
A R T I C L E

Threshold concepts, conceptions and skills: Teachers'
experiences with students' engagement in functions

Maria Kallia | Sue Sentance

School of Education, Communication &

Society, King's College London, London, UK

Correspondence

Maria Kallia, School of Education,

Communication & Society, King's College

London, Waterloo Bridge Wing, Franklin-

Wilkins Building, Waterloo Road, London SE1

9NH, UK.

Email: maria.kallia@kcl.ac.uk

Funding information

Google

Abstract

Threshold concepts have been characterised in the literature as jewels in the curricu-

lum as they can inform teaching and learning practices. Therefore, identifying and

addressing threshold concepts in any discipline is critical. The aim of the current

study is to explore the existence of threshold concepts in computer programming

and specifically with regard to the area of functions. Based on our previous works in

which we identified 11 potential threshold concepts in functions by employing the

Delphi method and seven misconceptions that students hold in this area of program-

ming, the current study further explores computing teachers' experiences with

students' engagement with 4 of the 11 concepts using an interpretative phenomeno-

logical analysis of interviews. The analysis revealed that from these concepts, we

could argue that parameters, parameter passing and return values likely form a

threshold conception and procedural decomposition is a procedural threshold

(threshold skill). The study presents our framework that lead us to the identification

of these thresholds in computer programming, presents the computing teachers

experiences with these concepts and concludes with the implication of these results

on students' learning and teaching practices in computer programming.

K E YWORD S

computer programming, pedagogical issues, teaching/learning strategies, threshold concepts

1 | INTRODUCTION

In recent years computer programming has become part of the curricu-

lum in secondary education in many countries, indicating that program-

ming skills are becoming more and more important and potentially a

core skill. The importance of computer programming as part of the

school curriculum and its relationship to students' cognitive skills has

been investigated by many researchers (Clement, Lochhead &

Soloway, 1990; Taylor, Harlow & Forret, 2010; Pardamean, Honni &

Evelin, 2011; Fox & Farmer, 2011; Psycharis & Kallia, 2017; Tu &

Johnson, 1990; Popat & Starkey, 2019). However, computer program-

ming is difficult (Yizhou & Lehman, 2017) and as part of the computer

science curriculum in many countries introduces many challenges both

to students and teachers. Specifically, students may have difficulties

understanding concepts and this makes the teachers' role very impor-

tant. Threshold concepts, as a source of troublesome knowledge, play a

significant role in these problems; both identifying threshold concepts

and developing effective learning and teaching methods for program-

ming are increasingly important in school computing education.

Understanding the characteristics of threshold concepts can sig-

nificantly impact curriculum structure and design and the creation of

powerful learning and teaching environments. That is why they are

often called the jewels in the curriculum (Land, Cousin, Meyer &

Davies, 2005). In this paper our starting point is that identifying

threshold concepts in a discipline is imperative; they can first be used

as a diagnostic tool to emphasise curriculum areas that need special

Received: 11 February 2020 Revised: 10 August 2020 Accepted: 17 August 2020

DOI: 10.1111/jcal.12498

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2020 The Authors. Journal of Computer Assisted Learning published by John Wiley & Sons Ltd

J Comput Assist Learn. 2021;37:411–428. wileyonlinelibrary.com/journal/jcal 411

https://orcid.org/0000-0002-8591-9651
mailto:maria.kallia@kcl.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/jcal
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fjcal.12498&domain=pdf&date_stamp=2020-09-24

attention from the teachers' perspective (Akerlind, McKenzie &

Lupton, 2010), and second, they signify parts of the curriculum where

students experience problems and are confronted with troublesome

knowledge (Perkins, 1999).

Guided by the importance of identifying threshold concepts and

the limited work that has been done in this area in computer program-

ming, this study presents computing teachers' experiences teaching

specific concepts that we had previously identified as potential

threshold concepts.

1.1 | The current study

The study that is presented in this paper is part of a larger research pro-

ject which aims to identify threshold concepts in secondary computer

programming with particular regard to functions, and to subsequently

make pedagogical and didactical suggestions that would guide comput-

ing teachers and promote students' learning. In this paper, we address

the first part of the research goal: the identification of threshold con-

cepts in the area of functions, using teachers' experiences as a lens. This

particular study is based on our previous study (Kallia & Sentance, 2017)

and extends it by shading lights into this complicated phenomenon.

Our previous research led to a set of potential threshold concepts

and was based only on suggestions of computer science teachers

without a concrete justification or deep investigation of the reason

why these concepts appear to be thresholds to students' progress. In

fact, what we observed was that teachers tended to suggest concepts

based mostly on the troublesome aspect of these concepts and not

the integrative and transformative nature of threshold concepts, two

of the most critical characteristics of the threshold concept frame-

work. Thus, our previous work only resulted to a list of concepts that

can potentially be considered as thresholds but further research needs

to be conducted and specifically explore the transformative and

integrative aspects of these concepts.

With this research study, we explore further this phenomenon by

delving deeper into computer science teachers' experiences teaching

these concepts. The main aim of this investigation is to provide empirical

evidence that supports the argument of these concepts being threshold

concepts in programming. To achieve that we need to identify what con-

stitutes these concepts to be perceived as thresholds by the teachers

and provide links between these experiences and the threshold concepts

characteristics. Particular emphasis is given in revealing the transforma-

tive and integrative characteristics of these concepts; uncovering these

characteristics would be the strongest indication that the suggested con-

cepts are actually thresholds in computer programming.

This study extends our previous work and, by interviewing

computing teachers and by employing an interpretative phenomeno-

logical analysis (IPA), presents the results relating to four of the eleven

concepts identified as potential threshold concepts: parameters,

parameter passing, return values, procedural decomposition. The

study did not investigate the concepts of abstraction and recursion as

other researchers have already investigated these concepts (Male &

Baillie, 2011; Boustedt, Eckerdal, McCartney, Moström, Ratclifie,

Sanders & Zander, 2007; Eckerdal, McCartney, Moström, Ratclifie,

Sanders & Zander, 2006; Holloway, Alpay & Bull, 2010; Rountree &

Rountree, 2009). For the remaining five concepts, not enough evi-

dence was found from the teachers' interviews that can support their

nomination as threshold concepts, and they were therefore not

included in this paper.

Therefore, the research questions of this study are as follows:

• What are computing teachers' experiences with respect to the

teaching of parameters, parameter passing, return values and pro-

cedural decomposition?

• Is there evidence that supports the nomination of these concepts

as threshold concepts, skills or conceptions?

The contribution of this paper can be summarised as:

1. A thorough interview data analysis (IPA) with computing teachers

on their experiences teaching the concepts of parameters, parame-

ter passing, return values and procedural decomposition.

2. A qualitative study which considers the threshold concept frame-

work, acknowledges the aforementioned findings, and draws the

conclusion that the group of parameters, parameter passing and

return values together seem to form a threshold conception in

computer programming and procedural decomposition is possibly

a procedural threshold (threshold skill) in computer programming.

To the authors' knowledge, this is the first study that makes these

suggestions and supports them with empirical data. Our study's find-

ings have direct implications in the way teachers should teach these

concepts and design curriculum materials.

2 | CONCEPTUAL FRAMEWORK

2.1 | Threshold concepts

Threshold concepts were introduced by Meyer and Land (2003) as a

result of research in the UK on the characteristics of robust teaching

and learning environments at undergraduate level. Meyer and Land

suggested that certain concepts, inside every discipline, are fundamental

to the discipline's mastery and that their understanding is critical for

making progress. They define these concepts as thresholds because

once understood they lead to new conceptual understandings that were

previously hidden (Meyer & Land, 2003). Specifically, a threshold con-

cept is considered as “akin to a portal, opening up a new and previously

inaccessible way of thinking about something. It represents a transformed

way of understanding, or interpreting, or viewing something without which

the learner cannot progress” (Meyer & Land, 2003, p. 1).

Threshold concepts share some common features. Firstly, thresh-

old concepts delineate the boundaries of particular disciplines which

means that they indicate specific understandings that are characteris-

tic to a specific disciplinary discourse (Wright & Hibbert, 2015). Sec-

ond, threshold concepts are troublesome as they are conceptually

difficult to be understood and third they are irreversible, as once

412 KALLIA AND SENTANCE

understood it is difficult to be unlearnt (Rountree & Rountree, 2009).

However, the principal features of threshold concepts stem from their

transformative and integrative nature and it is these characteristics

that make them different from other concepts in a discipline like core

or fundamental concepts (Meyer & Land, 2003). Their transformative

nature causes a shift of the students' understandings and insights of

the subject or a part of it; this change may be attributed to their

integrative nature which discloses conceptual connections and their

interrelatedness (Cousin, 2006; Sandri, 2013).

For students, to experience such transformative and troublesome

concepts is tough, and for that reason they often find themselves strug-

gling to understand them. Learning becomes a barrier (Perkins, 1999).

Students get stuck in these curriculum areas and are unable to pass

through these conceptual blocks. This transition period is known as a

liminal space in the threshold concept framework and is described as

an insecure space where students' learning and understandings fluctu-

ate between the known and the unknown, where students' under-

standings is based on mimicry and where uncertainty, anticipation and

anxiety are emotions that delude students' learning experiences

(Eckerdal, McCartney, Moström, Sanders, Thomas & Zander, 2007).

There has been quite a large amount of literature focusing on

identifying threshold concepts in a variety of disciplines. For example,

Davies and Mangan (2007) investigated threshold concepts in

Economics, Male and Baillie (2011) in Engineering, and Cook-

Sather (2014) investigated threshold concepts in academic develop-

ment and found that student-faculty partnership is a threshold con-

cept. Blackie, Case and Jawitz (2010) suggested that student-centred

teaching is a threshold concept while Gourlay (2009, p.189) uses the

term threshold practices to emphasise the interplay between “(a) the

indeterminate, tacit nature of academic writing; (b) the emotional and

social dimension of the student transition; and (c) the role of struggles

around writing in identity formation”. In computer programming, the

most concrete work has been conducted by Eckerdal and Thuné

(2005) and Anna Eckerdal et al. (2006, 2007).

