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The human immunodeficiency virus type 1 (HIV-1) proteome is expressed
from alternatively spliced and unspliced genomic RNAs. However, HIV-1
RNAs that are not fully spliced are perceived by the host machinery as
defective and are retained in the nucleus. During late infection, HIV-1
bypasses this regulatory mechanism by expression of the Rev protein
from a fully spliced mRNA. Once imported into the nucleus, Rev mediates
the export of unprocessed HIV-1 RNAs to the cytoplasm, leading to the
production of the viral progeny. While regarded as a canonical RNA
export factor, Rev has also been linked to HIV-1 RNA translation, stabiliz-
ation, splicing and packaging. However, Rev’s functions beyond RNA
export have remained poorly understood. Here, we revisit this paradig-
matic protein, reviewing recent data investigating its structure
and function. We conclude by asking: what remains unknown about this
enigmatic viral protein?
1. Introduction
Human immunodeficiency virus (HIV-1) is a retrovirus that infects CD4+
T-lymphocytes and macrophages, leading to a gradual loss of CD4+ cells and
subsequent immunodepression termed acquired immunodeficiency syndrome
(AIDS). HIV infects approximately 37 million people globally and is treated
using life-long anti-retroviral therapy (ART) [1] that suppresses but does not
fully eliminate the virus. Widely used first-line ART include a cocktail of com-
pounds that target the viral enzymes, such as protease, reverse transcriptase
and integrase inhibitors [1]. In the search for new therapies, scientists are
expanding their interest towards other viral and cellular proteins. HIV-1
expresses 15 proteins from a single approximately 9 kb RNA genome (figure 1a)
using two different strategies: the synthesis of polyproteins that are processed
by the viral protease and alternative splicing. HIV-1 RNA is considered fully
spliced when the two large intronic sequences present in the genome are
removed. These fully spliced transcripts leave the nucleus using the canoni-
cal NXF1-mediated pathway for cellular mRNA export [3]. However, the
HIV-1 genome can remain unspliced or undergo a single splicing event,
leading to so-called underspliced HIV-1 RNAs. These underspliced tran-
scripts are retained in the nucleus, in an analogous manner to unspliced
cellular mRNAs [4,5]. To bypass nuclear retention, retroviral underspliced
RNAs harbour regulatory elements that recruit the cellular export machin-
ery either directly or through an adaptor viral protein. For example,
Mason-Pfizer monkey virus (MPMV) RNA harbours a constitutive transport
element (CTE) that allows direct recruitment of TAP/NXF1 export machin-
ery [6]. By contrast, underspliced HIV-1 RNAs contain an RNA structure,
known as the Rev response element (RRE), that recruits the viral export
factor Rev [7]. Rev is expressed from a fully spliced viral RNA and binds
to the RRE to elicit the export of the underspliced viral (v)RNAs to the cyto-
plasm through the recruitment of host factors. The critical roles of Rev in
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Figure 1. (a) Schematic of the HIV-1 genome, which is alternatively spliced. Start sites of open reading frames are numbered according to the NL4-3 HIV-1
sequence. (b) Though Rev is partially structured, it is predicted to be highly disordered at the amino acid level (data obtained from IUPred, where a score of
greater than 0.4 indicates a high degree of disorder) [2]. Despite its disordered structure, Rev structures have been solved; regions indicated are labelled with
Protein Data Base references and coloured for the ARM region ( purple) and additional regions (gold). Post-translational modifications (PTMs) and amino acid
variants obtained from UniProt are shown (main figure based on variant P04325).
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HIV-1 gene expression extend beyond RNA export and
include RNA splicing, stability and translation. How Rev
influences these processes, however, remains poorly
characterized. Research into Rev has been held back by
several technical difficulties, including low expression
levels in infected cells and difficulties in expressing
tagged Rev from the viral genome. Consequently,
researchers have been forced to use systems that do not
fully recapitulate physiological HIV-1 infection, often
bypassing infection entirely and using cell lines which
are not naturally infected by HIV-1. Here, we discuss the
functions, structure and protein partners of Rev, examining
both the discrepancies reported across varying experimen-
tal systems and the data commonly unearthed across them
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in the light of more recent research. We also discuss which
mysteries of this enigmatic protein remain unsolved.
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2. The knowns of the HIV-1 Rev protein
2.1. The architecture of Rev
Rev was discovered through mutations of the overlapping
HIV-1 tat gene, which specifically increased the production
of fully spliced viral RNA and eliminated production of
underspliced transcripts [8]. These effects could not be
reversed by in trans complementation with Tat, suggesting
that they were Tat-independent [9]. They were attributed to
a novel HIV-1 gene, initially termed trs/art, later named Reg-
ulator of expression of virion proteins (Rev). Rev comprises
116 amino acids and is highly disordered (figure 1b). It har-
bours a folded N-terminal domain (NTD) and unstructured
C-terminal domain (CTD). The 65-residue NTD adopts an
anti-parallel helix–turn–helix organization and encodes an
arginine-rich RNA-binding motif (ARM) encompassing a
nuclear/nucleolar localization signal (NLS) and two flanking
oligomerization motifs, which allow Rev to multimerize
(figure 1b) [10]. Indeed, Rev has a high capacity for self-
association and is shown in crystal structures to do so using
three types of homotypic interactions termed A–A, B–B
and C–C interfaces [11–13]. A–A and B–B interactions
occur when same-face α-helices associate in a V motif
(figure 2a) and exhibit some degree of structural malleabil-
ity. C–C pairings occur at the loop ends of α-helices by a
proline interaction and exhibit restricted flexibility [11–
13]. The disordered nature of the Rev CTD has made it
challenging to characterize biochemically and structurally,
although it has been proposed to fold into β sheets in cer-
tain contexts such as filament formation [12,14,15].
Notably, the CTD encodes a leucine-rich nuclear export
signal (NES), sometimes referred to as the ‘activation
domain’. Rev employs its NES and NLS to traverse the
nuclear pore and move between the nucleus and cyto-
plasm. This shuttling ability is critical to allow Rev to
export underspliced viral RNAs and then return to the
nucleus [16].

