
Solving hard cut problems via �ow-augmentation
∗

Eun Jung Kim
†

Stefan Kratsch
‡

Marcin Pilipczuk
§

Magnus Wahlström
¶

Abstract

We present a new technique for designing �xed-parameter

algorithms for graph cut problems in undirected graphs, which

we call �ow augmentation. Our technique is applicable to

problems that can be phrased as a search for an (edge) (s, t)-

cut of cardinality at most k in an undirected graph G with

designated terminals s and t.
More precisely, we consider problems where an (unknown)

solution is a set Z ⊆ E(G) of size at most k such that

• in G− Z , s and t are in distinct connected components,

• every edge of Z connects two distinct connected compo-

nents of G− Z , and

• if we de�ne the set Zs,t ⊆ Z as those edges e ∈ Z for

which there exists an (s, t)-pathPe withE(Pe)∩Z = {e},
then Zs,t separates s from t.

We prove that in the above scenario one can in randomized time

kO(1)(|V (G)|+ |E(G)|) add a number of edges to the graph so

that with probably at least 2−O(k log k)
no added edge connects

two components of G − Z, and Zs,t becomes a minimum cut

between s and t.
�is additional property becomes a handy lever in appli-

cations. For example, consider the question of an (s, t)-cut of

cardinality at most k and of minimum possible weight (assuming

edge weights in G). While the problem is NP-hard in general,

it easily reduces to the maximum �ow / minimum cut problem

if we additionally assume that k is the minimum possible cardi-

nality of an (s, t)-cut in G. Hence, we immediately obtain that

the aforementioned problem admits an 2O(k log k)nO(1)
-time

randomized �xed-parameter algorithm.

We apply our method to obtain a randomized �xed-

parameter algorithm for a notorious “hard nut” graph cut prob-

lem we call Coupled Min-Cut. �is problem emerges out of the

study of FPT algorithms for Min CSP problems (see below), and

was unamenable to other techniques for parameterized algo-

rithms in graph cut problems, such as Randomized Contractions,

Treewidth Reduction or Shadow Removal.

In fact, we go one step further. To demonstrate the power

of the approach, we consider more generally the Boolean Min

CSP(Γ)-problems, a.k.a. Min SAT(Γ), parameterized by the

solution cost. �is is a framework of optimization problems that

includes problems such as Almost 2-SAT and the notorious `-

∗
Eun Jung Kim is supported by the grant from French National

Research Agency under JCJC program (ANR-18-CE40-0025-01).

�is research is a part of a project that have received fund-

ing from the European Research Council (ERC) under the

European Union’s Horizon 2020 research and innovation

programme Grant Agreement 714704 (M. Pilipczuk).

†
Université Paris-Dauphine, PSL Research University, CNRS, UMR

7243, LAMSADE, 75016, Paris, France.

‡
Humboldt-Universität zu Berlin, Germany.

§
University of Warsaw, Warsaw, Poland.

¶
Royal Holloway, University of London, TW20 0EX, UK.

Chain SAT problem. We are able to show that every problem Min

SAT(Γ) is either (1) FPT, (2) W[1]-hard, or (3) able to express the

so� constraint (u→ v), and thereby also the min-cut problem

in directed graphs. All the W[1]-hard cases were known or

immediate, and the main new result is an FPT algorithm for

a generalization of Coupled Min-Cut. In other words, �ow-

augmentation is powerful enough to let us solve every �xed-

parameter tractable problem in the class, except those that

explicitly encompass directed graph cuts.

1 Introduction

Fixed-parameter tractable algorithms for graph separation

problems has been an important question in parameter-

ized complexity, and a�er more than a decade of intense

study it would seem that we should by now know of all the

major techniques necessary for the design of such algo-

rithms. Certainly, there is an impressive toolbox, leading

to the resolution of central problems such as FPT algo-

rithms for Multicut [26, 2] and Minimum Bisection [9].

Yet despite this progress, several open problems

remain. Many of these relate to directed graph cuts, such

as the existence of FPT algorithms for the notorious `-
Chain SAT problem identi�ed by Chitnis et al. [4], and

the deceptively simple-looking problem of Bi-objective

(s, t)-cut [20]. In the former, the input is a digraph

D = (V,A) with distinguished vertices s, t and a

budget k, where the arcs of A are partitioned into chains

{(v1 → v2), (v2 → v3), . . . , (v`−1 → v`)} on at most

` = O(1) vertices, and the task is to �nd an (s, t)-cut

that consists of arcs of at most k chains. In particular,

`-Chain SAT has been identi�ed as a problem of central

importance, since Egri et al. [4] showed that its resolution

is the central missing piece for a dichotomy of �xed-

parameter tractability of a natural parameterization of

the List H-Coloring class of problems. Bi-objective

(s, t)-cut is even simpler to describe. �e input is a

digraph D = (V,A) with arc weights w and s, t ∈ V ,

and two budgets k,W , and the task is to �nd an (s, t)-cut

Z ⊆ A such that |Z| ≤ k and w(Z) ≤W . Again, despite

the simplicity of the problem, the existence of an FPT

algorithm is open.

Another open problem comes from the study of

parameterized aspects of constraint satisfaction problems

(CSPs; see below), although the problem can be readily

phrased as a graph problem. We dub this graph problem

Copyright © 2021 by SIAM

Unauthorized reproduction of this article is prohibited

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/372981645?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Coupled Min-Cut. �e input is a graph G = (V,E)
with vertices s, t ∈ V and a budget k, where the edges

of G are (sub)partitioned into pairs, and the task is to

�nd an (s, t)-cut Z ⊆ E consisting of at most k pairs,

where furthermore for every edge pair (e1, e2) not in Z ,

at most one of the two edges is reachable from s inG−Z .

Although this is a problem about unweighted, undirected

graph cuts, it has been completely resistant to a�acks by

the existing toolbox of graph separation problems.
1

To understand the di�culty, it is helpful to consider

two variants of the problem. First, if you remove the

coupling between the edges (i.e., if the task is simply

to �nd an (s, t)-cut consisting of at most k pairs), the

result is a well-known W[1]-hard problem, �rst identi�ed

by Marx and Razgon [25]. On the other hand, if the

coupling is strengthened to require that precisely one edge

is reachable from s in G− Z , or if the pairs are replaced

by connected sets {v1v2, v2v3, v3v4} of edges, then the

result is readily solved by existing methods (perhaps the

easiest existing method is to use the treewidth reduction

of Marx et al. [24]). Coupled Min-Cut strikes a balance

between these variants which makes it very di�cult to

handle.

We introduce the technique of �ow augmentation for

the construction of FPT algorithms for graph separation

problems. To illustrate and justify it, consider one of the

three problems above and assume that we knew that the

solution Z had to be an (s, t)-min-cut, i.e., of minimum

cardinality. �en an FPT-algorithm for each of the three

above-mentioned problems reduces to a nice exercise. We

omit details for now.

�e idea of the �ow augmentation technique is to

take a given graph G = (V,E) with vertices s, t ∈ V and

an unknown (s, t)-cut Z (that corresponds to the solution

to your problem) and add edgesA toG in a way such that

with probability at least 1/f(k), the new edges A do not

connect two distinct connected components ofG−Z and

Z is an (s, t)-min cut in the resulting graph G+A. As it

happens, we are only able to show �ow augmentation for

undirected graphs, and the resolution of Coupled Min-

Cut takes quite a bit more work beyond a single �ow

augmentation application, but this discussion hopefully

illustrates why a �ow augmentation procedure is a useful

goal.

Beyond the tractability of Coupled Min-Cut, we

show the following:

1
Although the question of an FPT algorithm was never asked in a

public forum, the problem was known to the community a�er quickly

having been identi�ed as an obstacle to the study of parameterized

algorithms for Min CSP.

1. A randomized procedure for �ow augmentation,

discussed next;

2. the de�nition of a problem, Generalized Coupled

MinCut (GCMC), that generalizes Coupled Min-

Cut into a “maximal tractable problem” (in some

sense), and an FPT algorithm for GCMC that makes

heavy use of �ow augmentation;

3. a study of Min SAT(Γ) (see Section 1.2), showing that

each such problem is either (1) FPT, (2) W[1]-hard,

or (3) captures directed graph cuts, and is hence out

of scope for our present work.

�e essential new tractable case of Min SAT(Γ) is repre-

sented by GCMC, whereas all W[1]-hard cases are easy

or previously known. Hence, at least for CSP-style opti-

mization problems, �ow augmentation represents the last

missing technique in the toolbox for undirected graph cut

problems.

1.1 �e �ow augmentation technique �e central

result of our paper is the following tool. Consider an

undirected graph G = (V,E) with two vertices s, t ∈ V ,

and an unknown (s, t)-cut Z . Furthermore, let Zs,t ⊆ Z
be those edges with one endpoint reachable from s and the

other reachable from t inG−Z . We say thatZ is a special

(s, t)-cut if Zs,t is an (s, t)-cut, and eligible for (s, t) if

additionally every edge of Z has its endpoints in di�erent

connected components of G − Z . In particular, any

minimal, not necessarily minimum (s, t)-cut is eligible for

(s, t). Another example of an eligible (s, t)-cut, important

in the study of Boolean Min CSP problems, is a star cut. A

star (s, t)-cut is a set of edgesZ such thatZ is an (s, t)-cut

and every edge of Z has precisely one endpoint reachable

from s in G−Z . Again, clearly a star (s, t)-cut is eligible

for (s, t).

Let k = |Z|, λ∗ = |Zs,t|, and let λG(s, t) ≤ λ∗ be the

value of an (s, t)-max �ow in G. We show the following

(reformulated slightly from the more formal version in

Section 2).

Theorem 1.1. �ere is a randomized algorithm that, given

an undirected graph G = (V,E) with s, t ∈ V and two

integers k ≥ λ∗ ≥ λG(s, t), in time kO(1)(|V | + |E|)
outputs an edge multiset A with λG+A(s, t) ≥ λ∗ and a

�ow P in G+A of cardinality λ∗, such that for any (s, t)-
cut Z in G eligible for (s, t) with |Z| = k and |Zs,t| = λ∗,
with probability 2−O(k log k)

, the following holds: for every

uv ∈ A, u and v are connected in G − Z ; and for every

path P ∈ P , |E(P) ∩ Z| = 1.

In particular, in any successful run, inG+A the paths

P will be an (s, t) max-�ow, Zs,t will be an (s, t)-min cut,

and this information (plus the explicit paths P) can be

useful for cleaning up the problem.

While �eorem 1.1 and most of the statements in this

paper claim randomized algorithms, they are all easy to

derandomize: all randomized steps are either color-coding

steps (derandomizable by standard tools, see e.g. [7]) or

in fact plain branching steps. For sake of clarity of the

arguments, we present them as randomized algorithms

and refrain from discussing derandomization.

Example applications. To illustrate the �ow-

augmentation technique, consider the following two ex-

ample problems. Both these problems admit FPT algo-

rithms through other methods (e.g., Randomized Contrac-

tions [3]), although the �ow-augmentation-based algo-

rithms are particularly simple to give.

First, recall the Bi-objective (s, t)-Cut problem.

Papadimitriou and Yannakakis showed that this is strongly

NP-hard, even for undirected graphs, and also showed

partial approximation hardness [27]. �e directed version,

with ` ≥ 2 distinct budgets, was recently considered

from a parameterized perspective by Kratsch et al. [20],

who showed that the problem is FPT if all budgets are

included in the parameter, but W[1]-hard if at least two

budgets ki are not included in the parameter. �e case

of a single budget not being included in the parameter,

which includes the Bi-objective (s, t)-Cut problem

parameterized by k, is open. Although its FPT status

was le� open, Kratsch et al. [20] were able to show that

this problem is well-behaved in the sense that the number

of distinct extremal (“closest”) solutions in a certain sense

is bounded by g(k), for some function g.

If k equals the minimum cardinality of an (s, t)-cut,

the problem can be easily solved via any polynomial-time

minimum cut algorithm: set the capacity of every edge

to be a large number (much larger than any weight of an

edge) plus the weight of an edge and ask for a minimum

capacity cut. Hence, in undirected graphs a simple ran-

domized FPT algorithm can be obtained as follows: We

prepend the step above with �ow-augmentation (�eo-

rem 1.1), with newly added edges assigned prohibitively

large weights, and repeat the process 2O(k log k)
times.

Similarly, let us consider Edge Bipartization with

both a cardinality budget k and a weight budget W ,

dubbed Bi-objective Edge Bipartization. In this prob-

lem, the input is an edge-weighted graphG = (V,E) and

two integers k,W , and the question is whether there is a

set of edges F ⊆ E such that G−F is bipartite, |F | ≤ k,

and the total weight of F is at most W .

Flow-augmentation again gives a simple FPT algo-

rithm for this problem (when parameterized by k). Let

F0 ⊆ E be an edge bipartization set with |F0| = k but

with no regard for weight; such a set can be computed

in 2knO(1)
time by an FPT algorithm for the unweighted

problem [12]. It is at the core of the original iterative

compression algorithm for Odd Cycle Transversal [32]

that having access to a bipartization set F0 allows us to

convert the bipartization problem on G into the solution

of 2O(|F0|)
cut problems; in our case, the same reduction

lets us solve Bi-objective Edge Bipartization via the

solution of 2O(k)
instances of Bi-objective (s, t)-Cut.

A more complicated example is Edge Multicut.