2.2 | Threshold conceptions and procedural
thresholds

Perkins (2006) suggested that the difficulty of some concepts may not

stem from the concepts per se, but rather from the way some con-

cepts interact with each other to create an underlying game which

causes a deep transformation on students' understanding. For exam-

ple, Land et al. (2005) explain that in computer programming the con-

cepts of class, objects, tables, arrays and recursion may not have the

troublesome or transformative characteristic but what is troublesome

and transformative for students is the way that these concepts fit

together and interact “in a process of ever-increasing complexity” (Land,

Cousin, Meyer & Davies, 2005, p. 56). These concepts were

characterised as threshold conceptions for they bind together aspects

of a subject that may seem quite disparate to a novice “but are funda-

mental to ways of thinking and practising in that discipline” (Land,

Cousin, Meyer & Davies, 2005, p.54).

Procedural or modelling thresholds were described by Davies &

Mangan (2007). In their work, they specifically identified three types

of conceptual change: basic, discipline and procedural or modelling.

They locate the threshold concepts in the discipline and procedural

conceptual change and they define them as “understanding of other

subject discipline ideas integrated and trans- formed through acquisition

of theoretical perspective” and “ability to construct discipline specific nar-

ratives and arguments transformed through acquisition of ways of prac-

ticing” correspondingly (Davies & Mangan, 2007, p. 1). These

procedural thresholds can be linked with threshold skills as proposed

by Thomas, Boustedt, Eckerdal, McCartney, Moström, Sanders, &

Zander (2017) who reflect on skills as a form of procedural knowledge

“difficult or impossible to write down and difficult to teach best

taught by demonstration and best learned by practice” (Norman 1990

cited in Thomas et al. 2017, p. 335) and they suggest five key features

of a threshold skill: transformative, integrative, troublesome,

semi-irreversible and associated with practice.

Indeed, in computer programming there is a distinction between

the difficulties that stem from conceptual knowledge (understanding

of programming concepts) and difficulties stemming from procedural

knowledge (knowing how). Upon this issue, many frameworks were

articulated as early as 1980s. For instance, Bayman and Mayer (1998)

recognised three types of programming knowledge, namely, syntactic

knowledge, conceptual knowledge and strategic knowledge. A well-

articulated framework was presented by McGill and Volet (1997). In

this framework, they highlighted the following five areas of

knowledge in programming: declarative-syntactic, declarative-concep-

tual, procedural-syntactic, procedural-conceptual, strategic/condi-

tional knowledge.

2.3 | Challenges in identifying threshold concepts

Identifying threshold concepts in a discipline entails many challenges.

Two of the most critical challenges refer to the method that should be

employed and the participants that need to be involved.

Regarding the method, researchers have usually employed quali-

tative methods (e.g., interviews); however, a concrete methodology

has not yet been established as the most appropriate methodology

for identifying threshold concepts. The most commonly used method

includes interviews with students and/or academics in which the

researchers ask questions regarding difficult and challenging parts of

the curriculum and changes that may have occurred as a result of

overcoming these obstacles. Whereas this approach is appropriate for

the aims of such a research, when employed alone may result in con-

troversial results as each participant may reflect on a different con-

cept and thus the depth that this concept will be investigated is

superficial. Therefore, identifying threshold concepts in a discipline is

difficult, requires time, reflection and debate. For this reason,

Barradell (2013) argues that at least in the beginning, when an initial

list of potential thresholds needs to be collected, consensus among

the participants is significant. She further suggests the use of the

Nominal Group Technique (NGT) or the Delphi Technique, methods

KALLIA AND SENTANCE 413

that are used for investigating the collective opinion of a group of par-

ticipants. Drawing on Barradell's suggestion, our first study conducted

in this area employed the Delphi method and resulted in an initial list

of 11 potential threshold concepts in the area of functions in pro-

gramming. In this study, we proceed with interviews but focusing on a

specific set of concepts to investigate this phenomenon deeper.

Another challenge in this research area refers to the participants

and who is regarded as the most appropriate to reflect on his/her

experiences to reveal transformations occurred when learning obsta-

cles were overcome. Male and Baillie (2011:252) argue that to identify

threshold concepts the most appropriate source is to collect data

either directly from students or from “people whose experiences give

them awareness of students' experiences”. They further argue that

teachers can identify not only concepts that are troublesome but con-

cepts that are transformative for students. Additionally, Shinners and

Kennedy (2013) point out that research in this field has reached a

dead end. They criticise the methods used for identifying threshold

concepts in programming, emphasising that asking students about dif-

ficulties they confronted in the past is an unreliable method. Instead,

they advocate interviewing teachers to identify threshold concepts.

They note that “there, after all, is where the reality of student learning

is lodged, in the day-to-day classroom experience” (2013:14). They

also state that the identification of threshold concepts needs both

pedagogical and content knowledge on behalf of the interviewees and

they suggest that new research attempts should direct their focus on

teachers' pedagogical content knowledge to create teachers' concept

representations (CoRe's). For this reason, Zwaneveld et al. (2016) con-

tend that this can be found in secondary teachers rather than univer-

sity teachers. They further advocate an approach that employs both

teachers and students for this process. Based on this criticism, in the

current research, we selected as participants secondary computer sci-

ence teachers with many years of teaching experience.

In conclusion, even though a substantial amount of research stud-

ies has been conducted to identify threshold concepts in various disci-

plines, the question yet remains on how researchers should approach

the identification problem.

3 | METHODOLOGY

Exploring if a concept is a threshold to students' progress, requires

the identification of evidence in students' and teachers' experiences

that would mirror the threshold concept characteristics and particu-

larly the troublesome and integrative aspect of a concept, and the

transformations that occur on the learners' understandings and/or

identity once the concept is grasped. To this end, research in this area

calls for qualitative approaches that are suitable for uncovering the

participants' experiences, perspectives and meaning making of the

phenomenon.

Interpretative Phenomenological Analysis (IPA), according to

Charlick, Pincombe, McKellar & Fielder (2016), is based on both the

descriptive and interpretive hermeneutic phenomenology. IPA draws

from three methodological areas: phenomenology, hermeneutics and

idiography (Larkin & Thompson, 2011). This approach is not common

in computer science education studies although researchers in the

more general field of computers and their use have employed this

method to explain the participants' experiences (e.g., Symeonides &

Childs, 2015). We decided that IPA was appropriate as a method of

analysis for exploring the teachers' experiences with programming

concepts in depth and the meaning they allocate to these experiences.

IPA enabled us to conduct a thorough investigation and to offer an

interpretative account of the teachers' meaning-making of their expe-

riences with threshold concepts during their practice. In this study we

summarise teachers' experiences that are of interest.

Our decision to focus on teachers' experiences as the primary

emphasis of our investigation is based on an extensive literature

review on threshold concepts and on other researchers' arguments

and suggestions. Aligned with these researchers, we suggest that ask-

ing secondary students about the ontological and epistemological

changes that they experience once specific concepts were understood

may be an extremely difficult and unreliable endeavor and therefore,

our attention on this phase of our research has focused on teachers

whose experiences teaching these concepts can give us awareness of

students' experiences. It is the teacher's job, through teaching, to

observe and interpret and try to understand the difficulties that stu-

dents' encounter in the course as well as to understand when the stu-

dents finally surpass their problems by observing changes in their

attitudes, emotions, behaviors and performance. As Allison &

Pissanos (1994, p.47] argue “observing hold a key position in the cycle

(observing, interpreting, decision making) because interpretation of class-

room events and, consequently, pedagogical decisions are dependent on

the observational abilities of the teacher.”

3.1 | Participants

The participants selected for this study represent a homogeneous pur-

posive sample. IPA necessitates a homogenous group of individuals

which denotes that the participants should demonstrate experience

with the same phenomenon (Creswell, 2007). In IPA, the researcher

analyses the similarities or differences in a homogenous group, a

group that is regarded similar regarding some characteristics

(Pietkiewicz & Smith, 2014). For this reason, purposeful sampling or

criterion-based selection is usually employed, giving the researcher a

responsibility to select participants who have an important and mean-

ingful experience of the phenomenon (Yuksel & Yildirim, 2015). In

consideration of these issues, we chose purposive sampling to identify

the participants. Thus, we selected the sample based on the purpose

of the research, using teachers who had many years of experience

teaching computer programming at key stages 4 and 5 (year 9–12 in

the U.S. grade system).

To advertise the study, we created a call explaining the criteria

for the participants and e-mailed it to UK master teachers and other

computing teachers' networks such as CAS London. The criteria we

listed were the following: the teachers should have experienced

teaching programming at key stage 4 and 5 (lower and upper

414 KALLIA AND SENTANCE

secondary education) with more than 5 years of teaching experience.

Ideally, we also asked for the participants to have some experience in

practising programming at a professional level (Table 1 summarises

the participants' characteristics). This call was part of our first study

(Kallia & Sentance, 2017) in which ten computer science teachers took

part. For this study, we specifically asked these ten teachers if they

would like to participate in a follow-up interview. Including teachers

that had also participated in the previous phase of our study was sig-

nificant because we wanted to explore the experience of the teachers

that had suggested the concepts under investigation as potential

threshold concepts. The goal of this research was not to generalise

these experiences to a population as this is the focus of quantitative

research. The goal was to select participants whose experiences

would give us rich insights into this phenomenon, and would improve

its understanding. We argue that threshold concepts is a multifaceted

phenomenon and would be experienced and come to light in different

ways by different participants. However, these different experiences

taken together would reveal aspects and characteristics of these con-

cepts that constitutes them thresholds to the learner's progress.

Because IPA focuses on a thorough case exploration, a rec-

ommended sample is a small number of individuals who will enable a

detailed examination of each case. As generalisation is not the pur-

pose of the IPA studies, large samples are not advised; on the con-

trary, due to the idiographic characteristic of IPA, small samples are

suggested to prevent the loss of important meaning (Brocki &

Wearden, 2006). As such, we determined the number of participants

for this phase by considering Pietkiewicz & Smith (2014) criteria:

“(a) the depth of analysis of a single case, (b) the richness of the indi-

vidual cases (c) how the researcher wants to compare and contrast

single cases and (d) the pragmatic restrictions one is working under”.

In consideration of these criteria, and of Boyd (2001) point that a size

of 2 to 10 participants are satisfactory to reach saturation, we initially

aimed at a size of 4 participants. At this point, we checked the depth

and richness of the interview data and, because we found it to be ade-

quate, no more participants were recruited. As Pietkiewicz &

Smith (2014) highlight, the researcher should focus on the depth of

the interview data and not on the breadth of the sample.