2.2. Rev specifically exports underspliced viral RNA from
the nucleus

Following reverse transcription, HIV-1 proviral DNA inte-
grates into the host cell genome. Production of HIV-1
RNAs is then mediated by the host RNA polymerase II
giving rise to over 100 different RNA species by alternative
splicing [17]. The approximately 9 kb unspliced genomic
viral RNA encodes Gag and GagPol polyproteins, which
are the structural and enzymatic proteins required for virus
formation and propagation (figure 1a) [18]. The approxi-
mately 4 kb singly spliced species encode for the Envelope
protein as well as the auxiliary factors Vpr, Vpu and Vif,
while the approximately 2 kb fully spliced RNAs encode
for regulatory Tat, Rev and Nef proteins (figure 1a) [18]. In
the early phase of infection, underspliced RNAs are retained
in the nucleus and eventually degraded as they are recog-
nized by the host machinery as ‘immature’ [19]. Conversely,
rev and the other fully spliced mRNAs are exported to the
cytoplasm as they are recognized as ‘mature’ transcripts
[3,20]. Once Rev protein is produced, it is imported into the
nucleus by direct interaction with cellular importins β, trans-
portin, importin 5 and importin 7 through its NLS [21,22].
Ribosome assembly factor B23 has been shown to aid in
this import [23,24]. In the nucleus, Rev recognizes specifically
a 351-nucleotide secondary structure present in the second
intron of underspliced (approx. 9 and approx. 4 kb) viral
RNAs, known as RRE [25–33]. Rev interacts with the RRE
with high affinity (reported Kd = 0.3–5 nM), using the argi-
nine residues of the ARM motif aligned in an α-helix which
are projected to and inserted into a major groove in the
RNA (figure 2b) [29,31,34–37]. How Rev assembles on the
RRE remains unclear. Some groups postulate that Rev typi-
cally binds the RRE as a monomer and oligomerizes
thereafter in a cooperative manner along lower affinity sites
[28,31,35,36,38–42]. Other groups suggest that Rev exists as
a multimer in solution and binds the RRE as such, where
gel shift and fractionation experiments show Rev–RRE
interacting at distinct stoichiometries [10,21,29,30,34,43].
Technological advances have led to a series of recent Rev
and RRE structures, which provide clues to Rev–RRE stoichi-
ometry. 3D small-angle X-ray scattering reconstructions show
that the RRE adopts an ‘A-like’ topology [44], where the
primary binding site for Rev on stem loop IIB maps to one
of the ‘A’ legs, and site IA, a posited secondary Rev-binding
site [40,45], maps to the other leg (figure 2c). These sites are
separated by approximately 55 Å, which matches the span
of a Rev dimer [44]. It has been posited that a Rev dimer
first binds the RRE at these sites; when either leg of the ‘A’
shape is removed, the RRE is non-functional, supporting
this model [46]. Similarly, when the ‘crossbar’ of the A is
extended, spanning greater than 55 Å, binding of Rev to
the RRE is strongly impaired [46]. A different model envi-
sions two Rev dimers associating through a C–C interface,
each dimer binding the RRE separately at sites stem IIB
stem IA [12]. This model is supported by a new tetramer crys-
tal structure, which indicates that B–B Rev dimers bind
through C–C interfaces to form tetramers, which bind stem
IIB and IA sites [47]. Nucleotides G47, G48 and A73 in
stem loop IIB of the RRE form non-canonical base pairs
that present a wider groove to facilitate Rev binding. Crystal
structures have identified that these ‘wobble’ pairings prob-
ably help to orient the interaction of a second Rev
monomer, allowing it to reach additional junction sites
along stem II [13]. Accordingly, mutation of these nucleotides
reduces Rev-stem loop IIB interaction, increasing the dis-
sociation constant by over 2 µM in the case of A73 [37].
Regardless, Rev oligomerization appears to be a pre-requisite
for successful RNA export since (i) Rev mutants unable to oli-
gomerize are defective for export [39,43,48,49] and (ii) stem
loop IIB alone is insufficient to trigger RNA export,
suggesting a requirement for oligomerization along low-affi-
nity binding sites [40,50].