Here, the input consists of an undirected multigraphG, an

integer k, and a family T ⊆
(
V (G)

2

)
of cut requests. �e

goal is to �nd a set X of at most k edges so that for every

st ∈ T , s and t are in di�erent connected components of

G−X .

Fixed-parameter tractability of Edge Multicut, pa-

rameterized by k only (i.e., with unbounded number of

cut requests) was a long-standing open question in pa-

rameterized complexity until 2010, when two groups of

researchers [2, 26] announced a positive solution. �e �rst

solution [2] involves a deep study of the combinatorics

of the problem with a highly problem-speci�c reduction

rules simplifying the instance. �e second solution [26],

was signi�cantly simpler thanks to a new technique called

Shadow Removal, that turned out to be applicable to many

other graph separation problems (e.g. [21, 5]).

Interestingly, Edge Multicut seems not to be

amenable to a number of general frameworks for undi-

rected graph separation problems, including Randomized

Contractions [3] and Treewidth Reduction [24]. Up to

now, Shadow Removal was the only general technique

applicable to Edge Multicut.

We show that Edge Multicut can be also solved

using �ow-augmentation instead of shadow removal. �e

reduction
2

follows �rst the lines of the algorithm of Marx

and Razgon [26] that reduces it, using only basic tools, to

a variant dubbed Bipedal Multicut Compression. �e

second part reduces this variant to Coupled Min-Cut,

thus showing applicability of �ow-augmentation.

Flow-augmentation versus previous methods.

To illustrate the need for the �ow-augmentation frame-

work, let us brie�y review previous work on parameter-

ized algorithms for graph separation problems. In this,

we will review how these works fail to apply to the Cou-

pled Min-Cut and more generally Generalized Cou-

pled MinCut problems. We consider previous work in

three categories.

Greedy methods and shadow removal. One of the

2
�e reduction is presented only as a motivation for the new tech-

nique and included for completeness. We do not claim the authorship

of this reduction. While we are not aware of any citable source of this

reduction, it has been �oating around in the community in the last years.

3

more powerful methods of the area is the shadow removal

method of Marx and Razgon [26], which is a way to

randomly “clean up” a graph so that the solution is more

well-behaved. �is has been an important component of

many results for directed and undirected graphs, e.g., [5].

Shadow removal builds on an earlier concept of

important separators, due to Marx [23]. Both shadow

removal and important separators build on a principle

that some component of the solution could be chosen in

a greedy manner; for example, that some cut in the graph,

cu�ing away a componentC from some set of terminalsT ,

can be chosen to cut as close to the terminals as possible.

�is is frequently useful, and indeed was central to the

FPT algorithm for Multicut by Marx and Razgon [26];

but the edge-coupling constraint in Coupled Min-Cut

appears to prevent any such greedy strategy. For the same

reason, these methods fail to apply for weighted problems

such as Bi-objective (s, t)-Cut.

Graph decompositions. Another very successful strat-

egy is to represent or “understand” the connectivity struc-

ture of a graph via some form of graph decomposition.

�is has been done in several ways. One of the earlier is

the treewidth reduction method of Marx et al. [24], which

gives a bounded treewidth decomposition of a projection

of the graph that preserves all minimal (s, t)-cuts of size

at most k.

Another variant on the decomposition theme is

recursive understanding. Here, the input graphG = (V,E)
is decomposed along a sparse cut, say Z = δ(S) for

S ⊆ V where both |S| and |V \ S| are substantial,

and the behavior of G[S] with respect to the edges

of Z is recursively “understood” so that G[S] can be

represented or simpli�ed. �is strategy was employed

by Kawarabayashi and �orup [16] for the k-Way Cut

problem, and was simpli�ed and sharpened by Chitnis

et al. [3] via randomized contractions. See also the FPT

algorithm for Minimum Bisection [9] which constructs

a tree decomposition capturing all small cuts in a graph

G [9, 8].

However, for Coupled Min-Cut, the coupling con-

straints prevent decomposition methods from being used.

On the one hand, if a sparse cut is found in G, then the

edge coupling implies that the two parts of the cut are not

truly independent, and recursive methods do not seem to

apply. On the other hand, if the coupling constraints were

to be represented explicitly as another type of edges in

the graph, then a solution to Coupled Min-Cut of size k
would correspond to an (s, t)-cut of unbounded capacity.

We also remark that, in contrast to �eorem 1.1,

Randomized Contractions introduce polynomial in the

graph size factor in the running time bound that is far

from being linear.

Relaxation-based methods. �e category of methods

which comes closest to �ow augmentation is arguably the

work on building FPT algorithms for optimization prob-

lems using well-behaved problem relaxations. �e most

famous is branching over half-integral LP-relaxations,

which has been used in many of the most e�cient FPT

algorithms for optimization problems [10, 22, 14], but also

other relaxations than LP-relaxations have been used to

the same e�ect, e.g., �ow-based relaxations for linear-time

FPT algorithms [15, 13, 30].

�ese methods are related to �ow augmentation

in the general concept of solving a problem by FPT-

reducing it to a tractable optimization problem. But these

methods only work when there is a suitable tractable

relaxation, which we are not aware of for Coupled Min-

Cut. Relaxation-based methods also have not yet been

applied to weighted problems, such as Bi-objective (s, t)-
Cut above.

1.2 Parameterized complexity of Boolean Min

CSP Let Γ be a �nite set of Boolean relations, i.e., a �nite

Boolean constraint language. A constraint R(X) over Γ
is a pair of a relation R ∈ Γ and a tuple X of variables,

and it is satis�ed by an assignment φ : X → {0, 1} if the

tuple φ(X) is in R. A formula over Γ is a conjunction

F of constraints over Γ. �e problem Min SAT(Γ) for a

Boolean constraint language Γ takes as input a formula

F over Γ and an integer k, and asks whether there is an

assignment φ such that all but at most k constraints in

F are satis�ed by φ. Note that both `-Chain SAT and

Coupled Min-Cut are examples of Min SAT(Γ) for spe-

ci�c languages Γ. �e classical complexity of Min SAT(Γ)
was characterized by Khanna et al. [17], and this result

has recently been vastly generalized [19, 33]. We study

the parameterized complexity of Min SAT(Γ) parameter-

ized by k, for languages Γ which do not express directed

graph cuts, i.e., languages which cannot express clauses

(u → v). �is is a natural restriction for us, since our

result for �ow augmentation only applies to undirected

graphs. We show the following.

Theorem 1.2. For every �nite Boolean language Γ that

does not express so� clauses (u→ v), Min SAT(Γ) is either
FPT or W[1]-hard (both by parameter k and k + |Γ|).

�e characterization uses mostly standard methods,

with one new ingredient we refer to as constraint coloring.

For a full description of the method and the complexity

characterization behind the theorem see the full version

of the paper [18]. We provide a brief sketch.

A relational co-clone is a set of relations closed under

conjunction and existential quanti�cation (so-called pp-

de�nitions). Noting that we may assume that Γ cannot

express (u → v) even using pp-de�nitions, we as a

starting point consider the maximal Boolean relational

co-clones that exclude (u → v), of which there are

four, as captured in Post’s la�ice [29, 6]. Under duality

and a previously known hardness result [1], it su�ces

to consider two cases, which must be inspected more

carefully. �ese correspond to (1) every R ∈ Γ can

be de�ned over the language {(x = 0), (x = 1), (x =
y), (x 6= y)}, and (2) everyR ∈ Γ can be de�ned over the

language {(x = 0), (x = 1), (x = y), (¬x1∨ . . .∨¬xd)}
for some d ∈ Z (without using existential quanti�cation).

In this sketch, we consider the simpler language

Γ0 = {(x = 0), (x = 1), (x = y)}. �at is, consider

a �nite constraint language Γ such that every relation

R ∈ Γ can be de�ned as the set of solutions to a formula

using constraints from Γ0. Furthermore, from previous

work [25] we know that a relation R ∈ Γ such that

R(a, b, c, d) ≡ (a = b) ∧ (c = d) yields a W[1]-hard

problem. We refer to R as double equality. Also de�ne

a tractable language Γ1 = {(x = 0), (x = 1), (x =
y), R0,1,=} where R0,1,=(a, b, c, d) ≡ (a = 0) ∧ (b =
1) ∧ (c = d). We use constraint coloring to show that for

every language Γ over Γ0 which does not express double

equality, Min SAT(Γ) FPT-reduces to Min SAT(Γ1).

Let (F , k) be an instance of Min SAT(Γ), and assume

there is an assignment φ such that at most k constraints of

F are false in φ. For every constraint R(X) in F , guess a

random assignmentαR toX . Since |Γ| is �nite, with some

probability 2−O(k)
, αR agrees with φ for every constraint

R(X) that is false in φ. Assume this holds. Now assume

that for some x, y ∈ X , a clause (x = y) holds in both

R(X) and in αR. We may then assume that (x = y)
holds in the optimal solution φ, and may identify x with

y in F , simplifying R. By similar steps, we can reduce

any R ∈ Γ that does not implement double equality to

a constraint R0,1,=(X ′). Completing such an analysis

over the languages mentioned above, we �nd that every

problem Min SAT(Γ) that does not implement a variant of

double equality reduces to (1) one of two relatively simple

problems that can be solved by branching, and (2) the

problem Generalized Coupled MinCut, described next.

1.3 Main new tractable case: Generalized Cou-

pled MinCut Our main algorithmic contribution is a

new �xed-parameter tractable undirected graph separa-

tion problem Generalized Coupled MinCut (GCMC for

short) that encapsulates the new isle of tractability in the

aforementioned CSP dichotomy result.

�e input to GCMC consists of:

• An undirected multigraphGwith designated vertices

s, t ∈ V (G), s 6= t.
• A multiset C of pairs of vertices of V (G) \ {s, t},

called henceforth pairs.

• A family B of disjoint subsets of C] E(G), called

henceforth blocks.

• An integer k.

An edge or a pair e is so� if it is contained in a block

of B, and crisp otherwise. For a block B ∈ B, by

V (B) =
⋃
e∈B ewe denote the vertices involved in edges

or pairs of B.

Fix an instance I = (G, C,B, k) and consider a set

S ⊆ V (G). We say that an edge e ∈ E(G) is violated by

S if e ∈ δ(S), i.e. e has precisely one endpoint in S, and

satis�ed otherwise. Similarly, we say that a pair p ∈ C
is violated by S if p ⊆ S, and satis�ed otherwise. �e

notions of being violated and satis�ed extend to blocks: a

block is violated if it contains a violated edge or a violated

pair, and satis�ed otherwise.

A set S ⊆ V (G) is a solution to the instance I if

• s ∈ S but t /∈ S, and

• no crisp edge or pair is violated by S.

�e cost of a solution S is the number of violated blocks.

�e GCMC problem asks for a solution of cost at most k.

Let I = (G, C,B, k) be a GCMC instance. We say

that I is b-bounded for an integer b if every block of the

instance is of size at most b (i.e., the number of edges and

pairs in a single block is at most b). For a blockB ∈ B, let

GB be the graph with vertex set V (B) \ {s, t} such that

two vertices u, v are adjacent inGB if and only if uv ∈ B
(i.e., uv is an edge or a pair of B). �en, we say that I
is 2K2-free if for every block B of the instance, GB does

not contain 2K2 (a four-vertex graph consisting of two

edges with distinct endpoints) as an induced subgraph.

We are now ready to state the main algorithmic result.

Theorem 1.3. �e Generalized Coupled MinCut prob-

lem, restricted to 2K2-free b-bounded instances, is �xed-

parameter tractable when parameterized by b and k.

We give a brief sketch of our algorithm for GCMC,

which is the main application of �eorem 1.1 in this pa-

per. It can be readily assumed that the input graph G
is connected, and the solution S we are chasing is con-

nected inG and has solution cost precisely k. �e number

of violated clauses (both edge and pair) will be at most

κ := kb. �e algorithm consists of a series of technical

reductions and instance simpli�cations so that (with prob-

ability 1/f(κ)) the sought solution S can be assumed to

be molded to satisfy some structural description. To high-

light the insight that guides these steps, we illustrate the

case of Coupled Min-Cut introduced at the beginning

5

of the section.

Let us begin with the toy case where the sought

solution Z has to be a min-(s, t)-cut whose cardinality

equals λ. For a max-(s, t)-�ow P , each path P of P must

intersect withZ precisely once and all vertices onP before

(a�er) the edge of P ∩ Z are reachable from s (from t)
in G − Z . We view each path P ∈ P orientation from

s to t, and call these paths �ow-paths. Observe that if a

set of edges on �ow-paths forms a directed cycle, where

the orientation of each edge is decided by the direction of

its �ow-path, these edges must be contained in the same

connected component of G− Z . Consequently, we can

simplify the instance by contracting (a) all edges ofG that

are not on �ow paths, and (b) all directed cycles of �ow

paths. �e resulting �ow-paths P are called tidy. Assume

for simplicity that Z is also known to consist of k pairs

of edges, i.e. λ = 2k. One can guess the ‘coupling’ of

�ow-paths, thereby dictating how the pairs of edges in Z
should be located over the �ow-paths; only the edges and

pairs of edges of G which conform to this coupling will

survive in the sense that all other edges will be contracted

(or forbidden as crisp edge) and pairs will be unpaired.