Ethical approval was approved by the ethics committee of King's

College London and the consent forms and information sheets were

administered correspondingly. All participants were computing

teachers with more than 7 years' teaching experience in programming

at Key stages 4 and 5. To keep the teachers' participation anonymous

we have changed their names in this study: teachers' names are Rea,

Olivia, Andrea and Mateo. Specifically, Mateo and Olivia are Masters

teachers1 and they have worked as computing teachers for more than

years. They have also some years of experience working outside

school where they practiced programming for 1 to 3 years. Andrea

and Rea have also taught computing in UK schools at key stage 4/5

for more than 7 years. Both have experience practicing programming

for more than 4 years outside school settings.

3.2 | Data collection

The data was collected through semi-structured interviews which is

the most common data collection method of IPA (Creswell, 2007). For

the semi structured interviews, we developed a prompt sheet based

on the concepts that resulted from the first and second phase of this

study. These concepts were the basis of our conversation with the

interviewees. Three of the teachers asked to be interviewed via vid-

eoconferencing and one teacher chose to visit us at our university.

The teachers' interviews began with the researcher explaining the

research aim and purpose of the interview. After that, the participants

were asked to discuss and reflect on their experiences teaching the

concepts and how students are engaged with them. The interviews

were recorded and lasted approximately 40 to 70 min and continued

until the researcher felt that the participants could not share more

things on the topic.

3.3 | Data analysis, reliability and trustworthiness

After the collection of the data, the interview records were tran-

scribed. The data were analysed by employing IPA and following the

guidelines suggested by Smith & Osborn (2003). The tool we used for

the analysis of the interviews was Atlas.ti 7. The first author, following

the IPA guidelines analysed each verbatim transcript independently.

Because the focus of the analysis was to find evidence in the partici-

pants' experiences that corresponds to the threshold concept charac-

teristics, the analysis paid extra attention on coding participants'

experiences that demonstrate: (a) difficulties that students experience

with the corresponding concept (the troublesome aspect of threshold

concepts), (b) a deeper conceptual understanding of a concept and/or

idea (the integrative part of threshold concepts) and

(c) epistemological and ontological changes (the transformative aspect

of threshold concepts) occurring once a concept is understood. There-

fore, as the next section demonstrates (Section 4), the superordinate

themes refer to difficulties, conceptual changes and coherence, and

transformations for each concept examined. The analysis followed a

mixed approach of deductive and inductive coding. The aforemen-

tioned pre-defined superordinate themes were used as a general

guide for the coding process. However, a more in depth analysis

(inductive approach) was followed to uncover themes related to how

the participants experience the phenomenon and to explore differ-

ences or commonalities in the experiences of the participants.

TABLE 1 Teachers' characteristics

Years of teaching

experience in
secondary settings

Years of practicing

programming in
professional settings

CAS

master
teachers

Rea >7 years <4 years No

Olivia >7 years >4 years Yes

Andrea >7 years <4 years No

Mateo >7 years >4 years Yes

KALLIA AND SENTANCE 415

Consequently, each case was analysed separately and emergent

themes were created with the hermeneutic cycle being an important

part of the analysis. The next step was to search for connections

between the themes and to group them into clusters with each one of

them containing themes with some conceptual similarities

(Shinebourne, 2011). The outcome of this phase was a table with

superordinate themes (addressing troublesome, integrative and trans-

formative characteristics) and links to the lines of the transcript on

which they can be located. This process was repeated for each case,

and, thus, the author was vigilant to view each case separately and

bracket the outcomes of the previous ones. As soon as the analysis

was completed for all the cases separately, a final table was

constructed—a consolidated list—including themes for the study as a

whole. This again is an iterative process which requires going back

and forth in the transcripts to merge themes or reject themes

depending on the richness of the data (Shinebourne, 2011). Two

external researchers coded again 2 of the 4 interviews using the final

table, and the total percentage of agreement was calculated in Atlas.ti

(a = 68.1). Some of the disagreement between the researchers mostly

referred to the concepts that we did not find much evidence

supporting the argument of being threshold concepts (e.g., control

flow). For that reason after a discussion between the researchers

these concepts were disregarded from the research. The percentage

of agreement between the coders was calculated again (a = 75.1).

Regarding the concepts that are presented in this paper, any disagree-

ment between the researchers was discussed and resolved whether

by changing or adapting the themes and coding were necessary.

The final consolidated table provided all the information that we

needed to generate the narrative of the study which includes an inter-

change between the individuals' account -the participants' own words-

and our interpretative stance. By doing that, the narratives include the

participants' voice while enabling the readers to evaluate the accuracy

of our interpretations. In the generation of our interpretations, follow-

ing Collins & Nicolson (2002) suggestions, we tried to minimise our bias

by reading the transcripts many times to make sure that our interpreta-

tions are indeed based on the participants' account. For this reason, we

based our interpretation on the criterion of “grounding in examples,”

giving in this way the opportunity to readers to evaluate our interpreta-

tions. Following Flowers, Duncan & Frankis (2000) recommendation,

we tried to provide the most representative extracts for each of the

themes produced. Additionally, both the external researchers that assist

us with the coding validate our interpretations as well.

To increase the trustworthiness, we followed Lincoln's and

Guba's (1986) criteria and suggested techniques. In particular, for

credibility and confirmability, prolonged engagement and investigator

triangulation was used as it was described in the above section. For

dependability, the data collection and analysis method are described

in detail as well as the intercoder reliability was calculated and pres-

ented above. Finally, for transferability, we tried to provide as much

as possible a thick and detailed description of the data collection, the

characteristics of the participants that took part, the place of the

interviews and the questions-the interview protocol employed for our

research which is presented in the appendix.

4 | RESULTS

This section includes the results from the study. For each theme, we

provide only the most representative extracts.

4.1 | Teachers' experiences teaching parameters,
parameter passing and return values

During the interviews, teachers were asked about parameters, param-

eter passing, and return values. Specifically, they were asked about

these concepts' difficulties for students as well as the changes in stu-

dents' understandings after they have grasped these concepts from

their own subjective experience. Although the teachers were asked

about their experiences separately for each of these concepts, it is

quite interesting that they sometimes referred to these concepts as a

group of concepts. This was particularly evident when they were

asked about changes in students' understandings or their program-

ming attitude in general.

4.1.1 | Parameter passing is difficult for students

Teachers explained the reason of parameter passing difficulty for stu-

dents. Reflecting on her experience as a teacher, Rea captured these

difficulties by saying:

“I think it [parameter passing] is difficult for students …

the difficulty lies on how these variables in the func-

tion definition are going to take the values from the

arguments. They can call a function, but they don't

fully understand of how arguments are being handled.

The key concept is when you are calling a function,

and you are passing certain parameters in your func-

tion call, how are they being held in the function defi-

nition. That's the key thing that students struggle to

understand.” [Rea]

In the first sentence, Rea emphasises the relationship between

arguments and parameters and the conceptual difficulty that this rela-

tionship imposes on students. Rea underlines the conceptual and not

the procedural difficulty as she clearly demonstrates that students can

call a function correctly and pass the corresponding arguments but how

these arguments are being handled is still something that students

struggle to understand. Thus, for Rea, the difficulty with understanding

parameter passing focuses around students' endeavour to comprehend

how the arguments in the calling statement are transferred in the func-

tion definition and are stored in the corresponding parameters.

Another problem was also mentioned by Rea. She explained that

her students have difficulties when they call a function with more

than one argument. She reports that her students often make syntac-

tical errors in the calling statement, for example, omission of comma

between the arguments or omission of parentheses:

416 KALLIA AND SENTANCE

“When the function is called with a single argument or

multiple, that's something that they don't fully under-

stand … They don't separate the arguments with the

comma, and then a classic mistake is that when they

call a function they just forget to use the brackets. It's

not that they have not understood it, it's like they are

rushing through it. These are the normal syntax errors

they make.” [Rea]

Drawing on her teaching experience, Olivia emphasised that stu-

dents are confused when they have to pass variables as arguments

because this requires a more abstract way of thinking than passing

simple values. She demonstrates this by saying:

“… but I think if they call a subroutine and they put in

the value that's going to be used, … they understand

that much better than if they pass in a variable.

Because that's more abstract, isn't it? That takes a big-

ger understanding of the whole program.” [Olivia]

Olivia also reflects on another source of difficulty for students.

She describes that there is a leap students have to make to under-

stand how parameter passing works:

“I think it's the leap from a basic program. They can

understand a set of instructions X, Y, Z that's executed

in that order. The difference between sort of instruc-

tions that are out of line … they'd understand it better

if they had a real-life application for it. If you just try

and explain to them in the programming language it's

hard for them to grasp but if you begin to explain to

them with a sort of real-life example they begin to

understand it a bit better. Part of it is language also

and what doesn't help with that is that different exam-

ples have different vocabulary and even that changes."

[Olivia]

From Olivia's extract it is obvious that the teacher refers to the

flow of the program and to the understanding that in programming

some lines of code are executed sequentially while others are not.

According to her experiences, students find it hard to make this transi-

tion. It would be helpful, she argues, if teachers used real-life exam-

ples to demonstrate this. Finally, she places the role of computing

language among the main factors that may prohibit students from

understanding this concept.

4.1.2 | Parameters are conceptually difficult for
students

All four teachers agreed that students confront many difficulties in

understanding the concept of a parameter. When Andrea was asked

about what is difficult with understanding parameters she replied:

“With parameters … when we are looking at how you

can define a function, they don't understand … they

think where these variables come from? Is it something

that I'm already using in my program or not? They

don't quite get that idea even though they use

predefined functions and they pass their arguments

into predefined functions. They cannot link what

they're doing with the functions that they are in

Python to the functions that they're doing themselves.

So that analogy it doesn't work at the beginning.”

[Andrea]

Here, Andrea explains that students experience problems with

understanding how to decide and define the corresponding parame-

ters for the functions they create. She notes that even if students can

use correctly predefined functions and pass the arguments appropri-

ately, they seem not to be able to do the same with their functions.

What the teacher tries to say here, is perhaps that in predefined func-

tions the students only deal with concrete things like what arguments

to pass to the calling function and do not have to think about more

abstract notions as the parameter.

