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Abstract 

Knowledge of the thermophysical properties of CO2-hydrocarbon mixtures over extended 

ranges of temperature and pressure is crucial in the design and operation of many carbon 

capture and utilization processes. In this paper, we report saturated-phase densities, 

compressed-liquid densities and phase behaviour of CO2 + methylbenzene at temperatures 

between (283 and 473) K and at pressures up to 65 MPa over the full composition range. The 

saturated-phase densities were correlated by a recently-developed empirical equation with an 

absolute average relative deviation (AARD) of about 0.5 %. The compressed-fluid densities 

were also correlated using an empirical equation with an AARD of 0.3 %. The new data have 

been compared with the predictions of two equations of state: the predictive Peng-Robinson 

(PPR-78) equation of state and the SAFT- Mie equation of state. In both of these models, 

binary parameters are estimated using functional group contributions. Both models provided 

satisfactory representation of the vapour-liquid equilibrium and saturated-phase-density data, 

but the accuracy decreased in the prediction of the compressed-liquid densities where the 

AARD was about 2 %. The isothermal compressibility and isobaric expansivity are also 

reported here, and were predicted better with SAFT-γ Mie than with PPR-78.  Overall, the 

comparisons showed that SAFT-γ Mie performs somewhat better than PPR-78 but the results 

suggest that further refinement of the SAFT-γ Mie parameter table are required. 
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1. Introduction 

Carbon capture, utilisation and storage (CCUS) is a critical part of the energy mix technologies 

required to achieve the climate target adopted in the Paris agreement.1 CCUS is one of the 

main technology to reduce CO2 emissions from the combustion of fossil fuels in power 

generation and industrial processes such as steel, cement and chemicals production.2 In the 

energy sector, CCUS can also facilitate the use of hydrogen from fossil fuels for heating, 

transport and power generation, as a new low-carbon pathway.3 Furthermore, bioenergy with 

carbon capture and storage (BECCS) can contribute with net-negative emissions.4 According 

to the IEA’s World Energy Outlook 2018 report, the deployment of CCUS will not only 

significantly reduce the risk of not meeting the climate goal but will also minimise the cost of 

achieving the required emission reduction before 2100.5  

At commercial scale, CO2 can be utilised in enhanced oil recovery (EOR) with simultaneous 

CO2 storage. Currently, 90% of the 31 Mt of CO2 emissions captured and stored globally each 

year is for CO2 EOR, mainly in the United States.6 Recently, CO2 injection to enhance shale 

oil/gas recovery has been explored.7 In this process, CO2 is injected into a hydrocarbon 

reservoir, raising the pressure and dissolving into the resident crude oil thereby lowering its 

viscosity and mobilising flow to the production wells. Depending upon the reservoir structure, 

a substantial amount of the injected CO2 may be stored permanently, while CO2 separated 

from the produced oil may be re-circulated.8  The performance, economy and safety of CO2 

EOR strongly depend on the phase behaviour and thermophysical properties under the 

prevailing high-temperature and high-pressure conditions in which the CO2 contacts the oil. 

The latter is of course composed of a very large number of different hydrocarbons. The density 

and phase behaviour of these systems strongly influence the quantity of CO2 that can be 

sequestrated in a hydrocarbon reservoir. Furthermore, the reservoir fluid-flow model and the 

calculation of CO2 oil swelling relies on saturated-phase and compressed-fluid densities.9 

Additional, such data are very important in the design of downstream processing and in 

numerous other industrial processes including supercritical-fluid extraction.10  

Numerous thermodynamic models are available to calculate properties of carbon dioxide- 

hydrocarbon mixtures.  Among of them, cubic equations states (CEOS), such as the Peng-

Robinson11 and Soave-Redlich-Kwong equations,12 are widely used in petroleum and 

chemical engineering applications. Traditional CEOS contain binary parameters that must be 

optimized against experimental data for each binary sub-system. Although, in many cases, 

CEOS can describe phase equilibria quite accurately, they are often quite inaccurate for 

density and derivative properties such as heat capacity and sound speed. In contrast, multi-

fluid Helmholtz Equations of State (MFHEOS), especially the GERG-2008 EOS of Kunz and 
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Wagner, are able to represent accurately phase-equilibria, density and derivative properties 

provided that the model is fully parameterised against extensive experimental data.13, 14 The 

GERG-2008 model was developed for natural gas and similar mixtures containing up to 21 

components, including CO2, normal alkanes up to C10 and several other components. 

Therefore, the capabilities of this model to describe the properties for CO2-hydrocarbons 

systems are of interest.15-17 Recently, we have measured phase behaviour, compress- fluid 

densities and saturated-phase densities for the binary system (CO2 + n-heptane) at 

temperature from (283 to 473 K) with pressure up to 68 MPa. We compared the experimental 

data with the predictions of the GERG-2008 model and found that it predicts the vapour-liquid 

equilibrium (VLE), the saturated-phase and compressed-fluid densities no better than the 

SAFT and Peng-Robison models.18 The (CO2 + decane) system has been studied by Kandil 

et al.19 These authors reported that the GERG equation predicted densities within about 1%; 

however, they found the CEOS were superior for the prediction of the bubble pressures. 

