [103]

Safflorite (Co,Fe,Ni)As2 Clarke, 2017 [93]

Skutterudite (Co,Ni,Fe)As3–x Clarke, 2017 [93]

Erythrite Co3(AsO4)2·8H2O Percival et al., 2007 [88]; Loredo et al., 2008 [85]; Clarke, 2017 [93]

Bieberite CoSO4·7H2O Sracek et al., 2010 [35]; Mees et al., 2013 [104]

Moorhouseite CoSO4·H2O Sracek et al., 2010 [35]
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Table 7. Common minerals in mine waste containing Co as a trace element.

Mineral Name Elemental Composition References

Fe oxyhydroxides FeOOH Holmström and Öhlander, 2001 [105]; Sracek et al., 2010 [96];
Queiroz et al., 2018 [106]

Pyrite FeS2
Moncur et al., 2005 [107]; Jackson and Parbhakar-Fox, 2016 [42];
Zhang et al., 2020 [108]

Arsenopyrite FeAsS Assawincharoenkij et al., 2018 [109]

Pyrrhotite Fe(1–x)S Moncur et al., 2005 [107]; Heikkinen and Räisänen, 2008 [110]

Co-poor bloedite Na2(Co,Mg)(SO4)2·4H2O Sracek et al., 2010 [35]

Bornite Cu5FeS4 Loredo et al., 2008 [85]

Chalcocite Cu2S Loredo et al., 2008 [85]

Covellite CuS Loredo et al., 2008 [85]

Chalcopyrite CuFeS2 Assawincharoenkij et al., 2018 [109]

5. Microbiology of Cobalt in Mine Wastes

Due to the limited sources and supply of, and the increasing demand for Co [112],
there is a significant global interest in applying bioleaching techniques to recover Co from
mine waste [113]. This is because conventional pyrometallurgy and hydrometallurgy
methods can, under certain circumstances, be less efficient for Co recovery, and as such,
require greater energy input, ongoing management, and/or leave behind a legacy of
waste [114,115]. Microorganisms capable of oxidizing Fe or S have been identified in
tailings and other sulphide-bearing mine wastes [116]. The Fe- and S-oxidising bacteria
Thiobacillus (T.) ferrooxidans, Acidithiobacillus (A.) ferrooxidans, and A. thiooxidans have been
studied for their ability to oxidise sulphide ores that in turn results in substantial acid
generation [113,114,117]. These bacteria do not oxidise Co sulphide ore minerals (CoAsS,
Co9S8, CoS2, (Co,Fe)AsS, etc.) directly. Instead, they gain energy by oxidizing the S2−,
S0, S2O3

2−, and other transitional S species of the minerals and thereby liberate Co in the
process [117].

In a study to determine whether T. ferrooxidans could dissolve Co from sulphidic
smelter waste, it was noted that the reaction rate increased after adding pyrite to the
fine grained <270 µm material. It was concluded that substantial (up to 70% recovery)
amounts of Co can be released from sulfidic mine waste [113]. Coto et al. (2007) [114]
used A. thiooxidans to leach Co from laterite tailings containing about 890 mg/kg Co. The
tailings were waste resulting from the extraction and processing of lateritic Co and Ni. The
A. thiooxidans cell were inoculated in 0 K medium with an initial pH of 3.0 and 2% w/v S as
the source of energy. After 48 h, the pH decreased to 1 due to the acidity produced by the
bacteria. By adding tailings to a pulp density of 2.5% w/v, 80% of their included Co was
extracted after 15 d. Cabrera et al. (2011) [118] built on this work by extending the time
and increasing the pulp density to >10% w/v. A recovery of 86% and 89% Co was obtained
after 65 and 83 d, respectively.

A number of studies have been conducted on Co using a mixed culture of Fe- and
S-oxidising microorganisms. For example, Ahmadi et al. (2015) [119] used a mixed
culture consisting of Leptospirillum ferriphilum, Acidithiobacillus caldus, Sulfobacillus, sp.
and Ferroplasma sp. to recover Co from low-grade Cu–Co–Ni bearing sulfidic tailings
(0.044 wt. % Co) from Kerman Province, Iran. In this experiment, about 59.5% of the Co
was extracted through the bioleaching process using a pulp density of 5% (w/v), pH 1.8,
and at a temperature of 45 ◦C. In another study in Germany, Zhang et al. (2020) [109] used
a microbial consortium of At. thiooxidans, At. ferrooxidans, Leptospirillum ferrooxidans, and
Ferroplasma acidiphilum to extract 91% Co from the Bollrich tailings pond (0.02 wt. % Co).
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The study also observed that Co occurred on the surface of framboidal pyrite and was
leached by microbial attack.