Yet, for Olivia, another source of the problem seems to be the

language. She explains that students, in general, have problems under-

standing the vocabulary of computing and this is a deterrent factor for

the conceptual understanding of the subject:

“I think part of the problem [with parameters] is the

language. In order for them to understand they need

the vocabulary first … that sometimes is the barrier. It's

not the fundamental understanding of a parameter or

an argument, it's the language that makes it sound too

scary. So, if you strip that away or if you develop an

understanding of the vocabulary it becomes much eas-

ier to understand. I think with a lot of these concepts

that that's the big issue, the language.” [Olivia]

The teacher's observation about the difficulties that the vocabu-

lary imposes on students reveals the multifaceted difficulties that they

encounter in programming. Indeed, the teacher explains that it is not

just understanding of what a parameter is or an argument is, but stu-

dents may, in the beginning be intimidated by the new vocabulary that

they are introduced to. Being afraid to engage with something unfa-

miliar to their own discourse experiences may prohibit their learning.

4.1.3 | Return values are conceptually difficult for
students

All the participants discussed the difficulty that return values cause to

students. Looking at an extract from Rea, it is obvious that the teacher

focuses more on how students are handling the function's return

value in the main function (or in the point that it is returned to). She

explains that students have difficulties in understanding why the

KALLIA AND SENTANCE 417

return value can be stored in a variable. Rea also explains that stu-

dents' way of handling this demonstrates if they have understood

return values or not. For example, if students use a print statement to

print the function's outcome instead of using a variable first to store

the outcome, this is evidence that students have not yet completely

grasped the notion of return values.

“If they get the concept of the function call and argu-

ments and everything, what is difficult for them to

understand is when you return something that needs

to be caught in something. They are using a variable to

catch it usually in where they call the function. Some-

times they just send it to a print function and if they

do that they don't fully understand it, so I try to

enforce the concept that catch it into a variable, so

when a function returns a value that is caught into a

variable then you can print that variable to see what is

the return value.” [Rea]

For Andrea, students' difficulties lie on a deeper level of under-

standing. She maintains that students fail to see the reason why a

function should return something back and even though when they

use predefined functions, it seems that they have captured this idea,

when they turn to their functions they are still confused with this

concept:

“Sometimes they don't understand in the initial stages

why something needs to be returned. Because nor-

mally they're used to working with just one program …

even so they use functions like for example random or

something like this and they do return values and they

use these values, when they start creating their own

they still get confused." [Andrea]

Olivia concentrates more on the teaching approach used to

explain this concept to students. She advocates the use of real exam-

ples, like a factory, to demonstrate the need and use of returning

something back. On the contrary, she explains that if teachers are

too abstract from the beginning, this will encumber students'

confusion:

“I think it depends on how you teach it [return

values]. I think if you are too abstract too quickly they

panic a bit and therefore that panic stops them from

seeing the bigger picture. But if you get them to role

model, for example a factory, where you do a particu-

lar job and then you pass that finished part of that job

back to the main bit of the factory, they understand

that. And I think it's that development … from con-

crete to abstract … that they get to the point where

they can do it themselves, I think that's the important

part.” [Olivia]

4.1.4 | Conceptual change and coherence

The teachers also reflected on their experiences on changes occurring

in students on a conceptual level once they grasp these concepts.

Specifically, reflecting on their experience, they were asked the fol-

lowing question: “Is there another concept or something else that stu-

dents understand in programming as soon as they grasp parameter

passing?” Rea highlighted the issues around variables, parameters,

arguments and the flow of the program once parameter passing is

grasped:

“I think they understand that a variable is like a con-

tainer. That's the key concept that they get straight

away. It's the integration of what they have learnt pre-

viously and then they can develop a link of why it

works. Parameters and arguments also take another

conceptual shape as soon as they understand how

parameter passing works. And, … they also understand

that when you call a function what exactly happens.

The flow of the program makes more sense to them… I

can recall one of the students passing a comment: oh

yeah now I get it. That was really pleasing. They are

grasping a concept in more depth.” [Rea]

There is much to analyse in this extract. Rea explains that param-

eter passing enhances students' understanding of variables. She refers

to an integration of knowledge taking place where the students can

connect what they already know with their new knowledge. Rea also

notes that once students grasp how parameter passing works and

what exactly is happening during this process, they start seeing the

connection between parameters and arguments and how these com-

municate. At the end of the transcript, the teacher also explains that

the flow of the program and apparently the non-sequential execution

of the code starts making more sense to the students. For Rea, it may

be that students begin to understand how data are transferred

through the code and how different parts of the program communi-

cate with each other.

Teachers were also asked about changes that occur on students

once they understand parameters: “Is there another concept or some-

thing else that students understand in programming as soon as they grasp

parameters?” Rea, Andrea and Olivia commonly agreed that students

better realise the notion of variables or that the notion of variables is

enhanced or further extended:

“For example, in the lesson I taught them, I explained

about parameters and variables and then they actually

understood that in the function definition we can give

it any name, like I can call it X,Y but when I am calling it

I may be passing a value 5 and 6, so X goes 5 and Y

goes 6, that's the whole concept of those variables, the

parameters in the function are actually catching those

values and then you can manipulate them as whatever

418 KALLIA AND SENTANCE

way you like in your call. So, yeah, that definitely con-

solidates the concept of what is a variable." [Rea]

The way the passage unfolds strongly suggests the strong con-

nection that Rea makes between variables and parameters. She starts

first by noting that it is important in teaching to highlight the connec-

tion between parameters and variables. She explains that once this is

comprehensible by students, they can see that parameters can have

any name, as variables do. In contrast to what they have been used to,

the values of these variables are assigned to them from the calling

statement, and specifically from the arguments. As such, the teacher's

experience indicates that students can then understand that parame-

ters can take different values that could potentially change the out-

come of the function. Looking at the following extract, Andrea seems

to have been engaged in a similar experience to Rea with her

students:

“… because now the notion of variable is extended

because they can see this is not just something we use

in the main program, it might have some different

scopes and different roles depending on the context.

So that [parameters' understanding] certainly improves

the variable understanding.” [Andrea]

Andrea's extract captures the transformation or the extension of

students' knowledge about variables. As she explains, students can

see that variable are not only used in the main function of a program

and consequently on calculations, but they can also have other roles

like that of a parameter or an argument.

When Andrea was asked about changes in students' understand-

ing having grasped the concept of return values, she explained that

students' understanding of calling a function is enhanced as well as

the relationship between return values and what is going on in the

main program. In other words, she suggests that students understand

how return values are being used and handled in the main program:

“… so with return values I think maybe they understand

better the call of the function so they can see how that

affects what's happening in the main program, how it

can be used, how to calculate or produce some

results.” [Andrea]

Table 2 summarises the teachers' experiences with students' diffi-

culties with these concepts and the conceptual connections the stu-

dents make with other relevant concepts in the field.

4.1.5 | Students' transformations

While all four teachers demonstrate the transformation on students

once these concepts are understood, there are similarities but also dif-

ferences in how this transformation is portrayed. Most of the teachers

think that these concepts' understandings and the interaction among

them are essential to students' competence in programming and in

understanding the role of functions and what they can do with them

in their programs.

“It's difficult for me to explain. Once they understand

all these, parameter passing, returns, parameters, argu-

ments then it's something like clicked into their minds

and understand what's going on.” [Rea]

Looking at Rea's extract, it is obvious the importance that the

teacher gives to these concepts with regard to students' understand-

ings of functions. She explains that it is not clear what exactly is going

on in the students' minds that makes them understand things that pre-

viously were not clear to them.

However, she notes that it is like something clicked into students'

minds and they understand better what is happening.

Andrea aptly describes the students' personal transformation by

saying:

“I think with parameters and parameter passing they

can look at practical problems in a slightly different

way and they probably even can think of like real-life

scenarios. So … some analogies are quite helpful for a

lot of children … it's important to understand that com-

putation is not just something that happens with a

TABLE 2 Summary of teachers' experiences with students'
difficulties and conceptual changes

Teachers' experiences with
difficulties students encounter

Conceptual
connections

Parameter

passing

a. How and from where

parameters take their values

/how arguments are being

handled

b. Multiple arguments are

difficult for students to

handle

c. Syntax errors

d. Passing arguments as

variables is conceptually

difficult

e. How does the flow of the

program jump from the

calling

Statement to the function

definition?

a. Variables

b. Parameters

c. Flow of the

Program

Parameters a. Difficult to decide the

parameters that a function

needs

b. Language too abstract

a. Variables

Return

values

a. Where do return values go

and how are they handled?

b. Why are return values

needed?

c. Teaching methods too

abstract

a. Calling a

Function

b. Data flow

KALLIA AND SENTANCE 419

computer. And I think [now] they'll look at other prob-

lems that involve information processing.” [Andrea]

The way the extract unfolds strongly suggests that Andrea has

experienced a change in her students' way of thinking as a result of

understanding parameters and parameter passing. This is reflected

from the beginning of the transcript where she describes the way that

students are thinking about practical problems in a different way,

while also considering real-life problems. The teacher's experience

suggests that students start thinking about how programming is

applied to everyday problems. Her experience has also led her to

believe that her students see that computation is not something that

happens from the computer itself but is something that starts first by

their thinking processes which are then “transferred” or expressed in a

way that computers can process. This is indeed a very strong transfor-

mative experience that Andrea demonstrates in this transcript.

Andrea also explains that as a result of fully comprehending

parameters and parameter passing, the students' practical work

becomes better. They also understand when there is a need to create

a function while also can correct their errors by themselves. Both of

these demonstrate a deeper level of understanding:

“I think in a lot of people, maybe the first change that

you see is their practical work coming out better …

because they understand a bit more and how to use

it. And when they write their other functions and their

new tasks, then they can correct the errors. They can

understand how they're progressing better. I think

practical change will be probably first and then if their

practical work is successful then they can explain it

better as well verbally or in writing. I think it generally

improves their higher order skills. They can use

abstraction in maybe more relevant, more efficient

ways like they're looking like at the real-life problem.

They can identify what parameters are needed for a

particular subroutine or how it's going to help to make

the solution more effective and efficient. So, I think

that's all, how they need to decompose the problem

using various functions.” [Andrea]

The teacher, further reflecting on her experience, continues by

saying that by understanding these concepts students' higher order

skills are enhanced, they can think more abstractly and also start con-

sidering the effectiveness and efficiency of their programs. Taking all

this together, Andrea's experience teaching these concepts demon-

strate that her students can locate and correct errors in programming,

to think abstractly, to seek more effective and efficient solutions and

to connect their experience in class with real-life problems. Surely, all

these transformations reveal a change—an epistemological change—

on students' way of seeing programming and themselves in this

course.

Almost the same arguments were mentioned by the other

teachers as well. For instance, Olivia talks about an improvement in

students' skills and specifically in decomposing a problem and in

understanding that the individual pieces of code can be reused which

makes their programs more flexible. She also argues, as Andrea did,

that students' understanding of the efficiency of code is enhanced.