Models such as the Peng-Robinson or GERG-2008 equations of state require significant 

amount of experimental data, at representative temperatures and pressures, to determinate 

the full set of binary parameters required in a multi-component mixture, such as CO2 + oil. For 

that reason, more predictive approaches have been investigated. Jaubert and co-workers 

proposed the predictive Peng-Robinson equation (PPR-78)20 and also a predictive version of 

the Soave-Relich-Kwong equation (PSRK)21. These predictive methods use a group 

contribution approach in which the temperature-dependent binary interaction parameter is 

calculated on the basis of the functional groups into which each molecule can de decomposed. 

Jaubert and co-workers initially published the PPR-78 with 6 functional groups;20 this was soon 

expanded to 21 groups, including CO2
22 and aromatic groups,23 and the most recent version 

includes a total of 40 functional groups and individual molecules.24 The reliability of this EoS 

has been tested in comparison with phase behaviour and densities of multicomponent 

mixtures for CO2 and hydrocarbons.25, 26  In recent years, group-contribution versions of the 

Statistical Associating Fluid Theory (SAFT) have been developed. For example, in the SAFT-

γ Mie equation of state the Mie potential (generalised Lennard-Jonesium) is used to represent 

interactions between functional groups that represent the molecules. The thermodynamic 

properties of numerous systems have been successfully predicted by SAFT-γ Mie.27, 28 

However, little experimental data are available to allow tests of PPR-78 and SAFT-γ Mie for 

mixtures containing CO2 and hydrocarbons over substantial ranges of temperature and 

pressure. In this context, we have initiated a program to study the phase behaviour, saturated-

phase and compressed-fluid densities of binary mixtures containing CO2 and hydrocarbons, 

including new experimental measurements over extended ranges of pressure and 

temperature. The objective of this program is to permit testing of these thermodynamic 
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models, and potentially their optimisation, in an extensive range of condition. In previous work, 

we have reported the phase behaviour and both compressed-fluid and saturated-phase 

densities for the binary system (CO2 + n-heptane) at temperatures from 283 K to  473 K and 

pressures up to 68 MPa.18 In this paper, we report new phase behaviour and density 

measurements of (CO2 + methylbenzene) systems from (283 to 473) K and pressures up to 

65 MPa. Methylbenzene was selected as a representative of the aromatic hydrocarbons 

present in crude oil. Most studies in the literature relate to binary systems of (CO2 + alkanes), 

and far fewer data exist for (CO2 + aromatics). The phase equilibria for the (CO2 + 

methylbenzene) system have been reported by several authors at temperatures from (283 to 

572) K and pressures from (10 to 70) MPa.29-41 However, density data for this binary system 

are lacking in the literature. To our knowledge, there are only two sets of compressed fluid 

density data available: the study of Pohler and Kiran, for mixtures containing (75 to 95) mol % 

CO2 at temperatures from (323 to 423) K and pressures from (10 to 70) MPa;42 and the study 

of Wu et al., for 90 mol % CO2 at temperatures from (313 to 393.2) K and pressures from (4.19 

to 43) MPa.43 Saturated-liquid densities have been reported by Chang et al. at temperatures 

from (290.8 to 310.1) K and pressures up to 12.43 MPa32 and by Zirrahi et al. at temperatures 

from (298.15 to 363.15) K and pressures up to 5.1 MPa.44  Therefore, the present work 

significantly extends the experimental range of density data for the (CO2 + methylbenzene) 

system to include high-temperature and high-pressure states relevant to CO2-EOR. The 

measurements were made out in specialised apparatus and are supported by a detailed 

assessment of uncertainty.45-48 The new experimental data are compared with predictions from 

the SAFT-γ Mie and PPR-78 equations of state. The data could also be used to optimise 

binary interaction parameters in either traditional CEOS or the MFHEOS for CO2 + 

hydrocarbon system. 

 

2. Materials and Methods 

2.1 Materials 

Pure deionized water (electrical resistivity > 18 MΩ∙cm at T = 298.15 K) was obtained from a 

Millipore purification apparatus and was used for calibration purposes.  Carbon dioxide and 

helium were sources from BOC with mole-fraction purities ≥ 0.99995 and ≥ 0.99999, 

respectively. HPLC grade of methylbenzene was supplied by Sigma-Aldrich with a mole 

fraction purity greater than 0.999. No analysis or further purification was attempted except that 

methylbenzene and water were degassed under vacuum with stirring immediately prior to use. 
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2.2 Phase Behaviour Measurement Apparatus 

The phase behaviour of CO2 + methylbenzene was measured with the VLE apparatus detailed 

previously by Al Ghafri et al.;28 therefore, only a summary is given here. The apparatus 

consisted of a variable-volume cell, high-pressure syringe pumps, servo-control system, and 

a heating system. The cell was equipped with a movable piston, to permit variation of the 

volume, and a sapphire window for visual observation of the sample. A servomotor was used 

to drive the piston with a control system to allow simple operation of the apparatus via a host 

PC. A pair of high-pressure syringe pumps was used for quantitative injections of the two pure 

substances into the cell. A calibrated flow-through pressure transducer (DJ Instruments, 

model DF2) with an internal volume of only 12 μL was used to measure the pressure. The 

temperature of the cell was measured with a calibrated 4-wire Pt100 sensor which was 

inserted into a blind axial hole in the cell wall. The equilibrium cell was surrounded by an 

aluminium heating jacket, approximately 10 mm thick, fitted with heaters and an additional 

Pt100 thermometer to facilitate temperature control. Operating with a PID controller, the cell 

temperature was maintained constant to within ±0.01 K. Except for the operation of injecting 

fluids, the operation of the apparatus was fully automated. The apparatus was rated for 

operation at pressures up to 40 MPa  and at temperatures up to 423.15 K. 