Now consider two paths P, P ′ ∈ P and two edge pairs

(e, e′), (f, f ′) ∈ E(P)×E(P ′). �e key fact here is that if

(e, e′) dominates (f, f ′) in that both e and e′ come before

f and f ′ on the respective paths P, P ′, then no solution

Z will take the pair (f, f ′) as this will leave both edges

of the pair (e, e′) reachable from s in G − Z , which is

forbidden by the problem de�nition. �erefore, we can

make the edges f, f ′ crisp. Consequently, the set of all

edge pairs between P and P ′ forms an antichain. Once

we reach this streamlined picture, it can be easily veri�ed

that if (uv, u′v′) is an edge pair between P and P ′ such

that u (resp. u′) is before v (resp. v′) on P (resp. P ′), then

u and v′ are on the opposite sides ofG−Z , i.e. u ∈ Rs(Z)
if and only if v′ ∈ Rt(Z) and the same holds for v and

u′. Observe that now the requirement that at most one

of paired edges are reachable from s in G − Z will be

automatically satis�ed. Moreover, any Z which meets

this new condition chooses uv if and only if it chooses

u′v′. �at is, we have reduced to �nding an assignment

φ : V (G) → {0, 1} with φ(s) = 1 and φ(t) = 0 under

the precedence condition that the assigned value cannot

increase along a �ow-path (imposed by |P ∩ Z| = 1 for

each P ∈ P), and the newly derived condition from edge

pairs. �is can be expressed as Almost 2-SAT, i.e. the

problem of �nding an assignment satisfying all but at

most k′ clauses of a given 2-SAT formula, which is �xed-

parameter tractable by Razgon and O’Sullivan [31].

�e full generality towards an algorithm forGeneral-

ized Coupled MinCut creates much more complication.

Nevertheless, two ideas from the above illustration remain

crucial. First, we reduce to an instance I = (G, C,B, k)
equipped with a partition of the edge multi-setE(G) such

that there is a total order on the edges of the same ‘type’.

Secondly, the total orders naturally induce domination

relations which allow us to simplify the edge pairs and

blocks.

Central to realizing these ideas is the notion of a

�ow-tree decomposition. Observe that a connected set S
containing s but not t gives rise to what we dubbed as

a star (s, t)-cut, namely an (s, t)-cut Z such that every

e ∈ Z has precisely one endpoint which is reachable

from s in G − Z . Conversely, for a star (s, t)-cut Z
of G the vertex set Rs(Z) reachable from s in G − Z
satis�es δ(Rs(Z)) = Z . �erefore, we can equivalently

seek for a star (s, t)-cut of cardinality at most κ which

violates at most k blocks. Because a star (s, t)-cut is a type

of cut for which the �ow-augmentation can be applied

(see Section 2), we may assume with success probability

2−O(κ log κ)
that an augmenting set has been already been

added to the graph (as crisp edges) and �ow-paths P
satisfying the condition of �eorem 1.1, called awitnessing

�ow for Z , is given. Note that now the edge multi-set

Zs,t ⊆ Z with one endpoint in Rs(Z) and another in

Rt(Z) is a minimum (s, t)-cut and we have �ow-paths P
witnessing this.

Consider a path P in G − E(P) with endpoints in

V (P). Since Zs,t is an (s, t)-cut, the endpoints of P
are either both in Rs(Z) or both in Rt(Z), hence these

endpoints can be identi�ed into a single vertex in another

tidying procedure. Hence for tidy P , every connected

component Ĥ of G − V (P) is adjacent with exactly

one vertex sH of V (P), which we call an a�achment

vertex. We remark that we cannot identify the entire

path P because, unlike the above toy case, connected

components of G − V (P) are now relevant for the

remaining Z \ Zs,t. If S intersects with V (Ĥ) ∪ {sH} in

a nontrivial way (that is, S contains at least one vertex

but does not contain the entire set, in which case we

say Ĥ is active) and thus produces at least one violated

edge in H := G[V (Ĥ) ∪ {sH}], then S ∩ V (H) yields

again a star (sH , tH)-cut of H for some tH ∈ V (Ĥ) \
S, termed a local sink. �erefore, we can apply the

�ow-augmentation recursively to H and the subsequent

connected components that appear along the way. Notice

that if a component H is decomposed with a (tidy)

�ow-path PH , there will be more components created

with a�achment vertices on V (PH). �e newly created

components will be naturally placed as ‘children’ of H .

�is leads to a canonical tree-structured decomposition,

called a �ow-tree decomposition.

While the precise de�nition of �ow-tree decompo-

sition and an recursive algorithm for constructing one

can be found in [18], two issues arise immediately. When

do we proceed or stop to decompose a component, and

how do we know the local sink? Regarding the �rst ques-

tion, we construct a �ow-tree decomposition in such a

way that we need to be correct in proceeding with the

decomposition only when a component is active, and in

such a case the budget for violated edges decreases. We

proceed until the ‘depth’ of the �ow-tree reaches κ and

assuming that we have been correct in this liberal sense,

any component a�er this point (leaf of the �ow-tree) can

be declared inactive. Concerning the local sink, edge pairs

with an endpoint in a component are the only reason why

S can be potentially active. �erefore, the candidates for a

local sink will be endpoints of such pairs, and an involved

guessing procedure returns a local sink with su�cient

probability.

Once we obtain a �ow-tree decomposition which is

generously wrong on inactive nodes, but correct on all

active nodes (with probability 2−κ
O(1)

), we color-code

the nodes of the �ow-tree so that the active nodes are

colorful with good probability. Now we may assume

that Z induces a connected subtree of size O(κ) in the

�ow-tree via active nodes, and furthermore the nodes of

the same color naturally yields the types of �ow-paths

(“i-th �ow-path in a node colored by β”). Furthermore,

inductively from the top �ow-paths, we can give a linear

order on the edges of a �ow-path of the same type, which

then induces a linear order on the nodes (of the same

color) in the order of their a�achment vertices on the

parent �ow-paths. �is provides a canonical total order

of the edges on the �ow-paths of the same type.

In a similar (as in the toy example above) but much

more involved way, the �ow-tree structure allows to

reduce groups of blocks into (appropriately de�ned)

antichains. In the toy example, edges on one path are

linearly ordered in such a way that in the sought solution

a pre�x of the order is contained in S. By a number of

involved color-coding steps, we obtain the same “linear

order” property on edges on paths of the same type,

leading to an antichain property similar to the one in

the toy example. As a result, we obtain again a reduction

of the input instance to Almost 2-SAT.

1.4 Organization �is extended abstract contains a

description of the �ow-augmentation technique, that is, an

almost full proof (with a few proofs omi�ed due to space

constraints) of �eorem 1.1. For other results mentioned

in this introduction, we refer to the full version [18].

2 �e �ow-augmentation technique

In this section we develop our �ow-augmentation tech-

nique. We focus here on problems that can be cast as (or

reduced to) �nding a certain (s, t)-cut in a given undi-

rected multi-graph G. �e key observation is that many

such NP-hard cut problems become tractable or at least

�xed-parameter tractable when the allowable cut size k
matches the maximum (s, t)-�ow in G. �e core idea of

our technique is to a�empt to augment the maximum

(s, t)-�ow by adding additional edges, a so-called �ow-

augmenting set, while not breaking any candidate solu-

tion to the problem.

As an example, it is NP-hard to �nd an (s, t)-cut in

an edge-weighted graph that is of minimum total weight

and of cardinality at most k, but easily reduces to min

cut / max �ow computation if one assumes that k is the

minimum cardinality of an (s, t)-cut in the graph. While

the cost of a solution in this case is simply its cardinality,

generally, the cost of a set of edges (solution) may be

more complicated in other applications, e.g., edges may

be paired up arbitrarily and we may delete the edges of

up to ` pairs to separate s and t; in this case the cost of

a solution edge set shall be the number ` of pairs whose

union contains the set. Meanwhile, the cardinality of the

cut is at most k = 2`. �e question that will then be asked

is, of course, whether maximum (s, t)-�ow of exactly k
makes the problem tractable or at least �xed-parameter

tractable with respect to k. Such an algorithm implies

�xed-parameter tractability with respect to the solution

cost as long as we can derive an upper bound on the

cardinality k in terms of the solution cost.

2.1 Preliminaries

2.1.1 Basic notation We consider only (�nite) undi-

rected multi-graphs without loops. In particular, di�erent

edges connecting the same pair of vertices are considered

to be identi�able and non-interchangeable.
3

Formally, a

multi-graph could be captured as G = (V,E, π) where

V and E are �nite sets and π : E →
(
V
2

)
assigns each

edge in E an unordered pair of endpoints. To keep no-

tation within reason, we will treat multi-graphs as pairs

G = (V,E) where V is a �nite set andE is a multi-subset

of

(
V
2

)
but understanding that cuts X (to be de�ned in a

3
�is generality seems necessary to cover a largest set of applications.

Multiple copies of the same edge in G might arise in the reduction of

some problem to an appropriate cut problem. �e di�erent copies may

have wildly di�erent behavior regarding contribution to solution cost.

Our goal will be to ensure that all solutions of a certain cardinality in

terms of cut size have a good probability of being preserved, thereby

remaining oblivious to many unnecessary details of the application.

7

moment) could involve deleting particular (identi�able)

copies of virtually the same edge {u, v}. For a multi-graph

G and A a multi-set of edges on V , the graphs G+A and

G−A are accordingly understood as starting fromG and,

respectively, adding all edges in A that are not yet in G
or removing from G all edges that are also in A; again,

note that this may include di�erent edges with the same

two endpoints. For a vertex set S, we denote by δ(S) the

multi-set of edges that have precisely one endpoint in

S, and by ∂(S) the set of vertices in S that are incident

with at least one edge in δ(S). By a connected component

we mean a maximal set S ⊆ V that induces a connected

subgraph of G. In all other aspects we follow standard

graph notation as set out by Diestel [11].

�roughout this paragraph let G = (V,E) be an

arbitrary multi-graph, let S, T ⊆ V , and let X ⊆ E.

De�ne RS(X) as the set of vertices that are reachable

from any vertex in S inG−X . �e setX is an (S, T)-cut
if RS(X) ∩ RT (X) = ∅; note that no such cut exists

if S ∩ T 6= ∅. A minimum (S, T)-cut is any (S, T)-

cut of minimum possible cardinality; whereas X is a

minimal (S, T)-cut if no proper subset of X is an (S, T)-

cut. (We will crucially need both minimum and minimal

cuts.) By the well-known duality of cuts and �ows in

graphs (Menger’s theorem su�ces here) we get that the

cardinality of any minimum (S, T)-cut is equal to the

maximum number of edge-disjoint paths from S to T in

G or, equivalently, to the maximum unit-capacity (S, T)-

�ow. By λG(S, T) we denote the maximum �ow from S
to T or, equivalently, the minimum size of an (S, T)-cut in

G; we omit the subscript G when it is clear from context.

We mostly apply these notions for the special cases of

S = {s} and T = {t} and then write, e.g., (s, t)-cut

rather than ({s}, {t})-cut for succinctness. In particular,

we write λG(s, t) rather than λG({s}, {t}) and, when G,

s, and t are understood, we usually abbreviate this to λ.

We say that an (S, T)-cut X is closest to S if for every

other (S, T)-cut X ′ with RS(X ′) ⊆ RS(X) we have

|X ′| > |X|. (�is specializes the notion of closeness used

in previous work to cuts.) Clearly, if X is an (S, T)-cut

closest to S then X must in particular be minimal.

Let us recall two useful facts about edge cuts in

graphs.

Proposition 2.1. Let X be a minimal (S, T)-cut. �en

X = δ(RS(X)) = δ(RT (X)).

Proposition 2.2. �ere is a unique minimum (S, T)-cut
that is closest to S.

2.1.2 Special cuts, eligible cuts, compatibility, and

�ow-augmentation. Let G = (V,E) be a connected,

undirected multi-graph, and let vertices s, t ∈ V . For

Z ⊆ E, letZs,t ⊆ Z be the set of edges with one endpoint

in Rs(Z) and one endpoint in Rt(Z).

�e following notions are crucial for this section.

Definition 2.1. (special cut) We say that an (s, t)-cut
Z is special if Zs,t is an (s, t)-cut. �at is, the set of edges

Zs,t ⊆ Z with one endpoint inRs(Z) and one endpoint in
Rt(Z) is also an (s, t)-cut.

Note that special (s, t)-cuts generalize minimal (s, t)-cuts.

In this section, we focus on solutions that are special

(s, t)-cuts with an additional technical property.

Definition 2.2. (eligible cut) We say that an (s, t)-cut
Z is eligible for (s, t) if

1. Z is special, and

2. each edge ofZ has its endpoints in di�erent connected

components of G− Z .
For an integer λ∗, we say that an (s, t)-cut Z is λ∗-eligible
if Z is eligible and additionally |Zs,t| = λ∗.

�e next two de�nitions formalize two properties we

want from a set of edges that we add to the graph: (i) it

does not break the solution, and (ii) it increases the �ow

from s to t.

Definition 2.3. (compatible set) A multi-subset A of(
V
2

)
is compatible with a set Z ⊆ E if for every uv ∈ A,

u and v are connected in G− Z .

Definition 2.4. (flow-augmenting set) For an integer

λ∗ ≥ λG(s, t), a multi-subset A of

(
V
2

)
is λ∗-�ow-

augmenting if λG+A(s, t) ≥ λ∗.

Intuitively, the role of Z will be played by an un-

known solution to the cut problem in question and com-

patibility ofAwith Z means thatA cannot add connectiv-

ity that was removed by Z (or that was not present in the

�rst place). �e challenge is to �nd a �ow-augmenting

set that with good probability is consistent with at least

one solution Z , without knowing Z beforehand.