For her, this is the moment when students' confidence is increased

and start developing the flair for programming. She argues that this is

something that cannot be taught, but that nevertheless is still an

important moment in the learning process:

“When they understand the whole thing about param-

eters, return statements and parameter passing, they

can see that they can decompose a problem down and

they can write a small piece of code that they can

reuse because it is very flexible. I think that's when

they really get their idea of an elegant piece of code,

an efficient piece of code. I think that's where the flair

comes in … you know that flair that you can't really

teach … and definitely boosts their confidence. I think

once they've mastered it it's almost like an intermedi-

ate point they've reached. And I think they get an

enjoyment from it at that point also which … in itself

gives a bit of momentum to their understanding and

their learning.” [Olivia]

Olivia also highlights that once students' understanding is completed

with return values, students finally understand what is happening with

the data across their programs. She suggests that students can under-

stand how the data are being transferred from one point to another in

their code. She also notes that it is important in this endeavour to explain

the reason for using the right identifiers so as to be easier for students to

understand and track what is happening in their code:

“I think it's [change when they understand return

values] the understanding of what's happening to the

data, … Looking at things jumping around and a key to

that … is teach them about good identifiers really early

on because if you have a good identifier …, you can

almost read it in English if that makes sense." [Olivia]

For Mateo, students' competence and confidence in programming

is increased once all these concepts are understood. He explains that

this is depicted in the students' program's complexity while he argues

that students start to understand the power that their programs can

have that wasn't previously achievable without all these concepts. He

also believes that this makes students start enjoying programming

while engaging with it:

“… understanding all these concepts, make them feel

more confident and their functions can be more or less

complex, and students enjoy that … I think it can give

their program greater power, so the program can then

begin to do things like calculating scores or validating

names that it couldn't do before.” [Mateo]

420 KALLIA AND SENTANCE

Table 3 summarises teachers' experiences seeing their students'

being transformed when the concepts of parameters, parameter pass-

ing and return values together are understood, while Table 4 provides

the focus of teachers' experience on students' difficulties and

transformations.

4.2 | Procedural decomposition

Another concept that the teachers discussed most frequently during

the interview was the concept of procedural decomposition. The

teachers expressed very interesting opinions for this concept which

were focused on two things: firstly, whether they believe that the dif-

ficulty of this concept lies on its conceptual understanding or a skill

that lies behind the concept; secondly, the changes on students'

understandings or attitudes towards programming once the concept is

grasped.

4.2.1 | Conceptual and practical difficulties

When teachers were asked about this concept and specifically if, from

their experience, its difficulty stems from its conceptual understanding

or a skill that students need to master, all teachers argued that stu-

dents first needed to understand the concept in a more theoretical

way and then needed a lot of practice to be able to use and master

procedural decomposition. This is most powerfully captured in

Andrea's extract:

“It probably goes in parallel because their practice will

inform their understanding and they probably cannot

practice without at least a little bit of knowledge given

to them. So, they need to grow side by side as they

practice more maybe knowledge is provided and prac-

ticed again, and again, and again on a different level.

With decomposition, I think it's possible to understand

it but not really being able to use it.” [Andrea]

Following Andrea's thinking, it clearly demonstrates the skill that

is needed to capture this concept. Andrea, at the beginning of the

text, explains that it is, of course, natural that students need first to be

theoretically introduced to this concept before they start practising

it. However, later in the extract, she demonstrates the role and impor-

tance of practice and particularly on different levels of difficulty. The

most interesting point of her discussion is the last sentence: in this,

she plainly says that even if students understand the role of decompo-

sition and perhaps the benefits and why it is used in programming,

this does not mean that they are able to employ decomposition in

their programs. This is a clear indication of a skill behind this concept

which obstructs students' learning and ability to break down a

problem.

A similar experience is shown by the other teachers as well.

Mateo and Olivia explain that students need first to understand why

decomposition is important and then they need to practice reinforcing

what they learn in order to understand its value:

“I think it's a concept that needs to be understood and

then it needs to be reinforced by practice. So, they've

got to understand first of all why it's important. I think

the practice reinforces early knowledge of why it's

important." [Mateo] and "I think they need to practice

it to see the value in decomposing something.” [Olivia]

For Rea too, students need both the conceptual understanding

and the practice to fully grasp the concept.

“It's first a concept but you can't have the concept and

not the practice, so it needs to be like a combination of

both I suppose.” [Rea]

While all participants referred to the difficulties students encoun-

ter with procedural decomposition, there are differences in how these

TABLE 3 Summary of teachers' experience on changes in
students once these concepts are grasped

Teachers' experiences seeing their students being transformed when

parameters, parameter passing and return values are understood

a. Functions and their role in programming are better understood

b. Changes in the way of thinking about practical problems and real-

life scenarios

c. Information processing

d. Practical work becomes better

e. Enhanced programming vocabulary and better way of explaining

phenomena

f. Effective and efficient solutions become part of their thinking

g. Decomposition's value is appreciated

h. Higher order skills are improved

i. Abstract way of thinking is enhanced

j. Flexibility in their programs

k. Flair of programming is enhanced

l. Data flow is better understood

m. Confidence and competence are increased

n. Enjoy programming

TABLE 4 Teachers' focus on students' difficulties and
transformations—parameter, parameter passing and return values

Difficulty emphasis Transformative emphasis

Rea Conceptual and practical

difficulties

Conceptual and students'

practice

Olivia Conceptual and practical

difficulties

Conceptual, students' practice,

students' flair of

programming, students'

confidence

Andrea Conceptual difficulties Conceptual, students' practice,

students' skills, students'

realisation programming's

role to everyday problems

Mateo Practical difficulties Students' practice, students'

confidence

KALLIA AND SENTANCE 421

are portrayed, but all highlight the skill rather than the conceptual part

of the concept.

“I think it's as all of the high-order thinking, it's really

hard because it might work okay on a very simple prob-

lem, more artificial style of problem, but if it was a real-

life scenario … then without any help they will be really

confused as to how to apply the skills that they have

learned on a simple problem to this one.” [Andrea]

Andrea's extract demonstrates the teacher's experience with proce-

dural decomposition and the difficulties her students encounter. She

explains that decomposition needs higher order skills and, thus, her stu-

dents find difficult to practice it when they face a real-life scenario. In

these examples, the teacher argues that students cannot proceed without

her help. Olivia seems engaged in a similar experience with her students:

“I think it is quite tricky for them at the beginning.

What's sometimes tricky is … that you can't give them a

meaningful example at the beginning for them to code

because that's beyond them. So, part of the balance is

between giving them a low enough example, concrete

enough example so that they can understand the pro-

gramming concept while trying to keep them motivated

enough on the big picture that eventually this will be

worth it if that makes sense. It's not until they actually

do a meaty piece of work that they actually do value

the idea of breaking things down.” [Olivia]

Olivia explains that in the beginning students find it quite difficult

to practice decomposition. One of the reasons she mentions is that

they cannot practice in a meaningful example as this is quite difficult

for them. Olivia's experience reveals the challenge the teachers face

to provide a low-difficulty example that can demonstrate the value of

decomposition so that students can really understand its importance

and how it is practiced. However, she explains that students need a

substantial amount of time practicing to actually understand

decomposition.

4.2.2 | The value of decomposition and students'
flair for programming

When teachers were asked about the changes in students' under-

standing or the ways students see the discipline, or students' personal

skills and attitudes towards programming, three teachers reflected on

their experiences and provided strong transformational evidence of

this concept.

“I think once they understand it, the purpose of it, and

when they've seen some examples, they understand

the value of it … how it can be used in the task. But …

it requires a lot of practice to see how it actually works

and how it helps and how it affects the practical side

of work as well. This kind of area helps people to really

move on in their understanding and I think that decom-

position is on a different level of thinking because it's a

more general type of skill … " [Andrea]

Here, Andrea illustrates a change in students' ways of seeing

decomposition. She considers that students start valuing its importance,

and how they can use it in their programs to increase the effectiveness

of their practical work. For Andrea, once decomposition is grasped,

students' understanding is progressed to a different level of thinking.

“I think that's where their flair comes in. There's almost

a competitiveness if you like to get things to work as

efficiently as possible. I think it's a boost for their ego.”

[Olivia]

The effect of Olivia's passage vividly demonstrates the central

point of this theme. The teacher explains that learning and under-

standing decomposition leads to students developing the flair for pro-

gramming. Olivia also considers that students learn to work and look

for efficiency in their programs, but also it makes them feel better

about themselves and raises their morale in programming. Mateo also

explains that students can see what they can accomplish with decom-

position. He says that students understand that once they break down

a problem into parts, they can work at each of this part at a time. They

do not necessarily need to work at each of the functions at the same

time and tackle everything at once. Instead, they can go back and

forth and refine or redesign their functions as they move along. At the

end of the extract, Mateo highlights that once students really under-

stand procedural decomposition, then functions and the control flow

of the program are easier to manage:

“… because once they've broken down what the steps

and stages are, they can tackle each step at a time.

They don't necessarily have to get each step com-

pleted in its entirety and perfectly because they can

always go back to it but if they've broken down their

functions, if their program is working in functions, even

if each function isn't perfect …, you can go back and

refine it, separately from the main program. You can't

necessarily tackle everything at once. And I think that

a clear understanding, I think a clear initial decomposi-

tion of the program will make the control flow and the

functions easier to manage.” [Mateo]

Mateo argues that students come to realise that it is uneconomic

to repetitively use the same lines of code to accomplish the same

thing and then understand the usefulness and effectiveness of using

functions in their programs:

“And they first of all they execute one line after

another and it all gets very uneconomic and then one

422 KALLIA AND SENTANCE

can say … now can we do it in fewer lines? And we

want to do it in fewer lines … because resources are

finite. We want your program to run as fast as possible

to make as little impact on the computer as possible so

can we now compress any of these lines and then we

can start using functions … I think that's probably the

major difference and they're beginning to avoid the

repetition.” [Mateo]

Table 5 provides a summary of teachers' experiences of proce-

dural decomposition difficulties and students' transformations once

procedural decomposition is understood.

5 | DISCUSSION

In this section, we will discuss the findings presented previously, and

answer the research questions relating to this study.

5.1 | What are computing teachers' experiences
with respect to the teaching of parameters, parameter
passing, return values and procedural decomposition?