The measurements were performed using the synthetic-visual method. Initially, a measured 

amount of methylbenzene was injected into the previously evacuated cell. Next CO2 was 

injected into the cell in steps. After each injection, the composition of the fluid in the cell was 

calculated from the cumulative amounts of the two pure substances injected from the pumps, 

after allowance for the amounts held up in the interconnecting tubing. The pressure was then 

adjusted by moving the piston until a single homogenous phase was obtained and the contents 

were allowed to equilibrate with stirring. The time required to reach equilibrium was typically 

about one hour under continuous stirring. Starting from the homogeneous state, the pressure 

was decreased stepwise, with further periods for equilibration until a bubble- or dew-point was 

observed. Typically, CO2 was then added to change the composition and a new measurement 

was started. The whole procedure was repeated at different temperatures to build up the 

isotherms. On each isotherm, the critical pressure and composition were identified by fitting 

the near critical data as detailed in the Supporting Information. The experimental procedure 

has been described in greater detail previously.26 

2.3 Saturated-Phase Density Measurement 

The saturated liquid-phase and vapour-phase densities were measured using an experimental 

apparatus comprising an equilibrium cell, two vibrating-tube densimeters (VTD, Anton Paar, 

DMA-1400), and two automated syringe pumps. A detailed description of the equipment can 
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be found in our earlier papers.18, 45 The VTDs (one for each phase) were connected to the top 

and bottom ports of the equilibrium cell. Temperature control was achieved by placing the 

equilibrium cell and the two VTDs in an oven. Each densimeter was connected to a syringe 

pump (SP) via a 6 mL coiled tube. The pressure was measured by means of calibrated 

transducers (Sensata Technology, model 101HP2) connected to each pump. The 

temperatures of the two VTDs and the equilibrium cell were each measured with a Pt100 

thermometer. The apparatus supported working pressures up to 70 MPa and temperatures up 

to 473.15 K. 

Prior to the measurements, the apparatus was evacuated and flushed repeatedly with CO2. 

Then, half of the cell volume was filled with methylbenzene injected from the bottom pump. 

Next, CO2 was injected from the top pump to achieve a target pressure and the mixture was 

stirred until equilibrium was achieved. To initiate a measurement, a saturated-liquid sample 

was first drawn from the bottom of the equilibrium cell into the bottom VTD. This was 

accomplished by slowly retracting the bottom syringe pump, while maintaining the system 

pressure constant by action of the top pump (operating in pressure-control mode). When about 

4 mL of liquid had been transferred, the lower syringe pump was halted and the oscillation 

period of the lower VTD, pressure and temperature were averaged over a period of about 

3 min. The criterion adopted for accepting a measurement was that the standard deviation of 

the period was less than 0.01 μs. A similar procedure was adopted to measure the vapour-

phase density: after re-mixing the cell contents, about 4 mL of vapour phase was transferred 

into the top VTD at constant pressure. Once the density of both phases had been measured, 

additional CO2 was injected to increase the pressure and a new measurement was started. 

After completing an isotherm, the pressure was reduced to the minimum by venting the 

components. In previous work for the CO2 + n-heptane system18, the reproducibility of the 

saturated phase densities was tested by re-measuring a data at T = 323 K. Following a similar 

procedure for the CO2 + methylbenzene system, we estimated that the reproducibility of our 

measurements is 1 kg m-3. 

2.4 Compressed-Fluid Density Measurement 

Compressed-liquid density measurements were carried out with the experimental set-up 

described previously.18, 47 The experimental set-up consisted of a vibrating-tube densimeter 

(Anton-Paar, DMA HP), a manual syringe pump (DH Budenburg), temperature and pressure 

sensors and a variable-volume cell. The temperature was controlled and measured by the 

thermostat and temperature sensors built into the DMA HP with an associated uncertainty of 

0.01 K. The period of oscillation of the vibrating-tube was measured with a resolution of 

0.001 μs. The syringe pump allowed the sample pressure to be adjusted. The pressure was 
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measured with a relative uncertainty of 0.05 % using a pressure transducer (Keller model 33 

X) installed in the connecting tubing. 

The binary mixtures of CO2 + methylbenzene at four compositions were prepared 

gravimetrically in a variable-volume cell. This cell contained a piston which segregated the 

vessel into sample- and pneumatic-fluid compartments. A magnetic stirrer bar was placed in 

the sample side to agitate the mixture. Before sample preparation, the variable-volume cell 

was rinsed with solvent and dried under vacuum. Liquid methylbenzene was then transferred 

to the cell from an HPLC pump operating in dispensing mode (Knauer, Smartline S1000) and  

CO2 was added from a supply cylinder fitted with a dip tube that permitted withdrawal of liquid. 

During this second transfer, the mass of the cell and its contents were monitored on a large-

capacity balance which allowed the amount of CO2 to be approximately controlled. The precise 

mass of each component was determined by weighing the cell, before and after each addition, 

on an analytical balance (Mettler Toledo, model PR5003) with 5 kg capacity and 0.001 g 

resolution. The resulting standard uncertainty of the mole fraction of CO2 was estimated to be 

≤ 10-5. Following preparation of the mixture, the pressure was increased to above the bubble 

point, by admitting nitrogen into the pneumatic compartment, and stirred for approximately 2 

hours.  