It will be convenient to take edges in A as being

undeletable or, equivalently, as unbounded (or in�nite)

capacity. Clearly, if A is �ow-augmenting and compatible

with an (eligible) set Z then A remains �ow-augmenting

and compatible with Z a�er adding an arbitrary number

of copies of any edges in A. In particular, having a total

of k + 1 copies of every edge in A will make those edges

e�ectively undeletable for sets Z of size k, that is, the

endpoints of any edge in A cannot be separated by Z .

Note that for applications, since edges inA are in addition

to the original input, one will usually not be interested

in deleting edges of A anyway (and costs may not be

de�ned), and they only help to increase the �ow to match

an (unknown) solution. For the purpose of �ow and path

packings, edges in A may, accordingly, be shared by any

number of (�ow) paths, fully equivalent to simply having

k + 1 copies of each edge.

2.1.3 Witnessing �ow. To simplify for applications,

in addition to returning a �ow-augmenting set, we will

also a�empt to return an (s, t)-max �ow in the augmented

graph which intersects Zs,t in a particularly structured

way.

In the following, let G be a connected graph with

s, t ∈ V (G), and letZ be an (s, t)-cut inGwhich contains

an (s, t)-min cut. A witnessing (s, t)-�ow for Z in G is

an (s, t)-max �ow P in G such that every edge of Zs,t
occurs on a path of P , and every path of P intersects Z
in precisely one edge.

We make a few observations. First, since Z is an

(s, t)-cut, every (s, t)-path in G intersects Z in at least

one edge. Second, if additionally λG(s, t) = |Zs,t|, then

every (s, t)-max �ow inG is witnessing forZs,t. Hence, if

Z is a minimum (s, t)-cut, then �nding a witnessing �ow

is no harder than �nding a �ow-augmenting set. However,

ifZ is a special and onlyZs,t is a minimum (s, t)-cut, then

a witnessing �ow is a more restrictive notion.

We now observe that for every special (s, t)-cut Z ,

one can augment G with a set compatible with Z such

that Zs,t becomes a (s, t)-min cut and G + A admits a

witnessing �ow for G.

Lemma 2.1. LetG = (V,E) be a multi-graph, let s, t ∈ V
with s 6= t, let Z ⊆ E be a special (s, t)-cut of size k, and
let λ∗ = |Zs,t|. �en there exists a λ∗-�ow-augmenting

set A compatible with Z and a witnessing �ow P for Z in

G+A.

Proof. For each pair u and v of vertices in the same

connected component of G− Z , add to A a set of k + 1
copies of the edge uv. Clearly, A is compatible with Z .

For every e = uv ∈ Zs,t with u ∈ Rs(Z) and v ∈ Rt(Z),

let Pe be a path in G+A consisting of the edges su ∈ A,

uv ∈ Zs,t, and vt ∈ A. �en, P := {Pe | e ∈ Zs,t} is a

witnessing �ow for Z in G+A of cardinality λ∗. Hence,

A is λ∗-�ow-augmenting.

A few remarks are in place. �e proof of Lemma 2.1 shows

that a set Z ⊆ E admits a λ∗-�ow-augmenting set A if

and only if Z does not contain an (s, t)-cut of cardinality

less than λ∗. Indeed, in one direction such a cut C ⊆ Z
remains an (s, t)-cut in G+A, preventing the �ow from

increasing above |C|, and in the other direction the set A
constructed in the proof of Lemma 2.1 is in some sense

“maximum possible” and all (s, t)-cuts of cardinality at

most k in G+A are contained in Z . Furthermore, even

if Z is a special (s, t)-cut where Zs,t is an (s, t)-min cut

(so no �ow increase is possible), while Z may not admit a

witnessing �ow in G, it is possible to augment G with a

set of edges compatible with Z so that a witnessing �ow

exists.

Lemma 2.1 motivates the following extension of the

de�nition of compatibility.

Definition 2.5. (compatible pair) A pair (A,P) is

compatible with a special (s, t)-cut Z if A is a λ∗-�ow-
augmenting set compatible with Z for λ∗ = |Zs,t| and P
is a witnessing �ow for Z in G+A.

2.1.4 Problem formulation. �e proof of Lemma 2.1

shows that the task of �nding a compatible �ow-

augmenting set and a witnessing �ow would be trivial if

only we knewZ in advance. Not knowingZ , we will have

to place additional edges more sparingly than in the proof

of Lemma 2.1 to arrive at a su�cient success probability.

Let us formally de�ne our goal, taking into account that

the set Z is not known.

In the flow-augmentation sampling problem we

are given an instance (G, s, t, k, λ∗) consisting of an

undirected multi-graph G = (V,E), vertices s, t ∈ V ,

and integers k and λ∗ such that k ≥ λ∗ ≥ λ := λG(s, t).

�e goal is to �nd (in probabilistic polynomial-time) a

multi-set A of

(
V
2

)
and an (s, t)-�ow P in G + A such

that the following holds:

• λG+A(s, t) ≥ λ∗, |P| = λ∗, and

• for each λ∗-eligible (s, t)-cut Z of size exactly k, the

output (A,P) is compatible with Z with probability

at least p.

�e function p (that may depend on k or λ) is called the

success probability.

In order to relax some corner cases, we allow for

the event that λG+A(s, t) > λ∗, and note that if Z is

an eligible (s, t)-cut with |Zs,t| = λ∗ then for any such

output (A,P) such that A is compatible with Z we must

have λG+A(s, t) = λ∗.
We begin the proof of �eorem 1.1 by introducing

an appropriate decomposition of (the vertex set of) G
into what we call bundles, which in turn consist of

what is called blocks. We then present our recursive

�ow-augmentation algorithm, spli�ing the presentation

into an “outer loop” and an “inner loop.” Note that we

assume that the input multi-graph G is connected as this

somewhat simpli�es presentation, but we will circumvent

this assumption in applications.

It will be convenient to assume that we only care

about λ∗-eligible cuts that do not contain any edge

9

incident with s nor t. �is can be easily achieved by adding

an extra terminal s′ connected with s with k + 1 edges,

adding an extra terminal t′ connected with t with k + 1
edges, and asking for (s′, t′)-cuts instead. Consequently,

in the proof we can assume one more property of an λ∗-
eligible (s, t)-cut Z :

3. Z contains no edge incident with s or t.

2.2 Blocks and bundles Given an instance

(G, s, t, k, λ∗) of flow-augmentation sampling,

it should come as no surprise that the minimum (s, t)-

cuts of G will be crucial for �ow-augmentation. Recall,

however, that even structurally simple graphs may exhibit

an exponential number of possibly crossing minimum

(s, t)-cuts. We will use the notion of closest cuts (and

implicitly the well-known uncrossing of minimum

(s, t)-cuts as used in Proposition 2.2) to identify a

sequence of non-crossing minimum (s, t)-cuts. �e parts

between consecutive cuts will be called blocks; we will

also de�ne a partition of blocks into consecutive groups

called bundles. �e decomposition of G into bundles will

guide the choice of edges for the �ow-augmenting set A
in our algorithm and will be used to capture parts of G to

recurse on.

For convenience, let us �x an instance (G, s, t, k, λ∗)
and let λ := λG(s, t) ≤ k for use in this subsection.

Accordingly, in G there is a packing of λ edge-disjoint

(s, t)-paths P1, . . . , Pλ (and no larger packing exists).

Clearly, every minimum (s, t)-cut in G contains exactly

one edge from each path Pj and no further edges. As

noted earlier, we assume for now that G is connected.

2.2.1 Blocks We �rst de�ne a sequence C0, . . . , Cp of

non-crossing minimum (s, t)-cuts; recall that minimum

(s, t)-cuts in G all have cardinality λ. To start, let C0

be the unique minimum (s, t)-cut that is closest to s.
Inductively, for i ≥ 1, let Ci be the minimum (s, t)-cut

closest to s among all cuts that ful�l N [Rs(Ci−1)] ⊆
Rs(Ci). �e cutCi is well-de�ned (i.e., unique) by an easy

variant of Proposition 2.2: Minimum cuts X ful�lling the

requirement that N [Rs(Ci−1)] ⊆ Rs(X) uncross into

minimum cuts ful�lling the same requirement. Intuitively,

the construction is equivalent to asking that each Ci
is closest to s among minimum (s, t)-cuts that do not

intersect C0 ∪ . . . ∪ Ci−1 but this would need a formal

proof and we do not require it.

We can now de�ne the blocks V0, . . . , Vp+1 ⊆ V ,

which will be seen to form a partition of V . Block V0 is

simply set to Rs(C0). For i ∈ {1, . . . , p}, we de�ne block

Vi as the set of vertices reachable from s in G − Ci but

not in G− Ci−1, i.e., Vi := Rs(Ci) \ Rs(Ci−1). Finally,

Vp+1 contains all vertices reachable from s inG but not in

G− Cp which, since G is connected, equates to Vp+1 =
V \Rs(Cp). By construction of the cutsCi we clearly have

s ∈ Rs(C0) (Rs(C1) (. . . (Rs(Cp) ⊆ V \ {t}, so

the blocks Vi are all nonempty and clearly form a partition

of V .

Let us point out that blocks Vi do not need to be

connected even though G is connected. It will be useful

to note, however, that blocks V0 and Vp+1 are connected:

�e graph G is connected and each minimum (s, t)-cut

Ci will therefore separate it into exactly two connected

components Rs(Ci) and Rt(Ci). Blocks V0 = RS(C0)
and Vp+1 = V \ Rs(Cp) = Rt(Cp) are therefore

connected. Moreover, each block is at least somewhat

connected through subpaths of the �ow paths P1, . . . , Pλ
that are contained therein. We establish a bit more

structure via the following two propositions.

Proposition 2.3. For each (s, t)-�ow path Pj ∈
{P1, . . . , Pλ}, seen as being directed from s to t, the edges
of the minimum (s, t)-cuts C0, . . . , Cp appear in order of

the cuts. �ese edges de�ne a partition of the �ow path Pj
into P 0

j , . . . , P
p+1
j so that P ij is contained in block Vi for

i ∈ {0, . . . , p+ 1}.

Using the fact that, for each (s, t)-�ow path Pj ,
the blocks Vi contain consecutive subpaths of Pj , we

can prove that each block has at most λ connected

components. Moreover, each such component in a block

Vi, with i ∈ {1, . . . , p} is incident with some number of

edges of Ci−1 and the same number of edges in Ci.

Proposition 2.4. Each block Vi has at most λ connected

components. Moreover, each connected component in a

block Vi, with i ∈ {1, . . . , p}, is incident with c ≥ 1 edges

in Ci−1 and with exactly c edges in Ci. (Clearly, V0 is

incident with all λ edges of C0, and Vp+1 is incident with

all λ edges of Cp.)

It can be easily veri�ed that the decomposition into

blocks can be computed in polynomial time.

Proposition 2.5. Given a multi-graph G = (V,E) and

vertices s, t ∈ V , the unique sequence of cuts C0, . . . , Cp
and decomposition of blocks V0, . . . , Vp+1 can be computed

in polynomial time.

2.2.2 Bundles We will now inductively de�ne a decom-

position ofV into bundlesW0, . . . ,Wq+1. �e �rst bundle

W0 is simply equal to the (connected) block V0, which

contains s. For i ≥ 1, supposing that blocks V0, . . . , Vj−1

are already parts of previous bundles,

• let Wi := Vj if Vj is connected (i.e., if G[Vj] is

connected) and call it a connected bundle

• otherwise, let Wi := Vj ∪ . . . ∪ Vj′ be the union of

contiguous blocks, where j′ is maximal such that

G[Vj ∪ . . . ∪ Vj′] is not connected and call it a

disconnected bundle.

Observe that the �nal bundle is Wq+1 = Vp+1 because

Vp+1 is connected and, due to the included subpaths of

(s, t)-�ow paths (cf. Proposition 2.4), any union Vj ∪ . . .∪
Vp+1 induces a connected graph (see also Proposition 2.6).

We use block(Wi) to denote the set of blocks whose union

is equal to Wi, i.e., block(Wi) = {Vj} and block(Wi) =
{Vj , . . . , Vj′} respectively in the two cases above. We say

that two bundlesWi andWi′ are consecutive if |i−i′| = 1.

Intuitively, bundles are de�ned as maximal sequences

of blocks that permit a good argument to apply recursion

in our algorithm. In case of a single block, if we augment

the edges incident with the block, then in the recursive

step the cardinality of the maximum �ow λG(s, t) in-

creases. In case of a union of contiguous blocks that does

not induce a connected subgraph, if we recurse into every

connected component independently, we split the bud-

get k in a nontrivial way, as every connected component

contains the appropriate part of at least one �ow path of

P .

Clearly, the bundles W0, . . . ,Wq+1 are well de�ned

and they form a partition of the vertex set V of G. We

emphasize that W0 = V0 3 s and Wq+1 = Vp+1 3 t and

that they are both connected bundles. We note without

proof that the bundles inherit the connectivity properties

of blocks because the cuts between blocks combined

into a bundle connect their subpaths of (s, t)-�ow paths

P1, . . . , Pλ into longer subpaths, whereas the incidence

to the preceding and succeeding cuts stays the same (see

Proposition 2.6). For ease of reference, let us denote

by C ′0, . . . , C
′
q those cuts among C0, . . . , Cp that have

endpoints in two di�erent (hence consecutive) bundles,

concretely, with C ′i having endpoints in both Wi and

Wi+1; note that C ′0 = C0 as W0 = V0 and C ′q = Cp as

Wq+1 = Vp+1.

