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Abstract 

In this thesis, Stimulated Brillouin Scattering (SBS) in optical fiber is exploited as a very 

powerful optical signal processor to synthesize, distortion removing and amplification of ultra-

high frequency high bandwidth Radio Frequency (RF) signal in optical domain. Future radar 

and wireless communication systems are facing significant increase in bandwidth as well as 

RF signal, they operate, shifting from microwave to millimetre waves (>30 GHz).  The high 

bandwidth demands have raised significant challenges to synthesize and process high 

bandwidth and ultra- high frequency RF signal using conventional electronics systems with 

limited bandwidth. 

Optical domain offers 100 GHz of bandwidth with hundreds of THz of optical frequencies and 

intrinsic immune to electromagnetic noise and interference.  As a result, processing ultra-high 

frequency and high bandwidth RF signals in optical domain is the demand for future radar and 

wireless communication systems. Microwave Photonics (MWP) emerged as a solution to the 

problems faced by conventional electronics systems to process high bandwidth RF signal. 

MWP being such an advantageous also possesses some limitation such as the requirement of 

MWP signal processor which is pure optical.  Unlike electronic domain, optical domain has no 

memory and no commercially available microprocessors. Hence, processing high bandwidth 

RF signal requires an optical signal processor.  

Interestingly, optical fiber can be used as very powerful microwave photonics signal processor. 

Stimulated Brillouin Scattering (SBS), which is an intrinsic third order nonlinear phenomenon 

in an optical fiber can be exploited as a very powerful optical signal processor to process ultra-

high frequency RF signal in optical domain. SBS has been thought to be problematic in 
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telecommunication as it limits maximum optical transmitting power.  However, SBS can be 

utilized as a very powerful optical domain signal processor to perform high bandwidth RF 

signal processing tasks which are not possible to perform in pure electronic domain. As a result, 

optical fiber performs as a RF photonics link but simultaneously process high bandwidth RF 

signal in real time on the fly while RF signal propagates through the fiber.     

In this thesis, chapter 2 provides in depth theoretical, simulation, experimental and application 

of SBS in MWP. Three novel microwave photonic signal processing methods are proposed 

using SBS as an optical signal processor and presented in chapter 4, 5 and 6. In chapter 4, high 

frequency RF signal at 10.8 GHz is synthesized by beating SBS stokes with optical carrier to 

realize all optical microwave photonic mixer. In chapter 5, a novel distortion removal method 

from an optical signal using SBS is proposed where SBS is exploited as high Q optical notch 

filter to selectively remove distortion from MWP signal. A patent (GB2567646) has been 

granted based on this work.  In chapter 6, a novel Brillouin selective sideband amplifier is 

proposed using SBS to selectively amplify modulated sideband of an MWP signal to achieve 

better SNR. Finally, chapter 7, concludes the thesis with future works.  
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Chapter 1 

 Introduction to Microwave Photonics 

 

1.1 RF and Microwave Frequency 

 

The existence of Electromagnetic (EM) wave was theoretically predicted by Maxwell in 1864 

[1][2] [3]. After the prediction of Maxwell, it took about a century to figure out how to generate 

and detect EM waves to an extent that has revolutionized our technological civilization. EM 

wave is fascinating, it can propagate through space without any medium at the speed of light. 

The spectrum of EM waves has frequencies up to 1024 Hz.  Radio waves, Infrared light, 

ultraviolet light, X-rays, and gamma rays are also example of EM waves; like radio waves they 

were unknown at the time of Maxwell’s equations were discovered [4]. EM waves are assigned 

a name and spectrum based on their frequency and applications as shown in Figure 1.1  [5].  

 

 
Figure 1.1 The electromagnetic spectrum is comprised of Radio and Optical Spectrum [5] 
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The portion of EM wave named radio wave due to its usage in radio (wireless, satellite and 

RADAR) communications and its spectrum ranges from (3 KHz – 300 GHz) called Radio 

Frequency (RF) spectrum as shown in Figure 1.2. The term microwave frequencies also fall 

within the radio waves spectrum, frequencies range between 30 MHz and 300 GHz [6], so radio 

waves with these frequencies are called microwaves. The assigned RF bands (including UWB 

frequency) for different communication and sensing are shown in Figure 1.2.  

 
Figure 1.2 The assigned RF spectrum band for different communication services [7] [17]. 

 

 

1.2 Microwave Systems & Bandwidth Limitation 

 

Early generation of wireless systems have operated at a few GHz of RF signal [8]. The demands 

on great capacity and large instantaneous bandwidth have driven RF and microwave systems 

to operate at higher carrier frequency with wider signal bandwidth. We have witnessed 

phenomenal growth in wireless communications in order to support increasingly mobile and 

internet data.  Recently, (RAdio Detection And Ranging)  RADAR is extending up to 40 GHz 

for lowering the probability of being intercepted [9].  As a result, this is pushing the boundaries 

of current electronic-based technologies.  
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Radio  Frequency (RF) and microwave frequency systems are facing significant increase in 

bandwidth as well as the radio RF frequency they operate, shifting from microwave to 

millimetre waves (>30 GHz) for certain applications [10]. Despite microwave spectrum has 

been assigned huge frequency range of 30 MHz – 300 GHz, electronic based conventional 

microwave systems are limited to operate on few GHz bandwidth. This is because at very high 

frequencies, conventional electronics signal processing circuitry performs poorly. Transistors 

amplification is saturated, capacitor and inductor start to interfere with high frequency RF 

signal. Furthermore, conventional electronic circuit-based systems operate on very limited 

instantaneous bandwidth. This raised significant challenges to process and transferring future 

high bandwidth and ultra-high frequency RF signal using conventional electronic circuitry 

based systems and coaxial cable as transmission medium [11].  At the heart of all wireless and 

radar systems are numerous electronics devices which perform various microwave signal 

processing tasks which are mainly done digitally and requires the input analogue signal 

converted into digital form.  The analogue to digital conversion is performed by electronic 

analogue-to-digital converter (ADC).  The ADC is limited by sampling rate and resolution and 

unable to handle microwave frequency beyond a few GHz [12] . Such a wide band microwave 

signals are currently used in numerous application, such as radar, and become increasingly 

important in 5G network and beyond [13] [14]. Microwave receiver systems can be divided 

into two categories: wide band and narrow band.  Wide-band receivers cover approximately 1 

GHz instantaneous bandwidth are usually used to intercept radar pulses and often referred to 

as electronic warfare (EW) receivers. Narrow-band receivers covers up to 50 – 100 MHz 

instantaneous bandwidth (IBW).  IBW is the bandwidth which a device can continuously 

acquire to extract messages from a received signal [15].  Typical (EW) microwave receiver 

requires wide IBW of operation (at least 0.5 GHz to 18 GHz, and recently extending to 40 

GHz), high resolution, and near real time response.  A microwave receiver, however, usually 
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operates in a very narrow frequency band from 50MHz to 1 GHz [9]. This is due to current 

state-of-the-art microwave receivers’ dynamic range and sensitivity dependency on IBW as 

shown in Figure 1.3. The dynamic range is the measurement of a receiver’s ability to process 

a range of input powers from the antenna. If the signal is too weak, it cannot be picked up from 

the noise, whereas too large power signal saturate the receiver causing spur and harmonics 

[16].   

 

 

 

 

 

 

 

 

 

 

The black dashes line in Figure 1.3, shows the relationship between bandwidth and Spurious 

Free Dynamic Rang (SFDR) for a receiver with normalised SFDR = 110 dB. Hz 2/3.    As it is 

shown in Figure 1.3, that the bandwidth and the noise figure influence the receiver’s sensitivity 

as well as SFDR [17]. Among many figures of merit, one of these very important figures of 

merit is IBW. Achieving wide IBW is complex tasks using current state-of -the-art electronic 

 

Figure 1.3 SFDR and receiver sensitivity as a function of 

bandwidth for a typical RF receiver, assuming SNR 

requirement of 5 dB, noise figure of 5 dB, and SFDR of 110 

dB in a 1 HZ band [17]. 



22 | P a g e  

 

microwave receivers as increasing IBW limits the dynamic range of the microwave systems as 

shown in Figure 1.3. 

The black dashes line in Figure 1.3 also shows that at 110 dB. Hz 2/3 is representative of the 

SFDR of the state-of-the-art electronic receiver. The solid red line in the Figure 1.3, denotes 

the sensitivity as a function of bandwidth for a typical X-band receiver with a noise figure of 5 

dB. According to Figure 1.3, to achieve the desired dynamic range of greater than 60 dB and 

sensitivity of -90 dBm requires a receiver IBW must be around 10-100 MHz [17].  This is 

problematic for EW receiver which required wide instantaneous bandwidth typically (2-20) 

GHz.   Wireless communication microwave receivers usually receive one signal at a time and 

are designed for known signal.  The EW receiver is interested in searching for unknown signals 

in wide frequency range (2-20 GHz), currently shifting to >30 GHz. This is difficult goal to 

accomplish because the EW receiver must be able to detect a weak signal in the presence of a 

strong signal which requires high instantaneous dynamic range.  This is not possible to achieve 

by single electronic circuitry-based microwave receiver as the increasing instantaneous 

bandwidth gradually decreased the  SFDR of the microwave receiver [15].   

The ideal EW receiver is a wide band software defined receiver which replaces all the hardware 

functionality with advanced digital signal processing (DSP).  The problem is that digital 

electronics does not evolved quickly and analogue to digital converter’s sampling rate is limited 

to 2 GHz [18]. The current practical solution for EW receivers is still realized through a 

channelized implementation [9].  In the channelized receiver, the RF spectrum is detected by 

several heterodyne receivers simultaneously, down converted to fixed Intermediated 

Frequency (IF). Then, a set of ADCs simultaneously acquire all the spectrum portions 

providing a complete picture of the electromagnetic environment.   
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Although, this approach reaches high performance, it is characterized by Size, Weight and 

Power Consumption (SWaP) and require huge effort in the design of the filters banks  [9].  

A potential solution to solve the limitation of ADC is processing microwave signal directly in 

analogue domain where ADC is not required  [19].  However, analogue electronic domain can 

only able process limited bandwidth  and has frequency dependent loss and tunability is 

normally restricted to a few GHz [20] In the last decade, photonic signal processing 

(technologies) have been demonstrating attractive features for microwave photonic signal 

processing.  Defence Advanced Research Projects Agency (DARPA) has made significant 

investments toward advancing the field of microwave phonics signal processing projects [17]. 

The exponentially growing bandwidth demand of modern radar and wireless communication 

has forced to explore both RF and microwave spectrum shifting to their full potential. This is 

only possible by realizing ultra-wideband RF [21] and microwave systems, and Microwave 

Photonics (MWP) signal processing provide a possible solution [13].   

1.3 Microwave Photonics  

 

MWP enables the transmission and processing of RF signals with unprecedented features as 

compared to other approaches based on traditional  microwave technologies [22]. The use of 

optical devices and techniques to generate, manipulate, transport and measure ultra-wide-

bandwidth RF frequency signals, widely known as MWP [23]. Optical fibers show many 

advantages in comparison with other propagation media, their capacity is very high, they show 

low transmission losses; and standard component like transmitters receivers, filters and 

amplifier are available at low cost commercially available off-the-shelf (COTS)  [24]. The 

attractiveness of the optical fiber communication is the ability of silica optical fibers to carry 

large amounts of information over long repeaterless distance.  To utilize the huge bandwidth 

of the optical fiber, numerous channels at different wavelengths can be multiplexed on the same 
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fiber. High frequency analogue RF photonic links are desirable in military and wireless 

communications to reduce size, weight and power of RF system by offering the replacement 

of lossy, bulky coaxial RF cabling for lightweight, low loss and broadband optical fiber, 

particularly in applications of avionic and Radar system and electronic warfare (EW) [25]. 

Whatever form future generations of communications networks take, the physical layer will 

continue be dominated by photonics technology (for wired) and microwave technology (for 

wireless).  The ‘interface’ between microwave and photonics technologies will therefore also 

be major importance and this ‘interface’ has created a new interdisciplinary field known as 

microwave photonics (MWP) [8].  MWP encodes RF signal into optical signal. One of the 

main applications of MWP technologies is the transport and distribution of radio or wireless 

signals over optical fiber [26]. To accommodate ultra-broad bandwidth links demand for future 

wireless and RADAR sensing, it is necessary to use waveguide with high bandwidth, low loss, 

light weight and immune to electromagnetic noise interference.  To increase systems margins, 

higher transmitter power or lower waveguide losses are required.  MWP links has fulfilled 

these demands. 
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1.3.1 Microwave Photonics Components  

 

Whether performing some signal processing function or simply transferring information on 

RoF link requires some basic MWP components as shown in Figure 1.4. These are a laser, an 

optical modulator, optical components and a photodetector.   

 

Figure 1.4 Basic structure of an MWP system consists of a light source, an optical 

modulator and a photodetector. 

 

As MWP process and transfer RF signal in optical domain, first task in any MWP signal 

processing is to convert RF signal to optical signal.  This is performed through modulation of 

a laser signal using an optical modulator called Mach Zehnder Modulator (MZM) as shown in 

Figure 1.4. The MZM is driven by an RF signal to modulate the laser light.  It is desirable in 

MWP to have a laser with high output power and low noise which is generated due to emissions 

of spontaneous and stimulated photons in time.  The requirement of high output power with 

low noise is benchmarked by laser Relative Intensity Noise (RIN). The light form laser diodes 

has some random amplitude flection which is measured in terms of noise power in 1 Hz 

bandwidth compared with the average laser power level expressed as RIN [27] .  Lower RIN 

value of minimum -155 dB/Hz is desired in MWP.  Laser diode such as  Distributed Feedback 
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(DFB) semiconductor laser can fulfil this demand [28]. DFB lasers have low threshold and 

high electrical to optical conversion efficiencies at relatively low current levels [29].  

Modulation of laser output is performed using an external MZM optical modulator as shown 

in Figure 1.4. In external modulation, a Continuous Wave (CW) laser is modulated by an 

Electro-Optic Modulator (EOM).  Using external modulation has added benefits such as 

modulation bandwidth becomes independent of the laser which solves the limitation of the 

directly modulated systems. As a result, ultra-high frequency millimetre wave  RF signal can 

be processed with modulation bandwidth beyond 145 GHz [30].  The transfer function 

characteristic of an MZM is shown in Figure 1.5.   

 

Figure 1.5  Voltage power characteristic of an MZM 

which is voltage driven not current driven like direct 

modulation [13] 

  

The VΠ in Figure 1.5 is an MZM parameter called switching DC voltage which control the 

nonlinear distortion of the MZM output. To minimize nonlinear distortions of the MWP signal 

at the output of the MZM, the VΠ is biased between halfway between minimum and maximum 

transmission point known as quadrature. In MWP systems, VΠ with low DC voltage across a 

wide bandwidth is desirable.   Achieving low VΠ voltage requires trade-off between electrode 
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length and bandwidth. Lower VΠ voltage is achieved by increasing the electrode length but 

longer electrode length will decrease the bandwidth  of the MZM [31] .  

After processing the optical signal is converted back to electrical domain. This is done by using 

a photodetector.  The power current characteristic of the photo detector is shown in Figure 1.6. 

The output electrical power of the photo detector is directly proportional to the input optical 

power.  

 

Figure 1.6 Typical power-current characteristic for a 

photodiode [13] 

 

P-I-N photodiode is used by present MWP systems. In P-I-N photodiode structure a 

semiconductor layer is sandwiched between P and N layers. Photodetector with high output 

power (responsivity) and bandwidth is desired in MWP systems. However, in practice this is 

not achievable due to the saturation of the photodetector power at certain optical power (around 

10 dBm).  However, P-I-N photodetector with 172 GHz bandwidth and high 76 GHz bandwidth 

efficiency product with 20 dBm input optical power has been reported in ref [32].   
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1.3.2 Microwave Photonics Signal Processing  

 

Microwave photonics signal processing is a photonic subsystem design with the aim of carrying 

equivalent tasks to those of an ordinary electronics microwave system performs but at very 

high ultra-frequency with extremely wide bandwidth by bringing supplementary advantages 

inherent to photonics such as low loss, high bandwidth, immunity to electromagnetic 

interference.  Furthermore, photonics approach provides features which are very difficult or 

even impossible to achieve with conventional electronic circuitry-based microwave systems 

such as fast tunability and reconfigurability frequency mixing and amplification at greater than 

30GHz [22]. Furthermore, current state-of-the-art electronics components are limited to 

operate on only (10-1000) MHz Instantaneous Bandwidth (IBW). This is huge bottleneck 

problem for future RADAR and wireless communication systems as they demand for 

processing high frequency and wide Instantaneous bandwidth (IBW) RF signal on the fly in 

real time. Optical domain offers 100 GHz IBW. There are mainly two tasks performed by MWP 

signal processing.  These are transferring radio signal over optical fiber called Radio over Fiber 

(RoF) and performing high bandwidth microwave signal processing task such as modulation 

and demodulation, filtering, spectrum analysis, amplification and synthesize of high bandwidth 

RF signal in optical domain.   

The invention of laser in 1960 [33] and low loss optical fiber for transporting light [34] opened 

door to use optical fiber to transfer ultra-wide bandwidth Radio Frequency (RF)  signal using 

RF photonic links due to compelling advantages of the optical fibers. The exceptional qualities 

of optical fiber as a transmission medium which are behind the success of optical 

communications in general, and which provide one of the primary motivations for microwave 

photonics research. The exceptional qualities of the optical fiber are extremely high bandwidth 

more than 100 GHz, high security, low cost, low weight (typically 1.7 kg/km for fiber as 

opposed to 567 kg/km for coaxial cable) and intrinsic immune to electromagnetic noise and 
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interference.  MWP has two broad applications. These are MWP link also called Radio over 

Fiber (RoF) and MWP signal processing.  MWP link was seen by some visionaries as a possible 

alternative to long distance terrestrial microwave wireless communications link in the 1960 [8].  

Towards the end of that decade it was not clear which one of these two technologies would 

prevail for terrestrial telecommunications. There were trials of a long distance ‘millimetric 

waveguide’ system by UK post office which was eventually abandoned in favour of optical 

fiber [8][35] as shown in Figure 1.7. 

 

 

 

 

 

 

 

 

 

Figure 1.7 (a) Microwave terrestrial link (b) Microwave photonic terrestrial link 

 

On the other hand, MWP signal processing offers a new, powerful paradigm for processing 

ultra-high frequency and high bandwidth RF signals in optical domain [36]. MWP signal 

processing brings together the world of Radio Frequency (RF) engineering and optoelectronics. 

MWP signal processing transforms ultra-high frequency and high bandwidth RF signal 

processing tasks into optical domain; so that the ultra-high frequency and high bandwidth RF 

signal can be processed and generated in optical domain without having bottleneck problems 

(

a

)  

(b)  

Microwave link 

Central office Central office 
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on the fly in real time. MWP enables the transmission and processing of high bandwidth RF 

signals with unprecedented features as compared to other approaches based on traditional  

microwave technologies [22]. MWP transforms ultra-high frequency and high bandwidth RF 

signal processing tasks into optical domain; so that the ultra-high frequency and high 

bandwidth RF signal can be processed and transferred in optical domain without having 

bottleneck problems on the fly in real time as shown in  Figure 1.8.  

