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Abstract. Two-dimensional transition metal carbides/nitrides, known as MXenes, have recently received 

significant attention for gas sensing applications. However, MXenes have strong adsorption to many types 

of volatile organic compounds (VOCs), and therefore gas sensors based on MXenes generally have low 

selectivity and poor performance in mixtures of VOCs due to cross-sensitivity issues. Herein, we 

developed a Ti3C2Tx-based virtual sensor array (VSA) which allows both highly accurate detection and 

identification of different VOCs, as well as concentration prediction of the target VOC in variable 

backgrounds. The VSA’s responses from the broadband impedance spectra create a unique fingerprint of 

each VOC without a need for changing temperatures. Based on the methodologies of principal component 

analysis and linear discrimination analysis, we demonstrate highly accurate identifications for different 

types of VOCs and mixtures using this MXene based VSA. Furthermore, we demonstrate an accuracy of 

93.2% for the prediction of ethanol concentrations in the presence of different concentrations of water and 

methanol. The high level of identification and concentration prediction shows a great potential of MXene 

based VSA for detection of VOCs of interest in the presence of known and unknown interferences. 

 

Keywords: MXene; 2D material; Cross-sensitivity; Virtual sensor array; Multivariable VOC sensing; 

Broadband impedance spectra.  
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1. Introduction 

Gas sensing has attracted considerable research interests in recent years [1-3], and sensitive and 

selective gas detection becomes critical in agriculture, pollution monitoring, food quality assurance, and 

medical diagnosis [4-6]. In particular, detection of volatile organic compounds (VOCs) in exhaled breath 

of human is regarded as a promising method for early diagnosis of illness [7]. Around 200 VOCs have 

been detected in human breath and their contents reflect the person’s physical conditions [8]. Accordingly, 

gas sensors are required not only to sensitively detect an individual VOC but also to effectively distinguish 

different VOCs and quantify the specific target VOC in the presence of a complex background. 

Typically, a sensing material is deposited on the gas sensor and the properties of this sensing layer 

greatly affect the responses of gas sensors. Two-dimensional (2D) materials [9], such as graphene [10, 11], 

MoS2 [12, 13], and black phosphorus (BP) [14] are among the most promising materials for gas sensing 

applications, because of their large surface area, versatile surface chemistry, and capability of sensitive 

detection at room temperature. Recently, gas sensors based on a new family of 2D materials called MXene 

have also shown promising performance [15, 16]. 

MXenes, with a molecular formula of Mn+1XnTz, are generally synthesized by etching the 

intermediate layer (A) of a Mn+1AXn phase [17-19], in which M, A, X, and T represent transition metal 

(e.g., titanium, vanadium), intermediate element (e.g., aluminum, silicon), C or N element, and surface 

group (e.g., OH-, F-), respectively. As one of the 2D transition metal carbides/nitrides, MXenes possess a 

metallic conductivity, while their surfaces are covered with functional groups. Such a good combination 

makes MXene based gas sensors having ultrahigh signal-to-noise ratios and low limit of detection (LOD) 

compared with those based on the other 2D materials [20]. Interestingly, it was also reported that Ti3C2Tx 

based gas sensors show a better response to VOCs over the oxidizing gases [21]. 

However, MXenes have strong adsorptions to many types of VOCs. Currently most MXene based 

sensors are based on measurements of changes in their electrical resistances (or often called 

chemiresistors), but they are ineffective for sensing of VOC mixtures due to issue of cross-sensitivity [22-

24]. The selectivity of these MXene based sensors remains a key challenge. The poor selectivity of 

individual conventional sensor can be mitigated through combining sensors into arrays, which is 

sometimes referred as an “electronic nose” [25, 26]. However, increasing number of sensors in the sensor 

array increases the power consumption and complicates the device’s circuitry and computation [27]. 