During the interviews, teachers reflected on their experiences of

teaching the concepts of parameters, parameter passing, return values

and procedural decomposition. The four teachers, based on their

experience, presented important aspects of these concepts and spe-

cifically the difficulties that students encounter with them as well as

the changes that these concepts' understandings evoke on students'

personal level, confidence, competence and the way they see pro-

gramming or an aspect of it.

It has been suggested that the area of functions in computer pro-

gramming incorporates many difficulties for students and many stud-

ies have referred to the problems that students experience with

parameters, parameter passing and return values (Madison &

Gifford, 1997; Fleury, 1991; Kallia & Sentance, 2019). Our findings

echo previous studies that discuss students' difficulties with functions.

For example, one of the studies that employs the same theoretical

framework as we is the study of Miller, Settle & Lalor (2015). In this

study, the authors argue that parameter passing is a threshold concept

and they base their argument mostly on the difficulties that students

encounter with this concept. They referred to students' difficulties

with parameters and parameter passing such as problems with

aligning parameters and syntactical errors when calling a function.

Similarly, the teachers in our study reported alike experiences with

their students. They highlighted students' problems with using more

than one parameter and argument in the function call as well as syn-

tactical errors and using variables as arguments instead of values.

Another problem our teachers reported about parameter passing

was understanding how the flow of the program is affected by the

function call and understanding how the data are transferred from the

calling statement to the function definition. Interestingly, a similar

problem was reported in Sleeman, Putnam, Baxter & Kospa (1984).

They specifically identified two common errors: the first one refers to

the statements inside a procedure which students regard that are exe-

cuted in the order they appear and the second refers to the time in

which procedures are executed which students erroneously think that

this execution is happening when procedures are encountered in a

top-to-bottom scan.

In the same context, Ragonis & Ben-Ari (2005) further reported

students' difficulties in understanding where the values of the param-

eters come from and where the return value of a method is returned.

Indeed, our teachers also reflected on the same problems with param-

eters and return values. They report that students and it difficult to

understand how and from where parameters take their values and

where the return value goes and how it is handled. The teachers also

mention a confusion between the return statement and the print

function which is a problem that Miller, Settle & Lalor (2015) also

identified.

While our research did not offer any new information regarding

students' difficulties in functions, it is the first study which provides

empirical data regarding teacher experiences on changes the students

experience once these concepts are understood. These changes refer

to conceptual transformations and integration of knowledge as well as

students' personal attitudes towards programming. All teachers

reflected on their experiences seeing students being transformed

once they understood these concepts. In the following paragraphs, we

discuss these transformations along with our suppositions regarding

their place in the threshold concept framework.

5.2 | Is there evidence that supports the
nomination of these concepts as threshold concepts,
skills or conceptions?

While evidence of transformation and integration of knowledge was

evident in each of the concepts of parameter, parameter passing and

return values, we are reluctant to suggest that each of these concepts

are threshold concepts as this evidence were not robust enough.

TABLE 5 Teachers' experiences of procedural decomposition's
difficulties and students' changes once it is understood

Difficulties from teachers'

experiences

Transformations from teachers'

experiences

a. Higher order thinking

skills are required

b. Real-life scenarios are

difficult to be

understood

c. Demonstrating

decomposition's value is

difficult

d. Lots of practice is

needed to master it

a. Usefulness and effectiveness of

decomposition in programming

b. Value of decomposition in

programming

c. Practical work becomes better

d. Their programming skills are

expanded

e. Flair of programming

f. Efficiency in their programs

g. Boost for their ego

h. Multiple ways of addressing a

problem

KALLIA AND SENTANCE 423

However, when these concepts are grouped together the transforma-

tions reported are much stronger and, thus, we can argue that they

are likely to form threshold conceptions as defined by Perkins (2006).

In the following section, these transformations are discussed along

with procedural decomposition.

5.2.1 | Parameters, parameter passing and return
values

As presented in the results section, all the concepts taken separately

parameters, parameter passing, return values, appear to have some

transformative and integrative features. However, these concepts

evoke stronger transformations when they create a group that

includes parameters, parameter passing and return values together.

Perkins (2006) refers to such a group as threshold conceptions. Spe-

cifically, he suggests that the difficulty and transformative feature of

some concepts may not stem from the concepts per se rather from

the way some concepts interact with each other to create an underly-

ing game which causes a deep transformation on students'

understanding.

The teachers first mentioned that once students grasp these con-

cepts, their understanding of functions, their role, how and why are

being used in programming become clearer. Students finally under-

stand how the data in their program are being transferred and, thus,

how different parts can communicate with each other. As a result,

apart from the expected increased quality of the students' work, they

also start considering real-life problems, scenarios and how informa-

tion processing and programming can be used to handle these

problems.

The code's effectiveness and efficiency become part of their

thinking and their programs obtain greater power and complexity. Stu-

dents see and understand the effectiveness of decomposing a prob-

lem and reusing the same code more abstractly. This way of thinking

boost students' higher order skills and abstract way of thinking, char-

acteristics that describe computer programmers. This is the moment

that actually students advance their skill in programming as one of the

teachers aptly noted. Taking everything into consideration, teachers'

experiences suggest that overcoming the conceptual and practical dif-

ficulties of parameters, parameter passing and return values engage

students in a transformational journey where in the end students'

understandings and knowledge are enhanced and integrated, and their

way of thinking reflects the one of the practitioners in this field.

Therefore, it can be argued that students experience an epistemologi-

cal and an ontological transformation as they try to think as computer

programmers which lead us to the suggestion that these concepts

together likely form a threshold conception.

5.2.2 | Procedural decomposition

Procedural decomposition was the most controversial concept of all

the eleven concepts identified in our previous study. This is because

teachers in that study suggested that this is more a skill that needs to

be practiced rather than a concept that needs to be theoretically

understood. Particularly in computer programming, there are skills

that students need to practice to understand programming entirely

and to be able to write code in an advanced level. For example, many

studies in computer programming distinguish between declarative

knowledge, which refers to knowledge about concepts and principles,

and procedural knowledge which refers to the active usage of declara-

tive knowledge to solve a problem (Palumbo, 1990; Lau &

Yuen, 2009).

From the teachers' interviews around this concept, the evidence

found suggests that procedural decomposition is a procedural thresh-

old or a threshold skill rather than a threshold concept. This is because

the teachers, even though they highlighted the theoretical knowledge

that students need to understand first, emphasised that this is some-

thing that is reinforced by practice and students need a lot of practice

to finally master decomposition. They also mentioned that even if stu-

dents understand theoretically the role of procedural decomposition

in programming, this will not imply that they can actually apply

decomposition to their programs. This strongly suggests that there is

a skill that needs to be practiced by students to fully grasp procedural

decomposition.

Specifically, teachers' experience with teaching decomposition

reveals that there is a transformation that students undergo once they

master decomposition. The teachers argued that this transformation

leads students to appreciate what they can actually achieve and

accomplish by employing decomposition, and also valuing its role and

importance in programming and to see how their programs can be

more effectively and efficiently written. The teachers also mentioned

that this is one of the moments where the flair for programming is

developed and where the students start thinking about problems dif-

ferently by applying higher order skills. The changes referred here

reflect the kind of transformation that threshold skills provoke as

defined by Thomas, Boustedt, Eckerdal et al. (2017, p.335) who argue

that “mastering a threshold skill transforms what students can do and

their vision of what they can do” while also enables students to see

“other possible applications, broadening the list of tasks student can per-

form or enabling them to perform them in a new way.”

Taking everything into consideration, the changes the students

experience, as reported by their teachers, once they master decompo-

sition, indicate an epistemological shift where the students start

developing their thinking in a way that echoes the scientific thinking

of this field. Therefore, we suggest that procedural decomposition can

possibly be seen as a procedural threshold (threshold skill) in com-

puter programming.

5.3 | Impact on teaching computer programming
and future research directions

The findings of our research could have a significant impact on the

teaching of computer programming in secondary education but also in

higher education. Specifically, the findings of this study affect three

424 KALLIA AND SENTANCE

major education areas, curriculum design, teaching methods and

instructional tools and are discussed in the following paragraphs.

In this study, we identified some elements of integrated knowledge

in functions. Kinchin (2010) argues that dedicating time as educators to

integrate prior knowledge is really important and the benefits may sur-

pass the ones of attaining new knowledge that is likely to remain

secluded and unrelated. Tobias (1994) considers prior knowledge as

one of the most significant factors that impact learning and achieve-

ment. Teachers should be encouraged to take into consideration the

powerful conceptual relationships and links that these concepts form

and the transformations that students exhibit as a result of them. From

this perspective, we argue that the programming curriculum should be

designed “recursively,” with opportunities for students to revisit knowl-

edge, accommodate new understandings in existing schemas and

extending these appropriately. The spiral or “recursive” programming

instruction mirrors Bruner's (1960) spiral curriculum where ideas and

concepts are initially introduced and mastered at a simpler or basic level

and further revisited and reconstrued in a higher level. Therefore, one

of our next research goals would take this problem into consideration

and will explore ways to design a constructive, and spiral curriculum

that helps students integrate previous with new knowledge effectively.

Additionally, the importance of transformations occurring during

the learning process has long been documented by Mezirow (1991).

The challenge in the current education system and for educators is on

how to present new information after having previously revised or

transformed students' existing knowledge. Therefore, having identi-

fied some of the students' transformations our next research goal will

also identify appropriate teaching strategies and practices that will

more easily bring about these transformations and assist students in

their attempt to understand and identify themselves in the computer

classroom. We are particularly interested in exploring transformative

learning theory and different transformative learning and teaching

strategies that could potentially develop a constructive teaching pro-

cess appropriate for fostering transformative learning.

These teaching strategies should also consider the distinction

between threshold concepts, conceptions and procedural thresholds.

Although the literature thus far does not offer tangible guidelines on

how teachers should approach thresholds, relevant research could be

considered as a starting point of this investigation. For example, the

debate of whether conceptual knowledge should proceed procedural

knowledge or the other way around, it is pertinent in programming

education as well as in the threshold concept framework. In mathe-

matics education, for instance, Kadijevich (2018) points out that the

focus should be on the relationships between these two forms rather

than their precedence. On the same line, Rittle-Johnson and

Alibali, (1999) argued that the relationship between conceptual and

procedural is iterative meaning that advances in one lead to advances

to the other and thus, an instruction should iterate between concepts

and procedures. Thus, it would be interesting to investigate how this

relationship and its direction develops inside the threshold concept

framework and how threshold concepts or conceptions affect proce-

dural thresholds and the other way around and the impact of the find-

ings to teaching practice.