 

Figure 1.8 Microwave phonics signal processing structure 

 

By saying all the advantages of the MWP, there are some limitation in MWP such as in MWP 

there is no standard signal processor like microprocessor used in digital electronics.  Hence, to 

process the high bandwidth microwave signal in optical domain requires pure optical signal 

processor and controlling optical signal processing comes with some challenges. The benefits 

of the microwave photonic signal processing are tremendous. However, unlike electronic 

domain, optical domain is pure analogue.  Optical domain has no switches, no memory and no 

digital signal processors.  Hence, processing microwave signal in optical domain requires 

optical analogue signal processing engine [37]. Over the last two decades DARPA has invested 

in the Photonic Analogue Signal Processing Engines with Reconfigurability (PhASER) 
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program considered RF signal processing in optical domain, using reconfigurable optical filters 

and delay lines to improve the SFDR of an RF photonic link [17] using different optical 

components and methods.   

 

Figure 1.9  Optical fiber as very powerful optical signal processor 

 

Present microwave photonic systems are combination of electrical and optical systems.  As a 

result, electronic domain bottleneck problem not fully circumvented. To utilize the tremendous 

bandwidth of the optical domain, it is desired to generate, process and transfer microwave 

signal using all optical domain systems structure.  Extensive research must be conducted to 

develop controllable analogue optical signal processor to perform ultra-high frequency RF 

signal processing tasks such as generation, mixing, filtering and amplification of the ultra- high 

frequency high bandwidth RF signal all in optical domain. Interestingly, optical fiber itself be 

exploited a very strong optical signal processor as shown in Figure 1.9 .  

Stimulated Brillouin Scattering (SBS), which is an intrinsic third order nonlinear phenomenon 

in an optical fiber, can be exploited as very powerful microwave photonics signal processor to 
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process ultra-high frequency RF signal in optical domain. Due to being nonlinear phenomenon, 

SBS in optical fiber which thought to be problematic in telecommunication as it limits 

maximum optical transmitting power.  However, SBS can be utilized as very powerful optical 

domain analogue photonic signal processor to realize all optical domain microwave photonics 

signal processing and generation.  There are many types of scattering occurs when light is 

propagated through an optical fiber.  These scattering mainly occurred due to the interaction of 

optical properties of the matter (in this case optical fiber) with light.  For example, well know 

Rayleigh scattering occurs due to the scattering of light of the molecules of  optical fiber [38].  

Brillouin scattering occurs when light is scattered by the acoustic wave inside and fiber.  

Acoustic wave is also called material deformation wave, which is generated by randomly 

(spontaneous) due to temperature or strain on the fiber. This has normally no effect on the light 

carrying signal propagating through the fiber. However, when high power laser light is 

propagated through the optical fiber, this spontaneous acoustic wave inside the fiber becomes 

stimulated due to electrostriction effect on the dielectric.  Electrostriction effect is a property 

of all dielectric material which displace ion in the crystal lattice material when exposed to an 

electric field. As a result, dynamic Bragg grating is generated in the fiber, which reflect most 

of the incident light backward and limits maximum transmitted power through the optical fiber. 

This phenomenon is called stimulated Brillouin scattering (SBS). 

This is problematic in telecommunication as it limits maximum transmitted power. However, 

interestingly, SBS found to be useful to process RF signal in optical domain.  In other words, 

SBS can be exploited as a very powerful microwave photonic signal processor.  This research 

exploits the nonlinear characteristic of the SBS in optical fiber as a very powerful optical signal 

processor to process high bandwidth and ultra-high frequency RF signal in optical domain for 

future radar and wireless communication systems. This research mainly focused on generation, 
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filtering and amplification of high frequency & high bandwidth RF signal in optical domain 

using SBS. Detailed background theory and application of SBS are discussed in chapter 2.   

 

1.4 Motivation  

 

Future radar and wireless communication systems are facing significant increase in bandwidth 

as well RF signal, they operate, shifting from microwave to millimetre waves (>30 GHz).  This 

raised significant challenges to process and transferring this high bandwidth and ultra-high 

frequency RF signal using pure electronic domain. Optical domain is a green field comes with 

100 GHz of bandwidth with hundreds of THz of optical frequencies and intrinsic immune to 

electromagnetic noise and interference.  As a result, processing ultra-high frequency and high 

bandwidth RF signals in optical domain is the demand for future radar and wireless 

communication systems. Hence, the motivation of this research is to process ultra-high 

frequency & high bandwidth RF signal in optical domain by exploit Stimulated Brillouin 

scattering (SBS) in optical fiber to be used as optical signal processor to process microwave 

signal in optical domain. The research is focused on generation, filtering and amplification of 

ultra-high frequency and wide bandwidth microwave signal in optical domain using SBS as a 

photonic analogue signal processor.    
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1.5 Research Question  

 

The benefits of the microwave photonic signal processing are tremendous. However, unlike 

electronic domain, optical domain is pure analogue.  Optical domain has no switches, no 

memory and no digital signal processors.  Hence, processing microwave signal in optical 

domain requires optical analogue signal processing engine [37]. Over the last two decades 

DARPA has invested in the Photonic Analogue Signal Processing Engines with 

Reconfigurability (PhASER) program considered RF signal processing in optical domain, 

using reconfigurable optical filters and delay lines to improve the SFDR of an RF photonic link 

[17] using different optical components and methods.  Interestingly, optical fiber itself be 

exploited a very strong optical signal processor. Stimulated Brillouin Scattering (SBS) inside 

an optical fiber is intrinsic third order nonlinear phenomenon which can be exploited as very 

powerful optical signal processor. 

This research aims to answer above research questions/objectives. It proposes Stimulated 

Brillouin scattering (SBS) in optical fiber as an optical signal processor to synthesis and process 

(filtering and amplification) of ultra-high frequency & high bandwidth RF signal in optical 

domain for future photonic based high bandwidth wireless and RADAR signals in all optical 

domain.    
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1.6 Research Methodology  

 

In this thesis, state-of-the-art microwave photonic simulation software called “VPI photonics” 

is used for the simulation works.  The VPI photonics software sets the industry standard for 

end-to -end photonic analysis and optimization of components and systems. Experimental 

works are conducted in photonic lab using commercially available MWP components and 

devices.  Distributed Feedback Laser (DFB) is used to generate light to be modulated by RF 

signal. Optical modulator called Dual Parallel Mach Zehnder Modulator (DPMZM) is used to 

convert RF signal into optical signal. DPMZM uses electro optic effects where RF signal’s 

electric field changes the refractive index of the optical path inside the DPMZM.  As a result, 

light is modulated by the RF signal.  Single Mode Fiber (SMF) is used as a very powerful 

MWP signal processor. SBS is generated inside the SMF fiber by injecting high power light 

from DFB laser. The Stoke and anti-Stoke effects of the SBS inside the SMF are exploited as 

a very powerful MWP signal processor.  After processing the high bandwidth RF signal in 

optical domain, a Photo Diode (PD) is used to covert optically processed RF signal back into 

electrical domain.  To observe and monitoring experimental works, optical signal Optical 

Spectrum Analyser (OSA) is used, and to observe and monitor electrical signal RF spectrum 

analyser is used. SBS Stoke (gain effect) method is used to synthesis and amplification of high 

bandwidth RF signal in optical domain.  SBS anti-Stoke (notch effect) method is used as a very 

powerful MWP notch filter to suppress unwanted harmonics and distortion from RF modulated 

signal in optical domain.   
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1.7 Major Contribution and Thesis Organisation  

 

The objective of this research is to investigate Brillouin scattering in particularly, Stimulated 

Brillouin Scattering (SBS) in optical fiber to use it as an optical signal processor to process 

high frequency and high bandwidth microwave signal in optical domain in real time on the fly.  

In this research, SBS is exploited as powerful optical signal processing engine to generate, 

filtering and amplify ultra-high bandwidth microwave signal in optical domain.  This research 

is organised as follows: in chapter 2, detailed background of the thesis is conducted. In 

Chapter 3, then simulations of SBS in optical fiber is performed using industry standard 

simulation software called “VPI-photonics”. The simulation results are validated by 

experimental work in microwave photonic lab comprises with state-of-the-art microwave 

photonics components. Furthermore, detailed literature review of the SBS applications in 

MWP signal processing is conducted.  Three novel methods based on SBS are proposed. In 

chapter 4, an SBS method is proposed to synthesis ultra-high frequency microwave signal at 

10.86 GHz by exploiting SBS stokes to realize all optical microwave photonic mixer. In 

chapter 5, A novel method of removing distortion of optical signal using SBS has been 

proposed where an apparatus and distortion removal method for reducing distortion of an 

optical signal is proposed.  A patent (GB2567646) has been granted based on this work. In 

chapter 6, SBS is exploited as very high Q high bandwidth MWP selective side band amplifier 

to selectively amplify optical signal which has greatly improved signal to noise ratio compared 

to conventional optical amplifier.  Finally, in chapter 7 concludes with final conclusion and 

future works.  
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Chapter 2 

 Background Theory  
 

In optical communication, SBS thought to be problematic as it limits maximum transmitted 

signal [39]. However, the use of SBS in MWP signal processing is attractive approach [40].  

SBS can be used to obtain high Q-factor (narrow resonance bandwidth) MWP notch filters by 

exploiting its narrow band nature [40]. MWP filters are photonic subsystems design with the 

aim of carrying equivalent tasks to those of an ordinary microwave filter withing a RF system, 

bringing supplementary advantages inherent to photonics such as  low loss, high bandwidth, 

wide tunability and reconfigurability [41].  The bandwidth demand of RF technologies is 

significantly increasing.  High bandwidth demand yield for  advanced all optical signal 

processing scheme previously it was not possible to process by electronics based systems [39].  

SBS has great potential to address these challenges and offer solution for wireless and radar 

communication systems. Notch filters are used to suppress interferences in wireless and radar 

communications. MWP notch filters using SBS have unmatched performance in electronics, 

such as ultrawide tunability and immunity to electromagnetic noise and interference [41].   

The main goal of a filter is to improve Signal-Noise-Ratio (SNR) of the intelligence signal 

either by rejecting unwanted signal or by allowing the desired signal.  While commercially 

available photonic filters offer single band-reject or band-pass resonances with wide tunability, 

but their Q-factor is broad in the order of tens of GHz. Q factor is also known as quality factor 

which indicates how sharp or broad the resonance bandwidth of a filter [42]. This is much 

larger for most of the applications  [41].  Photonic filter based on Fiber Bragg Gratings (FBG) 

achieve bandwidth of 5 GHz with a tuning range over 10nm or 1.27 THz.  Recently, 

manufacturers have introduced FBG with ultranarrow bandwidth of 100 MHz, but the tuning 
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range is limited to 20 GHz [43].  Another special type of grating-based filter is a wave shaper, 

which utilized spatial light modulators, can operate over a large frequency range and can be 

programmed individually with a resonance bandwidth of 10 GHz [43].  The Gaussian filter 

characteristic make them suitable as pre filtering.  Furthermore, Fabry-Perot (FP) filter is 

another type of photonic filter which utilizes the interference of light bouncing withing a cavity. 

Due to the cavity, a FP filter has a periodic structure which impose Free Spectral Range (FSR) 

as a very important performance matric for the FP filter [43].  The FSR is the frequency space 

between consecutive transmission peaks in the transmission spectrum of the FP filter.  The FSR 

is inversely proportional to the distance between reflective surfaces in the interferometer of the 

FB filter [44].  Commercially available FB filter has < 3 GHz resonance bandwidth at 1550nm 

with an FSR of 51 GHz. Unfortunately, the bandwidth varies independent of the wavelength. 

Hence custom devices are necessary to cover a large frequency range and fabrication for narrow 

bandwidth is technically challenging [43].   

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Frequency response for different filter types. WS: wave 

shaper, FP: Fabry-Perot, FBG: Fiber Bragg Grating, SBS: 

stimulated Brillouin scattering [42] 
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The visualisation of the bandwidth for different types of photonic filter realisation can be 

seen in Figure 2.1.  Recently, a different approach for filtering in optical domain exploiting 

the nonlinear effect of SBS in optical fiber.  SBS is a third order nonlinear process in optical 

fiber which results in a back-scattered Stokes wave with very narrow bandwidth gain 

resonance in the rage of 10 MHz with a frequency down shift of 10 GHz. Similarly, SBS 

also results, forward scattered anti-Stokes wave with very narrow bandwidth absorption 

resonance in the range of 10 MHz with a frequency up shift of 10 GHz [45]. The Stokes 

behaves like very narrow bandwidth (high Q) optical bandpass filter and anti-Stokes behave 

like very narrow bandwidth (high Q) notch filter. Although detrimental for optical 

communication as it limits maximum transmission power. The unique characteristics of the 

SBS which is very narrow band (10 MHZ) gain and absorption profile enabled over very 

narrowband filtering over wide frequency range which is independent of laser frequency  

[43].   

There are many techniques of microwave photonic notch filtering bases on SBS has been 

proposed in literatures. The enabling technology for this breakthrough is the recently- 

reported ultra-wideband microwave photonic notch filter with very narrow isolation 

bandwidth (~ 10 MHz) and  > 60 dB stopband rejection based on SBS has been reported [46] 

using sideband amplitude and phase controls using an electro-optic modulator and an optical 

filter.  However, using an additional optical filter  in this method [46] imposes system 

complexity.  Tuneable dual-passband microwave photonic filter based on SBS has been 

reported in [47].  In this method, carrier suppressed modulated signal is implemented using 

both SBS gain and loss effects in the dual-passband filtering response. However, this method 

is dependent on a RF source and limited by the vector network analyser.  Another method of 

using SBS to measure instantaneous multiple microwave frequencies is realized using a 

narrow-band tuneable notch filter [48].  This novel technique [48] combines the frequency 
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agility of a scanning receiver and high accuracy of amplitude comparison function technique 

to simultaneously measure multiple frequencies in multiple GHz ranges.  However, this 

method [48] is also limited by RF source frequency range. Tuneable and reconfigurable 

multi-tap microwave photonic filter based on dynamic SBS grating polarization maintaining 

fiber has been reported in [49].   In this method, SBS based tuneable periodic filter is 

proposed by reconfiguring the position and the number of dynamic gratings along the fiber 

respectively.  However, reconfiguring the position of the dynamic grating is very complex 

task and which in turn makes the system structure very complex and costly.  Another 

reconfigurable microwave photonic band stop filter based on SBS has been reported in [50], 

using SBS’s anti-stokes loss resonance controlling by a programable electronic arbitrary 

waveform generator. But this approach in [50], greatly limit to realise all optical microwave 

photonic structure because of the requirement of electronic arbitrary waveform generator.  

This research proposes a novel method to reduce distortion from an optical signal on the fly 

in real time using SBS notch resonance effect. To the best of my knowledge, this method has 

not been proposed before in the literatures. A UK patent has been granted based on this work 

discussed in chapter 5.   

Generation of high frequency RF signal optically using SBS is very attractive to realise all 

optical microwave photonic signal processing.  In depth background theory and a proposed 

novel method has been discussed in chapter 4.  This work has been published in IEEE. 

Another novel method of selectively side band amplification has been proposed based SBS 

gain resonance.  In depth background theory and proposed novel method has been discussed 

in chapter 6.   

SBS has a great potential to be used as a unified microwave photonic signal processing 

processor.  It is the perfect candidate for future high frequency and high bandwidth RF signal 



41 | P a g e  

 

processing in optical domain on the fly in real time. Harnessing SBS for microwave photonic 

signal processing is the demand for future wireless and radar systems.    

 

 

Chapter 3 
 

 

 Stimulated Brillouin Scattering (SBS) in Optical Fiber & 

Applications 
 

This chapter explores the background of Stimulated Brillouin scattering (SBS) and other 

nonlinearities in optical fiber.  The theoretical and experimental overview of the SBS and its 

application in microwave photonic signal processing has been conducted. Then simulation of 

SBS in optical fiber and validated by experimental work in the state-of-the-art photonics lab. 

SBS is one of the most dominant nonlinear effects in standard single mode fibers and its unique 

spectral characteristics, especially the narrow bandwidth, enable many different applications.  

Most of the applications would benefit from a narrower bandwidth [43].   

3.1 Overview of Nonlinearities in Optical Fiber  

Optical fibers show many advantages in comparison with other propagation media-their 

capacity is very high, they show low transmission losses; and standard component like 

transmitters receivers, filters and amplifier are available at low cost [24]. The attractiveness of 

the optical fiber communication is the ability of silica optical fibers to carry large amounts of 

information over long repeaterless distance.  To utilize the huge bandwidth of the optical fiber, 
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numerous channels at different wavelengths can be multiplexed on the same fiber.  To increase 

systems margins, higher transmitter power or lower fiber losses are required.   

All these attempts to fully utilize the capabilities of the silica fibers will ultimately be limited 

by nonlinear interactions between the information-bearing light waves and the transmission 

medium. These optical nonlinearities  can lead to interference, distortion and attenuation of 

optical signals causes optical system degradations [51]. There exists a rich collection of 

nonlinear optical effects in fused silica fibers, each of which manifest itself in a unique way 

[51]. These nonlinear optical effects are: Stimulated Raman Scattering (SRS), cross phase 

modulation, four-photon mixing and Stimulated Brillouin Scattering (SBS).  Although 

nonlinearities in optical fiber are problematic in telecommunication but they can be exploited 

as a very powerful microwave photonics signal processor.    

3.1.1 Raman Scattering  

Stimulated Raman Scattering (SRS) in fiber is an interaction between light and vibrations of 

silica molecules, causes frequency conversion of light and results in excess attenuation of short-

wavelength channels in wavelength-multiplexed systems [51]. SRS is a four-photon process 

which leads to the transfer of energy from a pump wave to lower frequency (Stokes) wave and 

higher frequency (anti-Stokes) wave through the intermediary of an optical phonon in the 

transmission medium [52] [53].  SRS is an important nonlinear process than can turn optical 

fibers into broadband Raman amplifiers and tuneable Raman laser. It can also severely limit 

the performance of multichannel light wave systems  by transferring energy from one channel 

to another [54].  
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3.1.2 Cross Phase Modulation (XPM) 

Cross phase modulation is a nonlinear optical effect where one wavelength of light can affect 

the phase of another wavelength of light through the Kerr effect. When the optical power from 

a wavelength impacts the refractive index, the impact of the new refractive index on another 

wavelength is known as XPM  [55] [56] . Cross-phase modulation is an interaction, via the 

nonlinear refractive index, between the intensity of one light wave and the optical phase of 

other light waves [51].  