Proposition 2.6. Each bundle Wi has at most λ con-

nected components. Moreover, each connected component

in a bundleWi, with i ∈ {1, . . . , q}, is incident with c ≥ 1
edges inC ′i−1 and with c edges inC

′
i . (Clearly,W0 = V0 is

incident with all λ edges of C ′0 = C0, andWq+1 = Vp+1

is incident with all λ edges of C ′q = Cp.)

Let us introduce some more notation for bundles:

For 0 ≤ a ≤ b ≤ q + 1 let Wa,b :=
⋃b
i=aWi. Let

W≤a := W0,a and W≥a := Wa,q+1. For any (union

of consecutive bundles) Wa,b we de�ne the le� interface

left(Wa,b) as ∂(W≥a) ∩ W≥a when a ≥ 1 and as {s}
when a = 0. (I.e., when a ≥ 1 then left(Wa,b) are

those vertices of Wa,b that are incident with the cut C ′a−1

that precedes bundle Wa). Similarly, we de�ne the right

interface right(Wa,b) as ∂(W≤b) ∩W≤b when b ≤ q and

as {t} when b = q+ 1. (I.e., when b ≤ q then right(Wa,b)
are those vertices of Wa,b that are incident with the cut

C ′b that succeeds bundle Wb.) For single bundles Wi the

same notation applies using Wi = Wi,i. A consecutive

subsequence of bundles is called a stretch of bundles, or

simply a stretch.

While a union of consecutive blocks may be discon-

nected, this is not true for bundles where, as can be easily

checked, any two consecutive bundles together induce a

connected subgraph of G.

Proposition 2.7. For any two consecutive bundlesWi and

Wi+1 the graph G[Wi ∪Wi+1] is connected.

Clearly, the decomposition into bundles can be e�-

ciently computed from the one into blocks.

Proposition 2.8. Given a multi-graph G = (V,E) and

vertices s, t ∈ V , the unique sequence of cuts C ′0, . . . , C
′
q

and decomposition of bundlesW0, . . . ,Wq+1 can be com-

puted in polynomial time.

2.2.3 A�ected and una�ected bundles We will later

need to reason about the interaction of a special (s, t)-

cut Z ⊆ E and G = (V,E) and, hence, about the

interaction with the bundles of G. We say that a bundle

W is una�ected by Z if N [W] is contained in a single

connected component of G− Z; otherwise we say that

W is a�ected by Z . As an example, the cut Z = C ′i a�ects

bothWi andWi+1 but no other bundles. Similarly, a cutZ
entirely con�ned to G[Wi] a�ects only Wi, since W≤i−1

and W≥i+1 are both connected and disjoint from Z . �e

more interesting/di�cult cuts Z a�ect several bundles in

a non-trivial way.

�e following observation limits the number and

arrangement of a�ected bundles. It will be important for

reducing the general case (probabilistically) to the case

where G decomposes into a bounded number of bundles.

Concretely, this is the purpose of the outer-loop part of

our algorithm, which is presented in the following section.

Lemma 2.2. Let Z ⊆ E be an (s, t)-cut of size at most k.
Let 0 ≤ a ≤ b ≤ q + 1 and let ` be the number of indices

a ≤ i ≤ b such that the bundleWi is a�ected. �en,

` ≤ 2 |Wa−1,b+1 ∩ Z| .

In particular, at most 2k bundles are a�ected by Z .

11

Lemma 2.3. Let Z ⊆ E be an (s, t)-cut of size at most k.
�ere is at most one maximal stretchWa,b of bundles such

that every bundleWi, a ≤ i ≤ b is a�ected by Z and such

that Wa,b contains both a vertex reachable from s and a

vertex reachable from t (in G − Z). Moreover, all vertices

in the le� interface of Wa,b are reachable from s and all

vertices in the right interface are reachable from t. Finally,
if Z is a special (s, t)-cut then there must be such a stretch.

�e previous lemma says that each special (s, t)-cut

Z yields exactly one maximal stretch of a�ected bundles

in which it separates s from t (and possibly creates further

connected components). We say that Z strongly a�ects

that stretch. For all other maximal a�ected stretches of

bundles we say that they are weakly a�ected by Z . Note

that a non-special cut such as C ′i ∪ C ′j for j ≥ i+ 3 may

contain no strongly a�ected stretch.

Let us make some useful observations about bundles

not in the strongly a�ected stretch.

Proposition 2.9. LetZ be a special (s, t)-cut and letWa,b

be the unique strongly a�ected stretch. �en the following

hold.

1. For every i < a, if Wi is an una�ected bundle then

Wi ⊆ Rs(Z)
2. For every i > b, if Wi is an una�ected bundle then

Wi ⊆ Rt(Z)
3. If Wi,j is a (maximal) weakly a�ected stretch with

j < a, then left(Wi) ∪ right(Wj) ⊆ Rs(Z) and

(j − i+ 1) ≤ 2|Z ∩Wi,j |
4. If Wi,j is a (maximal) weakly a�ected stretch with

i > b, then left(Wi) ∪ right(Wj) ⊆ Rt(Z) and

(j − i+ 1) ≤ 2|Z ∩Wi,j |

2.3 �e outer loop of the algorithm Our algorithm

Sample consists of an outer loop (to be explained in

this section), which is applied �rst to an input instance

(G, s, t, k, λ∗) and also to certain instances in recursive

calls, and an inner loop, which is applied only to short

sequences of bundles. �e outer loop part uses a color-

coding approach to guess weakly and strongly a�ected

stretches of bundles in G, and calls the inner-loop sub-

routine called Short-separation on the la�er. �is sub-

routine (to be described in detail in the following section)

then seeks to recursively �nd an output (A,P), using the

assumption that whenever it is called on a stretch Wa,b,

then either Z is disjoint from the stretch Wa,b or Wa,b is

precisely the unique strongly a�ected stretch in G.

Each call to our algorithm will return a pair (A,P)
for the instance in question, where (A,P) may or may not

be compatible for an arbitrary (unknown) (s, t)-cut Z . A

crucial observation for the correctness of our algorithm is

that any �ow-augmentation set guessed for an una�ected

stretch of bundles will always be compatible with Z . �is

allows us to focus our a�ention in the analysis on the

guesses made while processing a�ected bundles. �is is

essential in bounding the success probability purely in

terms of k.

We will argue that for some su�ciently large con-

stants c1 � c2 � 0, Sample(G, s, t, k, λ∗) returns

an output (A,P) which is, with probability at least

e−g(λG(s,t),k)
, compatible with an (unknown) eligible

(s, t)-cut Z , where g(λ, k) = (c1k − c2)(1 + ln k) +
c2 max(0, k − λ).

�e main (outer loop) algorithm is shown in Figure 1.

2.3.1 Interface of the inner loop algorithm �e

inner-loop algorithm expects as input an instance

(G′, s′, t′, k′, λ′) that has two additional properties and

will return a pair (A′,P ′). A valid input (G′, s′, t′, k′, λ′)
for the inner loop algorithm has the following properties:

1. �e graph G′ decomposes into bundles

W ′0, . . . ,W
′
q+1, with 1 ≤ q ≤ 2k′, and such

that W ′0 = {s′} and W ′q+1 = {t′}. If q = 1, then

we say that the instance is a single-bundle instance,

otherwise if q > 1 it is a multiple-bundle instance.

2. We have λG′(s′, t′) < λ′ ≤ k′, i.e., the maximum

(s′, t′)-�ow in G′ is lower than the target �ow value

λ′ a�er augmentation.

Furthermore, let Z ′ be an (s′, t′)-cut in G′. We say that

Z ′ is a valid cut for (G′, s′, t′, k′, λ′) if the following hold.

1. Z ′ is an eligible (s′, t′)-cut in G′ with |Z ′| = k and

|Z ′s,t| = λ′;
2. Z ′ a�ects precisely the bundles W ′1, . . . , W ′q in G′

In the following section we will describe a realiza-

tion of this interface by two algorithms called Short-

separation-single and Short-separation with the fol-

lowing success guarantee:

• for a valid single-bundle instance (G′, s′, t′, k′, λ′),

the algorithm Short-separation-single returns a

�ow-augmenting set A′ with λG′+A′(s′, t′) ≥ λ′

and an (s, t)-�ow P ′ in G + A of size λ′ such that

for every valid cut Z ′, (A′,P ′) is compatible with

Z ′ with probability at least 32 · e−g(λG′ (s′,t′),k′)
;

• for a valid multiple-bundle instance (G′, s′, t′, k′, λ′),

the algorithm Short-separation returns a �ow-

augmenting set A′ with λG′+A′(s′, t′) ≥ λ′ and an

(s, t)-�ow P ′ in G+A of size λ′ such that for every

valid cut Z ′, (A′,P ′) is compatible with Z ′ with

probability at least 32(k′)3 · e−g(λG′ (s′,t′),k′)
.

2.3.2 Correctness of the outer loop part We are

now ready to prove correctness of the outer loop algo-

Algorithm Sample(G, s, t, k, λ∗)

1. If it does not hold that λG(s, t) ≤ λ∗ ≤ k, then set A to be max(k + 1, λ∗) copies of {s, t}, P to be any λ∗ of these copies,

and return (A,P).

2. Initialize A = ∅ and P to be a set of λ∗ zero-length paths starting in s.
3. Compute the partition V = W0 ∪ . . . ∪Wq+1 of G into bundles.

4. Go into single mode or multiple mode with probability 1/2 each.

• In single mode, set pblue = pred = 1/2.

• In multiple mode, set pblue = 1/k, pred = 1− 1/k.

5. Randomly color each bundle blue or red; blue with probability pblue and red with probability pred.

6. Randomly sample an integer λ∗ ≤ k′ ≤ k as follows: set k′ = k with probability 1/2 and with remaining probability sample

λ∗ ≤ k′ < k uniformly at random.

7. For every maximal stretch Wa,b of bundles colored with the same color, do the following in consecutive order starting with

a = 0, and maintaining the property that at the begining of the loop P is a family of λ∗ edge-disjoint paths inG+A starting

in s and ending in left(Wa):

(a) If a > 0, then add to A all edges uv for u, v ∈ right(Wa−1) ∪ left(Wa); (We henceforth refer to the edges added in

this step as link edges.)

(b) If the stretch is colored red and consists of one bundle in single mode, or at least two and at most 2k′ bundles in

multiple mode, then perform the following:

i. Let G′ be the graph G[N [Wa,b]] with vertices of W≤a−1 contracted to a single vertex s′ and vertices of W≥b+1

contracted to a single vertex t′. If a = 0, and hence W≤a−1 = ∅, then instead add a new vertex s′ and connect it

to s ∈Wa via λ parallel edges {s, s′}. Similarly, if b = q + 1 then W≥b+1 = ∅ and we instead add a new vertex

t′ and connect it to t ∈Wb via λ parallel edges {t, t′}. Observe that deg(s′) = deg(t′) = λ.

ii. Do a recursive call:

• In single mode, let (A′,P ′)← Short-separation-single(G′, s′, t′, k′, λ∗).

• In multiple mode, let (A′,P ′)← Short-separation(G′, s′, t′, k′, λ∗).

iii. Update A as follows:

• Add to A all edges of A′ that are not incident with s′ or t′.
• For every edge s′v ∈ A′, add to A a separate edge uv for each vertex u ∈ right(W≤a−1). If a = 0 then

ignore edges s′s ∈ A′ and for each edge s′v ∈ A′ add sv to A;

• Analogously, for every edge vt′ ∈ A′, add to A a separate edge vw for each vertex w ∈ left(Wb+1). If

b = q + 1 then ignore edges tt′ ∈ A′ and for each edge vt′ ∈ A′ add vt to A.

iv. Update P as follows: For every path P ′ ∈ P ′, if the �rst or last edge of P ′ belongs to A′, replace it with one of

its corresponding edges in A, and then pick a distinct path P ∈ P and append P ′ at the end of P , using a link

edge to connect the endpoints of P and P ′ if necessary.

(c) Otherwise:

i. Add to A, with multiplicity k + 1, all edges {u,w} with u ∈ right(Wa−1), taking u = s if a = 0, and

w ∈ left(Wb+1), taking w = t if b = q + 1.

ii. Prolong every path P ∈ P with a link edge (if a > 0) and an edge of A, so that P ends in left(Wb+1), or in t if

b = q + 1.

Figure 1: �e outer loop algorithm

rithm Sample assuming a correct realization of the inner

loop algorithm according to the interface stated above.

It is straightforward to verify the invariant stated in

the loop: at every step, P is a family of λ∗ edge-disjoint

paths in G+A, starting in s and ending in left(Wa). It is

also straightforward to verify the feasibility of the updates

of P . Furthermore, observe that a�er the last iteration of

the loop, all paths of P end in t. �us, at the end of the

algorithm P is indeed a family of λ∗ edge-disjoint paths

from s to t in G+A.

We now prove that, in a well-de�ned sense, most

edges in the returned set A are compatible with most

minimal (s, t)-cuts Z .

Lemma 2.4. LetWa,b be a stretch processed by Sample such

that every bundle of the stretch is una�ected by Z . �en

every edge added to A while processingWa,b is compatible

with Z .

Now we are set to prove correctness of the outer loop

algorithm assuming a correct realization of the inner-loop

interface.