The entire densimeter and other parts of the fluid system were flushed with solvents, purged 

with gas and finally  evacuated for drying. The homogenised mixture was then injected into 

the densimeter apparatus while maintaining the pressure in the variable-volume cell constant 

with nitrogen. Once the pressure in the densimeter apparatus was equalised with the variable-

volume cell, a few mL of sample was slowly discharged at constant pressure to ensure that 

any inhomogenous mixture, resulting from flashing at the initial low pressure, was expelled 

from the densimeter tube. Finally, the densimeter was isolated from the variable-volume cell 

and the measurements started with further adjustments of pressure being accomplished using 

the manual syringe pump. Densities of binary mixtures of methylbenzene and carbon dioxide 

were measured from just above the bubble pressure to 68 MPa and at temperatures from 

(298.15 to 473.15) K in intervals of 25 K. The temperature T = 283.15 K was also studied. An 

additional measurement at the initial pressure on each isotherm was made as a test of 

repeatability; no significant differences from the initial density measurement were in fact 

observed. 

2.5 Calibration and uncertainty 

The density, ρ, related to the period of oscillation, τ, in a vibrating-tube densimeter is given by 

the relation:  
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2( , ) ( , ) ( , )ρ T p AT p B T p τ= −  , (1) 

where A and B are calibration parameters determined by measurements with fluids of known 

densities. The calibration of the densimeters in the saturated-phase density apparatus, was 

performed under vacuum at each experimental temperature and in methylbenzene over the 

entire temperature and pressure range. The density of methybenzene was calculated from the 

equation of state of Lemmon and Span49, which has an uncertainty of 0.05 %. A and B were 

represented as functions of temperature and pressure using expressions based on the 

physical properties of the vibrating-tube as detailed in an earlier paper.50, 51 The densimeter 

used for compressed-fluid density measurements was calibrated with vacuum, helium and 

water over the full temperature and pressure range of interest. The densities of helium and 

water were calculated from wide-range equations of state with uncertainties of between 0.0005 

% and 0.05%, depending upon the state point.52-54 In this case, A and B were represented by 

polynomial functions of pressure and temperature.18, 47  

The temperature sensors were calibrated over the temperature range (273 to 473) K on the 

ITS-90 using a triple-point-of-water cell and by comparison with a standard 25 Ω PRT 

immersed in a stirred oil bath. The pressure transducers were calibrated against a reference 

quartz-crystal pressure gauge (Fluke, model PPCH-G 70 M) with a relative uncertainty of 0.02 

% of the full-scale pressure (i.e. 14 kPa) as described previously.26, 45 

The overall standard uncertainty for the densities and phase equilibrium measurements was 

performed according to the Guide to the Expression of Uncertainties in Measurements 

(GUM).55 The overall expanded uncertainty for compressed-fluid densities and saturated-

phase densities was estimated to be ≤ 1 kg∙m-3 and ≤1.5 kg∙m−3, respectively, for all state 

points. The uncertainties calculated were based on the temperature and pressure control and 

the repeatability of the measurement. It has to be noted that measurements made close to the 

critical region were associated with a slightly higher uncertainty. The uncertainty of the bubble- 

and dew-pressures depends mainly on the visual observation of the bubble- or dew-point 

condition. Except close to a critical point, bubble points were observed easily with an 

uncertainty of less than 0.2 MPa. It was more difficult to observe dew points by means of 

isothermal volume changes and only a few points at high pressures were measured with 

expanded uncertainties of between 0.3 MPa and 0.4 MPa. These estimated uncertainties do 

not include errors associated with impurities originally present in the sample or with 

unexpected sample contamination. The uncertainty analyses have been reported in greater 

detail in our early papers.28, 45, 47 The calculated uncertainties, together with the experimental 

data are shown in Tables S1, S3, S4 in the Supporting Information.  
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3. Experimental results and discussion 

Phase equilibrium of the binary mixture of CO2 + methylbenzene was investigated at 

temperatures between (298 and 423) K and at pressures up to 18 MPa. The saturated-phase 

densities were measured at pressure up to the critical for temperatures ranging from (298 to 

448) K. The compressed-fluid densities were reported at pressures up to 68 MPa for 

temperature from (283 to 473) K. The densities of pure methylbenzene and CO2 were also 

measured in this work and are given in Table S4.  The results for pure CO2 and pure 

methylbenzene are compared in Figures S1 (CO2) and S2 (methylbenzene) in the Supporting 

Information with values calculated using multi-parameter reference equations of state.49, 56 For 

methylbenzene, the data agree to within the combined uncertainty of the experiment and the 

equation of state while, in the case of CO2, 90% of the experimental data fall within the 

combined uncertainty. These figures further validate the experimental procedure and the 

reported uncertainties for the case of compressed-fluid densities. 