3.1.3 Four wave -Photon mixing  

Four-wave photon mixing is analogous to third-order intermodulation distortion in electrical 

systems, whereby two or more optical waves at different wavelengths mix to produce new 

optical waves at other wavelengths [51] [57] .  it can occur if at least two different frequency 

components propagates together in a nonlinear medium such as an optical fiber [58].  The 

application of four-wave photon mixing in phase conjugation, supercontinuum generation, 

paramedic amplification, and micro resonator-based frequency comb.  It is also good candidate 

for quantum optical regime for generating single photon and entangled photons [59].  
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Figure 3.1  Spectrum of scattered light resulting from three well known scattering  process in 

optical fiber [60]  

 

3.1.4 Brillouin Scattering  

 

Brillouin scattering is a spontaneous light scattering process from acoustic waves in materials, 

was discovered in 1922 by Louis Brillouin [61] [62].  The process is said to be spontaneous as 

the light scattering is happened by thermal fluctuation in media and the incident light is weak 

that it presence does not change the dielectric property of the material [62].  The scattered light 

wave that shifted to lower frequency from incident light frequency is called Stokes wave and 

the scattered light wave which shifted to higher frequency is called anti-Stokes waves as shown 

in Figure 3.1.  

 

Stimulated Brillouin Scattering (SBS), an interaction between light and sound wave in the fiber, 

causes frequency conversion and reversal of the propagation direction of light [51]. Light is an 

electromagnetic wave, when light or other frequency of the electromagnetic spectrum, travels 

through matter various scattering processes can occur. The matter may be in the form of solid, 
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liquid or gas, but in each case, light is scattered by fluctuation or excitations of the optical 

properties of the medium.  The scattering process removes incident photons of light and 

produces scatter photons that are generally shifted in direction and frequency from the original 

light. There are two types of light scattering in optical fiber: spontaneous and stimulated 

scattering. In spontaneous scattering, the optical material constituting the optical fiber such as 

refractive index does not change due to the presence of the incident light wave (electromagnetic 

field). This type of scatterings is called elastic scattering.  However, in the case of when a high 

power of incident light wave is lunched in the fiber, the spontaneous light scattering can 

become quite intense which causes changes the optical property of the material called inelastic 

scattering. Well-known example of elastic scattering is Rayleigh scattering, and inelastic 

scattering are Brillouin scattering and Raman scattering [63]. 

At its most fundamental level, scattering can be described by a quantum mechanical approach, 

although in practice the origin of some form of scattering can be described by classical 

mechanism (e.g. Brillouin scattering where phonon energy is less than KBT, where KB is 

Boltzmann’s constant and T is temperature).  Scattering occurs due to the interaction of the 

(classical) light wave with the excitation (oscillations) in the medium. In quantum theory, light 

can be considered as photons (quanta of the electromagnetic field) and the medium excitation 

as phonons (quanta of medium excitation) [63].  For very low light levels (low photon density) 

it is necessary to describe the process using photons and phonons. In practice, the light intensity 

very high (e.g. laser light) and the medium may have strong excitation.  In this high quantum 

limit, it is appropriate to use semi-classical wave theory to describe the interaction. Brillouin 

scattered light originates from light interaction with propagating acoustic wave (or acoustic 

phonons).  Incident photons are annihilated, which together with the creation or annihilation of 

the phonon gives rise to scattered photons (radiation) at the so-called Stokes or anti-Stokes 
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frequencies, respectively.  The Stokes components downshifted in frequency and the anti-

Stokes upshifted [63] as shown in Figure 3.1.  

 

3.2 Stimulated Brillouin Scattering (SBS) in Optical Fiber 

 

 

Figure 3.2 Stimulated Brillouin scattering in optical fiber 

 

When intense beam of light such as laser light propagates through an optical fiber as shown in 

Figure 3.2, the intense electric filed of the laser beam induces acoustic vibration (rather than 

the acoustic vibration caused by the temperature) via electrostriction (also called radiation 

pressure).  At this point, the spontaneous Brillouin scattering becomes stimulated Brillouin 

scattering. The power needed to generate stimulated Brillouin scattering (SBS) in bulk (non-

guiding) material is of the order of 105 W.  This power can be reduced by increasing the 

interaction length and by decreasing the cross-sectional are of the light beam.  These 

requirements are satisfied by wave guides, among which optical fiber is the most attractive 

[63][64]. Brillouin scattering  in optical fiber was first observed in 1964 by Chiao [3]. Brillouin 

scattering is the interaction of light with sound waves in matter. Sound waves in glass cause a 

variation in the refractive index corresponding to the density variations of the wave.  Light can 

be diffracted by these indexes grating if the Bragg condition is met.  Whereas, SBS was 
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observed first time, in single mode fiber by Ippen and Stolen in 1972 [65].  There have been 

many investigations of this topic.  The issues associated with SBS in optical fibers are of 

significant interest in optical communications. However, there are possible applications of SBS 

in fibers [66]. SBS is a nonlinear process that can occur in optical fibers at input power levels 

much lower than required for Stimulated Raman Scattering (SRS). 

 

SBS occurs when an optical signal interacts with acoustical phonons rather than the 

propagating material molecules.  During this process, an incident optical signal reflects 

backward from the grating formed by acoustic vibration and downshift in frequency.  The 

acoustic vibrations originate from the thermal effect if the power of the incident optical signal 

is low.  If the power of the incident light is increases, it increases the material density through 

the electro strictive effect.  The change in density enhances acoustic vibrations and forces 

Brillouin scattering to become stimulated [67] . The specular success of fiber optics 

communication originates from the development of low- loss single mode optical fiber together 

with high power laser. Since the breakthrough of silica optical fibers, there has been a 

continuing interest in the development of long-distance optical communication systems.  In 

order to take fully advantage of the available bandwidth of the optical fibers, several channels 

can be multiplexed on the same fiber, by using narrow linewidth lasers.  Furthermore, the power 

of optical transmitters is continuously increased to extend the repeater spacing [11]. However, 

Figure 3.3 Stimulated Brillouin Scattering in optical fiber 
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using the narrow linewidth lasers and increasing the power of the optical transmitters stimulate 

the nonlinearities of  the silica fiber which put ultimate limit in the capabilities of the optical 

fiber such as maximum optical transmission power limit [51]. When laser light is strong the 

Stokes wave experience gain, and this gain can be by a factor of 𝑒30 ~ 1013.  Hence, most of 

the can be converted into scattered power under appropriated condition.  The optical fiber is 

perfect candidate to meet this condition.  The incident and scattering wave travelling in the 

optical fiber causes periodic modulation of refractive index which scatters the laser light 

through Bragg diffraction.   The scattered Stokes wave is down shifted in frequency due to the 

Doppler effect of the grating moving at the acoustic velocity.   This phenomenon is called 

stimulated Brillouin scattering (SBS) in optical fiber. SBS creates dynamic Bragg grating 

inside the fiber, which in turn creates a notch filter and a sharp amplifier effect inside the fiber. 

As a result, when optically modulated microwave signal is propagated through the same fiber 

and if any frequency components matches with Brillouin Stokes, it is amplified while if 

matches with Brillouin anti-Stokes, it is filtered out or suppressed.   

 

3.2.1 Theoretical analysis of SBS in optical fiber 

 

To obtain detailed behaviour of the SBS process it is necessary to consider the propagation of 

light through a material using Maxwell equation and incorporate the material response to the 

light interaction [63].  Electric force and magnetic force at a point in empty space seem 

somewhat abstract: unless an electric charge or electric current are located at such a point.  And 

yet Maxwell ultimately held that space without matter was not quite empty [67].   SBS 

originates from light interaction with propagating acoustic waves. The light wave can be 

described by Maxwell equations, acoustic waves raise from electro-strictive effect and can be 

described through Naiver-Stokes equation [68] good ref for SBS equation.  The interaction of 
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the light field with the scattering medium is described by Maxwell’s equations [69].  Maxwell 

equation for electromagnetism where electric charge or current is present in space.  

 

Maxwell’s equation is based on three well know equations.  These are Gauss law, Faraday’s 

law and Amperes law.  

Gauss’s law 

 
𝛁
→.  

𝑫 
→ =  

𝝆

∈ 𝟎
 (1) 

Here, 
𝛁
→.  is divergence, 

𝑫 
→ is electric flux, 𝝆 is electric charge and ∈ 𝟎 is the permittivity of free 

space.    

Gauss law relates electric charge to the electric filed. It is the first law of the Maxwell’s 

equation.  It states that the net flux of an electric field is equal to the charge divided by the 

permittivity [70]. It is one of the four equation of Maxwell’s law.   

 

 

Gauss’s law for magnetism  

 

 
𝛁
→ .

𝑩
→ =  𝟎 (2) 

Here, 
∇
→  is divergence, 𝐵 is magnetic flux density 

Gauss’s law for magnetism states that the net magnetic flux of any close surface is zero. It is 

the second Maxwell’s equation. There is no magnetic monopole, so divergence of magnetic 

flux density B is zero  [71] 
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Faraday’s Law 

 𝛁 ⃗⃗  ⃗  ×  𝑬⃗⃗  =  − 
𝒅𝑩⃗⃗   

𝒅𝒕
 (3) 

   

 

Here ∇ ⃗⃗  ⃗  ×  𝐸⃗  is curl of vector, E is electric filed, and B magnetic field and t is time.  

Faraday’s law is the third Maxwell’s law which states that a magnetic field changing in time 

give rise to an electric field E  [72].  

Ampere’s Law 

 𝛁⃗⃗  × 𝑩⃗⃗  =  𝝁𝟎𝑱 + 𝝁𝟎  𝝐𝟎  
𝒅𝑬⃗⃗ 

𝒅𝒕
  (4) 

Here, ∇⃗⃗  × 𝐵⃗    is vector curl, 𝜇0 is the permeability, 𝐽 is the current flow, E is electric field 

and t is time.  

Ampere’s Law state that a flowing electric current J gives rises to a magnetic field that circles around 

the current.  Also, a time changing electric flux density gives rises to a magnetic field that circles the 

electric field [73].   

3.2.2 Maxwell equation for EM wave in free space 

In space where there is no charge or current, Maxwell equations becomes electromagnetic wave 

equation in free space there is no charge or current present in space. Hence, Maxwell equation 

(1) in derivative form for a free space where no electric charge or current flow exist. No electric 

charge in free space for EM wave, hence it equals zero as shown in equation (5).   
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 𝛁⃗⃗ .  𝑫⃗⃗  =  𝟎 (5) 

 

Magnetic field has no monopole, hence zero 

 𝛁⃗⃗ .  𝑩⃗⃗  =  𝟎 (6) 

Changing magnetic field in time generates electric field 

 𝛁⃗⃗  ×  𝑬⃗⃗  =  − 
𝒅𝑩⃗⃗   

𝒅𝒕
 (7) 

 

 

Changing electric field in time generates changing magnetic field. There is no current flow in 

space, hence 𝜇0𝐽 is omitted from equation (4) as shown in equation (8).  

 𝛁⃗⃗  × 𝑩⃗⃗  =  𝝁𝟎𝝐𝟎

𝒅𝑬⃗⃗ 

𝒅𝒕
  (8) 

 

Now taking curl of equation (7), 

∇. (∇⃗⃗  × 𝐸)⃗⃗⃗⃗  =  − 
𝑑 (∇  × 𝐵)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗    

𝑑𝑡
 

Now using equation (8), 

∇. ( ∇. E)  − ∇2𝐸 =  − 𝜇0𝜖0

𝑑2𝐸⃗ 

𝑑𝑡2
 

∇. ( ∇. B)  − ∇2𝐵 =  − 𝜇0𝜖0

𝑑2𝐵⃗ 

𝑑𝑡2
 



52 | P a g e  

 

Since, ∇. E =  0  and  ∇. B =  0 

∇2𝐸 =   𝜇0𝜖0

𝑑2𝐸⃗ 

𝑑𝑡2
 

 

So, the Maxwell equation for electromagnetic wave becomes:  

 𝛁𝟐𝑬 
𝟏

𝝁
𝟎
𝝐𝟎

=  
𝒅𝟐𝑬⃗⃗ 

𝒅𝒕𝟐
 (9) 

 

 𝛁𝟐𝑩  
𝟏

𝝁
𝟎
𝝐𝟎

=  
𝒅𝟐𝑩⃗⃗ 

𝒅𝒕𝟐
 (10) 

 

Maxwell equation (9) and (10) proves that empty space supports electromagnetic wave 

travelling at   

 𝒗 =  
𝟏

√(𝝁𝟎𝝐𝟎)
 =  𝟑 × 𝟏𝟎𝟖 m/s (11) 

 

3.2.3 Wave equation and nonlinear polarization 

 

The interaction of the light field with the scattering medium is described by Maxwell’s 

equations in equation (7) and (8) as follows: 

 

∇⃗⃗  ×  𝐸⃗  =  − 
𝑑𝐵⃗   

𝑑𝑡
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∇⃗⃗  × 𝐵⃗  =  𝜇0𝜖0

𝑑𝐸⃗ 

𝑑𝑡
  

∇2𝐸⃗  =  𝜇0𝜀0  
𝜕2𝐸

𝑑𝑡2
 

∇2𝐸⃗  =  
1

𝑐2  .  
𝜕2𝐸

𝑑𝑡2        where, 
1

𝑐2  =  𝜇0𝜖0 

 
𝝏𝟐𝑬

𝒅𝒁𝟐
  −  

𝟏

𝒄𝟐
 .  

𝝏𝟐𝑬

𝒅𝒕𝟐
 =  𝟎      (12) 

 

   

 

3.2.4 SBS equation  

 

The three-wave interaction process of the SBS involves two light waves and an acoustic wave 

which are coupled through the process of electrostriction.  The light wave obeys Maxwell 

equations subject to nonlinear polarization [74].  

 

 𝛁𝟐𝑬 − 
𝒏𝟐

𝒄𝟐 
  
𝝏𝟐𝑬

𝒅𝒕𝟐
   - 

𝜶𝒏

𝒄 
  
𝝏𝑬

𝒅𝒕
  =  𝝁𝟎

𝝏𝟐𝑷(𝒏𝒍)

𝒅𝒕𝟐
 (13) 

 

 where E is the total electric field of light wave, P (nl) is the nonlinear polarization, α is the 

linear power absorption coefficient, n is the linear refractive index of the medium and c and 

µ0 are light speed and free space permeability.   
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The acoustic wave equation is derived from linearized Navier-Stokes equations [75][76][77] , 

given as  

  [ 
𝝏𝟐

𝝏𝒕𝟐
  +  𝚪𝑩  −  𝝑𝟐𝛁𝟐 ] 𝝆 =  

𝟏

𝟐
 𝜺𝟎𝜸𝒆𝛁

𝟐 (𝑬. 𝑬)] (14) 

Where (E.E) stand for time average taken over an oscillation period of the light wave, 𝚪𝐵  is 

the acoustic damping coefficient related to acoustic Brillouin line width ∆𝜗𝐵 by Γ𝐵  =  2Π∆𝜗𝐵,  

v is the acoustic velocity and 𝜸𝑒  is the electro strictive constant   [74].   

 

3.2.5 Brillouin Frequency Shift 

 

In Single Mode Fiber (SMF) fiber, which have well defined axis of propagation, the only 

possible diffraction from these moving grating corresponds to reflection in the backward 

direction. Since the grating is formed by a wave moving at the speed of sound, the reflected 

wave experiences a Doppler shift, also called Brillouin shift (𝜗𝐵) given by [78]. Sound waves 

in glass cause a variation in the refractive index corresponding to the density variations of the 

wave.  Light can be diffracted by these index gratins if the Bragg condition is met.  In SMF 

fiber, which have well defined axis of propagation, the only possible diffraction from these 

moving grating corresponds to reflection in the backward direction. Since the grating is formed 

by a wave moving at the speed of sound, the reflected wave experiences a Doppler shift given 

by [78]. 

 



55 | P a g e  

 

 𝝑𝑩  =  
𝟐𝒏𝑽𝒔

𝝀
 (15) 

Where n is the refractive index, VS is the speed of sound in the glass, and λ is the wavelength 

of light. 

 

3.2.6 SBS threshold  

 

SBS threshold is the pump power at which spontaneous Brillouin scattering becomes 

stimulated Brillouin scattering.   

 𝒈𝑩 𝑲 (𝑷𝒕𝒉 /𝑨𝒆𝒇𝒇) 𝑳𝒆𝒇𝒇  ≅ 𝟐𝟏 (16) 

 

where 𝑔𝐵 is the Brillouin gain coefficient of the material, 𝑃𝑡ℎ is power corresponding to the 

Brillouin threshold, 𝐴𝑒𝑓𝑓 is the effective cross-sectional of fiber, 𝐿𝑒𝑓𝑓 is the effective length 

and K is a constant that depends on the polarization property of the fiber, which is 1 if the 

polarization is maintained and 0.5 otherwise. Typical silica based SMF-28 fiber has Brillouin 

gain coefficient 𝑔𝐵 𝑖𝑠  (4.40 × 10−11)
𝑚

𝑊
. Modeling the effective length 𝐿𝑒𝑓𝑓 is complicated.  

However, a simple model that assumes the signal power is constant over a certain effective 

length has proved to be useful in understanding the effects of the fiber nonlinearities.  

 𝑳𝒆𝒇𝒇 =   

𝟏 − 𝒆−𝜶𝑳

𝜶
 (17) 

where α is fiber attenuation per km, L is the original fiber length. Typically, α = 0.22 dB/km 

for SMF-28 fiber. The  calculations of effective length as a function of fiber length in km. For 

2km length of optical fiber, the calculated 𝐿𝑒𝑓𝑓 is 1.61 km. It is worth stating that after 20 km, 

the effective length of a fiber is around 4.85 km, and it is constant regardless of the fiber length. 

In our study, the effective cross section of the SMF fiber is 86.5 µ𝑚2.  
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The SBS threshold 𝑃𝑡ℎ power is calculated based on the original fiber length of 2 km, using 

equation (16):  

 𝑷𝒕𝒉 =
𝟐𝟏 × 𝑨𝒆𝒇𝒇

𝑲 × 𝑷𝒕𝒉  ×  𝑳𝒆𝒇𝒇

 (18) 

 

 𝑷𝒕𝒉 =
𝟐𝟏 ×  𝟖𝟔. 𝟓𝝁𝒎𝟐

𝟎. 𝟓 × (𝟒. 𝟒𝟎 × 𝟏𝟎−𝟏𝟏)
𝒎
𝑾

 ×  𝟏𝟔𝟏𝟎𝒎
 (19) 

 𝑷𝒕𝒉 =
𝟐𝟏 ×  𝟖𝟔. 𝟓𝝁

𝟎. 𝟓 × (𝟒. 𝟒𝟎 × 𝟏𝟎−𝟏𝟏) ×  𝟏𝟔𝟏𝟎
 𝑾 (20) 

 

 𝑷𝒕𝒉 =
𝟐𝟏 × ( 𝟖𝟔. 𝟓 × 𝟏𝟎−𝟏𝟐)

𝟎. 𝟓 × (𝟒. 𝟒𝟎 × 𝟏𝟎−𝟏𝟏) ×  𝟏𝟔𝟏𝟎
 𝑾 (21) 

 

 𝑷𝒕𝒉 = 𝟓𝟏. 𝟐𝟗 𝒎𝑾 (22) 

 

 

3.2.7 SBS amplified spontaneous noise (ASE)  

 

The power transfer from the pump to the Stokes wave due to Brillouin scattering can be 

exploited for the amplification of signals, but the very high amplified spontaneous emission 

noise (ASE) is a disadvantage, which can be ~20 dB higher than that of an ideal amplifier. This 

limit the applicability of SBS for signal boosting in light-wave systems.  However, under 

particular circumstances the ASE noise can be reduced significantly such as setting up the 

Brillouin amplification in the saturated regime ASE can be reduced significantly [79].  
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3.2.8 Linewidth of SBS Stokes 

The linewidth of the Brillouin gain (Stokes) is related to the acoustic phonon’s lifetime 

characterized by the time constant TB and can be approximated by a Lorentzian and Gaussian 

profile as shown in  [67].  