Overall, optimum conditions for bioleaching of Co from sulphide ores are proposed
to be: growth temperature of 35–46 ◦C, solids concentration (pulp density) 10–15 wt. %,
particle size <65 µm, and pH between 1.3 and 2.0 [120].

Other studies have investigated Co and Ni dissolution from laterites and pyritic
ores by use of specific fungi species [121–123]. Such processes are currently considered
cost-effective due to the fact that fungi can often be grown cheaply and with limited
environmental impact, however, studies that have quantified this remain limited [124,125].
In a study to establish whether fungi could be used for bioleaching of metals from mine
tailings, Ilyas et al. (2013) [126] observed that 60% Co was solubilised after 24 d at pH
(5–7.9). Similarly, Newsome et al. (2020) [127] used the fungal community to recover Co
from laterites and recorded that up to 64% Co could be recovered via microbial reduction
of Mn(IV)- to Mn(II)-oxides, releasing Co(III) from the crystal structure.

6. Geochemical-Mineralogical-Microbiological Controls on Cobalt Mobility in
Mining-Affected Environments

The geochemical behaviour of Co is generally similar to that of Fe and Mn, and its
concentration in mine affected waters, stream sediments, and soil is primarily controlled by
adsorption and co-precipitation reactions with Mn and Fe (oxyhydr)oxide minerals [128].
Cobalt aqueous geochemistry is dominated by +2 and +3 oxidation states [13], with Co3+

being thermodynamically unstable and changing under Eh-pH conditions prevalent in
most natural waters. However, the presence of certain complexing ligands such as EDTA
and NH3 can stabilize Co3+ and allow it to persist in aqueous solutions [34]. Figure 4
summarises the geochemical and mineralogical relationships between these aqueous Co
species and the various Co-bearing minerals found in mine wastes.
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6.1. Impact of Eh-pH on Co Geochemistry

The dominant Co-bearing minerals expected to be present in mine waste under
reducing conditions and over a wide pH range are cattierite and cobaltite [34,93]. At low
pH (<4) the speciation of cobalt is dominated by Co2+ and CoSO4

0 [96]. At near neutral
to alkaline pH and under oxidising conditions, the Co2+ will react with As oxyanions to
produce secondary erythrite in an environment saturated with As oxyanions [93]. However,
when oxidation is prolonged at pH ~6, Co may be remobilised in the mine water [94].
When the solution pH increases to >7, Co2+ can also be rapidly polymerized, leading to the
formation of colloidal Co(OH)2, which can be readily oxidised by aqueous oxygen, as in
reactions (8) and (9) [129];

Co2+ + 2H2O = Co(OH)2(c) + 2H+ (8)

Co(OH)2(c) +
1
4

O2(aq) = CoOOH(c) +
1
2

H2O (9)

The remobilized Co in surface waters re-precipitates as heterogenite (CoOOH) as soon
as the environment becomes less oxidizing and more alkaline [130,131]. In alkaline pH
environments, Co2+ is oxidised to, and adsorbed on, Mn(IV) oxides as less soluble Co3+, as
in Equation (10) [132,133].

2Co2+
(aq) + 2MnO2(s) + 3H2O(l) → 2CoOOH(s) + Mn2O3(s) + 4H+

(aq) (10)

Relatively insoluble Co3+, for example, in heterogenite, can be solubilised as Co2+ by
reductive dissolution in the presence of reducing agents such as sulphur dioxide (SO2) and
ferrous ions (Fe2+) under reducing and acidic conditions [134]. Reduction of Co3+ to Co2+

by sulphite is represented by the Equation (11) [134].