3.1 Phase equilibrium 

Bubble and dew points were measured at temperatures of 298 K, 323 K, 373 K and 423 K and 

at pressures up to 18 MPa. The experimental data, given in Table S1 in the Supporting 

Information, are plotted in Figure 1. Also shown in Figure 1 are the data reported by Chang et 

al.,32 Lay et al.,35 Lay,40 Prausnitz and Benson,29 Fink and Hershey,38 Tochigi et al.,33 Kwon et 

al.,48 Lazzaroni et al.,30 Kim et al.,37 Wu et al.,41 and Sebastian et al.31 Good agreement is 

observed between the present results and most of these data from the literature. The critical 

points were also determined and the values of the critical pressure and composition are given 

in Table S2 in the Supporting information. The critical locus is plotted in Figure 2 in comparison 

with data from the literature.57 Again, good agreement is observed. Additionally, Figure 2 

shows the p, T projection of the critical curve obtained, using the numerical technique of 

Heidemann and Khalil,58 from the Peng-Robinson equation of state,11 and also the critical 

curve predicted by SAFT-γ Mie.27  CO2 + methylbenzene exhibits Type II phase behaviour 

according to the classification of Scott and van Konynenburg59, 60, with a continuous vapour-

liquid critical locus connecting the critical points of the two pure components, as well as a 

three-phase vapour-liquid-liquid equilibrium (VLLE) line at low temperatures terminating at an 

upper-critical end point located close to the critical point of CO2. In general, SAFT-γ Mie model 

described the critical curve relatively better than Peng-Robinson across the calculated 

temperature range.
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Figure 1. Vapour-liquid equilibrium for (1−x) C7H8+xCO2 system at several temperatures. The 
symbols represent experimental data obtained in this work and literature29, 31-35, 37, 40, 41. 
Prediction from PPR-78 EoS (dashed line) and SAFT-γ Mie (solid line). 
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Figure 2. Critical locus for C7H8 + CO2 system. The symbols represent experimental data 
obtained in this work and literature57. Dashed and solid lines are obtained with the method of 
Heidemann and Khalil 58 and the Peng–Robinson equation of state11 and SAFT-γ Mie 
equation, respectively
 

 

3.2 Saturated-phase densities 

Densities of saturated vapour and liquid phases were measured at seven temperatures, 

T = (298, 308, 323, 348, 373, 423 and 448) K, up to the critical pressures. The experimental 

data, given in Table S3 in the Supporting Information, are plotted in Figure 3.  The densities 

of pure methylbenzene and CO2 were also plotted in Figure 3. 

At the two lower temperatures investigated, the bubble-point densities have a positive initial 

slope with respect to pressure, pass through a maximum and then decrease smoothly towards 

the critical density. At higher temperatures, the bubble-point densities decreased 

monotonically with pressure along an isotherm. The dew-point densities increased 

monotonically with increasing the pressure along each isotherm towards the critical density. 

The experimental saturated-phase density data at temperatures of 298 K and 308 K are 

compared with those reported Chang et al.32 and Zirrahi et al.8 in Figure S4 in the Supporting 

Information. Good agreement can be observed. 
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Figure 3. Experimental saturated-phase densities (black circle) and compress-fluid densities 
(coloured circle), ρ, of ((1−x) C7H8+xCO2) system versus pressure p, at several temperatures. 
Black curve determined from Equation (4) with the parameters in Table S8. Coloured lines 
and black dashed lines are obtained using Equation (5) and parameters from Table S9. 
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3.3 Compressed-Fluid densities 

Compressed-fluid density measurement were carried out as a function of pressure along nine 

isotherms at T = (283, 298, 323, 348, 373, 398, 423, 448 and 473) K and at pressures up to 

65 MPa for nominal mole fractions of 0.2, 0.4, 0.6 and 0.8. The experimental densities together 

with the standard uncertainties are listed in Table S4 in the Supporting Information. In Figure 

3, experimental compress-fluid densities are plotted against pressure along isotherms. At 

these conditions, the mixtures are in either liquid or supercritical-fluid states. As expected, with 

fixed composition, the density increased with increasing pressures but decreased with 

increasing temperatures. A crossover effect in the mixture densities is observed with 

increasing CO2 mole fraction x, whereby (∂ρ/∂x)T,p changes from negative values at low 

pressures to positive values at high pressures. The crossover point is observed to shift 

towards higher pressures with increasing temperature, moving above the experimental 

pressure range at T ≥ 423.15 K. This crossover effect can be explained by the difference in 

compressibility between the pure components. The density crossover phenomena in CO2-

hydrocarbon mixtures was also observed in our earlier work with CO2 + n-heptane system.18 

However, in the CO2 + n-heptane system, the crossover effect occurred at temperature higher 

than 323 K. 

The density data reported here cover very large ranges of temperatures, pressure and 

composition and are characterised by small relative uncertainties on the order of 0.1 %. The 

only literature data with which to compare are those reported by Pohler and Kiran at 

temperatures between (323 and 423) K and at pressures up to 70 MPa.42 These 

measurements are restricted to mole fractions of CO2 between 0.74 and 0.94 and are 

characterized by relatively large uncertainties of up to 1.2 %. To facilitate comparison with our 

results at x = 0.8, we performed linear interpolations with respect to mole fraction and pressure 

in the data reported by Pohler and Kiran; the results are then compared in Figure S3 in the 

Supporting Information. We observe that the interpolated literature density data are generally 

higher than our results on every isotherm. The average absolute relative deviation, ΔAARD, 

between both sets of data is 1.8%. The compressed fluid density was also reported by Wu et 

al. at temperatures from (313 to 393.2) K and pressures from (4.19 to 43) MPa for x = 0.90.43 