 

In fused silica based optical fiber the phonon lifetime is ~ 10 -9 s.  Brillouin linewidth ∇𝜗 is 

given [64]:  

 𝛁𝝑 =  
𝚪𝑩

𝟐𝝅
 (23) 

 

Where 𝚪𝐵 is the inverse of the acoustic (Phonon) lifetime, given by 𝚪𝐵 is given by [64]: 

 

 𝚪𝑩  =   
𝟏

𝝉𝑩
   = (𝜿𝟐𝑩/𝝆𝟎)𝜼𝒆𝒇𝒇 (24) 

where  𝑘𝐵  =  𝜔𝐵/𝜐 is the acoustic wave vector, 𝜌
0
 is the material density, and 𝜂

𝑒𝑓𝑓
 is the material 

viscosity.                  

 

Figure 3.4 The Gaussian curve fitting result of the 

optically generated microwave signal 
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3.3 Simulation of SBS in Optical Fiber 

In this section, simulation of Stimulated Brillouin Scattering (SBS) in Single Mode Fiber 

(SMF) is conducted using state- of -the -art VPI photonic software.  

3.3.1 Simulation  

 

VPI-Photonic software is used to simulated SBS is simulated using 2km SMF fiber. The 

simulation configuration is shown in Figure 3.5.  The lase frequency is 193.423 THz at 13.94 

dBm power.  The optical circulator (CIR) is non-ideal.  The SMF fiber length is 2km with 

Brillouin gain coefficient is 4.6 × 10 -11.  

 

Figure 3.5  Simulation configuration for SBS Stokes and anti-Stokes 

 

Simulation results are shown in Figure 3.6, the SBS Stokes shift is 11 GHz at 5 dBm power. 

the laser power is depleted from 13.94 dBm to -16.21 dBm. This is due to most of the laser 

power has back scattered into Stokes.  There should be Brillouin anti-Stokes frequency shift is 

present in the simulation result.  
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Figure 3.6  Simulation results on software OSA showing SBS Stokes with 5 dBm power 

 

The effect of Stokes and anti-Stokes is simulated using continuous wave laser frequency 

193.423 THz at 20mW optical power. The linewidth of the laser is 50 KHz. A 50/50 optical 

coupler is used to split the laser light, where half of the signal from one end is propagated to 

2km SMF fiber and another half of the laser light is from other end of the coupler is propagated 

to a Mach Zehnder Modulator (MZM).  The MZM is driven by 11 GHz RF signal at null biasing 

point of 10V DC. The insertion loss of the modulator is 6 dB, the extinction ratio of the MZM 

is 19 dB.  The Brillouin shift of the 2km SMF fiber is set to 11 GHz in the simulation.  As a 

result, the RF frequency has been chosen at 11 GHz, so that, lower side band of the modulated 

signal is fallen into Stokes shift frequency of the SBS and upper sideband of the modulated 

signal is fallen onto anti-Stokes shift frequency of the SBS.  As a result, the lower side band 

will be amplified due to the amplification effect of the Stokes and upper side band of the 

modulated signal will be suppressed due to suppression effect of the SBS anti-Stokes 

suppression effect.  The effects of Brillouin Stokes are observed on Optical Spectrum Analyser 

(OSA). The simulation setup is shown in  Figure 3.7.  

 

5 dBm 

Stokes 

-16.21 dBm 

Laser 
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Figure 3.7 Simulation setup for evaluating SBS Stokes effect on modulated signal 

                                                            

 

Figure 3.8  Optically modulated RF signal of 11 GHz; the sidebands signals power  -12.81 

dBm at null biasing point; optical carrier signal frequency 193.423 THz at -15.62 dBm 

                                                           

 

In Figure 3.8, laser light is modulated by 11 GHz microwave signal. The single MZM was used 

as optical modulator and set at null also called biasing point.  In Figure 3.8, the upper and lower 

side band of the optically modulated signal is -12.81 dBm.  When the optically modulated 

signal as shown in Figure 3.8, is propagated through the 2 km SMF fiber, the lower side band 

is amplified by SBS Stokes and upper sideband is suppressed by SBS anti-Stokes as shown  

-12.81 dBm fc = -15.62 dBm 
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Figure 3.9. By comparing Figure 3.8 and Figure 3.9, it is evident that the lower  side band is 

amplified by {8.0 – (-12.81) dBm} = 20.81 dBm.  That is more > 20 dB amplification by SBS  

 

Figure 3.9 The effect of Stokes and anti-Stokes on modulated signal; MZM is biased at null 

operating point 

 

Stokes.  On the other hand, the upper modulated side band as shown in Figure 3.9 was 

suppressed by {-12.81 – (- 22.94)} dBm = 10.13 dBm. In  Figure 3.10, the modulated optical 

side band signal form Figure 3.8 and processed version of the same sided bands from Figure 

3.9 is overlapped for comparison.   

8.0 dBm -22.94 dBm 

-15.98 dBm 

Anti-Stokes 

Stokes 
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Figure 3.10  Overlapping of modulated signal with stokes effected modulated signal;  SBS 

Stokes and anti-Stokes effect is clearly observed; the MZM is at null biasing point 

 

 

It is evident from Figure 3.10, that lower side band of the modulated signal is amplified > 20 

dB by SBS stokes, whereas, the upper sideband of the modulated signal is suppressed >10 dB 

by the anti-Stokes of the SBS.  Next, the biasing point of MZM is changed to quadrature to 

observe the SBS stokes effect on the modulated signal. Figure 3.11, shows the output signal of 

the MZM at quadrature biasing point. The optical amplitude of the upper and lower side bands 

is -15.46 dBm and the optical carrier fc is -0.16 dBm.  

10.13 dBm 20.81 dBm 
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Figure 3.11  Modulated sideband signal at the output of MZM at quadrature 

 

 

To observe the effect of SBS stokes (Stokes and anti-Stokes), the optical signal in Figure 3.11 

is sent through the 2km SMF fiber.  The output optical signal at the output end of the SMF 

fiber is observed on OSA as shown in Figure 3.12. It is evident from Figure 3.12, that, there is 

no SBS Stokes and anti-Stokes effect on the modulated sidebands.  To further analysis the 

effect of the SBS Stokes on the quadrature modulated signal, Figure 3.11 and Figure 3.12 are 

superimposed  as shown in Figure 3.13.   

-15.46 dBm fc = -0.16 dBm 
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Figure 3.12  At quadrature no SBS effect on signal 

 

 

It is again clear from Figure 3.13, that no SBS Stokes effect on the modulated sidebands.  The 

blue line in Figure 3.13 represents SBS Stokes and it did not amplify the lower sidebands.   

 

 

Figure 3.13  Overlapping of signal at quadrature no SBS effect is observed  

 

 

 

 

-15.82 dBm 
0.34 dBm 

-6.24 dBm 
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3.4 Experimental Work – observation of SBS in fiber  

In this section experimental work has been performed based on the simulation work presented 

in the previous section to observe SBS phenomenon in optical fiber to evaluate characteristic 

and all parameters of the SBS.  

3.4.1 Experimental setup 

 

 

 

Figure 3.14 Experimental setup to observe SBS Stokes anti-Stokes effect on 

optically modulated signal; CW: continuous laser; CIR: Circulator; SMF: Single 

Mode Fiber; MZM: Mach Zehnder Modulator; OSA: Optica Spectrum Analyser. 

The experimental setup was performed according to the schematic in Figure 3.5.  light form 

laser (Thorlabs 1550s) at frequency 193.423 THz is propagates through an optical circulator 

(CIR) port-1 to port-2.  The laser power is measured to be 16.79 dBm as shown in Figure 3.15. 

Light form CIR port-2 is then propagated into 2km SMF fiber.  As a result, Brillouin Stokes  

MZM 

CIR 

SMF 2km 
Coupler 

OSA 

CW 
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Figure 3.15 Measured power of Thorlabs laser 1550s at 253 mA with frequency 193.423 THz of 

16.79 dBm.   

and anti-Stokes frequency shift is generated, and counter propagated towards CIR port 3.  Port-

3 of the circulator is connected to optical spectrum analyser (OSA).    The Stokes power is 

measured -26 dBm while anti-Stoke power is measured -37 dBm as shown in 

Figure 3.16 . 
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Figure 3.16  Brillouin Stokes and anti-Stoke measured at -26 dBm 

and -37 dBm 

There is some leakage laser power also observed on CIR port 3, this is due to the power leakage 

of the CIR.  The isolation of the CIR between port-1 to port-2 is 26 dBm.  It is worth to state 

that, at lower SBS threshold power Brillouin Stokes and anti-Stokes is propagated counter 

propagate to the pump.  This is well confirming the theory of the SBS.  However, according to 

the theory, when SBS power is reached at high threshold power, according to the theory, there 

should not be very low power of anti-stokes counter propagates towards the laser working as 

Brillouin pump.  This will be experimentally verified. The experimental setup was same as 

previous, just the laser was replaced with high power laser (EM650-193.400).   

Stokes  

Anti-Stokes 

Pump 
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The experimental setup was performed according to the schematic shown in Figure 3.7. To 

experimentally verify the characteristic at SBS at high threshold power, high power laser 

(EM650-193.400) with 20 dBm power is used.  The laser frequency is 193.400 THz. The line 

width of the laser is 50 KHz.  The experimental setup was same as previous, just the laser was 

replaced with high power laser (EM650-193.400).   

 

The result is observed OSA connected at CIR port-3 as shown in Figure 3.17.  According to 

Figure 3.7, SBS Stokes power is 5 dBm, which is very high comparing to at low SBS threshold 

power as shown in, and the SBS anti-Stokes power is very weak around -37 dBm.  This 

corresponds well to the SBS theory.   In other word, at high SBS threshold power Brillouin 

anti-Stokes frequency power is very low and Brillouin Stokes signal power is dominant. 

  

 

Figure 3.17   Stokes and anti-stokes generation using 

EM650-193.400 laser 
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3.5 Discussions 

 

Above experimental results have confirmed the theory of SBS.  It is found that at lower laser 

power Brillouin Stokes and anti-Stokes are present. However, at high laser power when SBS 

threshold is reached according to the SBS theory most of the light is backscatter toward the 

Brillouin pump. This make SBS anti-Stokes to suppressed.  The observation from simulation 

and experimental results well confirms this phenomenon.   Furthermore, the SBS Stokes and 

anti-Stokes has no effect on the optically modulated signal when MZM is biased at quadrature 

biasing point.  However, when MZM was set to null biasing point, the Stokes of the SBS was 

amplifying of the lower sidebands of the modulated signal while anti-Stokes was suppressing 

the upper sideband of the modulated signal.  This is due to the different phase shift between 

the modulated side bands and the SBS Stokes and anti-Stokes frequency shift. Hence, at null 

biasing point, the phase of the modulated sidebands and the out of phase.  As a result, the upper 

sideband of the modulated signal is suppressed.  This simulation and experimental work of the 

SBS greatly helps to understand Brillouin scattering and SBS in optical fiber.  This work would 

be very valuable resource to understand SBS theoretically and experimentally in depth.    

 

 

 

3.6 Application of SBS in Microwave Photonics  

SBS is one of the most dominant nonlinear effects in standard single mode fibers and its unique 

spectral characteristics, especially the narrow bandwidth, enable many different applications.  

Most of the applications would benefit from a narrower bandwidth [43].  Although SBS is 

problematic in optical communications, because it limits maximum optical power transmission 

through the optical fiber [65], and high power laser[80]  but it can be good microwave photonic 
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signal processor.  The last few years have major progress in harnessing on-chip photo-phonon 

interaction enabling the realization of microwave devices with unprecedented performance 

which are difficult to realize in all optical structures or electronically  [81].  Since the 

observation of SBS many properties of the SBS has been exploited for application [82]. These 

are phase conjugation, optical limiting, pulse compression, beam combination, etc.  These led 

to remarkable improvement in lase source and industrial laser application [83][84]. In 

microwave photonics tuneable delay, band-pass and band-reject filter and comb sources all of 

which are realizable using SBS, are critical for microwave photonics enabling microwave 

signal processing. SBS is emerging as a potential platform form for MWP [85].   Microwave 

photonic filter using SBS is attractive approach for implementation high Q filters because of 

inherent narrowband nature of the SBS [86] [87] [87] [88].  Unlike the conventional FIR-types 

MWP filters, MWP filter based on SBS has great flexibility and high Q  and low threshold 

power required in optical fiber [87] [89] [90].  Microwave frequency measurement using SBS 

has also been attracted microwave photonic research community [91][92][93].  The key novelty 

of using SBS technique was using amplitude comparison function leading to an adjustable 

measurement range and resolution [91].  In [92], birefringence effect in the highly nonlinear 

fiber (HNLF)  is exploited to microwave photonic frequency measurements.  Brillouin Optical 

Spectrum Analyser (BOSA) has great attraction in research community and commercially 

available [94].  SBS is also used to generate high frequency RF signal in All optical domain 

[95] where SBS Stokes frequency is beat with optical carrier frequency to generate high 

frequency RF signal in optical domain  to realize all optical microwave photonic mixer.  SBS 

can be a unified microwave photonic signal processor in EW and wireless communication 

systems as shown in Figure 3.18. 
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Figure 3.18 Application of SBS in microwave photonic  for EW  [96] [97] 

In EW, SBS can be used as a signal generator or as a signal processor.  In signal generation 

SBS can be used to generate ultra-wideband pulses which is essential in radar [98]. GHz 

frequency comb [99][100] is very important in microwave signal processing and SBS is 

capable to generate frequency comb with GHz range to realize microwave phonic mixing.  In 

signal processing, SBS can be used as tuneable delay line [101] [102], and as a phase shifter 

[103] [104]. Combination of tuneable delay and phase shifter together becomes very powerful 

EW photonics signal processor.  These can be used build photonic phased array radar [105][81] 

[106] and very powerful microwave photonic notch filter in EW for thread detection and 

jamming signal [107][108] [109] as shown in Figure 3.19.  High frequency microwave 

frequency measurement has attracted much attention in the modern radar and EW application 

due to inherent advantages of photonics, such as large bandwidth , low loss, immunity or 

electromagnetic interference and light weight [110].  Recently Brillouin Optical Spectrum 

Analyser (BOSA) has achieved femtometre resolution [111] with large instantaneous 

bandwidth 
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Figure 3.19 Application of SBS in fiber as notch filter 

 

This has revolutionized Optical Spectrum Analyser (OSA) technology and based on SBS 

technology, BOSA is already commercially available [112].  BOSA uses purely SBS as very 

powerful optical filter (10 MHz) for high resolution spectrum analysis in optical domain with 

full spurious free dynamic range of > 80 dB.  BOSA is capable to frequency analysis up to 

400GHz.  There is potential of SBS to achieve greater than 400GHz in future.  This is 

revolutionary in spectrum analysis and without SBS it would not be reality.    

Brillouin scattering is also used for fiber optic sensing for temperature and strain. The scattering 

of light wave by the acoustic phonon of a medium is the essence of Brillouin scattering.  When 

this process occurs in an optical fiber, the backscattered light undergoes a frequency shift 

known as the Brillouin shift.  Since the frequency shift and the backscattered power of the 

Brillouin scattering are sensitive to the temperature and strain, it becomes a very useful method 

for fiber optic sensing[113].  SBS method using optical fiber to sense temperature is very useful 

method in industrial temperature sensing. In this method, Brillouin slow light technique is used.  

The approach relies on temperature dependence of the Brillouin shift in a fiber. Hence, the time 

delay of the input probe pulse.  By measuring the delay, temperature sensing can be realized 

[114] [115].  Brillouin Scattering Distributed Optic Fiber Sensor (BOTDA) is another  method 

to sense temperature and strain simultaneously [116].  Optical fiber has advanced rapidly in 
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current technologies and enable many useful applications. Optica fiber experiences geometrical 

and optical (refractive index, mode conversion) changes when subjected to perturbation which 

becomes the essence of distributed fiber optic sensing [113] . In particular temperature and 

strain can be sensed by optical fiber over long distances [117][118].   

The active control of the speed of light signal in an optical fiber is attracting for developing 

fast access memories and optically controlled delay lines. Brillouin scattering is the right 

candidate for time delay or pulse delay of optical signal. Delaying signal is also requirement in 

implementing optical filter and phased array antenna. The delay is implemented by controlling 

the speed of the light in the fiber by exploiting gain and loss mechanism of the SBS in the fiber 

[119]. The development of dynamic photonic delay lines is very essential for digital and 

analogue signal processing in communication and EW systems [120].  In particular optical 

delay line has drawn great attention of the microwave photonic research community recently.  

The use of optical delay line in microwave photonics are phase array antenna, microwave 

photonic filter and arbitrary waveform generator due to their inherent advancement such as  

huge bandwidth of the optical domain, whole microwave frequency occupies only fraction 

portion of the optical domain, low loss and high delay time-signal product  [120].  To 

implement delay in optical fiber, a control of group velocity of light signals, namely slow and 

fast light is completely depending on strong dispersion in the optical materials such as fiber.  

This can be readily induced by one or multiple complex optical resonances.  The process of 

SBS in optical fiber is the most widely used mechanism to generate spectral resonances 

[120][121].  SBS can be viewed as a narrow band amplification process where a continuous 

wave pump produces a narrowband (30 – 50 MHz) gain. SBS is usually described as nonlinear 

interaction between two counter-propagating optical wave a strong pump wave and a weak 

probe wave mediated through an acoustic wave.  For spectral spacing between two waves 
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fraction of pump light is scattered off into the probe, which create a narrowband gain resonance 

resulting in exponential growth of the probe  [120] 

 

 

Figure 3.20  Brillouin gain and loss resonance and the related optical phase shifts due 

to strong dispersion papering around the resonance [120]. 

On the other hand, the energy transfer from the pump to the probe can cause to the generation 

of a loss resonance as shown in  Figure 3.20. By simply swapping the spectral position of the 

pump and probe, the pump will lead to a spectral absorption cantered at the probe frequency 

[120]. The growing demand for higher data rates in wireless communication systems yield for 

new frequency band in mm wave range and photonic technique using SBS has greatly been 

research  recently [96].  In this method, nonlinear side bands are generated by an optical phase 

modulator and then desired sideband is selectively amplified by SBS gain resonance. Using 

this method generated mm wave is very stable as phase of two independently amplified side 

bands of the modulated sidebands remain same, the SBS narrowband amplification has no 

effect on the phase [122].  Brillouin scattering also has great use in distributed smart civil 

structures. By using Brillouin loss, the sensor is able of detect strain on any region on a sensing 

fiber, even those that are kilometres in length [123].  The most common fiber optics sensors 

are fiber brag gratings and Fabry -Perot interferometer. Distributed fiber optic sensor differs 

form a point sensor in that it uses the fiber itself as the sensing medium. Once the fiber is 

attached to a structure, the strain measurements can be taken at any and every point along the 

fiber, which can be tens of kilometres in length [123].   Several types of scattering can occur 



75 | P a g e  

 

as light is propagated through an optical fiber.  Scattering is always present when light 

propagates through a non-homogeneous medium and fraction of that light is reflected due to 

different optical medium interaction with light. Each of scattering process occur due to 

different optical medium interaction with light, for example Rayleigh scattering is caused by 

small variation in the refractive index of the glass that are frozen into the fiber during 

fabrication process. Brillouin scattering on the other hand on which optical strain sensor is 

based, occurs when light is scattered by acoustic wave known as phonon.  Phonon travel 

approximately 6000 m/s through the fiber towards the same direction as the light in the fiber.  