Additionally, the higher the number of sensing elements, the higher the chances of breakdown for the 

sensor array [28]. 
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To overcome these drawbacks, a recent breakthrough comes from the virtual sensor array (VSA), in 

which one individual sensor can be used to generate multi-dimensional signals similar to those produced 

by the electronic nose [29]. These multi-dimensional signals could produce unique responsive patterns for 

different VOCs [30]. To facilitate accurate identification of each VOC, pattern recognition techniques, 

such as principal component analysis (PCA) [27], linear discriminant analysis (LDA) [31], and partial 

least squares (PLS) [29] are often applied. These reported VSAs are mostly relied on varying the 

temperature of the sensing element to overcome cross-sensitivity of those sensors based on the 

measurement of resistance (or capacitance) [32-34]. Nevertheless, the time to reach the targeted 

temperature is often too long for many real applications. Besides, a permanent change of material 

properties for the sensing layer may occur when temperature cycling is applied.  

Currently most gas sensors only detect changes of a single property (e.g., resistance or capacitance) 

of the sensor, whereas changes of other electrical properties from the sensors are often ignored, thus 

resulting in a significant loss of valuable information. The impedance spectra measurement is possible to 

provide electric properties of a bulk and an interface which we cannot easily obtain from direct current 

(DC) signals [35]. On one hand, impedance spectra have usually been used to analyze the electrical process 

of gas sensors and understand the gas sensing mechanism [36]. On the other hand, they are rarely used for 

quantitative sensing, just like resistance or capacitance measurements. The impedance spectra of VOC 

sensors can be used to distinguish different types of VOCs. For example, Liu et al. have detected 

impedance changes using a gas sensor at different frequencies of 19.9 kHz and 2.1 kHz, respectively, and 

managed to distinguish between formaldehyde and acetone [37].  

Herein, we propose a Ti3C2Tx based VSA which allows highly accurate detection and identification 

of different types of VOCs, as well as estimation of concentration for a single VOC within a multiple 

VOCs mixture. In this method, we deposited a thin film of Ti3C2Tx on the surface of an interdigital 

electrode (IDE) to form a VSA, which was then exposed to a range of different VOCs with various 

concentrations at room temperature. The broadband impedance spectra of the Ti3C2Tx based VSA were 

obtained at various conditions. They were then used as the inputs for supervised and unsupervised machine 

learning, and the impedance responses from the VSA obtained at different frequencies were analyzed 

systematically using PCA, LDA, and PLS regression. The high accuracy of identification and 

concentration estimation shows the potential of MXene based VSAs for detection of VOCs in the presence 

of a variable background. To the best of our knowledge, this is the first report of a VSA based on MXene 

and broadband impedance spectra.  
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2. Experimental Section 

2.1 Fabrication of MXene based VSA. 

A schematic illustration of the fabricated Ti3C2Tx based sensor is shown in Figure 1a. The sensor was 

prepared by covering the fabricated IDE with a layer of Ti3C2Tx. Two atomic layers of carbon were 

sandwiched between three atomic layers of titanium in the Ti3C2Tx structure. With a typical synthesis 

method, we expect that the surface of Ti3C2Tx would be randomly terminated with hydroxyl (−OH), 

oxygen (−O), and fluorine (−F) groups [15]. Detailed synthesis processes of Ti3C2Tx have been presented 

in S1 of Supplementary Material. An IDE was made on Al2O3 ceramic substrate (5 mm × 5 mm) with 11 

pairs of interdigitated Au/Ni/Cu electrodes (thicknesses of 10 μm / 4 μm/ 1 μm). The distances among Au 

strips and their widths were both 100 μm. A dispersion (20 μL) of Ti3C2Tx in deionized water with a 

concertation of 0.05 mg/mL was dropped on the prepared IDEs and dried in a vacuum chamber, thus 

forming a sensing layer. 

2.2 Material Characterizations. 

A field emission scanning electron microscope (FE-SEM; SU-8100, Hitachi) equipped with an energy 

dispersive X-Ray spectrometer (EDS; X-max80, Oxford) was used to study the surface morphology of the 

produced sensing film and distribution of elements. The thickness of the MXene film was measured using 

a profilometer (KLA/Tencor D-100). An X-ray diffractometer (MAXima XRD-7000, Shimadzu) was used 

for X-ray diffraction (XRD) analysis. X-ray photoelectron spectroscopy (XPS, Escalab 250Xi, Thermo 

Fisher) was used to characterize the chemical components and chemical bonding structures of the Ti3C2Tx 

film. XPS analysis was conducted through curve fitting and calculations using Gaussian−Lorentzian 

method. 