Since their data were reported at different composition, pressure and temperature from our 

measurements, direct comparison was not performed. 
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Figure 4. Excess molar volume E

mV of ((1−x) C7H8+xCO2) versus the mole fraction, x, of CO2 at 

several temperatures and pressures. Curves are calculated using the Equation 3 and 
parameters in Table S5.
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3.4 Excess molar volume 

We calculated excess molar volumes ( E

mV )from the experimental compressed-fluid densities 

by means of the following equation: 

 E mix 1 2
m

mix 1 2

(1 )M xM x M
V

ρ ρ ρ

 −
= − + 

 
 . (2) 

Here, x is the CO2 mole fraction, M is the molar mass and ρ is the density; subscripts mix, 1 

and 2 denote properties of the mixture, carbon dioxide and methylbenzene, respectively. 

Figure 4 shows plots of E

mV  as a function of x on six isotherms. At low temperatures, E

mV displays 

a complex sigmoidal variation with composition, whereas for T ≥  348 K, E

mV is negative over 

the entire range of composition. At temperatures of 298.15 K and 283.15 K, E

mV   has negative 

values at pressures between 10 and 45 MPa over the full composition range whereas, at 

higher pressures, E

mV  presents positive and negative values depending upon composition 

(Figure S8 shows enlargements of the E

mV data at T =  298.15 K and T =  283.15 K). The 

negative values of E

mV observed at T =  298.15 K over most of the composition and pressure 

ranges indicate that CO2 molecules are able to insert themselves into the free volume between 

the methylbenzene molecules without greatly expanding the original volume occupied by the 

methylbenzene. This situation is reversed at high-density states, corresponding to high 

pressure and low CO2 mole fraction, where insertion of CO2 molecules requires a much-larger 

increase in the liquid volume. Generally, at T ≥ 348 E

mV  tends to increasingly negative values 

as temperature increases and pressure decreases. The turning points for E

mV  as a function of 

x at constant T and p generally occur in the composition range 0.6 ≤ x ≤ 0.8 and the most 

negative values of E

mV  are observed in regions where CO2 behaves as a gas-like fluid while 

the mixture is liquid. In contrast, for states in which pure CO2 is a liquid, the excess volumes 

showed moderate values. The densities of pure components in relation to the mixture densities 

are shown in Figure 3.  

The excess molar volumes have been correlated with Redlich-Kister polynomials in the 

following form:  

 
3

E

m
1

(1 ) (2 1)i

i
i

V x x A x
=

= − − . (3) 

Here, Ai are adjustable parameters which were fitted to the data at each temperature and 

pressure. These polynomials are plotted along with the experimental data in Figure 4 and a 

good fit is generally observed. The goodness of the fit is illustrated by the value of ΔAAD which 

is 0.2 cm3·mol-1 for all data points. The parameters Ai are given in Table S5 in the Supporting 

Information. 



16 

 

3.5 Further Analysis 

Both the saturated liquid-phase and vapour-phase densities were correlated isothermally 

using the following empirical correlation developed previously:55  

 

2 or 3

L V c c

1

2 or 3
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1
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2 ( ) ( )

i β

i

i

i β

i

i
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=

=


− = − + − 



+ = + − + −





 . (4) 

Here, ρL and ρV are the saturated liquid-phase and saturated vapour-phase densities, 

respectively, ρc is the critical density, pc is the critical pressure,  β = 0.325 is a universal critical 

exponent, and Ai, Bi, C and D are parameters. These parameters, together with the values of 

ρc and pc were adjusted to minimise the overall sum square of the deviations of the 

experimental data from the correlation using the Lenvenberg-Marquardt algorithm. At p = 0, 

ρL was set equal to the density of pure liquid methylbenzene at p →0, while  ρV was set to 0. 

The parameter values at each temperature and the corresponding absolute average deviation 

are listed in Table S8. Deviations plots of the experimental densities from the correlation are 

also plotted in Figure S5. The ΔAAD and ΔAARD were less than 2 kg·m-3 and 0.5 %, excluding 

data very close to the critical point. This correlation allows precise estimation of the critical 

pressure. The critical points obtained from the saturated phase density measurements are 

shown in Figure 2 and they were found to be in close agreement with previous data obtained 

by direct observation in this work and in the literature.57  

The compressed-fluid densities were fitted with the following implicit empirical function which 

relates pressure and density at constant temperature and composition: 

  
r( / )( )δp Aρ B δ ρ ρ= + −  . (5) 

Here, δ = 4.82 is a universal critical exponent and A, B and ρr are adjustable parameters which 

were obtained in a non-linear regression according to the Lenvenberg-Marquardt algorithm. 

The curves obtained with Eq. (5)  are plotted in Figure 3 and show good agreement with the 

experimental data. The fitting parameters and the values of ΔAAD and ΔAARD are given in Table 

S9 in the Supporting Information, while Figure S5 shows the deviations of the data from the 

fitting function. It was found that the empirical correlation represented the data with overall 

ΔAAD and ΔAARD values of about 0.05 MPa and 0.25%, respectively. 