As a result, some of the light is Doppler shifted and shifted down in frequency from the original 

laser light frequency. This frequency difference between the incident laser light and the 

scattered light is called Brillouin shift [123].  This Brillouin shift is exploited in fiber sensor, it 

is the basis for optical sensor using Brillouin scattering.  The Brillouin shift in a fiber is 

dependent on index of refraction and acoustic velocity.  These parameters in turn changes based 

on environmental condition fiber is installed. Specially, environmental temperature or strain 

change will cause the Brillouin shift change. This allow either temperature or strain to be 

calculated by detecting Brillouin shift of an optical fiber [123].    

 

 

3.7 Summary  

 

In depth theorical work Brillouin scattering has been conducted.  Moreover, extensive 

simulation work has been performed to evaluate the characteristic of the Brillouin scattering 

and stimulated Brillouin scattering. Finally, the simulation works has been experimentally 

verified in the state-of -the are microwave photonic lab.  This work has greatly helped to 

understand Brillouin and stimulated Brillouin scattering and necessary for any one prior to 
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exploit Brillouin scattering for microwave photonic signal processing. By conducting this 

theoretical, simulation and experimental work in this chapter, it is found that, Brillouin 

scattering can be exploited as a unified universal microwave photonic signal processor.   Hence, 

the applications of Brillouin scattering in microwave photonics and other filed are countless.  

The beauty of the Brillouin scattering is that its nonlinear phenomenon lend itself to behaves 

as very narrow band optical filter and same time also very narrow band optical notch filter.  

Narrow band amplifiers and filters are very important essential components in wireless and 

radar communications.  Secondly, among all Brillouin medium, the geometric shape of the 

optical fiber make it right candidate to be not only used as a microwave photonic link, but, also 

as a very powerful Brillouin medium.  Optical fiber is also commercially available and 

comparatively cheaper in price.   

 

 

 

 

 

 

 

Chapter 4 
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 Proposed Photonic Mixer Incorporating All-Optical Microwave 

Frequency Generator based on Stimulated Brillouin Scattering 

using Single Laser Source  

In this chapter the theoretical and experimental implementation of a photonic mixer for Radio-

Over-Fiber (RoF) transmission systems, which incorporates an all-optical 10.87 GHz 

microwave frequency signal generator based on beating laser frequency with its first order 

Stimulated Brillouin Scattering (SBS) frequency shift. A 13GHz Radio Frequency (RF) is 

down converted to 2.13 GHz Intermediate Frequency (IF) signal. The proposed system 

configuration represents a cost-effective photonic mixer that can be deployed for up and down 

conversion around 11 GHz in RoF transmission systems.  The optically generated microwave 

signal of 10.87 GHz has a phase noise of -109 dBc/Hz at 15- MHz offset. The proposed 

photonic mixer exhibits a Spurious-Free Dynamic Range (SFDR) of 93dB.Hz 2/3. This RoF 

transmission system configuration deploys dual parallel Gallium Arsenide (GaAs) Mach 

Zehnder Modulator as a photonic mixer, and a single laser source as a Brillouin pump and as 

an optical carrier at the same time. To the best of my knowledge, this type of photonic mixers 

has not been reported in the literature.  

4.1 Introduction  

Microwave photonics brings together the world of Radio Frequency (RF) engineering and 

optoelectronics [26] [124][125].  The limitation of microwave signal processing such as lack 

of configurability, limited bandwidth, high energy consumption, prone to electromagnetic 

noise and interferences can be circumvented through microwave photonics, which refers to the 

processing of RF signals in the optical domain [125][126].   

Microwave signal processing in radar and wireless communication systems involve frequency 

mixing, where incoming high frequency RF signal, from an antenna, is mixed with Local 



78 | P a g e  

 

Oscillator (LO) signal by an RF mixer and then down converted to a lower Intermediate 

Frequency (IF) signal. The down-converted IF can be processed further by deploying low-

speed electronic circuitry to recover the baseband signal. In this regard, photonic mixers have 

potentially game changing features when compared to electronic mixers. Photonic mixers offer 

extensive operational bandwidth, near infinite isolation between the RF and the LO ports, and 

Electromagnetic Interference (EMI) Immunity, which are unique fundamental features of 

photonics technology [127].   

Currently, most common photonic mixer structures are based on two Lithium Niobate 

(LiNbO3) Electro-optic intensity modulators connected in series[127], and LiNbO3 integrated 

Dual Parallel Mach Zehnder Modulator (DPMZM) with integrated optical phase shifter 

[128][129].  However, in our proposed RoF system, we have used Gallium Arsenide (GaAs) 

integrated DPMZM as a photonic mixer which has an excellent capability in managing RF 

signals in space, aerospace and satellite-to-ground downlink communication systems. The 

proposed photonic mixer deploys Stimulated Brillouin Scattering (SBS) frequency shift. It is 

known that SBS causes system degradations in fiber-optic networks [129][130]. 

However, SBS can also have major beneficial characteristics for microwave photonic signal 

processing such as frequency selective amplification, specific loss spectrum (suppression) and 

Brillouin Stokes frequency shift.  Among these major beneficiaries is the Brillouin Selective 

Side Band Amplification (BSSA). The BSSA has been used to achieve a gain in microwave 

photonic mixing [131][132].   It has also been used to achieve Single Sideband modulation 

(SSB) of 11-GHz RoF system [133]. Brillouin carrier suppression technique is also used to 

achieve high conversion efficiency in microwave photonic mixer [134].  
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Furthermore, BSSA has been exploited in opto-electronic oscillator (OEO) as a very high Q 

narrow-band optical filter to selectively amplify oscillation mode [135][136][137][138]. In this 

study, we have used SBS for microwave frequency generation.  

Microwave frequency generation occurs by heterodyning the input laser and its second order 

Brillouin Stokes signal through the circulation/isolation of its first order Stokes signal in optical 

fiber has been reported in [139].  Brillouin scattering Stoke frequency shift in Single Mode 

Fiber (SMF) is reported in [140], where two-frequency Brillouin fiber laser is used as an optical 

microwave generator.  However, none of the above stated literature evaluated the performance 

of all-optical microwave signal generation for microwave photonic mixing.  

Furthermore, in ref. [139] and [140], they require two independent lasers to generate RF signal 

optically and provide an optical carrier to microwave photonic mixer, which is more expensive 

and adds the complexity to the RoF transmission systems. 

In this study, a novel photonic mixer structure configuration using Gallium arsenide (GaAs) 

DPMZM incorporating 11-GHz all-optical microwave signal generator by heterodyning input 

laser and its first order Brillouin Stokes has been proposed . A single laser source is used as a 

Brillouin pump and provide the optical carrier for the DPMZM. The GaAs structures are 

traditionally the material of choice for designing photonic devices that operate at millimeter-

wave frequencies, due to the availability of low-loss, semiconductor integration conveniences, 

and high resistivity substrate. Furthermore, characteristics of environmental stability, including 

a reasonable degree of radiation hardness make GaAs material structures ideal for systems 

which must survive and operate in harsh environment such as space and defence sectors [141].   
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4.2 Theory and Operation Principal 

Light scattering in optical fiber is omnipresent regardless of the amount of optical power 

present in the fiber. There are two types of light scattering in optical fiber: spontaneous and 

stimulated scattering. In spontaneous scattering, the optical material constituting the optical 

fiber such as refractive index does not change due to the presence of the incident light wave 

(electromagnetic field). However, in the case of when a high power of incident light wave in 

lunched in the fiber, the spontaneous light scattering can become quite intense which causes 

changes the optical property of the material; this regime is known as SBS [65]. In other words, 

the SBS is an interaction between an intense optical field, a pump wave, and an induced electro 

strictive acoustic wave in the fiber.  Due to the relative velocity interactions between the pump 

(incident light wave) and the acoustic wave, the backscattered wave is shifted in frequency 

[142].  The backscattered Brillouin frequency shift VBS is defined as [142]:  

 𝒗𝑩𝑺 =
𝟐𝒏𝑽𝒂

𝝀
 (25) 

 

 

where 𝑉𝑎 is the acoustic velocity within the fiber, n is the refractive index of the fiber, and 𝜆 is 

the operating wavelength of the incident light wave. In the case of silica based optical fibers 

such as SMF-28, the Brillouin frequency shift is governed by the value of the acoustic velocity 

in silica 𝑣𝑎  = 5587 m/s and refractive index 𝑛 = 1.46. In silica based optical fibers, the Brillouin 

frequency shift is equal to the acoustic frequency which is around (9-11) GHz. The SBS 

threshold power is defined as [142]: 
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 𝒈𝑩 𝑲 (𝑷𝒕𝒉 /𝑨𝒆𝒇𝒇) 𝑳𝒆𝒇𝒇  ≅ 𝟐𝟏 (26) 

 

where 𝑔𝐵 is the Brillouin gain coefficient of the material, 𝑃𝑡ℎ is power corresponding to the 

Brillouin threshold, 𝐴𝑒𝑓𝑓 is the effective cross-sectional of fiber, 𝐿𝑒𝑓𝑓 is the effective length 

and K is a constant that depends on the polarization property of the fiber, which is 1 if the 

polarization is maintained and 0.5 otherwise. Typical silica based SMF-28 fiber has Brillouin 

gain coefficient 𝑔𝐵 𝑖𝑠  (4.40 × 10−11)
𝑚

𝑊
. Modeling the effective length 𝐿𝑒𝑓𝑓 is complicated.  

However, a simple model that assumes the signal power is constant over a certain effective 

length has proved to be useful in understanding the effects of the fiber nonlinearities 

 

 

 

The effective length 𝐿𝑒𝑓𝑓 is defined [139]:  
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 𝑳𝒆𝒇𝒇 =   

𝟏 − 𝒆−𝜶𝑳

𝜶
 (27) 

where α is fiber attenuation per km, L is the original fiber length. Typically, α = 0.22 dB/km 

for SMF-28 fiber. In Fig. 1, we illustrate calculations of effective length as a function of fiber 

length in km. For 2km length of optical fiber, the calculated 𝐿𝑒𝑓𝑓 is 1.61 km. It is worth stating 

that after 20 km, the effective length of a fiber is around 4.85 km, and it is constant regardless 

of the fiber length, as shown in Figure 3.1.  In our study, the effective cross section of the SMF 

fiber is 86.5 µ𝑚2. The SBS threshold 𝑃𝑡ℎ  power is calculated based on the original fiber length 

of 2 km, using  equation (20) .   

 𝒈𝑩 𝑲 (𝑷𝒕𝒉 /𝑨𝒆𝒇𝒇) 𝑳𝒆𝒇𝒇  ≅ 𝟐𝟏 (28) 

 

𝑃𝑡ℎ =
21 × 𝐴𝑒𝑓𝑓

𝐾 × 𝑃𝑡ℎ  ×  𝐿𝑒𝑓𝑓

 

 

𝑃𝑡ℎ =
21 ×  86.5𝜇𝑚2

0.5 × (4.40 × 10−11)
𝑚
𝑊

 ×  1610𝑚
 

 

𝑃𝑡ℎ =
21 ×  86.5𝜇

0.5 × (4.40 × 10−11) ×  1610
 𝑊 

 

𝑃𝑡ℎ =
21 × ( 86.5 × 10−12)

0.5 × (4.40 × 10−11) ×  1610
 𝑊 

 𝑷𝒕𝒉 = 𝟓𝟏. 𝟐𝟗 𝒎𝑾 (29) 
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According to the above calculation results, the SBS threshold power 𝑃𝑡ℎ for 2 km optical fiber 

is 51.29 𝑚𝑊. 

 

Figure 4.2 The schematic diagram of the proposed 

structure. CW: continuous wave laser; CIR: optical 

circulator; PD: photo detector; SMF: Single Mode fiber; 

DPMZM: Dual Parallel Mach Zehnder Modulator. 

 

The schematic diagram of the proposed photonic mixer configuration is shown in Figure 4.2. 

The laser source provides a continuous wave light into the DPMZM via the Optical Circulator 

(CIR) port 2 over a reel of the SMF. An ideal CIR should stop (completely isolate) optical 

signal propagating between port 1 and port 3, allowing the optical signal to propagate only 

between ports 1 and  Port 2, and port 2 and port 3.  However, in the practical implementation 

of such CIRs, there is always some optical signal leakage between port 1 and port 3. This allows 

some of the CW laser optical carrier signal fC to propagate towards the port 3 of the CIR. In 

this case, most of the laser light from port 2 is propagating through the SMF-28 reel. In our 

proposed schematics, the SMF-28 reel is used as a Brillouin gain medium where the counter-

propagating Brillouin stokes gain is generated at the frequency 𝑉𝐵𝑆, and it counter propagates 

towards port 2, and then to port 3.    
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At port 3, some of the CW laser signal leakage fC, from port 1 is already propagated. Hence, 

both signals (fC, from port 1, and Brillouin Stokes shift frequency VBS, from port 2) are mixed 

at port 3 and beat together at the Photo Detector (PD) to generate high frequency microwave 

signal. The generated microwave signal is amplified by built-in Electric Amplifier (EA) inside 

the PD and fed into the DPMZM’s Local Oscillator (LO) port. Light propagating from the other 

end of the SMF-28 reel is propagating via the Polarization Controller (PC) into the DPMZM.  

The PC is deployed to maintain the light polarization. As shown in Figure 4.2, the upper arm 

of the DPMZM is modulated by the optically generated RF signal. The lower arm of the 

DPMZM is modulated by the RF signal from antenna [128].  Finally, both optical sideband VBS 

and applied RF are mixed optically at the DPMZM, then transmitted at the remote destination 

thought the optical fiber. At the receiver the RF signals are then processed further by deploying 

low speed and low power electronic systems.  

4.3 Experimental Results and Discussion 

 

The experimental structure of the proposed photonic mixer configuration, illustrated in Figure 

4.2, is developed and implemented in Microwave Photonics and Sensors lab, shown in Figure 

4.3. This experimental set up shows the arrangement connections of photonic components and 

measurement equipment, including both microwave and optical spectrum analyser. As an 

optical source, we used a laser operating at 1549.948 nm (193.421THz), with a narrow 

linewidth of 50 kHz (Thorlabs-SFL 1550 S) and optical power of 18 dBm, connected to the 

CIR (Thorlabs CIR1550SM) in port 1. The insertion loss of the CIR is 1 dB, whereas the 

isolation between port 1 and port 3 is 25 dB.  Port-2 of the CIR is connected at the one end of 

the 2 km SMF-28 fiber reel to generate the SBS. 
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Most of the CW laser light (18 dBm) from the port 2 is propagating through 2 km SMF. As 

explained in Figure 4.2, the SMF-28 reel works as Brillouin gain medium, consequently, 

Brillouin Stokes frequency (VBS) is generated and counter propagates towards the CIR port 2. 

The counter-propagating Brillouin frequency (VBS) from port 2 and some light leakage from 

the CW laser signal fC at 1549.948 nm (192.421 THz) from port 1, are mixed at port 3, which 

operates like a Carrier Suppressed Single Side Band (CS-SSB) signal. 

 

 

Figure 4.3 Experimental setup of the proposed structure. 

 

Variation of the optical frequency (THz) as a function of the measured power in dBm is 

illustrated in Figure 4.4. This figure displays the optical spectrum measured at port 3,showing 

Brillouin Stokes frequency shift (VBS) at 193.411 THz and the CW laser frequency at 193.421 

THz, which is replicating the SC-SSB signal. Our experiment shows that the Brillouin Stokes 

frequency shift is observed at 1550.028 nm (193.411THz) with 5 dBm optical power. The 

linewidth of the SBS Stokes frequency is measured to be 10 MHz. It is worth stating that, the 
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minimum achievable Brillouin first order stokes frequency linewidth is limited to 10MHz due 

to acoustic phonon lifetime in the silica based optical fiber. In Figure 4.4, both Stokes and the 

signal appear to be broader due to the resolution constraints of the Optical Spectrum Analyser 

(OSA) used to measure the optical carrier. The resolution of our OSA is limited to 10 GHz. 

Moreover, the linewidth of Brillouin stokes frequency shift is measured by heterodyning laser 

signal frequency with stokes frequency signal at the photodetector. Our heterodyning 

measurement results show the linewidth of the Brillouin Strokes is 10 MHz, as shown in Figure 

3.5. 

 

 

Figure 4.4 Optical spectrum measured at CIR port 3 shows Brillouin 

Stokes frequency shift (VBS) at 193.411 THz and CW laser frequency at 

193.421 THz imitating SC-SSB signal. 
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The CS-SSB signal from port 3 is sent to the PD (DSC-40s). The 3-dB bandwidth of the PD1 

is 18 GHz with a responsivity of 0.80 A/W. The CS-SSB beats at the PD and generates 10.87 

GHz microwave signal which is then fed into DPMZM LO port. The phase noise of the 

optically generated 10.87 GHz microwave signal is measured to be -109 dBc/Hz at 15 MHz 

offset using Rode and Schwarz-FSL RF spectrum analyser, as shown in Figure 3.5. The line 

shape of the generated heterodyning microwave signal is observed on the electronic spectrum 

analyser is well matched with the Gaussian fitting curve shown in Figure 3.6. 

Figure 4.5 RF spectrum- phase noise of the 10.87 GHz generated  

microwave signal -109.20 dBc/Hz at 15 MHz offset. 
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The linewidth of the optically generated microwave signal is ~ 10 MHz. This was measured by 

the heterodyne beating of the laser frequency with its first order (SBS) frequency shift on the 

PD, as shown in Figure 3.5.   The generated 10.87 GHz microwave signal is amplified by 30 

dB power amplifier built in the PD and then injected into the upper arm of the integrated 

DPMZM’s LO port. A 13 GHz microwave signal is applied into the RF port of the DPMZM 

as an incoming RF signal.  In this experiment, Gallium arsenide (GaAs) based Axenic -aXsd-

2050) DPMZM are deployed due to their advantages in terms of harsh environment 

applications for radar and satellite communication systems.   The 3-dB bandwidth of the 

DPMZM is 50 GHz with the insertion loss of 10 dB. The half-wave voltage Vπ for the child-1 

and child-2 modulators are around 10 V-DC, and for the parent modulator Vπ is 12 V-DC. 

 

Figure 4.6  The Gaussian curve fitting result of the optically 

generated microwave signal 
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In such RoF transmission systems, it is necessary to suppress the carrier. Within this 

experiment, in order to minimize the carrier, we optimized the bias voltages of the DPMZM. 