2.3 Gas sensing system.  

A schematic illustration of VOC sensing experimental setup is shown in Figure S1. The sensing 

experiment was performed at room temperature (25℃). The sensing performance was investigated by 

exposing the Ti3C2Tx based VSA to various concentrations of the targeted VOCs. The desired VOC 

concentration was obtained by injecting the required quantity of anhydrous liquid analytes into a sealed 

glass container using a microliter syringe. The concentrations of targeted VOCs in the chamber were 

calculated using the following equation [38, 39]: 

                               𝐶 =
22.4𝜌𝑇𝑉𝑠

273𝑀𝑉
× 1000                       (1) 

where C is the concentration of the gaseous VOC at the room temperature (ppm), ρ is the density of 
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anhydrous liquid VOC (gmL−1), T is the testing temperature (K), Vs is the volume of anhydrous liquid 

VOC (μL), M is the molecular weight of a VOC (gmol−1), and V is the volume of the glass container (L) 

filled with the VOC. In this work, taking ethanol as an example, the values of M, ρ and T are 46 gmol−1, 

0.789 gmL−1 and 298 K, respectively. Dry air was supplied from an air cylinder and the container was 

cleaned by dry air flow at room temperature before doing each gas sensing test. The broadband impedance 

spectra (with frequencies from 20 Hz to 2 MHz) were measured using an LCR meter (Keysight E4980A). 

The response was defined as the relative change in the impedance of the VSA after exposure to VOCs 

compared to the baseline impedance (ΔR (X) /R0 (X0) (%)). Response and recovery time can be defined 

as the time from when the impedance starts to change until the impedance reaches 90% of its final value. 

The LOD value, i.e. the lowest concentration of target gas that can be distinguished from the common 

atmosphere, was calculated based on the signal-to-noise ratio (S/N > 3). 

2.4 Analysis of Ti3C2Tx based VSA data. 

Predictive models were developed using eight representative parameters obtained from the broadband 

impedance spectra, i.e. using the resistance values at 20 Hz, 336 kHz, 2 MHz and the reactance values at 

189 kHz, 299 kHz, 710 kHz, 1.19 MHz, 2 MHz. First, PCA was applied for classification of multivariate 

data and reducing the dimensionality of the original data set. PCA is a powerful unsupervised analysis 

tool that basically projects the data points into a new coordinate system, whose coordinates account for 

the largest variance in the original data [27]. It allows a qualitative survey of the discriminating power of 

the VSA. The LDA was performed as a supervised pattern recognition tool meaning that the correct 

classification is known for each object [31]. The resultant principal components in the PCA were used as 

input variables to the LDA to quantitatively identify different test analytes. A cross-validation method was 

used to estimate the identification. To quantify concentrations of individual vapor in a mixture, we applied 

PLS with five latent variables (LVs). The PLS determines correlations between the independent variables 

(ethanol concentration) and the VSA’s response by finding the direction that explains the maximum 

variance of the independent variables in the multidimensional space of the sensor response [29]. 

Multivariate data processing (PCA, LDA and PLS) was carried out using MATLAB programs in this 

study. 
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3. Results and discussion 

3.1 Material Characterizations. 

Surface morphology of the Ti3C2Tx based sensor is shown in Figure 1b and optical microscope images 

of the obtained sensor are shown in Figures S2a and S2b, which reveal a uniform layer of the deposited 

Ti3C2Tx. The thickness of the MXene films on the surface of three devices is about 240 nm, as shown in 

Figure S2c, indicating a good repeatability. A cross-sectional SEM image of the Ti3C2Tx film is shown in 

Figure 1c, which is produced through vacuum filtration of the same Ti3C2Tx solution used for the sensor 

fabrication. The observed layered structure is due to the ordered stacking of individual layers of Ti3C2Tx, 

which results in increased surface-to-volume ratio, potentially contributing to a large sensing response. 

Figures 1d to 1g show the EDS analysis of the deposited Ti3C2Tx film. The core elements (Ti, C) and 

surface elements (O, F) are evenly distributed across the entire film. These results indicate a uniform 

deposition of Ti3C2Tx on the device surface.  