Finally, since computer programming in all levels of education is

inextricably connected with computer programming tools, it will be

worth investigating how our findings may affect the instructional

strategies employed in parallel with these tools and their designing

interface. The last years, there has been an increase of programming

environments, both block-based and text-based; however, evaluations

on how these tools help students build a concrete conceptual and

procedural understanding and their interrelation in programming are

still obscurely explored. It is critical, therefore, to consider and explore

the design and pedagogical principles employed to build these tools as

well as the way they are being employed in the classroom and their

effect on students' understandings. Exploring this under the threshold

concept framework would shed light on the way that various thresh-

olds can be addressed with computer-assisted tools. For example, the

literature suggests that visual tools can transform abstractions into

tangible representations (Crews & Butterfield, 2002) and that flow

charts and concept maps can help both teachers observe students'

learning progress and students build a more concrete conceptual

understanding in programming (e.g., Hubwieser & Mühling, 2011; dos

Santos et al., 2017). This is particularly relevant to the integrative part

of threshold concepts as concept maps as well as flow charts can

depict relations between concepts and data respectively. It will be

worth investigating how these visualization tools can be employed to

address conceptual thresholds and threshold conceptions. Another

area that seems promising for addressing students' understandings is

block-based tools as research suggests that they support learners'

conceptual understanding (Weintrop & Wilensky, 2016). The question

that needs, however, to be addressed here is whether the block-based

environments, under specific instructional strategies, can address stu-

dents' misunderstandings, misconceptions and thereafter, thresholds

to students' progress. Thus, future research should further investigate

how instructional strategies and computer programming interfaces

and tools can work together to develop a framework that can help

students resolve thresholds and successfully pass through liminality.

6 | CONCLUSION

This study focused on teachers' experiences in functions and particu-

larly their experiences teaching the concepts of parameters, parame-

ter passing, return values and procedural decomposition. Based on

the teachers' experience we first highlighted some common difficul-

ties that students at key stages 4 and 5 encounter while trying to

understand these concepts. This specific output is of great signifi-

cance as it can be used by teachers who would like to organize their

lessons around difficult points in this specific thematic area of the cur-

riculum and prepare appropriate materials that will help students

overcome the corresponding obstacles. Secondly, we explored stu-

dents' transformation and integration of knowledge once these con-

cepts are grasped. This is the first study that endeavours to

investigate these transformations with the specific set of concepts

and by employing an interpretative phenomenological analysis of

interviews with experienced computing teachers. The results of this

KALLIA AND SENTANCE 425

analysis led us to propose procedural decomposition as a possible pro-

cedural threshold (threshold skill) and the group of parameters, param-

eter passing and return values as a possible threshold conception. The

paper summarises and discusses the findings as well as potential impli-

cations for the computer programming education field.

PEER REVIEW

The peer review history for this article is available at https://publons.

com/publon/10.1111/jcal.12498.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were cre-

ated or analyzed in this study.

ORCID

Maria Kallia https://orcid.org/0000-0002-8591-9651

ENDNOTE
1 CAS Master Teachers "champion computer science in schools and the

wider teaching profession, provide training, mentoring and coaching to

teachers in their local communities, and support collaboration between

schools and universities” (https://www.computingatschool.org.uk/

custom_pages/36-master_teachers)

REFERENCES

Akerlind, G., McKenzie, J., & Lupton, M. (2010). A threshold concepts

focus to first year law curriculum design: Supporting student learning

using variation theory. Retrieved from http://fyhe.com.au/past_

papers/papers10/content/pdf/12B.pdf. Paper presented at 13th

Pacific Rim First Year in Higher Education Conference, Adelaide,

Australia. Retrieved January 15, 2018.

Allison, P. C., & Pissanos, B. W. (1994). The teacher as observer. Action in

Teacher Education, 15, 47–54.
Barradell, S. (2013). The identification of threshold concepts: A review of

theoretical complexities and methodological challenges. Higher Educa-

tion, 65(2), 265-27, Springer

Bayman, P., & Mayer, R. (1998). Using conceptual model to teach BASIC

computer programming. Journal of Educational Psychology, 80(3),

291–298.
Blackie, M. A., Case, J. M., & Jawitz, J. (2010). Student-centredness: The

link between transforming students and transforming ourselves.

Teaching in Higher Education, 15(6), 637–646.
Boustedt, J., Eckerdal, A., McCartney, R., Moström, J., Ratclifie, M.,

Sanders, K., & Zander, C. (2007). Threshold concepts in computer sci-

ence: Do they exist and are they useful? SIGCSE '07 (pp. 504–508).
New York, NY: ACM. https://doi.org/10.1145/1227310.1227482

Boyd, C. (2001). Phenomenology the method. In P. L. Munhall (Ed.), Nurs-

ing research: A qualitative perspective. Sudbury, MA: Jones and Bartlett.

Brocki, J., & Wearden, A. (2006). A critical evaluation of the use of inter-

pretative phenomenological analysis (ipa) in health psychology. Psy-

chology and Health, 21, 87–108.
Bruner, J.S. (1960) The process of Education. Harvard University Press.

Cambridge.

Charlick, S., Pincombe, J., McKellar, L., & Fielder, A. (2016). Making sense of

participant experiences: Interpretative phenomenological analysis in mid-

wifery research. International Journal of Doctoral Studies, 11, 205–216.
Clement, J., Lochhead, J., & Soloway, E. (1990). Positive effects of com-

puter programming on students? understanding of variables and

equations. In ACM 1980 Proceedings of the ACM 1980 annual confer-

ence (pp. 467–474). New York: ACM.

Collins, K., & Nicolson, P. (2002). The meaning of satisfaction for people

with dermatological problems: Reassessing approaches to qualitative

health psychology research. Journal of Health Psychology, 7, 615–629.
Cook-Sather, A. (2014). Student-faculty partnership in explorations of ped-

agogical practice: A threshold concept in academic development. Inter-

national Journal for Academic Development, 19(3), 186–198.
Cousin, G. (2006). An introduction to threshold concepts. Planet, 17, 4–5.
Creswell, J. (2007). Qualitative inquiry and research design: Choosing among

five approaches (2nd ed.). Thousand Oaks, CA: Sage.

Crews, T., & Butterfield, J. (2002). Using technology to bring abstract con-

cepts into focus: A programming case study. Journal of Computing in

Higher Education, 13(2), 25–50.
Davies, P., & Mangan, J. (2007). Threshold concepts and the integration of

understanding in economics. Studies in Higher Education, 32, 711–726.
Dos Santos, V., De Souza, É. F., Felizardo, K. R., & Vijaykumar, N. L. (2017).

Analyzing the use of concept maps in computer science: A systematic

mapping study. Informatics in Education, 16(2), 257–288.
Eckerdal, A., McCartney, R., Moström, J., Ratcli_e, M., Sanders, K., &

Zander, C. (2006). Putting threshold concepts into context in com-

puter science education. In Proceedings of the 11th Annual SIGCSE Con-

ference on Innovation and Technology in Computer Science Education

ITICSE '06 (pp. 103–107). Bologna, Italy: ACM. https://doi.org/10.

1145/1140124.1140154

Eckerdal, A., McCartney, R., Moström, J., Sanders, K., Thomas, L., &

Zander, C. (2007). From limen to lumen: Computing students in liminal

spaces. In Proceedings of the third international workshop on computing

education research (pp. 123–132). New York: ACM.

Eckerdal, A., & Thuné, M. (2005). Novice Java programmers' conceptions

of "object" and "class", and variation theory. In ITiCSE, 27-29 June,

Monte de Caparica, Portugal, New York: ACM.

Fleury, A. (1991). Parameter passing: The rules the students construct. In

Proceedings of the twenty-second SIGCSE technical symposium on com-

puter science education (pp. 283–286). New York: ACM.

Flowers, P., Duncan, B., & Frankis, J. (2000). Community, responsibility

and culpability: Hiv risk-management amongst Scottish gay men. Jour-

nal of Community and Applied Social Psychology, 10, 285–300.
Fox, R., & Farmer, M. (2011). The effect of computer programming educa-

tion on the reasoning skills of high school students. In Proceedings of

the international conference on frontiers in education: Computer science

and computer engineering (pp. 187–193). Las Vegas, NV: FECS confer-

ence proceedings

Gourlay, L. (2009). Threshold practices: Becoming a student through aca-

demic literacies. London Review of Education, 7(2), 181–192.
Holloway, M., Alpay, E., & Bull, A. (2010). A quantitative approach to iden-

tifying threshold concepts in engineering education. In Engineering

Education2010 (EE2010) Inspiring the next generation of engineers.

Loughborough, England: Higher Education Academy Engineering Sub-

ject Centre.

Hubwieser, P., & Mühling, A. (2011, August). What students (should) know

about object oriented programming. In Proceedings of the seventh inter-

national workshop on computing education research (pp. 77–84). New

York: ACM.

Kadijevich, D. M. (2018). Relating procedural and conceptual knowledge.

The Teaching of Mathematics, 21(1), 15–28.
Kallia, M., & Sentance, S. (2017). Computing teachers' perspectives on

threshold concepts: Functions and procedural abstraction. In Proceed-

ings of the 12th workshop on primary and secondary computing educa-

tion (pp. 15–24). New York: ACM.

Kallia, M., & Sentance, S. (2019). Learning to use functions: The relation-

ship between misconceptions and self-efficacy. In Proceedings of the

50th ACM technical symposium on computer science education (pp. 752-

758). New York: ACM.

426 KALLIA AND SENTANCE

https://publons.com/publon/10.1111/jcal.12498
https://publons.com/publon/10.1111/jcal.12498
https://orcid.org/0000-0002-8591-9651
https://orcid.org/0000-0002-8591-9651
http://fyhe.com.au/past_papers/papers10/content/pdf/12B.pdf
http://fyhe.com.au/past_papers/papers10/content/pdf/12B.pdf
https://doi.org/10.1145/1227310.1227482
https://doi.org/10.1145/1140124.1140154
https://doi.org/10.1145/1140124.1140154

Kinchin, I. (2010). Solving cordelia's dilemma: Threshold concepts within a

punctuated model of learning. JBE, 44, 53–57.
Land, R., Cousin, G., Meyer, J., & Davies, P. (2005). Threshold concepts

and troublesome knowledge (3): Implications for course design and

evaluation. In Proceedings of the 12th Improving Student Learning

Conference. In C. Rust (Ed.), Improving Student Learning—Diversity and

inclusivity (pp. 53–64). Oxford: Oxford Centre for Staff and Learning

Development.