SO3
2−

(aq) + 2Co3+
(s) + H2O(l) → SO4

2−
(aq) + 2Co2+

(aq) + 2H+
(aq) (11)

Adsorption on, or co-precipitation with Fe(III) and Mn(IV) (oxyhydr)oxides, as a
function of pH, metal concentration, and temperature are other important processes influ-
encing Co behaviour in the environment [96,130]. Cobalt is known to be adsorbed onto
secondary Fe(III) (oxyhydr)oxides that are characteristic of mining-affected environments
under neutral to moderately acidic pH conditions [135]. In the presence of Fe(III), and at
pH between 5.5 and 8, Co2+ will be depleted from mine waters and adsorbed onto minerals
such as magnetite (Fe3O4), hematite (Fe2O3), and goethite (αFeOOH) [136,137].

According to Hem et al. (1985) [129], reactions involving Mn promote the oxidation of
Co. Co2+(aq) reacts with Mn oxides (Equation (10)) to precipitate heterogenite and release
Mn2+(aq) [130]. Mn-oxide colloids scavenge Co via adsorption and/or co-precipitation
reactions in which hydrated Co cations are attracted to the negatively charged surfaces of
Mn-oxides like manganite (MnOOH), birnessite (δ-MnO2) [44,131].

6.2. Impact of Microbial Activity

Microbial interactions are widely regarded as exhibiting a central role in controlling Co
environmental mobility [127]. Co mobilisation in mine waste rocks and minerals, tailings,
soils, and stream sediment can occur via a number of processes such as redox processes,
protonolysis, complexation by excreted metabolites and Fe(III)-binding siderophores, and
indirect Fe(III) attack [138]. Microbial activity reduces Fe(III) and Mn(IV) to Fe(II) and
Mn(II), respectively [139]. This results in an increase in solubility and consequently, re-
lease of the Co adsorbed to Fe(III) and Mn(IV) oxides [127,132,138,139]. Bacteria such
as Acidithiobacillus ferrooxidans, Leptospirillum ferrooxidans, Sulfolobus spp., and Acidianus
brierleyi can also oxidise Co-bearing sulphides [138,140]. This microbial activity can cause
the release of Co by either direct oxidative attack (of the crystal lattice of the Co-bearing sul-
phides) or indirect oxidative attack by generating acid ferric sulphate, which then oxidizes
the Co-bearing sulphide [138,140].
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Biosorption processes also play an important role in controlling Co mobility in mining
affected environments [141]. Depending on the pH conditions, Co can sorb to biosorbents
such as algae, fungi, and bacteria via a number of mechanisms including electrostatic
(physical) adsorption, ion exchange, precipitation, and co-precipitation [125,142]. In low pH
environments, biosorption of Co is usually low. This is due to increased protonation, which
results in the repulsion between the metal ions (Co2+) and the functional group (carboxyl,
hydroxyl) at the binding sites of the biosorbent [141]. Increasing the pH deprotonates the
functional groups, leaving them excited to attract Co ions, thereby increasing the rate and
biosorption capacity [143].

7. Conclusions

In this review, Co geochemistry, mineralogy, and microbiology in mine-affected en-
vironments were summarised. Many studies have provided information on Co concen-
trations and geochemical behaviour across mine waters, tailings, stream sediments, soils,
and plant environments. There remains a lack of comprehensive data, however, and as
such, a reliable understanding of Co distribution across different mining environments
is yet to be established. A key area within this is a current lack of Co speciation data,
particularly across the entire breadth of Eh-pH conditions commonly encountered within
mining environments, and a subsequent lack of kinetic and mechanistic understanding of
the specific hydrogeochemical conditions under which secondary Co-bearing mineral pre-
cipitates form including their stability thresholds. There is also a lack of Co geochemistry
data from the Central African Copperbelt, which is amongst the most Co-contaminated
mining environments in the world. This is therefore likely the result of the implementation
of imperfect Co mining and/or waste disposal techniques with resultant environmental
and human health damage. Another area of major knowledge gap is a lack of regulatory
framework for Co in waste and permitted environmental discharge. For example, the WHO
drinking water guidelines for Co are yet to be established. Finally, the role of bacteria and
other microorganisms in the cycling of Co in different mining environments has recently
received some attention, but the specific conditions and mechanisms under which these
microbes reduce Co(III) to Co(II) remain relatively poorly understood. Overall, it is argued
that further research is urgently required on both fundamental Co hydrogeochemistry and
geomicrobiology, but also more targeted studies that link such data to the establishment
of new regulatory frameworks and management/remediation policies across different
mining environments are needed. This will help limit the likely increase in environmental
and human health damage as Co mining activities continue to expand this century.
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