 

Figure 1. Schematic illustration and morphological characterization of the Ti3C2Tx film. (a) Schematic illustration 

of the Ti3C2Tx film based sensor. (b) SEM image of the Ti3C2Tx based sensor surface. (c) Cross-section view of the 

Ti3C2Tx film. (d-g) Elemental mapping analyses of Ti3C2Tx film: (d) Ti, (e) C, (f) O, (g) F. 

XRD measurements of the Ti3C2Tx film reveal a sharp peak at 2θ = 6.7° as shown in Figure 2a. There 

are no peaks related to Ti3AlC2 in MAX phase, indicating that Ti3C2Tx was successfully transformed from 

Ti3AlC2. This sharp peak corresponds to the (002) peak of Ti3C2Tx with a center-to-center distance of 13.3 
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Å. Given the thickness of one atomic layer (∼10 Å), the free interlayer spacing is roughly 3.3 Å, which is 

in a good agreement with the previously reported results [40]. 

Figures 2b to 2d show a set of high-resolution XPS spectra (Ti 2p, C 1s, O 1s) of Ti3C2Tx. The Ti 2p 

spectrum (Figure 2b) can be fitted with four doublets (Ti 2p1/2, Ti 2p3/2) with an area ratio of 1:2, and 

the doublet separation is 5.8 eV. The binding energies of Ti−C (Ti+), Ti−X (Ti2+), TixOy (Ti3+), and TiO2 

(Ti4+), are 454.88, 455.85, 457.42, and 459.05 eV, respectively. The Ti−X corresponds to sub-

stoichiometric titanium carbides or titanium oxy-carbides, which is in a good agreement with previous 

XPS studies [20]. The C 1s spectrum shown in Figure 2c can be deconvoluted into four peaks centered at 

281.66, 284.8, 285.41, and 288.7 eV, corresponding to C−Ti, C−C, CHx/CO and COO, respectively [41]. 

The O 1s spectrum in Figure 2d can be deconvoluted into four peaks centered at 529.77, 531.57, 533.6, 

and 533.92 eV, corresponding to TiO2, sub-stoichiometric TiOx, Ti−OH, and adsorbed H2O on the surface, 

respectively [20]. These results confirm that the surface of the Ti3C2Tx nanosheet is indeed terminated by 

many types of functional groups (-OH, -O, -F, etc.), facilitating its adsorption of VOCs. 

 

Figure 2. Structural and chemical characterizations of Ti3C2Tx. (a) XRD patterns of Ti3C2Tx. (b-d) XPS of Ti3C2Tx 

at three core levels: (b) Ti 2p, (c) C 1s, (d) O 1s. 

2.2 Dynamic VOC sensing. 

The resistance responses of the sensor operated at 20 Hz with the continuous changes of ethanol 

concentrations were firstly investigated. The resistance values were continuously recorded with a  
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Figure 3. Dynamic response test of the Ti3C2Tx film based VOC sensor. (a) Continuous response of the resistance of 

sensor to different ethanol concentrations. (b) Short-term repeatability of sensor when the ethanol concentration is 

repeatedly changed. Detailed response (c) and recovery (d) processes of the sensor. (e) Fluctuations in the resistance of 

sensor at fixed ethanol concentration levels. (f) Resistance variation upon exposure to 100 ppm of 8 VOCs. 

time interval of 1 s and the data showed a good tracking performance of the sensor as the ethanol 

concentration was continuously changed, as indicated in Figure 3a. The short-term repeatability 

performance of the Ti3C2Tx based sensor operated at 20 Hz was further studied by repeatedly changing the 

ethanol concentration between 0 and 100 ppm, and the results are shown in Figure 3b. The short-term 

repeatability performance of the sensor operated at other frequencies are shown in Figure S3. A good 

repeatability was obtained over several cyclic tests at all frequencies. The response and recovery speeds 
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of the sensor were investigated by rapidly changing the ethanol concentration between 0 and 100 ppm, 

and detailed response and recovery processes of the sensor are shown in Figures 3c and 3d. According to 

the definitions mentioned previously, the response and recovery times of the sensor are 59 s and 71s, 

respectively. The resistance values of the sensor operated at 20 Hz were further recorded when the ethanol 

concentration was fixed at different levels (i.e., 100 ppm and 200 ppm), as shown in Figure 3e. There is 

only a very small fluctuation in the resistance values. Figure S4 shows fluctuations in the impedance of 

sensor operated at different frequencies when the concentration of ethanol is zero. Theoretical LOD values 

of the sensor to ethanol are 862 ppb, 780 ppb, 791 ppb, respectively, obtained based on the values of 

resistance at 20 Hz, reactance at 299 kHz, and reactance at 2 MHz, respectively.  