 

Combining both sets of experimental density data, we were able to determine the bubble 

pressures for four compositions and six isotherm. The bubble pressures were found by 
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calculating the intersection point between the compressed fluid densities, with known 

composition, represented by Eq. (5), and the coexistence curve, represented by Eqs (4).  The 

bubble pressures so determined are shown in Figure 1 and are given in Table S10 in 

Supporting Information. As can be seen from figure, the bubble pressures determined in this 

way agreed with the bubble pressures observed in the VLE measurements to within 

± 0.2 MPa. This level of agreement is comparable to the uncertainty of the VLE data.  

 

4. Modelling 

The VLE data, and the densities of the compressed fluid and the saturated phases are 

compared with the predictions of two equations of state: PPR-78 and SAFT-γ Mie. Both 

equation of state are fully predictive and we did not fit any parameters to the experimental 

data.  

In the PPR-78 approach, the Peng-Robinson equation of state11 (PR EoS) is applied to a 

mixture of N components by use of the van der Waals mixing and combining rules for the 

attractive parameter a and the co-volume parameter b: 

 
1 1
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i j
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a k x x a a

b x b

= =

=


= − 
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where kij is a temperature-dependent binary interaction parameter conventionally fitted to 

binary VLE data. In the PPR-78 model proposed by Jaubert and co-workers.20, this binary 

interaction parameter is obtained according to the following group-contribution formula: 
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   (7) 

Here, Ng is the number of distinguishable functional groups in a given molecule, αik is the 

number of occurrences of group k in molecule i divided by the total number of groups in the 

molecule, and Akl and Bkl are group parameters. Jaubert and co-workers determined these 

parameters by fitting an extensive database of experimental VLE data. 20, 21, 23, 25. The phase 

equilibrium and thermodynamic-property calculations for the PPR-78 mode were carried out 

in the Aspen Properties software package.61  

We have also investigated the performance of the SAFT-γ Mie equation of state in comparison 

with our data.62 This is also a group-contribution approach wherein the each functional group 
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is represented by one or more fused heteronuclear segments that interact with a Mie potential. 

The Mie potential parameters, both like and unlike, have been estimated by regression against 

experimental data, mainly for pure substances. Typically, the set of experimental data used 

include vapour pressures, saturated liquid densities (from triple point temperature to 

approximately 90% of the experimental critical temperature) and compressed-liquid densities 

(high-pressure region). In cases, such as CO2, where the molecule is represented as a single 

group, unlike interaction parameters are obtained from binary VLE and density data. In the 

present case, the functional groups are aCH, aCCH3 and CO2 (‘a’ denotes an aromatic group). 

The like parameters that characterized these groups were all obtained by Papaioannou et 

al.,27 while the unlike parameters have been recently optimised by Al Ghafri et al.,28 

Papaioannou et al.27 and Dufal et al.63 Table S12 and S13 in Supporting Information list the 

values of the parameters used for the individual groups. The computations for SAFT-γ Mie 

were carried out in gPROMS© software.64

 
Figure 5. Saturated phase densities, ρ, of ((1−x) C7H8+xCO2) versus pressure, p, at seven 
temperatures. Symbols represent the experimental values, and dash lines and solid lines the 
predictions from PPR-78 EoS and SAFT-γ Mie, respectively.
 

Figure 1 compares the PPR-78 and SAFT-γ Mie predictions for the bubble and dew curves 

with the experimental data. It can be seen that, while PPR-78 provides a reasonable 

description of the phase envelope, SAFT-γ Mie is clearly superior, especially in the critical 

region. As shown in more detail in Figure 2, both models over-predict the critical pressure but 

SAFT-γ Mie is generally closer to the experimental data. The saturated-phase densities 
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obtained from the PPR-78 and SAFT-γ Mie models are compared with our results in Figure 5. 

SAFT-γ Mie predicts the saturated-vapour and saturated-liquid densities well, except in critical 

region, where the over-prediction of the critical pressure leads to large deviations in density. 

The dew curve calculated with the PPR-78 model is mostly in good agreement with the 

experimental data, but the saturated-liquid densities are under-predicted and there are large 

deviations in the critical region. This result is not surprising as cubic equations are known to 

provide poor accuracy for liquid densities and the predicted critical locus is substantially in 

error. It can be concluded from these comparisons that SAFT-γ Mie generally performs better 

than PPR-78 in the prediction of saturation properties but that neither model is accurate in the 

critical region. 

Figure 6 compares the experimental compressed-fluid densities with values calculated from 

PPR-78 and SAFT-γ Mie and Figure S7 in the Supporting Information shows the 

corresponding deviation plots. The PPR-78 EoS generally over-predicts the density on most 

isotherms but it can be noticed that the predictions improve with increasing CO2 mole fraction 

and decreasing pressure. In contrast, SAFT-γ Mie EoS generally under-predicts the density 

on most isotherms but is generally much more accurate except at high temperatures and high 

mole fractions of CO2. The ΔAARD between the experimental data and the predictions of PPR-

78 and SAFT-γ Mie are 1.7 % and 1.4 %  over the entire measurement range.  
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Figure 6. Compress-fluid densities ρ of ((1−x) C7H8+xCO2) system versus pressure p at 
several temperatures and mole fractions of CO2. Symbols represent the experimental values, 
and dash lines and solid lines the predictions from PPR-78 EoS and SAFT-γ Mie, respectively.
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The isothermal compressibility, κT and the isobaric expansivity, αp, were calculated by 

numerical differentiation of ln(ρ) with respect to pressure and temperature, respectively. The 

results also reported in Tables S5 and S6 in the Supporting Information. Figures 7 and 8 

compare the experimentally-derived κT and αp with values calculated from PPR-78 and SAFT-