Larkin, M., & Thompson, A. (2011). Interpretative phenomenological analy-

sis. In A. Thompson & D. Harper (Eds.), Qualitative research methods in

mental health and psychotherapy: A guide for students and practitioners.

Oxford, England: John Wiley and Sons.

Lau, W., & Yuen, A. (2009). Exploring the effects of gender and learning

styles on computer programming performance: Implications for pro-

gramming pedagogy. British Journal of Education Technology, 40,

696–712.
Lincoln, Y. S., & Guba, E. G. (1986). But is it rigorous? Trustworthiness and

authenticity in naturalistic evaluation. New Directions for Program Eval-

uation, 1986(30), 73–84.
Madison, S., & Gifford, J. (1997). Parameter passing: The conceptions nov-

ices construct. Retrieved from https://files.eric.ed.gov/fulltext/

ED406211.pdf technical Report.

Male, S., & Baillie, C. (2011). Engineering threshold concepts. In Proceed-

ings of SEFI Annual Conference (pp. 251–257). Brussels: SEFI, European

Society for Engineering Education. Retrieved from http://www.sefi.

be/wpcontent/papers2011/T7/24.pdf

McGill, T., Volet, S., & Hobbs, V. (1997). Studying programming externally:

Who succeeds? Distance Education, 18(2), 236–256.
Meyer, J., & Land, R. (2003). Threshold concepts and troublesome knowl-

edge: Linkages to ways of thinking and practicing. In C. Rust (Ed.),

Improving student learning-ten years on. Oxford, England: OCSLD.

Mezirow, J. (1991). Transformative dimensions of adult learning. San Fran-

cisco, CA: Jossey-Bass.

Miller, C., Settle, A., & Lalor, J. (2015). Learning object-oriented program-

ming in python: Toward an inventory of di_culties and testing pitfalls.

In Proceedings of the 16th annual conference on information technology

education (pp. 59–64). New York: ACM.

Norman, D. A. (1990). The Design of Everyday Things. Doubleday, New

York

Palumbo, D. (1990). Programming language/problem-solving research: A

review of relevant issues. Review of Educational Research, 60, 65–89.
Pardamean, B., Honni, H., & Evelin, E. (2011). The effect of logo program-

ming language for creativity and problem solving. In Proceedings of the

10th WSEAS international conference on E-Activities (pp. 151–156).
Stevens Point, WI: World Scientific and Engineering Academy and

Society.

Perkins, D. (1999). The many faces of constructivism. Educational Leader-

ship, 57, 6–11.
Perkins, D. (2006). The underlying game: Troublesome knowledge and

threshold conceptions. In J. Meyer & R. Land (Eds.), Overcoming bar-

riers to student understanding: Threshold concepts and troublesome

knowledge, London: Routledge.

Pietkiewicz, I., & Smith, J. (2014). A practical guide to using interpretative

phenomenological analysis in qualitative research psycholog.

Czasopismo Psychologiczne, 20, 7–14.
Popat, S., & Starkey, L. (2019). Learning to code or coding to learn? A sys-

tematic review. Computers & Education, 128, 365–376.
Psycharis, S., & Kallia, M. (2017). The effects of computer programming on

high school students? Reasoning skills and mathematical self-efficacy

and problem solving. Instructional Science, 45, 583–602.
Ragonis, N., & Ben-Ari, M. (2005). A long-term investigation of the com-

prehension of oop concepts by novices. Computer Science Education,

15, 203–221.

Rittle-Johnson, B., & Alibali, M. W. (1999). Conceptual and procedural

knowledge of mathematics: Does one lead to the other? Journal of

Educational Psychology, 91(1), 175.

Rountree, J., & Rountree, N. (2009). Issues regarding threshold concepts in

computer science. In Proceedings of the Eleventh Australasian Confer-

ence on Computing Education—volume 95 ACE '09 (pp. 139–146). Wel-

lington, New Zealand: Australian Computer Society, Inc. Retrieved

from http://dl.acm.org/citation.cfm?id=1862712.1862733

Sandri, O. (2013). Threshold concepts, systems and learning for sustain-

ability. Environmental Education Research, 19, 810–822.
Shinebourne, P. (2011). The theoretical underpinnings of interpretative

phenomenological analysis (ipa). Journal of the Society for Existential

Analysis, 22, 16–31.
Shinners-Kennedy, D., & Fincher, S. (2013). Identifying threshold concepts:

From dead end to a new direction. In Proceedings of the Ninth Annual

International ACM Conference on International Computing Education

Research. ICER '13 (pp. 9–18). San Diego, San California: ACM. https://

doi.org/10.1145/2493394.2493396

Sleeman, D., Putnam, R., Baxter, J., & Kospa, L. (1984). Pascal and high

school students: A study of misconceptions. Retrieved from https://

files.eric.ed.gov/fulltext/ED258552.pdf research Report.

Smith, J., & Osborn, M. (2003). Interpretative phenomenological analysis.

In J. A. Smith (Ed.), Qualitative psychology: A practical guide to research

methods. London, England: Sage Publications.

Symeonides, R., & Childs, C. (2015). The personal experience of online

learning: An interpretative phenomenological analysis. Computers in

Human Behavior, 51, 539–545.
Taylor, M., Harlow, A., & Forret, M. (2010). Using a computer programming

environment and an interactive whiteboard to investigate some math-

ematical thinking. Procedia Social and Behavioral Sciences, 8, 305–321.
Thomas, L., Boustedt, J., Eckerdal, A., McCartney, R., Moström, J.,

Sanders, K., & Zander, C. (2017). In the liminal space: Software design

as a threshold skill. Practice and Evidence of the Scholarship of Teaching

and Learning in Higher Education, 12, 333–351.
Tobias, S. (1994). Interest, prior knowledge, and learning. Review of Educa-

tional Research, 64, 37–54.
Tu, J., & Johnson, J. (1990). Can computer programming improve problem

solving ability. In ACM SIGCSE Bulletin (pp. 30–33). New York: ACM.

Weintrop, D. and Wilensky, U., (2016). Bringing blocks-based program-

ming into high school computer science classrooms. In Annual Meeting

of the American Educational Research Association (AERA). Washington,

DC: AERA.

Wright, A., & Hibbert, P. (2015). Threshold concepts in theory and prac-

tice. Journal of Management Education, 39, 443–451.
Yizhou, Q., & Lehman, J. (2017). Students' misconceptions and other difficul-

ties in introductory programming: A literature review. ACM Transactions

on Computing Education, 18, 11–24. https://doi.org/10.1145/3077618
Yuksel, P., & Yildirim, S. (2015). Theoretical frameworks, methods, and pro-

cedures for conducting phenomenological studies in educational set-

tings. Turkish Online Journal of Qualitative Inquiry, 6, 1–20.
Zwaneveld, B., Perrenet, J., & Bloo, R. (2016). Discussion of methods for

threshold research and an application in computer science. In R. Land,

J. H. F. Meyer, & M. T. Flanagan (Eds.), Threshold concepts in practice

(pp. 269–284). Rotterdam: Sense Publishers.

How to cite this article: Kallia M, Sentance S. Threshold

concepts, conceptions and skills: Teachers' experiences with

students' engagement in functions. J Comput Assist Learn.

2021;37:411–428. https://doi.org/10.1111/jcal.12498

KALLIA AND SENTANCE 427

https://files.eric.ed.gov/fulltext/ED406211.pdf
https://files.eric.ed.gov/fulltext/ED406211.pdf
http://www.sefi.be/wpcontent/papers2011/T7/24.pdf
http://www.sefi.be/wpcontent/papers2011/T7/24.pdf
http://dl.acm.org/citation.cfm?id=1862712.1862733
https://doi.org/10.1145/2493394.2493396
https://doi.org/10.1145/2493394.2493396
https://files.eric.ed.gov/fulltext/ED258552.pdf
https://files.eric.ed.gov/fulltext/ED258552.pdf
https://doi.org/10.1145/3077618
https://doi.org/10.1111/jcal.12498

APPENDIX A.

Basic interview questions

1. From your experience, what are the difficulties students face with

parameters?

2. From your experience, what are the difficulties students face with

parameter passing?

3. From your experience, what are the difficulties students face with

return values?

4. From your experience, what are the difficulties students face with

procedural decomposition?

5. Have you experienced any changes that happen to students

once they grasped the concept of parameter passing? For

example, is there another concept or something else that stu-

dents understand in programming as soon as they grasp param-

eter passing?

6. Have you experienced any changes that happen to students once

they grasped the concept of return values?

7. Have you experienced any changes that happen to students once

they grasped the concept of parameters?

8. Have you experienced any changes that happen to

students once they grasped the concept of procedural

decomposition?

9. Based on your teaching experience, do you think that

students have more difficulties in understanding the concept

of procedural decomposition or applying it in programming

exercises?

428 KALLIA AND SENTANCE

	Threshold concepts, conceptions and skills: Teachers' experiences with students' engagement in functions
	1 INTRODUCTION
	1.1 The current study

	2 CONCEPTUAL FRAMEWORK
	2.1 Threshold concepts
	2.2 Threshold conceptions and procedural thresholds
	2.3 Challenges in identifying threshold concepts

	3 METHODOLOGY
	3.1 Participants
	3.2 Data collection
	3.3 Data analysis, reliability and trustworthiness

	4 RESULTS
	4.1 Teachers' experiences teaching parameters, parameter passing and return values
	4.1.1 Parameter passing is difficult for students
	4.1.2 Parameters are conceptually difficult for students
	4.1.3 Return values are conceptually difficult for students
	4.1.4 Conceptual change and coherence
	4.1.5 Students' transformations

	4.2 Procedural decomposition
	4.2.1 Conceptual and practical difficulties
	4.2.2 The value of decomposition and students' flair for programming

	5 DISCUSSION
	5.1 What are computing teachers' experiences with respect to the teaching of parameters, parameter passing, return values ...
	5.2 Is there evidence that supports the nomination of these concepts as threshold concepts, skills or conceptions?
	5.2.1 Parameters, parameter passing and return values
	5.2.2 Procedural decomposition

	5.3 Impact on teaching computer programming and future research directions

	6 CONCLUSION
	 PEER REVIEW
	 DATA AVAILABILITY STATEMENT

	Endnote
	REFERENCES