Our measurements show that the optimized DPMZM bias voltages to minimize the carrier are 

at; Vb1= 6.50 V, Vb2 = 11.85 V and Vb3 = 1.85 V.  These bias voltage values are proven to 

achieve a large carrier suppression of 45 dB, resulting in a down-converted IF signal of 2.13 

GHz. The down-converted IF signal is measured at the remote destination. 

Conversion efficiency as a function of input RF signal frequency of the proposed photonic 

mixer is shown in Figure 3.7, It can be seen from the figure that the photonic mixer response 

between 2-16 GHz is almost flat around 1.5 dB variation. This conversion efficiency of the 

generated optical microwave signal is benchmarked with the commercial RF Source (Rode& 

Schwarz-SFL-100A), shown in Figure 3.7. 
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Figure 4.7 Measured conversion efficiency of the proposed DPMZM structure as a 

function of RF frequencies. 
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As illustrated in the Figure 3.7, the generated RF source using in the proposed structure is very 

precise. This demonstrates the accuracy of our proposed DPMZM photonic mixer, where the 

conversion efficiency of the optically generated microwave signal and commercially available 

RF source are similar.  

   In addition to this, we have also investigated the dynamic range performance of the proposed 

RoF photonic mixer. The Spurious Free Dynamic Range (SFDR) measurement is carried out 

with two RF signal tones; 13.00 GHz (RF1) and 13.01 GHz (RF2), and they are fed to DPMZM 

RF electrodes. Our measurement shows that noise floor is -143.5 dBm/Hz.  It is worth stating 

that during the SFDR measurements, third-order Intermodulation Distortion (IMD3) 

components at 2.12 GHz (IMD3-Lower) and 2.15 GHz (IMD3-Upper) are measured and 

calculated using the following equations 21 and 22:  

  𝐈𝐌𝐃𝟑 (𝐋𝐨𝐰𝐞𝐫)  =   {(𝟐𝐑𝐅𝟏 – 𝐑𝐅𝟐 )  − 𝐕𝐁𝐒} (30) 
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91 | P a g e  

 

  𝐈𝐌𝐃𝟑 (𝐔𝐩𝐩𝐞𝐫)  =   {(𝟐𝐑𝐅𝟐 – 𝐑𝐅𝟏 )  − 𝐕𝐁𝐒} (31) 

 

Where RF1 is the first RF tone 13 GHz, and RF2 is second RF tone 13.01 GHz, VBS is the 

optically generated RF signal at 10.87 GHz, which is fed into LO port of the DPMZM.   Fig. 8 

illustrates the fundamental signal and IMD3 components. The SFDR of the proposed method 

is measured to be 93dB.Hz 2/3 for a given optical condition, which meets minimum requirement 

of 72 dB.Hz 2/3 reported in Ref [143], and it also demonstrates a 3.5 dB SFDR improvement 

when compared to the reported SFDR in Ref.  [132]. The proposed system configuration 

represents a cost-effective microwave photonic mixer that can be deployed for up and down 

conversion around in RoF transmission systems. 

4.4 Summary 

 

Throughout the experimental analysis, our data determines an innovative microwave photonic 

mixer, incorporating an-all optical 10.87 GHz microwave frequency generator. These have 

been projected on Brillouin Stokes utilizing a single laser source. To demonstrate the 

performance of the proposed optical mixing for IMD3 measurement, two tones RF input signals 

at 13.00 GHz and 13.01GHz are down converted to IF1 at 2.13 GHz and IF2 at 2.14 GHz, 

respectively. The lower IMD3 is measured at 2.12 Hz and upper IMD3 is measured at 2.15 GHz.  

The measured phase noise of the optically generated microwave signal at 10.87 GHz is -109 

dBc/Hz at 15MHz offset.  The proposed analog configuration is used to down-convert the 

incoming RF signal whilst demonstrating high SFDR performance of 93dB.Hz2/3 with low cost, 

low complexity while using a single laser as a carrier and for RF generation. This meets the 

minimum requirement of 72 dB.Hz 2/3 reported in Ref [143], and also demonstrated a 3.5 dB 

SFDR improvement when compared to the reported SFDR in Ref.  [14]. We have developed 
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and implemented a cost-effective microwave photonic mixer structure for RoF transmission 

systems, where the CW lasers are used as a Brillouin pump for generating the RF optically and 

as the optical carrier for the DPMZM, simultaneously. This new technique reduces the 

complexity of RoF transmission systems when deploying multiuser systems with ultra-high 

bandwidth capacities. The proposed photonic mixer has also been used to down-convert the 

incoming microwave signal. This new structure can also be used as an all-optical microwave 

photonic up converter for RoF and antenna remoting around 11 GHz. Future work will be on 

using this new technique at a higher frequency. To the best of our knowledge, these types of 

photonic mixers have not been reported in the literature.  This research work has proposed 

novel method to realize microwave photonics mixing in all optical structure, which greatly help 

to realize future wireless and communication systems in all optical  structure.  This will remove 

the problem electronic domain bottleneck problem by realizing all optical microwave photonics 

systems structure for future electronic warfare and wireless communication systems.   
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Chapter 5 

 Proposed Apparatus and Method for Reducing Distortions of an 

Optical Signal (Patent: GB2567646) 

5.1 Introduction  

Dynamic range is very important performance matrix for any radar and wireless 

communication systems.   Dynamic range is the ability of a receiver to process a range of input 

powers from the antenna. If the signal is too weak, it cannot be detected as it will buried in 

noise, whereas, if the received signal power is too high, it will saturate the receiver and spur 

occurs [16] . Among others unwanted components in a received signal, distortion has great 

influence on receiver dynamic range. Distortion causes the original signal’s shape alteration. 

This patent relates generally to an apparatus and method for reducing distortion in an optical 

signal to improve the dynamic range of a microwave photonic systems.   

The proposed method was conceived for photonic links used with ultra-wideband photonic 

radio frequency receivers in electronic warfare (EW) systems, though the invention may have 

other applications such as for removing distortion in long-haul telecommunication cables. 

Current non-photonic EW receivers using RF filtering have a typical dynamic range is about 

50 dB[144].  Dynamic range is the ratio of the highest signal level a circuit , components, link, 

or a system can handle to the lowest signal level expressed in (dB)[145].  Photonic links achieve 

a slightly better dynamic range for the same frequency range and bandwidth without filtering. 

Photonic RF links therefore provide a promising route for providing improved dynamic range 

for EW receivers. 
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The dynamic range of a photonic RF signal is also limited by the amount of optical modulation 

(typical 4%) [146].  That can be applied by an optical modulator modulating the optical beam 

to carry a received RF signal before distortion products derived though the modulation process 

begin to dominate.  The objective of the invention (patent) is to improve the dynamic range of 

the photonic RF signal for microwave photonic systems. While there are numerous components 

and architecture that have been used  to created microwave photonic links, the four components 

are dominant that enable the effective used are: low noise, high power diode, low loss 

electrooptic modulators with low drive voltage, high- power, highly linear photodiodes, and 

low Amplified Spontaneous Emission (ASE) Erbium Doped Fiber Amplifier (EDFA) [17].  To 

improve the dynamic range, over the last decade DARPA has invested in numerous programs 

aimed specially to the improvement and maturation of these first three components [17].   

Many techniques have been reported using COTs photonic devices in literature to improve the 

dynamic range of photonic RF signal.  Using polarization modulator (PoIM) where destructive 

combination of the distortion signal in the electrical domain which is realized using a PoIM 

with its output split into two channels [147].  Using four- wave mixing effect in a highly 

nonlinear fiber was demonstrated in ref [148].  Predistortion linearization technique is 

demonstrated to achieve 7.9 dB SFDR improvement [149]. Another scheme is used to improve 

the dynamic range of the RF photonic signal based a DPMZM  with electrical phase shifter to 

completely supress IMD3 [150]. Series phase modulation and band pass filtering technique 

[151], using digital linearization technique to improve dynamic range of wide band photonic 

RF link [152]. Recently, Brillouin scattering in optical fiber has attracted great attention of 

microwave photonic research community, where Brillouin’s anti-stoke is used as very narrow 

powerful optical notch filter to remove distortion from an optical signal.  
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Brillouin scattering is a form of inelastic optical light scattering arising from optical 

inhomogeneity within the light carrying medium.  Thermal motion of molecules inside the 

optical medium cause local density fluctuations that lead to formation of acoustic vibrations 

within the optical material. Such waves represent acoustic phonons. The interaction of incident 

light with these phonons results in Brillouin scattering.  

Spontaneous Brillouin scattering is caused by natural thermal fluctuations within the optical 

medium.  However, when the intensity of a light beam propagated through the medium is 

sufficiently high, variations in the electric field of the light beam can induce acoustic vibrations 

within the material. Scattering caused by these induced acoustic waves is known as Stimulated 

Brillouin scattering (SBS). The change in optical frequency of scattered light from the 

frequency of the incident beam is called a Stokes shift. Scattered light that is shifted to lower 

frequencies are denoted as stokes components and light scattered to higher frequencies as anti-

Stokes components. Anti-Stokes scattering results from acoustic waves travelling towards the 

incident light, while Stokes scattering results from acoustic waves that are retreating from the 

incident light. The Stokes shift of Brillouin scattered light (Brillouin shift) is equal to the 

frequency of the acoustic wave within the optical material. In silica optical fibers the typical 

value of the stokes shift of Brillouin scattered light from incident light having a wavelength of 

~1.55 um, is 10.8 GHz. This is a result of the acoustic velocity in silica (V=5900 m/s) and 

refractive index n=1.46 of silica.  

In an application of SBS, a first weak beam carrying a signal is propagated through an optical 

material in a first direction and a second light beam of optical power enough to effect SBS is 

propagated through the optical material in an opposite direction. By arranging the 

counterpropagating beams to be appropriately phased matched and with frequencies separated 

by the Brillouin shift for the optical medium, the interference wave (commonly referred to as 

a Dynamic Brillouin grating) formed by the interacting beams  strongly stimulates acoustic 
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waves in the optical material that vary in periodicity with the signal. The rating acts, though 

stimulated Brillion scattering, to reflect a portion of the signal back towards the first beam 

source [153].  In this research, a novel method is proposed by exploiting SBS’s anti-stokes to 

suppress distortion of modulation product and harmonics generated by an optically modulated 

signal.  In this method a length of optical fiber is used as very powerful optical notch filter to 

suppress modulation products while the signal is propagated through the optical fiber.  This 

method improves dynamic range of an RF photonic link and optically modulated microwave 

photonic signals.    

5.2 Principle Method  

 

 

Figure 5.1 Proposed patent structure 

 

Figure 5.1, illustrates a distortion removal apparatus for use with a RF receiver, e.g. a wide 

band receiver adapted to receive EW signals of frequencies between 1Khz – 100GHz. In a first 

aspect, there is provided apparatus for reducing distortion in an optical signal, the apparatus 

comprising: a coherent light source; an optical fiber; an optical modulator for modulating a 

first coherent light beam  to carry a signal and propagate the modulated coherent light beam 
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along the optical fiber; means to generate a dynamic Brillouin grating in the optical waveguide 

using stimulated Brillouin scattering by propagating a second light beam modulated to carry 

the signal through the optical fiber in an opposite direction to the first light beam; the optical 

frequency of the first beam and second beam differing to satisfy the Brillouin condition;  and 

characterised in that the first and second light beams have different fundamental to distortion 

product ratios. Because the first and second beams have different fundamental : distortion 

product ratios (namely the ratio of amplitude of the fundamental to amplitude of largest 

amplitude distortion product) the dynamic Brillouin grating will act to preferentially reflect 

one of the fundamental or the distortion products in the signal over the other. Depending on 

the chosen arrangement of the apparatus, either the beam transmitted through the grating or 

that reflected from the grating will have reduced RF distortion products compared with 

modulated light beam before incidence with the grating. As such the apparatus provides an 

efficient means of reducing or removing distortion products introduced through the process of 

modulating the light to carry the signal, providing an output signal having higher spectrally 

free dynamic range compared with existing optical and electronic linkages used with RF 

receivers.  

The second beam may be of sufficient optical power to bring about stimulated Brillouin 

scattering in order to form the grating. The second beam may be of higher optical power than 

the first beam. The apparatus may comprise an optical receiver arranged to receive the portion 

of the first light beam that has propagated through the grating. Alternatively, the optical 

receiver may be arranged to receive the portion of the first light beam that has reflected from 

the grating. In one arrangement the second beam has a higher frequency (shorter wavelength)  

than the first beam (e.g. through upconverting the second beam) by a magnitude substantially 

equal to the anti-stokes frequency shift, the second beam has a smaller fundamental distortion 

ratio than the first beam, and an optical receiver arranged to receiver the portion of first light 
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beam transmitted through the grating, i.e. travelling in the direction of the first beam. 

Alternatively, though less preferred, the second beam may have a lower frequency than the 

first beam (e.g. through down converting) by the stokes frequency shift, the second beam has 

a smaller fundamental : distortion ratio than the first beam, and the optical receiver is arranged 

to receive the portion of the first beam that is scattered(reflected) by the grating, i.e. travelling 

in the opposite direction to the first beam. A perceived disadvantage of the second arrangement 

is that spontaneous Brillouin Scattering may reduce the quality of the output. Because the 

amplitude of the distortion products in the output optical signal are substantially reduced 

compared with the fundamental, e.g. such that amplitudes of the largest distortion products are 

below the noise floor, the optical modulator can be set to operate at a higher modulator index 

(optionally near 100%), thereby improving signal to noise ratio of the output signal. The 

apparatus may be used as an optical link for a RF receiver. In such an embodiment, the 

amplifier of the RF receiver used to amplifier the signal fed to the optical modulator will 

typically produce at least some distortion products that align with the distortion products 

created during optical modulation. As such the apparatus will further advantageously act to 

reduce/substantially remove distortion products derived from the amplifier as well as from the 

optical modulator.  

The apparatus may comprise a coherent light source with a first modulator to modulate the 

coherent light from the light source to provide the first light beam. The apparatus may comprise 

a second modulator arranged to modulate coherent light (e.g. a portion of the coherent light 

from the coherent light source, in which case the apparatus may further include a splitter) to 

generate the second modulated light beam. Alternatively, the second modulated light beam 

could be generated by modulating coherent light source.  In order that the second light beam 

has a lower ratio of fundamental: distortion product, the second modulator may be detuned 

compared with the first modulator. The second modulator may be tuned to substantially 
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towards null biasing point Vπ. A first light beam imposed with both the fundamental and 

unwanted distortion products, is propagated through an optical waveguide in a first direction. 

A second light beam with a ratio of the amplitude of fundamental to amplitude of larges 

distortion product that is lower than the equivalent ratio of the first light beam, is propagated 

into the optical waveguide so as to travel in an opposite direction to the first beam. The second 

light beam is frequency shifted with respect that of the first beam by the anti-Stokes frequency 

for the waveguide material. 

Because the second beam has a higher ratio of distortion products to fundamental compared 

with the first beam, the grating preferentially reflects distortion products over fundamental. As 

such the portion of the first light beam that passes through the grating has distortion products 

with reduce amplitude relative to fundamental compared with the first beam before incidence 

with the grating. The apparatus may include an optical-electric transducer arranged to receive 

the portion of the first beam that transmitted through the grating. If the second beam is of 

enough optical power the amplitude of all distortion products can be removed to below the 

noise floor such as to provide the output with a very high spectrally free dynamic range.  The 

optical power of the beam needed to generate an SBS grating will depend on the optical 

medium used which can be straightforwardly determined through empirical experimentation. 

The polarization of first and second beams need to be suitable controlled to generate the grating. 

Such control is taught in thesis [154] mentioned above, but will be known to those skilled in 

the art. This novel method generates very sharp optical notch filer automatically based on the 

signal’s modulation products. In other word, it is auto tuned notch filter method, which are 

automatically generated by the modulation product itself.  This novel method develops a smart 

distortion suppression method which based of my knowledge has not been reported before in 

the literatures.  Based on this novel method, a UK patent has been granted and currently being 

in patent granting process in USA.    
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5.3 Simulation and Analysis 

 

 

Figure 5.2 Simulation configuration of the patent 

 

The simulation configuration shown in Figure 5.2 is setup based on the proposed patent 

structure as shown in Figure 5.1.  The Continuous Wave (CW) laser with 193.420 THz 

frequency at 20mW power is spitted by an optical fork, where light from arm of the fork 

(splitter) is propagated to a Dual Parallel Mach Zehnder Modulator (DPMZM).  The DPMZM 

is derived by 11 GHz RF signal, so that the upper sideband of the suppressed carrier single 

sideband (SC-SSB) falls in anti-Stokes and lower sideband of the SC-SSB falls in Stokes 

frequency signal of the Brillouin scattering.  In the simulation, the lower side band of the SC-

SSB is used as shown in Figure 5.3 to evaluate the anti-Stoke suppression effect on the optical 

sideband of the MZM-2 as shown in Figure 5.2.   
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EW 

MZM-3 

PD 

SMF 2km 
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CW 

DPMZM 

MZM-2 
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Figure 5.3 Optical supress carrier lower single side band signal 

 

The lower sideband of the SC-SSB at 193.409 THz is working as a Brillouin pump and injected 

into MZM-3 as shown in Figure 5.3.  The MZM-3 works as Brillouin suppressor and modulated 

by EW signal of 5 GHz biased at NULL operating point at DC 5V.  The modulated signal form 

MZM-3 is amplified by an optical amplifier (EDFA) to generate enough Stimulated Brillouin 

Scattering (SBS) threshold so that when modulated signal is propagated through 2km single 

mode fiber (SMF) Brillouin Stokes and anti-Stoke is generated.  The output of the MZM-3 is 

observed in optical spectrum analyser (OSA) as shown in Figure 5.4.  It is clear from Figure 

5.4  the effect of SBS anti-Stokes on optically modulated signal.  The sideband of the modulated 

signal is suppressed by 10 dB. It worth to note that, anti-stokes is not observed on OSA as it is 

propagated toward the same direction of the Brillouin pump signal.  However, the effect of the 

anti-Stokes can be seen on the modulated sidebands as both side band were suppressed by 10 

dB.   

fc- 193.420 THz 

SC-SSB signal 11 GHz downshifted from fc 193.409 THz 
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Figure 5.4 SBS Stokes are generated by two modulated sideband of the MZM-3 

 

50% Light from lower arm of the optical fork (splitter) is propagated to MZM-2working as 

EW modulator and driven by 5 GHz RF signal biased at NULL operating point at DC 5V.  The 

output of the MZM-2 is observed on OSA on the simulation shown in  Figure 5.5 is   

 

Figure 5.5  The output of the MZM-2 before SBS suppression (A), and, after SBS suppression 

(B) 

 

SBS Stokes 

A 

B 
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propagated via an optical isolator through the 2km SMF fiber working as Brillouin gain 

medium.  When the modulated signal form MZM-2 is propagated through 2km fiber the side 

bands of the modulated signal is suppressed by 10 dB due to SBS anti-Stokes suppression effect 

as shown in Figure 5.5.   As a result, Null biased optical modulated sidebands are suppressed 

and becomes quadrature biased modulated side bands.  This is shown by overlapping the image 

A and B of the Figure 5.5.  As shown in Figure 5.6, where 10 dB suppression is evident.    