Figure 3f displays the responses of Ti3C2Tx based sensor exposed to different VOCs, i.e., 100 ppm of 

methanol (MeOH), ethanol (EtOH), acetone, isopropanol (IPA), acetonitrile (MeCN), dichloromethane 

(DCM), hexane, and toluene (TOL). Prior to exposure to the target VOCs, the sensor was exposed to dry 

air for at least 10 min, in order to stabilize the baseline impedance. Then the sensor was exposed to the 

target VOCs for 150 s. The Ti3C2Tx based sensor display all positive changes of the resistance, indicating 

that the channel of charge carrier transport was hindered when VOC molecules were adsorbed. 

3.3 VOCs fingerprints and working principle of VSA. 

The Ti3C2Tx based VSA was exposed to eight different VOCs as mentioned above with different 

concentrations from 100 ppm to 800 ppm, and the broadband impedance spectra were measured. Based 

on the impedance spectra obtained, we selected eight representative parameters mentioned above as the 

VOC characteristics.  

A data set of impedance responses can be directly used as a VOC’s unique fingerprint by collecting 

changes of the eight parameters in different VOC concentrations, which is shown in Figure S5. Resistance 

values at 20 Hz, 336 kHz, 2 MHz and reactance values at 189 kHz, 299 kHz exhibit positive responses, 

whereas the reactance values at 710 kHz, 1.19 MHz, 2 MHz exhibit negative responses on exposure to 

different VOCs. In addition, the response amplitudes of all the sensing parameters increase as the 

concentrations of VOCs are increased. The increasing slope is much higher at a low concentration of the 

VOCs. Apparently, different VOCs lead to different response patterns as shown in Figure S5, which 

provides the critical information for a simple and straightforward identification of a specific type of VOC.  

In order to visualize the unique response patterns of different VOCs, the changes of different 

characteristic parameters versus different VOC concentrations are depicted in a contour plot, as shown in 

Figure 4. It clearly shows that a discernable discrepancy exists between the patterns of different VOCs. 
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Therefore, we can confirm that the multi-parameters sensing responses create a unique fingerprint for each 

VOC, which can then be used for identification of the type of VOC. 

 

Figure 4. Contour plot of unique fingerprint patterns of different VOCs. 

The experimental Nyquist curve over a frequency range of 20 Hz-2 MHz of the proposed VSA in dry 

air is shown in Figure S6a. The shape of the curve clearly indicates that the circuit model of the sensor is 

composed of several parts [42]. The equivalent circuit model of the Ti3C2Tx based VSA is shown in Figure 

S6b. Here the circuit element R1 represents the contact resistance; the circuit elements R2 and L represent 

the resistance in thickness direction and inductance between Ti3C2Tx layers; and elements R3 and C 

represent the transverse resistance and capacitance between electrodes. Figure S6a shows that the fitting 

data are very close to the experimental data, indicating the equivalent circuit model is accurate. In the 

circuit model, the AC resistance (R(f)) and reactance (X(f)) can be written as: 

                   𝑅(𝑓) = 𝑅1 +
(2𝜋𝑓)2𝐿2𝑅2

𝑅22 + (2𝜋𝑓)2𝐿2
+

𝑅3

1 + (2𝜋𝑓)2𝐶2𝑅32
          (2) 

                     𝑋(𝑓) =
2𝜋𝑓𝐿𝑅22

𝑅22 + (2𝜋𝑓)2𝐿2
−

2𝜋𝑓𝐶𝑅32

1 + (2𝜋𝑓)2𝐶2𝑅32
             (3) 

The sensing mechanism of a Ti3C2Tx-based sensor is related to the absorption of the VOCs by both 

defects and functional groups. Some VOCs are bonded on the structural defects of the Ti3C2Tx nanosheets, 

and some are bonded and interacted with surface functional groups such as -O and –OH [8]. On the other 

hand, intercalation of molecules from gas phase into MXene interlayers can increase the layer spacing of 