13

Lemma 2.5. Assume that an algorithm Short-separation

correctly realizes the above interface such that for

every valid single-bundle (multiple-bundle) instance

(G′, s′, t′, k′, λ′) with k′ ≤ k, the returned pair (A′,P ′)
is compatible with a �xed valid cut Z ′ with probability

32e−g(λG′ (s′,t′),k′)
(32(k′)3e−g(λG′ (s′,t′),k′)

). �en

for any (G, s, t, k, λ∗), Sample returns an (s, t)-�ow-
augmenting set A such that λG+A(s, t) ≥ λ∗ and for any
eligible (s, t)-cut Z in G of size k and with |Zs,t| = λ∗,
the returned pair (A,P) is compatible with Z with

probability at least e−g(λG(s,t),k)
.

Proof. �e lemma holds essentially vacuously if Sam-

ple(G, s, t, k, λ∗) stops at step 1. Hence we assume

λ ≤ λ∗ ≤ k. Since G is connected, λ ≥ 1, hence k ≥ 1.

We �rst prove that all calls to Short-separation or

Short-separation-single are made for valid instances

(G′, s′, t′, k, λ∗). Let (G′, s′, t′, k, λ∗) be an instance

on which Short-separation or Short-separation-

single is called and let Wa,b be the stretch that the

call corresponds to. It can be veri�ed that G′, rela-

tive to minimum (s′, t′)-cuts, decomposes into bundles

{s′},Wa, . . . ,Wb, {t′}. A key point here is that s′ and

t′ are both incident with precisely λ edges in G′, and

λG′(s′, t′) = λ. �is makes δ(s′) the unique closest min-

imum (s′, t′)-cut. From this point on, the sequence of

closest minimum (s′, t′)-cuts that de�ne blocks and bun-

dles is identical to ones between the blocks that form

bundles Wa, . . . ,Wb in G. Clearly, G′[Wa ∪ . . .Wb] ∼=
G[Wa ∪ . . . ∪Wb] (canonically) so we arrive at the same

decomposition into bundles. At the end, δ(t′) can be seen

to be �nal closest minimum (s′, t′)-cut that arises when

computing blocks and bundles for (G′, s′, t′), using a sym-

metric argument to the one for δ(s′).

Now, we show the compatibility property. Let Z be

any λ∗-eligible (s, t)-cut of size k. By Lemma 2.3, there is

a unique strongly a�ected stretchWa,b, and by Lemma 2.2

at most 2|Z| bundles are a�ected in total. Let ` = b−a+1
be the number of bundles in Wa,b and let Z ′ = Z ∩Wa,b.

We have ` ≤ 2|Z ′| and λ∗ ≤ |Z ′| ≤ k.

We are interested in the following success of the

random choices made by the algorithm: the algorithm

goes into mode single if a = b and into mode multiple
otherwise, k′ = |Z ′|, and the coloring of bundles in the

loop is such that every bundle ofWa,b is red, whileWa−1,

Wb+1, and every other a�ected bundle is blue. Since there

are at most 2(k − |Z ∩Wa,b|) a�ected bundles that are

not in Wa,b, the above success happens with probability

at least

• if a = b and k = |Z ′|: 2−5
;

• if a = b and k > |Z ′|:

2−5(k − λ∗)−12−2(k−|Z′|) ≥ 2−5k−12−2(k−|Z′|);

• if a < b:

(k − λ∗ + 1)−1 · k−2−2(k−|Z′|) · (1− 1/k)`

≥ k−3−2(k−|Z′|) · (1− 1/k)2k

≥ 2−4k−3−2(k−|Z′|).

Henceforth we assume that the above success indeed

happens.

If this is the case, then for every two consecutive

bundles Wi and Wi+1 of di�erent colors, either Wi

or Wi+1 is una�ected. In particular, all endpoints of

the edges of E(Wi,Wi+1) are in the same connected

component of G − Z . �us, all link edges added to A
are compatible with Z .

Let us now consider the processing of some maximal

monochromatic stretch Wc,d other than Wa,b. If Wc,d is

red, then by assumption on the coloring it is a stretch of

una�ected bundles, and any edges added are compatible

with Z by Lemma 2.4. Furthermore, any �ow P ′ does not

intersect Z , so the edges appended in the paths of P are

disjoint with Z .

IfWc,d is red, then we claim that left(Wc)∪right(Wd)
are contained in the same connected component inG−Z .

Indeed, by assumption on the coloring, any a�ected

bundle in Wc,d is contained in some weakly a�ected

stretch Wc′,d′ where the stretch is contained in Wc,d in

its entirety. By Prop. 2.9 the endpoints of such a stretch

are contained in the same component of G − Z , as are

the endpoints of any stretch of una�ected bundles. �e

claim follows. �us the edges added by Sample for Wc,d

are compatible with Z . Furthermore, in this case all edges

appended to the paths of P are from A.

Now consider the strongly a�ected stretch Wa,b.

Observe that Sample will make a recursive call to Short-

separation or Short-separation-single for this stretch;

let the resulting instance be (G′, s′, t′, k′, λ∗). Note that

Z ′ are the edges ofZ contained inG′ and thatZ ′ is a valid

cut for (G′, s′, t′, k′, λ∗). Furthermore, λ = λG(s, t) =
λG′(s′, t′). Indeed, by Lemma 2.3 left(Wa) ⊆ Rs(Z) and

right(Wb) ⊆ Rt(Z), and sinceWa−1 (if any) andWb+1 (if

any) are una�ected, these are entirely contained in Rs(Z)
respectivelyRt(Z) as well. Hence Z ′ is an eligible (s′, t′)-

cut in G′. Finally, |Z ′| = k′ and |Z ′s′,t′ | = |Zs,t| = λ∗,
and by assumption Z ′ a�ects every bundleWi, 1 ≤ i ≤ q,

of G′.
�us, since Short-separation and Short-

separation-single implement the inner-loop interface,

with probability at least 32(k′)3e−g(λ,k
′)

in case of

Short-separation and 32e−g(λ,k
′)

in case of Short-

separation-single, it returns a pair (A′,P ′) that is

compatible with Z ′ in G′.
We verify that the edges added toA forA′ are compat-

ible withZ . �e connected components ofG[Wa−1,b+1]−
Z are the same as those ofG′−Z ′ except that the compo-

nent of s′ hasWa−1 in place of s′, and the component of t′

containsWb+1 instead of t′ (respectively, are identical but

are missing s′ and t′ if a = 0 and/or b = q+ 1). �us, the

only edges in A that could, in principle, be incompatible

with Z are those that were added in place of edges in A′

that are incident with s′ or t′. But in all cases, the end-

point replacing s′ respectively t′ is contained in Rs(Z)
respectively Rt(Z), implying that they are compatible

with Z in G if they are compatible with Z ′ in G′.
For the family of paths P , note that if (A′,P ′) is

compatible with Z ′, then for every P ′ ∈ P ′, the path P ′

intersects Z ′ in precisely one edge and that edge belongs

to Z ′s,t = Zs,t. Hence, by appending P ′ to a path P ∈ P
we add one intersection of P with Z and that intersection

belongs to Zs,t. Since there is only one strongly a�ected

stretch and in all other cases the edges appended to the

paths of P are disjoint with Z , P is a witnessing �ow for

Z in G+A as desired.

Furthermore, the existence of P implies that

λG+A(s, t) ≥ |P| = λ∗.
In summary, Sample produces a pair (A,P) that is

compatible with Z with probability at least (assuming

c1 ≥ 5):

• if a = b and k = |Z ′|:

2−5 · 32 · e−g(λ,k) = e−g(λ,k);

• if a = b and k > |Z ′|:

2−5k−12−2(k−k′)e−g(λ,k
′)

≥ e−5−ln k−2(k−k′)ec2(k−k′)(1+ln k)e−g(λ,k
′)

≥ e−g(λ,k
′);

• if a < b:

1

16
k−3−2(k−k′) · 16(k′)3e−g(λ,k

′)

≥ e−g(λ,k) · kc1(k−k′) · (k′)3 · k−3−2(k−k′)

≥ e−g(λ,k) · k(c1−2)(k−k′) · (k′/k)3

≥ e−g(λ,k).

�is �nishes the proof of the lemma.

2.4 Cut splits and the inner loop

2.4.1 Single-bundle case We will now describe an al-

gorithm Short-separation-single that realizes the �rst

half of the inner-loop interface from the previous section.

Given a valid single-bundle instance (G, s, t, k, λ∗) where

G decomposes into bundlesW0∪W1∪W2,W0 = {s} and

W2 = {t}, it will run in (probabilistic) polynomial time

and always return a λ∗-�ow augmenting set A. More-

over, for each (s, t)-cut Z that is valid for (G, s, t, k, λ∗),

the set A is compatible with Z with probability at least

32e−g(λG(s,t),k)
. We call W0 = {s} and W2 = {t} trivial

bundles, W1 is the non-trivial bundle. �e algorithm is

given in Figure 2.

A few remarks are in place. First, if the algorithm

exists at Step 1, then no valid cut Z exists and we can

deterministically output a trivially correct answer. Second,

sampling of values (λ∗1, . . . , λ
∗
c , k1, . . . , kc) does not need

to be uniform, but we require that each valid output

(λ∗1, . . . , λ
∗
c , k1, . . . , kc) is sampled with probability at

least k−2c
. Note that there are at most k2c

valid outputs.

�is can be achieved by, e.g., sampling each λ∗i and

ki uniformly at random from {1, 2, . . . , k} and, if the

sampled values do not satisfy the requirements, return

one �xed partition instead.

Let us now analyse the case when W1 is connected.

Lemma 2.6. Let (G, s, t, k, λ∗) and W1 be as above, and

let Z ′ be a valid cut for (G, s, t, k, λ∗). If W1 is a con-

nected bundle, then δ(s) ∪ δ(t) is a (λG(s, t) + 1)-�ow-
augmenting set compatible with Z ′.

Proof. Let A = δ(s) ∪ δ(t). Since Z ′ is a valid cut,

Z ∩A = ∅ and A is compatible with Z ′. Furthermore, if

W1 is a connected bundle, then it consists of a single block.

Assume for a contradiction thatG+A has an (s, t)-cut C
of size λG(s, t). �en C ∩A = ∅, and C is an (s, t)-min

cut in G disjoint from δ(s) ∪ δ(t). �is contradicts the

assumption that W1 a block. �us every (s, t)-min cut

in G intersects δ(s) ∪ δ(t) in at least one edge e. Since

A contains a copy of e, C is no longer an (s, t)-cut in

G + A. Hence G + A has no (s, t)-cuts of size λG(s, t),

and λG+A(s, t) > λG(s, t).

Lemma 2.7. Assume that Sample is correct for all inputs

(G′, s′, t′, k′, λ′) where either k′ < k or k′ = k but

λG′(s′, t′) > λG(s, t), with a success probability of at least
e−g(λG′ (s′,t′),k′)

for any eligible (s, t)-cut Z . �en Short-

separation-single(G, s, t, k, λ∗) is correct, with a success

probability of at least 32e−g(λG(s,t),k)
.

Proof. Assume that (G, s, t, k, λ∗) is a valid input. As

discussed, we can assume λG(s, t) ≤ λ∗ ≤ k. Let Z be a

valid cut. IfW1 is a connected bundle, thenA = δ(s)∪δ(t)

15

is �ow-augmenting and compatible with Z by Lemma 2.6.

For the success probability bound, the statement is trivial

if λG+A(s, t) > λ∗ (there is no such Z in this case).

Otherwise note that λG+A(s, t) > λG(s, t) so

g(λG(s, t), k) > g(λG+A(s, t), k) + c2.

Hence, the probability bound follows as long as ec2 ≥ 32.

If W1 is a disconnected bundle, let W1 = W
(1)
1 ∪

. . . ∪ W (c)
1 be as in the algorithm. For i ∈ [c], let

λ∗i = |Zs,t ∩ E(W
(i)
1)| and ki = |Z ∩ E(W

(i)
1)|; then

by assumption λ∗ = λ∗1 + . . .+ λ∗c , k = k1 + . . . kc, and

λi ≤ λ∗i ≤ ki. We note that the algorithm guesses the

correct values of ki and λ∗i with probability at least k−2c
.

Consider some i ∈ [c] and letG(i) = G[W
(i)
1 ∪{s, t}].

Let Z(i) = Z∩E(G(i)), and note that Z(i)
is an (s, t)-cut

inG(i)
, with endpoints in di�erent connected components

of G(i) − Z(i)
, and with Z(i) ∩ (δ(s) ∪ δ(t)) = ∅. �us

Z(i)
is eligible for G(i)

. Furthermore by assumption

|Z(i)
s,t | = λ∗i and |Z(i)| = ki < k. �us each call to Sample

(G′, s, t, ki, λ
∗
i) will by assumption return a set Ai such

that λG+Ai(s, t) ≥ λ∗i ; since E(G) are partitioned across

the instances G(i)
, it follows that A = A1 ∪ . . . ∪Ac is a

�ow-augmenting set with λG+A(s, t) ≥ λ∗. Furthermore,

for every i ∈ [c], with probability at least e−g(λi,ki) the

set Ai is compatible with Z(i)
. Now (A,P) is compatible

with Z if every pair (Ai,Pi) is compatible with the

respective setZ(i)
. Hence, the success probability is lower

bounded by:

k−2c ·
c∏
i=1

e−g(λi,ki)

= exp

(
−2c ln k −

c∑
i=1

(c1(2ki − λi)− c2) (1 + ln ki)

)

≥ exp

(
−2c ln k − (1 + ln k)

c∑
i=1

c1(2ki − λi)− c2

)
= exp(−2c ln k + (1 + ln k) (c1(2k − λ)− c2)

+ (1 + ln k)(c− 1)c2)

≥ 32e−g(λ,k) · exp(((c− 1)c2 − 2c) ln k

+ ((c− 1)c2 − ln 32))

≥ 32e−g(λ,k).