 

Figure 5.6  Merging image A and B from Figure 5.5 

 

To observe the effect of the suppression in RF domain, the suppressed sidebands of the MZM-

2 is injected on a PD according to the setting configuration as shown Figure 5.2 and observed 

on the RF spectrum analyser on the simulation.   The output of the RF spectrum analyser is 

shown in Figure 4.7 which shows when there no SBS effect in image (A) the second order 

harmonic of  the fundamental RF signal 10 GHz.  The fundamental RF signal is 5 GHz. 

However, when both side bands in Figure 5.5 is suppressed by Brillouin anti-Stokes, the 

optically modulated signal biased as null becomes like quadrature biased signal. Hence, 

fundamental and second harmonics are observed in Figure 4.7 (B).  

 

No SBS 

With SBS  10 dB optical suppression 
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The RF output of the photo detector (PD) with and without Brillouin effect is overlapped on 

each other by simulation as shown in Figure 5.8. Interestingly, the noise floor has also 

suppressed by 10 dB as shown in Figure 5.8. 

. 

(A)-No SBS 

(B)- With SBS 

Figure 5.7  RF spectrum analyser shows the PD output without SBS (A) and with 

SBS effect (B) 

2nd harmonic 

Fundamental 

2nd harmonic 
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Figure 5.8 Overlapping of PD output with and without Brillouin effect 

 

In this section, MWP down conversion is simulated using conventional structure with optical 

amplifier (EDFA) such as Erwin H.W. Chan et.al model [129] and [128]. Then down 

conversion is simulated using proposed patent structure where SBS Stokes are used to amplify 

modulated side bands (LO and RF) before the photo detector.  20 dB RF dynamic range of the 

down converted signal  has been improved compared to conventional MWP down conversion 

structure [129].  Unlike EDFA, Brillouin selective sideband amplification only selectively 

amplify the modulated sidebands and leave noise floor unamplified, thanks to the selective 

sideband characteristic of the SBS Stokes.  However, EDFA amplifies modulation sidebands 

along with the noise floor.  Hence, using EDFA to amplify weak modulated sidebands before 

the photo detector deteriorate dynamic range by adding more noise on the signal.  Moreover, 

Amplified Spontaneous Emission (ASE) noise generated by the EDFA is also problematic to 

achieve high dynamic range of the photonic mixers.  The proposed patent offers MWP mixing 

structure which is self-aligned to selectively amplify modulated sidebands by exploiting SBS 

Stokes gain characteristic and circumvented the inherent noise problem of the EDFA for future 

RADAR and wireless communication systems.    
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5.3.1 Simulation Setup 

 

 

 

Figure 5.9 Simulation setup of the patent as auto tuned BSSA 

 

The proposed structure is simulated according to Figure 5.9. Laser with 193.420 THz frequency 

at 20dBm power with -150 dB/Hz Relative Intensity Noise (RIN) is split by a 50/50 coupler. 

The linewidth of the laser is 100 KHz. The upper arm to the coupler is propagated to a DPMZM 

which works as Suppressed Carrier-Single Side Band (SC-SSB) Modulator. The SC-SSB 

modulator is driven by 11 GHz RF signal, so that lower side band of the SC-SSB is fall on 

Brillouin stokes frequency and upper sideband falls on anti-Stokes Brillouin shift where both 

side bands are used as Brillouin pump.  In the simulation, for amplification of the modulated 

side bands, the upper side band at 193.431 THz is use as Brillouin pump.   

 Light upper sideband (193.411 THz) from the output of the SC-SSB is propagated through 

optical Bandpass Filter (BF) to suppress the optical carrier frequency (193.420 THz) fully and 

allow the upper sideband of the SC-SSB at 193.431 THz to propagate into single MZM 

EDFA 
SC-SSB 

EW Mixer 

Distorted MZM 

Laser 
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Photo  

Detector 
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working as a distorted MZM.  The MZM working as distorted MZM is driven by combining 

LO and RF signal from EW mixer as shown in Figure 5.9.  To suppress the carrier of the 

distorted MZM is biased at null operating point at 5V DC.  The output of the suppressed carrier 

distorted MZM is shown in Figure 5.10. 

 

Figure 5.10 Optical spectrum analyser showing the output at distorted MZM 

 

 

The modulated signal from the distorted MZM is amplified by an EDFA to achieve enough 

SBS threshold (The power at the output of the EDFA is measured at 26.41 dBm) and propagates 

through 2km SMF fiber.  Here SMF is working as Brillouin gain medium, hence, counter 

propagated Brillouin Stokes and anti-Stokes frequency are generated.  Both Stokes anti-Stokes 

frequencies are fall on to LO and RF frequencies of the EW mixer.  As a result, when LO and 

RF signal is propagated through SMF, the LO and RF frequencies are selectively amplified by 

both Stokes have already generated by LO and RF form the distorted MZM.  The amplified 

LO and RF sidebands by the SBS Stokes are shown in Figure 5.11.   
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Figure 5.11 Amplified LO and RF signal by SBS Stokes at the input of the photo detector 

 

It shown in Figure 5.11, that only LO and RF signals are amplified by the SBS Stokes.  15 dBm 

amplification in optical domain has been achieved.  It is worth to state that, unlike optical 

amplifier EDFA, the light energy by SBS Stokes are only centred on LO and RF and noise 

floor is not amplified.  As a result, better dynamic range is achieved, which will be discussed 

in result and discussions section coming next.   

15 dBm amplification in optical domain has 

been achieved using SBS Stokes 

amplification.  Note that, unlike EDFA, only 

desired side bands are amplified, and noise 

floor is left unamplified.   
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5.3.2 Result and Discussions  

 

Figure 5.12 RF analyser showing the demodulated signal the photo detector output to the 

patent 

 

Finally, the demodulated signal at the output of the photo detector is observed on RF spectrum 

analyser as shown in Figure 5.12 which shows 70 dBm dynamic range of the down converted 

IF signal.  To benchmark the patent, the proposed microwave photonic structure is simulated 

according to E Chan et.al. in ref [129] as shown in Figure 5.13.  

 

Figure 5.13 Simulation of E Chan et.al. photonic down converter 

 

70 dBm 

Child-1 

Child-2 

Parent 
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In simulation in Figure 5.13, CW laser with 193.100 THz at 20 dBm power is injected into an 

IQ modulator.  The upper arm to the IQ modulator is driven by 5 GHz LO signal and lower 

arm of the IQ modulator’s arm is driven by 7 GHz RF signal.  To suppress the optical carrier, 

both child-1 and child-2 modulator of the IQ modulator are set to null biasing point. The null 

biasing is set to DC 10.4 V.  The extinction ration of the child-1 and child-2 modulator was set 

to 30 dB. The insertion loss of the IQ modulator is 8.4 dB.  The parent of the IQ modulator is 

simulated by using time delay and phase shifted by 1800 to further suppress the optical carrier. 

The modulated sidebands from the output of the IQ modulator is amplified by an optical 

amplifier EDFA, prior to propagate on the photodetector.  The output of the photo disconnected 

to an RF spectrum analyser to observe the demodulated signal as shown in Figure 5.14 

 

 

Figure 5.14  Dynamic range of E Chan et.al. photonic downconverter using EDFA[129] 

 

The obtained results in  Figure 5.14, show 50 dB dynamic range has been achieved.  It is worth 

to be noted that, using EDFA to amplify weak LO and RF sidebands prior to the photo detector 

in a photonic mixer structure amplify noise along with modulated sideband. Hence, dynamic 

50 dBm 
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range is deteriorated.  Furthermore, ASE noise of the EDFA adds further noise to the noise 

floor and dynamic range of the photonic mixer is greatly deteriorated.      

Although, the EDFA is used in the proposed patent structure, the beauty of the proposed patent 

structure is that, the EDFA is used to generate the SBS threshold power, not to amplify the 

weak demodulated sidebands (LO and RF).  Moreover, in the patent structure, the high power 

amplified optical signal is counter propagated to the opposite direction of the photo detector. 

As a result, the demodulated signal is not amplified by the EDFA and the ASE of the EDFA 

has no effect on the signal and the noise floor.  

In the proposed patent structure, the weak demodulated signa is amplified by the SBS Stokes.  

The beauty of the SBS Stokes is that, the energy from SBS Stokes is only transferred to the  

 

Figure 5.15 Dynamic range of the Patent 

 

weak modulated side bands not into the noise floor.  As a result, only the modulated sidebands 

are amplified, and noise floor is left untouched.  Hence, dynamic range is greatly improved.   

The obtained results of the proposed patent mixer at the photodetector output is shown in Figure 

5.15, where 70 dB dynamic range has been achieved.  This is 15 dB improvement compare to 

70 dBm 
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E Chan mixer in ref [129].  Both results, E Chan et.al mixer and proposed patent are 

superimposed for analysis purpose as shown in Figure 5.16.   

 

Figure 5.16 Comparison of E Chan downconverter with patent down converters shows noise 

floor was not amplified by the proposed patent structure. Hence SFDR improvement by 15 

dB. 

 

It is shown in Figure 5.16, that proposed patent structure only amplifies the signal and noise 

floor was not amplified by the proposed patent structure.  However, E Chan et.al. mixer 

structure has amplified noise floor by 15 dB along with the signals as shown in Figure 5.17.   

 

Figure 5.17 Noise floor improved by 15 dB compare to using EDFA 

             E Chan Down conversion with EDFA 

                        Down conversion using Patent 
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it is worth to note that 15 dB improvement in optical domain is equivalent to 30 dB 

improvement in electronic domain.  Hence, this proposed method has greatly improved 

dynamic range of the RF photonic link as well as any microwave photonic systems.    

 

5.4 Experimental work 

 

 

 
 

Figure 5.18 Experimental setup for patent 

 

The experimental work has been setup based on schematic in Figure 5.1.  Laser light 18 dBm 

is split by 60/40 optical splitter (Thorlabs-TN1550R5A1), where 40% of the laser light is 

propagated towards modulator SSB (DPMZM-Axenic -aXsd-2050). The insertion loss of the 

DPMZM is 7 dB and 𝑉𝜋  (null voltage) is 8V DC. The DPMZM is biased for SC-SSB 

modulation. The DPMZM is driven by EW signal from the antenna.   60% light from the other 
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arm of the optical splitter is propagated to (Axenic -aXsd-2040), where the modulator is biased 

at null and driven by same EW signal as DPMZM.  The output of the modulator 𝜋 is upshifted 

by 11 GHz by another DPMZM (Axenic -aXsd-2050).  This upshifting is required to generate 

SBS anti-Stokes which fall on modulator SSB (upper modulator) harmonics band. After 

upshifting the modulated signal is amplified by EDFA (EDFA100P) and propagated via 

another 50/50 optical splitter into the one end of the SMF fiber. As a result, Brillouin Stokes 

and anti-Stokes effect is generated in the fiber.  When optically modulated EW signal is 

propagated through the same fiber, all its harmonics are fall on the previously generated anti-

Stokes band in the fiber. As a result, most of harmonics are suppressed and only modulated 

fundamental side bands are propagated toward a photodetector via another EDFA.  Finally, the 

photodetector converts the optical signal into electric signal and sent towards an ADC, where, 

low speed electric circuitry-based microwave system processes the signal for further analysis. 

As a result, dynamic range of the EW signal improved greatly.  

 

 
Figure 5.19 RF spectrum analyser shows SBS Stokes 

shift at 10.86 GHz 
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Figure 5.9, shows RF analyser (Rode & Schwarz) the Brillouin Stokes frequency shift at 10.86 

GHz at -40.75 dBm.  The resolution bandwidth of the RF analyser is set to 3 MHz, while vide 

bandwidth (VBW) is 100 KHz.  The sweep time of the RF analyser is set to 30ms.  The 

Brillouin frequency shift is measured using heterodyning technique. In heterodyning technique, 

laser frequency and SBS Stokes frequencies bit together at a photodetector to generate SBS 

frequency signal in RF domain. The linewidth of the SBS Stokes and anti-stokes is very 

important parameter to determine the Q factor of the SBS anti-Stokes which working optical 

notch filter in the proposed method.    The line width of the SBS Stokes frequency is measured 

using RF spectrum analyser.  The line width is measured around 12 MHz as shown in Figure 

5.20.   

 

 

The linewidth of the SBS anti-Stokes can be varied from (10-12) MHz depending on the 

bandwidth of the EW signal.  Typical radar signal bandwidth is 10-20 MHz and SBS notch 

effect is the perfect platform to suppress distortion for any radar signal. It is worth to state that 

Figure 5.20 RF analyser shows SBS stokes linewidth of 12 MHz 
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the linewidth of the SBS Stokes an anti-Stokes is material dependent where acoustic mode of 

the different material dictates how big the SBS Stokes and anti-stokes linewidth.  Hence, fiber 

made of different material can be used to obtain desired SBS linewidth.     

The optical output of the upper modulator is observed on Optica Spectrum analyser (OSA) as 

shown in Figure 5.21.  The optical frequency of the SC-SSB signal is 193.408 THz.  This signal 

works as optical domain sidebands of the EW signal.   

 

 
 

 

Figure 5.21 Optical spectrum analyser show the SC-SSB signal 

 

The carrier of the SC-SSB signal is suppressed fully by biasing the DPMZM in such that only 

upper sideband should be coming out from the SC-SSB modulator.  The optical carrier signal 

is not required after modulation and can be generated at the photodetector during demodulation.  

Finally, the distortion remove signal is observed before the photodetector in optical domain as 

shown in the schematic diagram in Figure 5.1.  According to the proposed patent’s method, 

when wireless or EW signal propagates through the optical fiber, the SBS notch effect in the 
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fiber should suppress most of the distortion from the signal.  The fundamental sidebands of the 

optically modulated signal should not be affected by this notch filtering effect.  The beauty of 

this proposed method is that not additional optical signal processor is not required.  This novel  

method used optical fiber simultaneously as an RF photonic link and a very powerful 

microwave photonic notch filter.  Hence, EW signal is processed in real time on the fly.   
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Figure 5.22  Optical spectrum analyser shows EW signal with distortion (A); EW 

signal without distortion suppressed by the proposed method   

This is the demand of future EW and wireless communication systems.  Figure 5.22 shows 

optical spectrum of the signal both with distortion and after distortion removal using the 

proposed method.  24 dB distortion suppression has been achieved in optical domain. This is 

equivalent to about 40 dB suppression in RF domain    
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5.5 Summary  

 

A novel method has been proposed  and patented to achieved 70 dB dynamic range, which is 

15 dB more than current [155] photonic mixer structure with EDFA. The beauty of the 

proposed method is that, it only selectively suppresses distortion from the modulated signal as 

shown in Figure 5.22.  Using conventional RF photonic filter this would be very difficult task 

to achieve as it is very difficult to realize very sharp high Q effect using conventional 

microwave photonic filter.   This method selectively suppress distortion from the optically 

modulated signal.  24 dB suppression has been achieved in optical domain which is about 40 

dB in RF domain.  The proposed patent structure suppresses distortion form signal smart way 

which contribute greatly to achieve high dynamic range for future EW and wireless 

communication systems. In this method, a length of optical fiber is used simultaneously as an 

optical signal transmission medium as well as a very powerful microwave photonic signal 

processor.  This method is able to process high bandwidth high frequency microwave photonic 

signal on the fly in real time, which is the demand for future wireless and radar communication 

systems.  Future work will be focused on using chalcogenide optical fiber instead of single 

mode fiber to minimize fiber length for EW application where latency is problematic.  

Chalcogenide fiber has very high Brillouin gain coefficient. This allow using 5m fiber rather 

than 2 km to be used as a Brillouin medium.  This will greatly help to integrate SBS systems 

in small footprint.  Further SBS systems size can be reduced by using Chalcogenide glass cube 

instead of chalcogenide fiber. The chalcogenide glass cube size would be 2-3 cm and will 

replace 5 m chalcogenide fiber, hence, potential implementation on photonics chip. There is no 

doubt that SBS method would be unified all in one microwave signal processing solution for 

future radar and wireless communication systems.   
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Chapter 6 

 Proposed Brillouin Selective Sideband Amplification  

6.1 Introduction  

 

Amplification is an essential signal processing task in radar and wireless communication 

systems to improve dynamic range. Conventional optical amplifiers are not able to distinguish 

between signal and noise and amplifies signal and noise simultaneously. Hence, amplifying 

noise same time with signal degrades SNR.  Brillouin Selective Sideband Amplification 

(BSSA) is a very powerful amplification technique [131] where desired signal is selectively 

amplified while noise is kept unamplified.  Hence, BSSA greatly improves dynamic range of 

microwave photonic systems.  In Brillouin amplification [156], an optical pump with a 

frequency of 𝜐𝑝 entering a length of optical fiber generates an acoustic grating moving in the 

direction of the pump, which gives rise to backscattering of the optical pump. The frequency 

of the backscattering light is down shifted due to Doppler effect, from the pump [156]. In other 

words, acoustic wave can cause variation of the density of the optical fiber in which they travel. 

The density variation can affect optical gratings. Scattering of light by such acoustic grating is 

called Brillouin scattering [157].   BSSA has been used for selective carrier amplification 

[158][159] where modulated carrier is amplified before detection by a narrowband BSSA 

which enhances SNR.  A future improvement is achieved by combining wide and narrow-band 

quantum amplifiers. That would have been very difficult task to achieve in pure electronic 

domain.  The reason is that in electronics domain, it is impossible to design narrow band 

amplifier like SBS stokes.   
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This research proposed a novel method based on BSSA, where the modulated side bands of an 

optically modulated signal is selectively amplified to improve the dynamic range of a 

modulated signal sideband in a photonic system. This method is auto tuned and to the best of 

my knowledge has not been reported in the literatures. The novelty of this method is that it is 

auto tuned to modulated sideband to selective amplification and left noise unamplified. As a 

result, the photodetector is not saturated by the unwanted amplified optical signal and dynamic 

range of a microwave photonics systems are greatly improved.  

 

6.2 Principal method  

 

 

Figure 6.1  Schematic diagram of BSSA; LO: Local Oscillator; SC-SSB: Supress Carrier 

Single Sideband; EDFA: Erbium Doped Fiber Amplifier; CIR: Circulator; SMF: Single Mode 

Fiber 

 

Light from laser is spilt by 50/50 by an optical splitter. Light form one arm of the splitter is 

propagated to Suppress Carrier Single Side band (SC-SSB) and the light from other arm of the 

optical splitter is propagated to Dual Parallel Mach Zander Modulator (DPMZM).  SC-SSB is 

driven by 10.86 GHz local oscillator RF signal to generate single side band optical signal.  The 
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purpose of the SC-SSB is to upshift laser frequency by 10.86 GHz, this allows MZM sidebands 

to generate Brillouin Stokes which calls on EW signal’s sidebands.  The upper sideband is used 

to shift laser signal by 10.86 GHz.  Light from SC-SSB is propagated into EDFA to amplify 

the SC-SSB weak output signal.  The output EDFA is connected to the input of the single 

MZM.   The RF signal from the antenna drives DPMZM and MZM simultaneously.  Light 

from MZM is propagated via an optical Circulator (CIR) port-1 to port-2 to the one end of the 

Single Mode Fiber (SMF) and generates Brillouin Stokes frequency is generated inside the 

SMF.  When optically modulated RF signal from DPMZM output is propagated   through the 

same SMF, the side bands of the modulated signal is amplified by the Brillouin Stokes 

frequency gain which was already generated by the modulated signal from MZM.  The 

sidebands of the modulated signal rom DPMZM is always fell on the Stoke frequencies 

generated by MZM as both DPMZM and MZM are driven by the same RF signal as shown 

Figure 6.1 .  As Brillouin Stokes fall only on the side band of the DPMZM, hence, only 

sidebands are amplified while noise kept unamplified.  This novel method greatly enhances 

SNR and greatly improves dynamic range of the microwave photonics systems. The 

photodetector is not saturated by the unwanted amplified noise.  The photodetector has limited 

input power limit, conventional optical amplifiers saturate the photo detector with unwanted 

noise as they are not able to selectively amplify only the desired modulated side bands signal.     