MXene, and will play a crucial role in determining the response of VOC sensing [21]. Various effects lead 

to the change of properties of the sensor which correspond to different components in the equivalent circuit 
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model. The proportions of various effects caused by different VOCs are quite different, and each VOC has 

an effect of specific proportion on multiple components in the equivalent circuit model [5, 43]. The 

impedance value obtained at each frequency is determined by all the components in the equivalent circuit 

model and the influences of changes of every component on impedances (R(f) and X(f)) are affected by 

frequency, which is shown clearly in Eqs. (2) and (3). As long as the influences of two VOCs on each 

component are not the same, the changes of impedance spectra will be different. Based on these different 

changes, VOC fingerprints can be generated using the multi-parameters sensing responses based on the 

results of broadband impedance spectra. Figure S7 shows a block diagram of the sensing mechanism of 

the VSA. Several hypothetical examples are shown in Table S1.  

3.4 Dimensionality reduction of raw data and unsupervised classification of VOCs. 

We performed the PCA to discriminate the VOCs with the similar responses and determine the 

dimensions of the resulting data set of multi-parameters sensing responses. The responses of the two 

groups VOCs (i.e., the oxygenated and non-oxygenated VOCs) were analyzed by PCA separately. By 

performing the PCA on these multi-parameters data, high contributions of the first three principle 

components (PCs) were achieved: i.e., 76.6%, 15.7% and 7.6% (oxygenated VOCs); 87.7%, 8.9% and 

3.2% (non-oxygenated VOCs), for PC1, PC2, PC3, respectively. This shows that the high data 

dimensionality can be obtained from the VSA on exposure to only four vapors.  

 

Figure 5. 3D plot of the first 3 principal components of oxygenated (a) and non-oxygenated (b) VOCs. 
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Figure 5 shows a 3D plot of the first 3 PCs keeping most of the information (accounting for a total 

of 99.8%). Each point corresponds to an entire fingerprint of a VOC at a specific concentration (consists 

of eight parameters) and is colored according to the VOC it represents. We project two types of overlapping 

VOCs in this view on the coordinate plane. Points belonged to different VOCs are well-separated in space, 

as can be seen in Figure 5, indicating that the sensor can differentiate the VOCs very well. Points belonged 

to same VOC but with the different concentrations (from 100 ppm to 800 ppm) are located approximately 

in one line. These results show that the VSA has a high data dimensionality and a potential to distinguish 

between different VOCs and quantify concentrations of individual vapors. 

3.5 Supervised gas identification. 

To quantitatively identify the types of various VOCs, LDA was carried out for oxygenated and non-

oxygenated VOCs, respectively. Figure 6a shows a 3D plot of LDA results of the oxygenated VOCs. Each 

point is colored according to the VOC type and a pentagram represents the center of mass of each points 

group. Results shown in Figure 6a clearly indicate that each VOC can be well determined. The LDA results 

of oxygenated VOCs are depicted in Figure 6b. LDA identification accuracies of 95.4% were achieved, 

corresponding to 1 misclassification out of 22 total samples. Cross-validation is an effective way to verify 

the obtained results, and leave-one-out cross validation (LOOCV) is often used as the validation algorithm 

[31]. The cross-validation results of oxygenated VOCs are depicted in Figure 6c, indicating a cross-

validation rate of 90.9% was achieved. 

Figure 6d shows a 3D plot of LDA results for all the non-oxygenated VOCs. Points belonged to 

different VOCs are separated in space, which confirms that the VSA can also discriminate non-oxygenated 

VOCs. The LDA results of the oxygenated VOCs are depicted in Figure 6e. Each sample was correctly 

identified indicating 100% accurate identification of the non-oxygenated VOCs. A correct cross-validation 

rate of 90.5% was achieved when using the LOOCV, as shown in Figure 6f.  