In the above we have used that c1 > c2 and, in the last

inequality, that c ≥ 2, c2 ≥ 4 > ln 32. �is �nishes the

proof of the lemma.

2.4.2 Multiple-bundle case We will now describe an

algorithm Short-separation that realizes the inner-loop

interface from the previous section. Given a valid multiple-

bundle instance (G, s, t, k, λ∗) where G decomposes into

bundlesW0∪. . .∪Wq+1, with 2 ≤ q ≤ 2k, andW0 = {s}
andWq+1 = {t}, and with λ := λG(s, t) < λ∗ it will run

in (probabilistic) polynomial time and always return an

(s, t)-�ow augmenting setA. Moreover, for each (s, t)-cut

Z that is valid for (G, s, t, k, λ∗), the set A is compatible

with Z with probability at least 32k3e−g(λG(s,t),k)
. We

call W0 = {s} and Wq+1 = {t} trivial bundles; all others

are called non-trivial bundles.

�e algorithm is shown in Figure 3, but to discuss it

we need a few results. Assume thatZ is a λ∗-eligible (s, t)-

cut which a�ects every non-trivial bundle W1, . . . ,Wq of

G. Let C be the min-cut between W1 and W2. We de�ne

a cut labelling ϕZ : V (C)→ {s, t,⊥} of C by Z as

ϕZ(v) =

s v ∈ Rs(Z)

t v ∈ Rt(Z)

⊥ otherwise.

For every edge uv ∈ C with u ∈ V (W1) and v ∈
V (W2), the type of the edge uv is the pair ϕZ(uv) :=
(ϕZ(u), ϕZ(v)). Let Γ = {s, t,⊥} × {s, t,⊥} be the set

of types. For a type γ ∈ Γ, let λγ be the number of edges

e ∈ C with ϕZ(e) = γ. �e types (s, s) and (t, t) are

somewhat special; we denote Γ0 = Γ \ {(s, s), (t, t)}
and λ0 =

∑
γ∈Γ0

λγ . Furthermore, let λ← = {t,⊥} ×
{s, t,⊥} and λ→ = {s, t,⊥} × {s,⊥}.

Let Z1 = Z ∩ E(W1), Z2 = Z ∩ E(W2,q) and

ZC = Z ∩C . Note that Z = Z1 ∪Z2 ∪ZC is a partition

of Z . We make some simple observations.

Proposition 2.10. �e following hold.

1. Zs,t ∩ C = {e ∈ C | φZ(e) ∈ {(s, t), (t, s)}};
2. If Zs,t ∩E(W1) 6= ∅, then there exists u ∈ V (W1)∩
V (C) with ϕZ(u) = t;

3. IfZs,t∩E(W2,q) 6= ∅, then there exists v ∈ V (W2)∩
V (C) with ϕZ(v) = s;

4. For every uv ∈ C such that ϕZ(u) 6= ϕZ(v), we
have uv ∈ ZC . Conversely, if uv ∈ ZC , then
ϕZ(u) 6= ϕZ(v) or ϕZ(u) = ϕZ(v) = ⊥.

5. Z1 ∪ ZC 6= ∅ and Z2 ∪ ZC 6= ∅.
6. |Z1∪ZC | ≥ λ0 +λ(t,t) and |Z2∪ZC | ≥ λ0 +λ(s,s).

7. |Z1| ≥ λ← and |Z2| ≥ λ→.

We use this to show the correctness of the algorithm.

Lemma 2.8. Assume that Sample is correct for all in-

puts (G′, s′, t′, k′, λ′) where either k′ < k or k′ = k
but (k′ − λG′(s′, t′)) < (k − λG(s, t)), with a suc-

cess probability of at least e−g(λG′ (s′,t′),k′)
. �en Short-

separation(G, s, t, k, λ∗) is correct, with a success proba-

bility of at least 32k3e−g(λG(s,t),k)
.

Algorithm Short-separation-single(G, s, t, k, λ∗)

1. If (G, s, t, k, λ∗) is not a valid input, or it does not hold that λG(s, t) ≤ λ∗ ≤ k, then set A to be max(k + 1, λ∗) copies of

{s, t}, P to be any λ∗ of these copies, and return (A,P).

2. Let V = W0 ∪W1 ∪W2 be the partition of G into bundles.

3. If W1 is a connected bundle:

(a) Let A0 = δ(s) ∪ δ(t).

(b) Compute (A,P)←Sample(G+A0, s, t, k, λ
∗).

(c) Return (A0 ∪A,P).

4. Otherwise:

(a) Let W1 = W
(1)
1 ∪ . . . ∪W (c)

1 be the partition of G[W1] into connected components, and for each i ∈ [c] let λi be the

amount of (s, t)-�ow routed through W
(c)
1 ; i.e., λ = λ1 + . . .+ λc where λi > 0 for each i ∈ [c]

(b) Randomly sample partitions λ∗ = λ∗1 + . . .+ λ∗c and k = k1 + . . . kc such that λi ≤ λ∗i ≤ ki for each i ∈ [c].

(c) For every i ∈ [c], let G(i) = G[W
(i)
1 ∪ {s, t}] and compute (Ai,Pi)←Sample(G(i), s, t, ki, λ

∗
i).

(d) Return (A :=
⋃c
i=1 Ai,P :=

⋃c
i=1 Pi).

Figure 2: Inner loop: Algorithm for a single bundle

Proof. First observe that if a call (Gi, s, t, ki, λ
∗
i) is made

to Sample, then s and t are connected in Gi. Indeed,

G[W1 ∪ {s}] is connected, and if ϕ−1(t) ∩ V (W1) =
∅ then the algorithm always guesses λ∗1 = 0, hence

no recursive call is made. Similarly, G[W2,q ∪ {t}] is

connected and if s is not adjacent toV (W2) inG+A0 then

no recursive call into G2 is made. Hence each recursive

call is only made to a connected graph Gi and we can

assume that Pi is a �ow of size λ∗i in Gi +Ai. We show

that P is a �ow of size λ∗ in G+ A, which implies that

λG+A(s, t) ≥ λ∗. Indeed, the paths of P1 ∪ P2 exist

in G + A and are pairwise edge-disjoint. Furthermore,

for every edge e ∈ C with ϕ(e) ∈ {(s, t), (t, s)}, the

constucted path Pe ∈ PC is a path from s to t disjoint

from P1 ∪P2. Since |PC | = λ∗C and λ∗ = λ∗1 + λ∗C + λ∗2,

P is as desired.

Next, we consider the probability that (A,P) is

compatible with Z . �e algorithm correctly guesses (in

every bullet, we condition on the previous guesses being

correct):

• values λγ for γ ∈ Γ with probability at least (1 +
λ)−|Γ| ≥ k−9

;

• ϕ = ϕZ with probability∏
e∈C

λϕZ(e)

λ

=
∏
γ∈Γ

(
λγ
λ

)λγ
= exp

−∑
γ∈Γ

λγ ln(λ/λγ)

 .

• values λ∗1 = |Zs,t ∩ E(W1)| and λ∗2 = |Zs,t ∩
E(W2,q)| with probability at least k−2

;

• values k1 = |Z ∩ E(W1)|, k2 = |Z ∩ E(W2)|,
kC = |Z ∩C| with probability at least k−2

, as there

are at most k2
possible values of (k1, k2).

Proposition 2.10 ensures that in all of the above guesses,

the correct value of is among one of the options with

positive probability. Furthermore, λ∗C = |Zs,t ∩ C| is

computed (deterministically) by the algorithm.

It was argued above that each recursive call on a

graph Gi, i = 1, 2, is made only if Gi is connected. We

claim that furthermore Z1 := Z ∩ E(W1) is an eligible

(s, t)-cut in G1. Indeed, Z1 ∩ δ(s) = ∅ by assumption,

and Z1 ∩ δ(t) = ∅ since all edges of δ(t) in G1 are from

A0. Furthermore, by assumption, for every vertex u of

NG1(s) and every vertex v ofNG1(t), we have u ∈ Rs(Z)
and v ∈ Rt(Z). Hence Z1 in particular cuts every path

from u to v in G[W1], and by cu�ing all these paths Z1

must cut s from t in G1. Finally, no edge of Z1 goes

within a connected component of G1−Z1, since the only

paths that are added to G[W1] go between vertices of

the same component (either Rs(Z) or Rt(Z)) in G− Z .

Hence with probability at least e−g(λG1
(s,t),k1)

(or 1 if

λ∗1 = 0) the pair (A1,P1) is compatible withZ1. All these

arguments can also be made symmetrically to argue that

with probability at least e−g(λG2
(s,t),k2)

(or 1 if λ∗2 = 0),

(A2,P2) is compatible with Z2.

By assumption, Ast is compatible with Z . Also, if

ϕ = ϕZ , then every path P ∈ PC intersects Z in exactly

one edge and this edge belongs to Zs,t.
It remains to wrap up the proof of the bound the

probability that (A = Ast∪A1∪A2,P = P1∪P2∪PC)
is compatible with Z . First, consider a corner case when

λ(s,s) = λ, that is, ϕZ is constant at (s, s). �en k1 ≥ 1,

k2 ≤ k − 1, kC = 0, λG2
(s, t) ≥ λG(s, t), and the recur-

sive call on G1 is not made. Furthermore, once λ(s,s) = λ
is guessed, ϕ is de�ned deterministically. Hence, for suf-

�ciently large constant c1, (A,P) is compatible with Z

17

Algorithm Short-separation(G, s, t, k, λ∗)

1. If (G, s, t, k, λ∗) is not a valid multiple-bundle input, then return k + 1 copies of the edge {s, t} and stop.

2. Let V = W0 ∪ . . . ∪Wq+1 be the partition of G into bundles. Let C be the min-cut between W1 and W2.

3. Randomly sample values 0 ≤ λγ ≤ λ for γ ∈ Γ such that

∑
γ∈Γ λγ = λ = |C|. Denote λ0 =

∑
γ∈Γ0

λγ .

4. For every edge uv ∈ C with u ∈ V (W1) and v ∈ V (W2), guess a label ϕ(uv) ∈ Γ with the probability of ϕ(uv) = γ being

λγ/λ.

(a) De�ne ϕ(u) and ϕ(v) such that (ϕ(u), ϕ(v)) = ϕ(uv). If a vertex x obtains two distinct values ϕ(x) in this process,

return A being k + 1 edges st and stop.

(b) Let λ∗C be the number of edges e ∈ C such that ϕ(e) ∈ {(s, t), (t, s)}.
5. Let Ast contain k + 1 copies of each edge {u, v} with u, v ∈ {s} ∪ ϕ−1(s) or with u, v ∈ {t} ∪ ϕ−1(t)
6. Compute a set PC of size λ∗C as follows: for every e ∈ C such that ϕ(e) ∈ {(s, t), (t, s)}, let e = uv be such that ϕ(u) = s

and ϕ(v) = t,and add to PC a three-edge path Pe consisting of the edges su ∈ Ast, e, and tv ∈ Ast.
7. Randomly sample a partition λ∗ = λ∗1 + λ∗C + λ∗2 subject to the following constraints:

(a) λ∗1 ≥ λ(t,s) + λ(t,t) + λ(t,⊥) and λ∗1 = 0 if λ(t,s) = λ(t,t) = λ(t,⊥) = 0.

(b) λ∗2 ≥ λ(s,s) + λ(t,s) + λ(⊥,s) and λ∗2 = 0 if λ(s,s) = λ(t,s) = λ(⊥,s) = 0.

8. Randomly sample a partition k = k1 + kC + k2 subject to the following constraints:

(a) λ∗1 ≤ k1, λ0 + λ(t,t) ≤ k1 + kC , 1 ≤ k1, λ← ≤ k1;

(b) λ∗2 ≤ k2, λ0 + λ(s,s) ≤ k2 + kC , 1 ≤ k2, λ→ ≤ k2;

(c)

∑
γ∈Γ0\{(⊥,⊥)} λγ ≤ kC ≤

∑
γ∈Γ0

λγ .

9. Construct a �ow-augmenting set A1 and a �ow in W1:

(a) Let G1 = (G+Ast)[W1 ∪ {s, t}];
(b) Compute (A1,P1)← Sample(G1, s, t, k1, λ

∗
1).

10. Construct a �ow-augmenting set A2 in W2,q :

(a) Let G2 = (G+Ast)[W2,q ∪ {s, t}].
(b) Compute (A2,P2)← Sample(G2, s, t, k2, λ

∗
2).

11. Return (A = Ast ∪A1 ∪A2,P = PC ∪ P1 ∪ P2).

Figure 3: �e inner loop algorithm for multiple-bundle case.

with probability at least

k−13e−g(λG2
(s,t),k2) ≥ k−13e−g(λ,k−1)

≥ exp (−16 ln k − ln 16 + c2(1 + ln 4)) 16k3e−g(λ,k)

≥ e−g(λ,k).