Furthermore, manufacturing photodetector with high input power capability is costly and 

research intensive. Further integrating this method on chalcogenide glass will be capable to 

achieve the same results as very high input power photoreactor would achieve. Hence, this 

method would bring cost down greatly by not using very expensive high input power 

photodetector for future microwave photonics system.  This method has potential to improve 

dynamic range more than 40 dB using chalcogenide glass cube as a Brillouin gain medium.  

This would not be possible using conventional optical amplifier.   Hence, it greatly contributes 
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not only realizing RF systems in optical domain but greatly improve dynamic range of any RF 

system yield by future EW systems.   

 

 

6.3 Simulation  

 

 
 

Figure 6.2  BSSA simulation 

 

 

Prior to experimental work, simulation as shown in Figure 6.2, is performed based on the 

schematic diagram shown in Figure 6.1.   industry standard VPI-photonic software is used for 

simulation. In the simulation as shown in Figure 6.2, first light from laser is split 50/50 by and 

optical splitter.  Light from upper arm of the splitter propagated to an optical modulator 

(DPMZM-1). The DPMZM-1 is driven by a 11 GHz RF signal to upshift the laser frequency 

by Brillouin shift of 11 GHz.  The simulated DPMZM-1 is built using two single MZM in push 

pull orientation, these are also called child modulators.  The DPMZM-1 is biased at null and 

quadrature to generate SC-SSB at the output.  The SC-SSB signal is then propagated towards 

MZM input, where the MZM is also biased at null to suppress the carrier and driven by the 

same LO as DPMZM-2.  It is worth to state that, both modulator MZM and DPMZM-2 are 
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driven by the same LO to make the proposed method auto tuned.  The output of the MZM is 

amplified by EDFA to generate enough threshold power for SBS.  The amplified light (18 

dBm) from the output of the MZM is propagated through the 2 km optical fiber SMF towards 

the DPMZM-2. An isolator is used to guard the DPMZM-2 by the high optical power generated 

from MZM.  Laser light from the bottom arm of the optical splitter is propagated towards 

DPMZM-2 where it is driven by two local oscillators (LO), one LO is used to imitate RF signal 

form an antenna where other LO drives both MZM and DPMZM-2. The DPMZM-2 is biased 

at null and quadrature, where both chid are biased at null and parent at quadrature.   

Modulated signal form DPMZM-2 output is propagated towards the optical fiber 2km (SMF), 

while it propagated through the 2 km fiber, the sidebands of the modulated signal are fall in the 

same frequencies of the  Brillouin Stokes frequencies which are already generated by the high 

power MZM sideband .  AS a result, both modulated side bands are amplified selectively, and 

noise is not amplified.  Finally, selectively amplified modulated sideband from the other end 

of the optical fiber is propagated toward a photo detector (PD) and converted to RF signal.  It 

is worth to state that, the PD has limited input power limit which is around 10 dBm for currently 

commercially available PD in the market.  The problem with conventional optical amplifier is 

that it saturates PD with amplified noise along with signal, as it is not able to distinguish 

between noise and signal.  The noise it unwanted in any communication and radar application.  

The novelty of this proposed method is that it selectively amplifies signal from noise and not 

kept unamplified. As a result, PD is not saturated with amplified noise and desired modulated 

sideband are fully amplified to achieve desired dynamic range.  Hence, this method greatly 

enhances the dynamic range of any RF photonics link and microwave photonics systems on 

the fly in real time while signal is propagated through the optical fiber for future radar and 

wireless communication systems.  The results of the simulation are evaluated in the next 

section.  
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6.3.1 Simulation results  

 

 
Figure 6.3 SC-SSB signal at DPMZM -1 output 

 

Figure 6.3 shows the simulated output signal which shows SC-SSB signal is generated by 

DPMZM-1.  The purpose to the SC-SSB is to upshift laser signal by 10.86 GHz.  This allows 

the EW signal sideband falls on Brillouin Stokes which is generated by MZM.  The output of 

the DPMZM is further amplified by an EDFA. Here, EDFA is used to amplify the SC-SSB 

weak signal which is working as a Brillouin pump as shown in Figure 6.3.  The output signal 

form the EDFA is injected into a single MZM. Here, MZM is working as a double Brillouin 

pump as shown in Figure 6.4.  Double Brillouin pump is required to generate two Brillouin 

Stokes frequency so upper and lower modulator side band are simultaneously amplified. It is 

worth to note that the MZM and lower DPMZM are driven by same RF signal form the antenna 

as shown in the schematic diagram in Figure 6.1.  However, MZM has 11 GHz upshifted optical 

signal in the input compare to the lower DPMZM.  This is purposely done so that the generated 

Brillouin Stoke effect by the MZM is fallen on Rf sidebands of the optically modulated RF 

signal form bottom DPMZM as shown in the schematic diagram in  Figure 6.1.   
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Figure 6.4  Simulated output signal at MZM output 

 

The MZM signal is shown in Figure 6.4.  It is worth to state that, the output signal form MZM 

is working in the method as a Brillouin pump.  Both sideband of the MZM output signal as 

shown in Figure 6.4, generates two Brillouin Stokes as shown in  Figure 6.5, which work as 

sharp high Q Brillouin selective side band amplifier to selectively amplify DPMZM output 

signal sidebands.  The beauty of this method is that the noise is not amplified.  This 

phenomenon is shown in Figure 6.5 where three small sharp blue lines represents Brillouin 

Stokes frequencies.  The characteristic of the SBS Stokes frequencies are they have only 10 

MHz which behaves like very sharp high Q optical amplifiers. Hence, only desired signal is 

amplified, and noise is left unamplified.  As a result, it helps photo detector not to be saturated 

by the unwanted amplified noise. Furthermore, this sharp amplification has no effect on the 

phase of the modulated sidebands from bottom DPMZM as shown in Figure 6.1.  The side 

bands of the MZM are tuneable by the local oscillator signal. Hence, Brillouin Stokes can be 

generated to amplify any desired modulated sidebands of the DPMZM.  Furthermore, it is auto 

tune to the received RF signal form the antenna.  Tuning RF signal to different band 

automatically tune the MZM sideband such a way so that the generated SBS Stokes 

automatically fall on optically modulated sidebands of the DPMZM as shown in Figure 6.1. 
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Figure 6.5 Simulated optical spectrum analyser shows EW signal form DPMZM-2 output 

falls on SBS Stokes generated by MZM signal 

 

Figure 6.6 shows, simulated RF spectrum analyser where amplified signal from DPMZM is 

shown in electronic domain.  It is evident from Figure 6.6, that 15 dB improvement of signal 

to noise floor by the proposed Brillouin selective sideband method.  Unlike conventional 

optical amplifier, this method does not amplify noise and desired signal same time.  It 

selectively amplifies the modulated sideband in optical domain prior to incident on the photo 

detector as shown in simulation result in Figure 6.5.   The green signal in Figure 6.6, represents 

the conventional optical amplifier signal where noise and signal are indigenously amplified. 

The blue signal represents the amplified signal by the proposed Brillouin selective side band 

application where only sidebands are selectively amplified, and noise is kept unamplified.   
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Figure 6.6 Simulated RF spectrum analyser shows of 15 dB noise floor improvement 

compared to conventional optical amplifier shown by the red dashed lines.  

 

The dynamic range can be improved more than 15 dB by using longer length of optical fiber.  

The problem of using very long optical fiber impose delay in radar signal.  However, using 

longer optical fiber is possible in telecommunication.  Furthermore, using optical fiber with 

different material with high Brillouin gain coefficient does not require longer optical fiber for 

this proposed method.  The proposed method can easily be integrated on a photonic chip where 

a cube shape 2-3 cm chalcogenide glass can be used as very high Brillouin gain medium instead 

of optical fiber.  The is enormous potential of SBS to be used as an unified microwave photonic 

signal processor for generation of mm wave RF signal to very high frequency high Q smart 

amplifier (proposed method) to very high Q microwave photonic notch filter to very powerful 

optical time delay for future quantum computer memory to future photonic radar.  The beauty 

of this proposed method is using a length of optical fiber as very powerful smart optical 

amplifier which greatly enhance the dynamic range of the microwave photonic systems.   

 

 

 

            Brillouin amplifier 

            Conventional amplifier 

 

 

15 dB 



129 | P a g e  

 

 

6.4 Experimental work  

 

 

 
Figure 6.7 Experimental setup for BSSA 

 

Experimental work has been setup based on the schematic diagram illustrated  in Figure 6.1 

and the simulation based in Figure 6.2.  Light from laser is split 50/50 by laser operating at 

1549.948 nm (193.421THz), with a narrow linewidth of 50 kHz (Thorlabs-SFL 1550 S) and 

optical power of 18 dBm, connected to an optical splitter (Thorlabs PN1550R5A1). Light form 

upper arm of the optical splitter is propagating to DPMZM-1, where the DPMZM-1 is biased 

to generate SC-SSB output signal. The upper DPMZM is driven by10.86 RF signal generated 

by   Rode and Schwarz RF source. In this experimental work Gallium arsenide (GaAs) based 

(Axenic -aXsd-2050) are deployed due to their advantages for and satellite communication 

systems.  The 3-dB bandwidth of the DPMZM is 50 GHz with the insertion loss of 10 dB. The 

half-wave voltage Vπ for the child-1 and child-2 modulators are around 10 V-DC, and for the 

parent modulator Vπ is 12 V-DC. In such RoF transmission systems, it is necessary to suppress 



130 | P a g e  

 

the carrier. Within this experiment, in order to minimize the carrier, we optimized the bias 

voltages of the DPMZM. Our measurements show that the optimized DPMZM bias voltages 

to minimize the carrier are at; Vb1 = 6.50 V, Vb2 = 11.85 V and Vb3 = 1.85 V. These bias 

voltage values are proven to achieve a large carrier suppression of 45 dB, resulting in a down-

converted IF signal of 2.13 GHz [95].  SC-SSB signal form is amplified by EDFA (Thorlabs- 

100P) and inject into MZM input.  The output power of the EDFA is 18 dBm.  EDFA is used 

to generate enough threshold power for MZM to generate SBS Stokes frequency. Light from 

MZM output is propagated through one end of the SMF-28 fiber where the fiber length is 2km 

and loss is 0.22 dB /km. While light from MZM is propagated through the SMF-28 fiber, 

Brillouin Stokes frequency is generated in the SMF and counter propagated towards CIR port-

2.   

 Light from the lower arm of the optical splitter is propagated to the lower DPMZM-2, where 

it is driven by RF signal from the antenna.  The RF signal from the antenna simultaneously 

drives DPMZM-2 and DPMZM.   The modulated optical signal form DPMZM-2 is propagated 

through SMF-28 fiber to the CIR (Thorlabs CIR1550 PM) port-t to port-3 to be further 

processed by low speed electronics circuitry-based systems.  While modulated optical signal is 

propagated through the optical fiber (SMF-28), the sideband of the modulated signals falls on 

the same frequency of the already generated two Brillouin frequencies by the MZM sidebands.  

As a result, both sideband of the DPMZM -2 is selectively amplified by the both SBS Stokes 

frequencies as shown in Figure 6.8.  Here, both SBS Stokes work as very sharp high Q optical 

amplifier. Unlike conventional amplifier, Brillouin SBS Stokes only amplify the desired signal 

which is mixed with noise and interferences.  This greatly improves SNR and dynamic range 

of any microwave photonics systems.  The experimental result as shown on an optical spectrum 

analyser capture in Figure 6.8 validates the simulation result as shown in Figure 6.5.  it is shown 

from the experimental result of the optical spectrum analyser in Figure 6.8, that SBS Stokes 
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effect selectively only amplify the modulated sideband and kept noise unamplified. This 

approach does not saturate photo detector by amplifying noise.   

 
Figure 6.8 Optical spectrum analyser shows DPMZM-2  signal is selectively amplified by the 

two SBS Stokes frequency generated by the MZM  

 

The photo detector has very limited input optical power handling capability which is around 

10 dBm for most of the commercially available photodetectors.  

 

 
Figure 6.9  RF analyser shows 15 dB dynamic improvement by the proposed method  

Finally, the amplified light from CIR-port 3 is incident on a photodetector (PD).  The output 

of the PD is observed on a RF spectrum analyser (Rode and Schwarz) as shown in Figure 6.9.   

It is observed from Figure 6.9, the received signal by the PD has greatly improved compared 

to conventional optical amplifier. The conventional optical amplifier in blue colour amplified 

           Conventional  

            Proposed 
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signal and noise simultaneously where the proposed method only amplifies the selective 

sidebands and noise is left unamplified. The novelty of this method is that, it only selectively 

amplifies the desired sideband of the optical modulate signal, not noise, prior to reach at the 

photo detector.  Hence, the photodetector does not saturate with noise power. Only desired 

signal is incident on the photodetector.  As a result, dynamic range of the RF photonic link and 

microwave photonic systems are greatly enhanced by 15 dB as shown in Figure 6.9 .  

6.4.1 Summary 

 

A novel method of selective sideband amplification of microwave photonic signal using 

Brillouin Stokes frequency gain has been demonstrated. 15 dB SNR improvement has been 

achieved compared to conventional optical amplifier. This novel method allows an optical fiber 

to simultaneously work as a photonics link and a selective sideband amplifier.  This will allow 

to process signal in real time on the fly which is the demand for future radar and wireless 

communication systems.  Photodetector with high input power is required to achieve high 

dynamic range of any microwave photonic systems. This is because, using conventional optical 

amplifier to amplify signal also amplify noise along with signal.  Hence, when this amplified 

signal with amplified noise is incident on the photodetector, the photodetector is saturated by 

unwanted amplified noise as the photodetector has limited input power taking ability.  Using 

photodetector with high input power rating can solve this problem.  However, photodetector 

with high input power rating is very expensive. This method solves this problem by selectively 

amplifying the desired modulated sidebands, not the noise.  Hence, photodetector is not 

saturated with unwanted amplified noise.  As a result, cheap photo detector with low input 

power rating is not saturated and greatly improves dynamic range and cost for high bandwidth 

microwave photonic system for electronic warfare and wireless communication systems.   
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Chapter 7 

 Conclusion and Future Work 

 

7.1 Conclusions 

 

Future radar and wireless communication systems require microwave photonics systems with 

high dynamic range and a powerful microwave photonics signal processor.  In this thesis, this 

issue has been addressed by exploiting Stimulated Brillouin Scattering (SBS) in optical fiber 

as very powerful unified microwave photonic signal processor.   

The background theory of the thesis is conducted in chapter 2. The theoretical, simulation and 

in-depth experimental work of generation of SBS in optical fiber has been demonstrated in 

chapter 3.   This would greatly help anyone to understand the behaviour and characteristic of 

the SBS prior to exploiting it for microwave photonic signal processing. In chapter 4, a novel 

method of generating high frequency RF signal has been proposed by exploiting SBS Stokes 

frequency gain, which beats with optical carrier frequency using heterodyning technique. This 

allows to realize microwave photonics mixing in all optical system configurations. This method 

greatly helps to overcome electronic bottleneck problem in electronics domain by realizing all 

optical microwave photonics system. This work has been published in IEEE access.  

In chapter 5, another novel method has been proposed to suppress nonlinearity generated by 

modulation product from any optical modulator. This proposed method has significantly 

improved dynamic range of any microwave photonics systems by 15 dB. A UK patent 

(GB2567646) has been granted based on this work.  

 In chapter 6, another a novel method to selectively amplify high frequency microwave signal 

from noise has been proposed by exploiting SBS Stoke gain. In this novel method desired 
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microwave signal is amplified selectively. This approach is smarter and more efficient 

comparing to conventional optical amplifier.  Unlike conventional optical amplifier which 

amplify noise along with desired signal, the proposed SBS amplifier only amplifies desired 

signal selectively.  This greatly improves signal to noise ratio which in turn greatly improves 

conversion efficiency of the optical modulator. Improvement of 15 dB SNR has been achieved. 

This approach greatly enhances wireless and Radar systems performances.  

 

7.2 Future work 

 

This research has great potential to use SBS as a unified microwave photonics signal processor.  

In order to improve the performance and integration to photonic chip level, further, 

investigation is required. The main focus of this thesis was to use Stimulated Brillouin 

Scattering (SBS) in fiber as a very powerful microwave photonic signal processor.  Single 

Mode Fiber (SMF) was used as a proof of concept experimental work.  

It will be more appropriate to integrate SBS medium on small photonic chip.  Using optical 

fiber as a Brillouin medium is not appropriate to achieve this goal.  Hence, using short length 

of chalcogenide fiber instead of 2km single mode fiber will greatly miniaturised the overall 

SBS microwave photonics systems.  Further miniaturization is possible by using 2-3 cm 

Chalcogenide glass cube which will enable to implement SBS based signal processor on 

photonic chip. Brillouin gain medium with high Brillouin gain coefficient greatly reduces SBS 

pump’s threshold power. It is very important to implement Brillouin gain medium on a 

photonic chip for system level integration in airborne and EW platform.  Brillouin medium 

with very high Brillouin gain coefficient is very important to realize SBS signal processing on 

a photonics chip. Further research work needs to be performed on Brillouin gain medium with 

high Brillouin gain coefficient to integrate SBS on optical signal processor on chip.   
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In chapter 4, Brillouin Stokes are exploited to generate high frequency RF signal in all optical 

domain to realize all optical microwave photonics frequency mixing.  Further investigation 

needs to be conducted to extend the proposed structure with tuneable capability to generate 

different range of high frequency RF signal in optical domain.   

In chapter 5, Brillouin anti-Stokes notch effect is exploited to suppress interference from an 

optical signal.  Brillouin Stoke also has potential to be used as a powerful microwave photonic 

notch filter. A further investigation may be required to explore the potential of the Brillouin 

Stokes gain as microwave photonic filter.    

In chapter 6, Brillouin Stokes gain is exploited to selectively amplify microwave photonics 

signal where Brillouin anti-stokes frequency is not desired as some intelligence signal may be 

suppressed by the Brillouin anti-Stokes. This effect needs to be further investigated to analyse 

the Brillouin anti-Stokes effect on intelligence signal.  Amplified Spontaneous Emission (ASE) 

generated by SBS Stokes gain, which influences the increased noise floor, this issue needs to 

be further researched. In sum, future, military and wireless application must require a unified 

microwave photonics signal processor and SBS is the right candidate to fulfil this demand and 

further research in SBS will make it reality.  
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