Finally, to provide a more stringent test of the VSA, the identification ability toward similar VOC 

mixtures has been investigated. We use the LDA to discriminate the mixtures of EtOH and acetone, EtOH 

and IPA, acetone and DCM, as well as acetone and MeCN. The concentrations of mixtures during the test 

are listed in Table S2. Figure 6g shows a 3D plot of LDA results of the VOCs mixtures. From different 

view angles, four kinds of VOC mixtures are well separated in a 3D feature space. A correct classification 

rate of 100% was achieved, as shown in Figure 6h. The cross-validation results of mixtures are depicted 

in Figure 6i, indicating a correct cross-validation rate of 90% has been achieved. These results demonstrate 
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that utilizing the Ti3C2Tx based VSA is a promising approach for identification of pure VOCs and similar 

complex mixtures. 

 

Figure 6. LDA results of different VOC groups. 3D plot of LDA results the oxygenated VOCs (a), non-oxygenated 

VOCs (d), and VOC mixtures (g). LDA results of oxygenated VOCs (b), non-oxygenated VOCs (e), and VOC mixtures 

(h). Cross-validation results of oxygenated VOCs (c), non-oxygenated VOCs (f), and VOC mixtures (i). 

3.6 Concentration prediction of a targeted VOC. 

The responses of the sensor to ethanol in a background of variable humidity levels and methanol 

concentrations are shown in Figure S8. We choose the impedance of the sensor in dry air as the zero point. 

MXenes also absorb water and methanol [20, 21]. Therefore, the MXene-based sensor has drifts when the 

concentration of ethanol is zero in the presence of water and methanol. When the ethanol concentration is 

low, the response of the sensor is approximately equal to the linear superposition of the response to water 

or methanol and the response to ethanol. When the ethanol concentration is relatively high, the response 

of the sensor is not a linear superposition. This is because the adsorption sites for ethanol are partially 
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occupied by water or methanol. Therefore, we cannot eliminate the influence of humidity or methanol, 

just simply detecting a single parameter (e.g., resistance or capacitance). 

We used the PLS to quantify concentrations of ethanol in a background of variable humidity levels 

and methanol concentrations. The number of latent variables (LVs) was selected to provide the minor 

prediction error without generating an overfitting [44]. Figure 7a reveals that 5 LVs is the most appropriate 

LV number for the modeling, based on the root of sum of squared error (SSE) as a function of LV number. 

Figure 7b presents a simple visualization of the quantitative prediction of ethanol vapors in the 

presence of variable backgrounds. The position of each point is given by its real concentration (x-axis) 

and predicted concentration (y-axis). Perfect predictions will lay on the diagonal (i.e., prediction matches 

the real gas concentration). All the VOC concentrations were predicted quite well, as all the points are 

close to the diagonal positions. The average accuracy is 93.4% and the root of sum of the squared errors 

is 83.9 using 5 LVs. 

A data set from a second measurement was then used to study the robustness of the determined model. 

Figure 7c presents a concentration prediction of second data set using the obtained PLS coefficients from 

the training set. All the VOC concentrations were predicted quite well, as shown in Figure 7c, 

demonstrating that the Ti3C2Tx based VSA is an excellent approach for individual VOC concentration 

prediction in a variable background. 

 

Figure 7. Ethanol concentration prediction by PLS. (a) The root of SSE varies with the number of LVs. (b) Ethanol 

concentration prediction in the presence of a variable background. (c) Concentration prediction of second data set. 

 

4. Conclusion 

In summary, we developed a Ti3C2Tx based VSA for selective VOC detection. The VSA was 

fabricated by depositing a thin film of Ti3C2Tx on the surface of an IDE. Eight representative parameters 

of the proposed VSA were selected as VOC characteristics and the multi-parameters sensing responses 

create a unique fingerprint for each VOC without temperature change. The VSA showed a high data 
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dimensionality in PCA. Correct rates of 90.9%, 90.5%, and 90% for the identification was achieved for 

oxygenated VOCs, oxygenated VOCs, and VOCs mixtures in LDA, respectively. The ethanol 

concentration estimation accuracy is ~93.4% based on the proposed VSA. The high level of identification 

and concentration prediction shows the potential of MXene based VSAs for detection of VOCs of interest 

in the presence of known and unknown interferences. We anticipate that the strategy to solve the cross-

sensitivity of gas sensors of this work could be easily adapted to other gas sensors and implemented in a 

range of emerging applications, including agriculture, pollution monitoring, food quality assurance, and 

medical diagnosis. 
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