A symmetric argument holds if λ(t,t) = λ, that is, ϕZ is

constant at (t, t).

For the general case, observe that even if the recursive

call on Gi is not invoked due to λ∗i = 0, then ki ≥ 1
and λGi(s, t) ≤ ki so e−g(λGi (s,t),ki) ≤ 1. �us, we

can use e−g(λGi (s,t),ki) as a lower bound on the success

probability of the recursive call regardless of whether it

was actually invoked.

By the above discussion, the probability that A is

compatible with Z is at least

k−13 · exp

−∑
γ∈Γ

λγ ln(λ/λγ)

(2.1)

· e−g(λG1
(s,t),k1)e−g(λG2

(s,t),k2).

We start by analysing the second term of the above bound.

By the concavity of ln(·), we have that

(2.2)∑
γ∈Γ0

λγ lnλγ ≥ λ0 ln(λ0/|Γ0) = λ0 lnλ0 − λ0 ln 7.

Hence,∑
γ∈Γ

λγ ln(λ/λγ) ≤ λ(s,s) ln(λ/λ(s,s))(2.3)

+ λ(t,t) ln(λ/λ(t,t)) + λ0 ln(λ/λ0) + λ0 ln 7.

Denote x1 = k1 − λ0, x2 = k2 − λ0, x0 = λ0, and

x = x1 + x2 + 2x0 = k1 + k2. By entropy maximization,

λ(s,s) ln(λ/λ(s,s)) + λ(t,t) ln(λ/λ(t,t)) + λ0 ln(λ/λ0)

≤ λ(s,s) ln(x/x1) + λ(t,t) ln(x/x2) + λ0 ln(x/(2x0))
(2.4)

≤ x1 ln(x/x1) + x2 ln(x/x2) + 2x0 ln(x/(2x0)).

We also need the following observation:

Claim 1. It holds that

k1−λG1
(s, t) +k2−λG2

(s, t) ≤ k−λG(s, t) +λ(⊥,⊥).

Proof. From Proposition 2.10(4.), we infer that

|C| − kC − λ(⊥,⊥) ≤ λ(s,s) + λ(t,t).

Since in G1, an endpoint of every edge e ∈ C with

ϕZ(e) = (t, t) is connected to twith k+1 edges, we have

λG1
(s, t) ≥ λ(t,t). Symmetrically, λG2

(s, t) ≥ λ(s,s). As

k1 + k2 + kC = k and λG(s, t) = |C|, the claim follows.

To wrap up the analysis, we need the following

property of the z 7→ z ln z function (for completeness,

we provide a proof in [18]):

Claim 2. Let f(z) = z ln z for z > 0. For every constant

C1 > 0 there exists a constant C2 > 0 such that for every

x1, x2, x0 > 0 it holds that

C2f(x1 + x2 + 2x0) + f(x1) + f(x2) + f(2x0)

≥ f(x1 + x2 + 2x0) + C2f(x1 + x0)

+ C2f(x2 + x0) + C1x0.

Claim 2 for C1 = c2 +ln 7 implies an existence of C2 > 0
(depending on c2) such that

x1 ln(x/x1) + x2 ln(x/x2) + 2x0 ln(x/(2x0))
(2.5)

+ x0(c2 + ln 7) ≤ C2 (x lnx− k1 ln k1 − k2 ln k2) .

Using the de�nition of g(·, ·), the fact that λ(⊥,⊥) ≤ x0,

and Claim 1, we obtain that

g(λG(s, t), k) ≥ g(λG1(s, t), k1) + g(λG2(s, t), k2)
(2.6)

+ c1 (x lnx− k1 ln k1 − k2 ln k2)

+ c2(1 + ln k)− c2x0.

�us, we bound the negated exponent of the probability

bound of (2.1) as follows:

13 ln k +
∑
γ∈Γ

λγ ln(λ/λγ) + g(λG1(s, t), k1)

+ g(λG2
(s, t), k2)

by (2.3) and (2.4)

≤ 13 ln k + x1 ln(x/x1) + x2 ln(x/x2)

+ 2x0 ln(x/(2x0)) + x0 ln 7

+ g(λG1(s, t), k1) + g(λG2(s, t), k2)

by (2.6)

≤ 13 ln k + x1 ln(x/x1) + x2 ln(x/x2)

+ 2x0 ln(x/(2x0)) + x0 ln 7

+ g(λG(s, t), k) + c2x0 − c2(1 + ln k)

+ c1(x1 + x0) ln(x1 + x0)

+ c1(x2 + x0) ln(x2 + x0)− c1x lnx

by (2.5),c2 ≥ 16, c1 ≥ C2

≤ g(λG(s, t), k)− 3 ln k − ln 32

�is �nishes the proof of the lemma.

Due to space restrictions, in this extended abstract we

omit the details of the implementation of the algorithm

in time kO(1)O(m). Other than that, �eorem 1.1 follows

from Lemma 2.5, Lemma 2.7 and Lemma 2.8.

3 Conclusions

We would like to conclude with conjecturing an existence

of a �ow-augmentation technique in directed graphs, at

least restricted to minimal (s, t)-cuts. More formally, we

propose the following:

Conjecture. �ere exists a randomized �xed-

parameter algorithm that, given a directed multigraph

G with two designated vertices s, t ∈ V (G) and a param-

eter k, samples a multiset A of arcs such that the size of

a maximum (s, t)-�ow in G + A is strictly larger than

in G and for every minimal (s, t)-cut Z of size at most k
that is not a minimum (s, t)-cut, Z remains an (s, t)-cut

inG+A with probability bounded from below by 1/f(k)
for a computable function f .

As discussed in the introduction, a positive resolution

of the above conjecture would lead to a (randomized)

�xed-parameter algorithm for Bi-objective (s, t)-cut
and the notorious `-Chain SAT problem. Furthermore,

techniques used for proving the conjecture may be helpful

in proving tractability of Directed Multicut for three

terminal pairs [28].

We also note several further directions of inquiry

regarding the parameterized complexity of Min SAT(Γ)

and more general optimization CSP problems, e.g., valued

CSPs [33, 19]. �e immediate question is to extend the

Min SAT(Γ) complexity characterization to general �nite

Boolean languages, including (u→ v) constraints. Some

challenges here, beyond `-Chain SAT, include directed

versions of Coupled Min-Cut, or even more generally

bijunctive languages Γ (i.e., with relations expressible via

2-CNF formulas) where for each R ∈ Γ, the constraint

graph HR as de�ned in [18, Section 6] is 2K2-free.

More ambitiously, the question can be broadened

from Min SAT to more general Valued CSP problems

(Boolean or otherwise). Here, the parameter can either be

19

taken to be the solution cost, for integer-valued languages,

or the number of falsi�ed constraints in an optimal

solution.

References

[1] É. Bonnet, L. Egri, B. Lin, and D. Marx. Fixed-parameter ap-

proximability of boolean mincsps. CoRR, abs/1601.04935v2,

2018.

[2] N. Bousquet, J. Daligault, and S. �omassé. Multicut is

FPT. SIAM J. Comput., 47(1):166–207, 2018.

[3] R. Chitnis, M. Cygan, M. Hajiaghayi, M. Pilipczuk, and

M. Pilipczuk. Designing FPT algorithms for cut prob-

lems using randomized contractions. SIAM J. Comput.,

45(4):1171–1229, 2016.

[4] R. Chitnis, L. Egri, and D. Marx. List H-coloring a graph

by removing few vertices. Algorithmica, 78(1):110–146,

2017.

[5] R. H. Chitnis, M. Hajiaghayi, and D. Marx. Fixed-

parameter tractability of directed multiway cut parameter-

ized by the size of the cutset. SIAM J. Comput., 42(4):1674–

1696, 2013.

[6] N. Creignou and H. Vollmer. Boolean constraint satis-

faction problems: When does Post’s la�ice help? In

N. Creignou, P. G. Kolaitis, and H. Vollmer, editors, Com-

plexity of Constraints - An Overview of Current Research

�emes [Result of a Dagstuhl Seminar], volume 5250 of

Lecture Notes in Computer Science, pages 3–37. Springer,

2008.

[7] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx,

M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Parameterized

Algorithms. Springer, 2015.

[8] M. Cygan, P. Komosa, D. Lokshtanov, M. Pilipczuk,

M. Pilipczuk, S. Saurabh, and M. Wahlström. Ran-

domized contractions meet lean decompositions. CoRR,

abs/1810.06864, 2018.

[9] M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk,

and S. Saurabh. Minimum bisection is �xed-parameter

tractable. SIAM J. Comput., 48(2):417–450, 2019.

[10] M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Woj-

taszczyk. On multiway cut parameterized above lower

bounds. ACM Trans. Comput. �eory, 5(1):3:1–3:11, 2013.

[11] R. Diestel. Graph �eory, 4th Edition, volume 173 of

Graduate texts in mathematics. Springer, 2012.

[12] J. Guo, J. Gramm, F. Hü�ner, R. Niedermeier, and S. Wer-

nicke. Compression-based �xed-parameter algorithms for

feedback vertex set and edge bipartization. J. Comput. Syst.

Sci., 72(8):1386–1396, 2006.

[13] Y. Iwata, K. Oka, and Y. Yoshida. Linear-time FPT

algorithms via network �ow. In SODA, pages 1749–1761.

SIAM, 2014.

[14] Y. Iwata, M. Wahlström, and Y. Yoshida. Half-integrality,

LP-branching, and FPT algorithms. SIAM J. Comput.,

45(4):1377–1411, 2016.

[15] Y. Iwata, Y. Yamaguchi, and Y. Yoshida. 0/1/all CSPs, half-

integral A-path packing, and linear-time FPT algorithms.

In FOCS, pages 462–473. IEEE Computer Society, 2018.

[16] K. Kawarabayashi and M. �orup. �e minimum k-way

cut of bounded size is �xed-parameter tractable. In FOCS,

pages 160–169. IEEE Computer Society, 2011.

[17] S. Khanna, M. Sudan, L. Trevisan, and D. P. Williamson.

�e approximability of constraint satisfaction problems.

SIAM J. Comput., 30(6):1863–1920, 2000.

[18] E. J. Kim, S. Kratsch, M. Pilipczuk, and M. Wahlström.

Solving hard cut problems via �ow-augmentation. CoRR,

abs/2007.09018, 2020.

[19] V. Kolmogorov, A. A. Krokhin, and M. Rolı́nek. �e

complexity of general-valued CSPs. SIAM J. Comput.,

46(3):1087–1110, 2017.

[20] S. Kratsch, S. Li, D. Marx, M. Pilipczuk, and M. Wahlström.

Multi-budgeted directed cuts. In IPEC, volume 115 of LIPIcs,

pages 18:1–18:14. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2018.

[21] D. Lokshtanov and D. Marx. Clustering with local restric-

tions. Inf. Comput., 222:278–292, 2013.

[22] D. Lokshtanov, N. S. Narayanaswamy, V. Raman, M. S.

Ramanujan, and S. Saurabh. Faster parameterized algo-

rithms using linear programming. ACM Trans. Algorithms,

11(2):15:1–15:31, 2014.

[23] D. Marx. Parameterized graph separation problems. �eor.

Comput. Sci., 351(3):394–406, 2006.

[24] D. Marx, B. O’Sullivan, and I. Razgon. Finding small

separators in linear time via treewidth reduction. ACM

Trans. Algorithms, 9(4):30:1–30:35, 2013.

[25] D. Marx and I. Razgon. Constant ratio �xed-parameter

approximation of the edge multicut problem. Inf. Process.

Le�., 109(20):1161–1166, 2009.

[26] D. Marx and I. Razgon. Fixed-parameter tractability of

multicut parameterized by the size of the cutset. SIAM J.

Comput., 43(2):355–388, 2014.

[27] C. H. Papadimitriou and M. Yannakakis. Multiobjective

query optimization. In PODS. ACM, 2001.

[28] M. Pilipczuk and M. Wahlström. Directed multicut isW [1]-
hard, even for four terminal pairs. ACM Trans. Comput.

�eory, 10(3):13:1–13:18, 2018.

[29] E. L. Post. �e Two-Valued Iterative Systems of Mathemati-

cal Logic. (AM-5). Princeton University Press, 1941.

[30] M. S. Ramanujan and S. Saurabh. Linear time parameter-

ized algorithms via skew-symmetric multicuts. In SODA,

pages 1739–1748. SIAM, 2014.

[31] I. Razgon and B. O’Sullivan. Almost 2-SAT is �xed-

parameter tractable. J. Comput. Syst. Sci., 75(8):435–450,

2009.

[32] B. A. Reed, K. Smith, and A. Ve�a. Finding odd cycle

transversals. Oper. Res. Le�., 32(4):299–301, 2004.

[33] J. �apper and S. Zivny. �e complexity of �nite-valued

CSPs. J. ACM, 63(4):37:1–37:33, 2016.

	Introduction
	The flow augmentation technique
	Parameterized complexity of Boolean Min CSP
	Main new tractable case: Generalized Coupled MinCut
	Organization

	The flow-augmentation technique
	Preliminaries
	Basic notation
	Special cuts, eligible cuts, compatibility, and flow-augmentation.
	Witnessing flow.
	Problem formulation.

	Blocks and bundles
	Blocks
	Bundles
	Affected and unaffected bundles

	The outer loop of the algorithm
	Interface of the inner loop algorithm
	Correctness of the outer loop part

	Cut splits and the inner loop
	Single-bundle case
	Multiple-bundle case

	Conclusions