γ Mie. Figure 7 shows that the compressibility predictions of SAFT-γ Mie (ΔAARD = 3 %) are 

notably better than those of PPR-78 (ΔAARD = 19 %). Figure 8 shows that PPR-78 model 

performs very poorly for the isobaric expansivities with ΔAARD = 13 % compared with 7 % for 

SAFT-γ Mie. The performance of SAFT-γ Mie with respect to the derivative properties κT and 

αp is impressively good and notably better than in the case of the (CO2 + n-heptane) mixture 

considered in our earlier work.18 

Overall, SAFT-γ Mie performs very well in the prediction of VLE, density and derivative 

properties. It’s shortcomings in relation to VLE are mostly a consequence of over-prediction 

of the critical pressure. SAFT-γ Mie also fails to follow the experimental densities of pure CO2 

at high pressures and temperatures and this situation could probably be improved by re-fitting 

the parameters taking into account more high-temperature compressed-fluid density data. 

Furthermore, as discussed by Al Ghafri et al.,28 the unlike group parameters for CO2-aCH and 

CO2-aCCH3 were optimised against experimental VLE data only for the (CO2 + benzene) and 

(CO2 + methylbenzene) systems. It seems that the model with optimized parameters is not 

able to predict density as accurate as the VLE data, especially for the compressed-fluid 

density. The data reported in the present work could be used to address this issue.  

The density predictions of cubic equation of state, such as PPR-78, can be improved at sub-

critical temperatures by means of the volume translation method proposed by Peneloux et 

al.65 In this context, Privat et al. have studied the effect of the volume translation on mixture 

properties and they found that by using a linear mixing rule for the volume translation it was 

possible to predict the liquid densities, phase equilibrium and mixing properties 

simultaneous.66 However, in the present case most of the data considered are at temperatures 

above the critical temperature of CO2 and these methods do not work well. On the other hand, 

different mixing rules can be adopted for a better representation of the critical behaviour in 

binary mixtures. In particular, for CO2 mixtures, Lasala et al. have studied the combination of 

the PR equation with residual Helmholtz energy-based mixing rules.67 They show that this 

EOS is a reliable approach to calculate the vapour-liquid equilibria of binary mixtures 

containing CO2. The authors suggest that this model could be used to represent the 

thermodynamic properties of multicomponent mixtures in CO2 capture processes. Therefore, 

the new data reported herein might be used in the optimisation of CO2-methylbenzene binary 

parameters in the model presented by Lasala el al. and extend the equation to (CO2 + 

hydrocarbons systems).  
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Figure 7. Isothermal compressibilities, κT of (1 - x) C7H8+x CO2 versus pressure, p, at several 
temperatures and mole fractions of CO2. Symbols represent the experimental values, and 
dash lines and solid lines the predictions from PPR-78 EoS and SAFT-γ Mie, respectively. 
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Figure 8. Isobaric expansivities, T of (1 - x) C7H8+x CO2 versus temperature, T, at several 
pressures and mole fractions of CO2. Symbols represent the experimental values, and dash 
lines and solid lines the predictions from PPR-78 EoS and SAFT-γ Mie, respectively 
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Conclusion 

In this paper, we report saturated-phase density, compressed-fluid density and VLE data 

measured over exceptionally-wide ranges of pressure and temperature and across the entire 

composition range. The estimated standard uncertainty for all density measurements is less 

than 1.5 kg·m-3 throughout the experimental conditions, except for a few points in the critical 

region. For direct bubble-point measurements, the standard uncertainty was estimated to be 

0.1 MPa for most points and less than 0.2 MPa for the critical region. From the data, we have 

derived excess molar volume, isothermal compressibility and isobaric expansivity. Empirical 

equations generally represent these data very well and allow useful interpolation and modest 

extrapolation, including the indirect determination of the bubble-point pressure and density at 

given temperature and composition. 

This comprehensive data set is used to test the performance of two purely-predictive 

thermodynamic models: PPR-78 and SAFT-γ Mie. These comparisons show generally 

impressive performance by SAFT-γ Mie in respect of all properties considered, with the main 

weaknesses being over-prediction of the critical-pressure locus and deviations in the 

prediction of CO2 and CO2-rich mixture densities at high temperatures and pressures.  

The properties of the (CO2 + methylbenzene) mixture studied in this work are found to be quite 

similar to those of the (CO2 + n-heptane) system considered previously.18 However, the 

present system is characterised by somewhat higher critical pressures, higher densities for 

both saturated liquid and compressed liquid, and lower compressibility. It also shows more 

complex non-ideal mixing behaviour at low temperatures, as evidenced by the sigmodal 

dependence on composition. The phase behaviour of both binary mixtures is generally 

described well by the two predictive models, except in the critical region. Overall, the two 

models perform in a similar way for density but SAFT-γ Mie is found to be clearly superior for 

the isothermal compressibility and isobaric expansivity, especially for the (CO2 + 

methylbenzene) system. We believe that there is scope for re-parameterising the SAFT-γ Mie 

model to better represent properties of CO2-hydrocarbon systems, especially at conditions of 

high pressure and high temperature. In contrast, PPR-78 generally performs quite poorly, 

expect perhaps for VLE, and there appears to be little that can be done to improve it. 
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