After Rev binds the RRE, host cell exportin Chromosome
Region Maintenance Gene 1 (CRM1, also known as XPOI)
and RanGTP are recruited to the Rev NES [51,52]. Rev
appears to interact with CRM1 non-canonically; a recent elec-
tron microscopy structure indicates that when CRM1
interacts with Rev, it does so as a dimer, binding the Rev
NES [53]. Crystal structures show that Rev NES binds
CRM1 in a linear, unorthodox fashion, where the NES is
spaced out using proline residues to reach all five hydro-
phobic binding pockets of CRM1 [54]. It also appears that



A
U

C
G

G
C

A
U

U
A C

G
U

A

U
AC

GC
G

C
G

U
A

U
AC

G
C

G C
G

U
A

C
G

U
A

U
G

U
AC

GC
GU

AC
G

C
GU

AC
G

U
A 

A C   

C C
 A A

G 
 

A

G 
  

  A  
 A

 
G 

 
A  

  
   

  
  

 

G 
  

   
  

  
 

A  
  A  AA  

A  
  

GG A  
 A  A

  
  

 G
G 

 
 

G
  

  
 

U
G

U
AC

GC
G

U
A

C
G

U
A U

G U 
 

G
U 

 
G

U
G

AA
G

  
 A

G 
 

G 
 

U
A

U
A

C
G

U
A

U
AC

G
C

G
U

GU
A

U
A

C
G

C
G

U
AC

GU
A

U
A

U
A

C
GC

G
U

A
C

G
C

G
U

AU
G U 

 
U

U
A

C
G

C
G

U
AC

GC
G

U
AC

GU
G

CG
GC

UA
GC

AU
UA

AU
UG

CG
GU
GC
AU
CG
CG
UG
CG
GC

AUGUAUCGGCAUCG

G
C

A
U

CG
A

U
A

U
CG

G
C

G
C

A
U

G
C

U
A

A  
A  

 
A

 
G 

 
A  

 
  

  
A

GA

    G
C

 
   G

 U
   G

 A
   A

  U

CAA  A

A
UA

UCGA
UG

CA
UCG

G
CCGG

CU
ACGG

CCGA
UG

CU
A  A

   C
  G

 G
   G

  U
 A

 
  A     C

A

GG

A

C 
 

A

A  
A

UC

 
AA

C A  C
G

 AA

C  UA

A  
 GG

G 
 

G
G 

 
A

U
  A

U

A C 
  

 

A  U G 
 

IIc
IIb III

IV

V

Ia

Rev response element

IIa

3'

Rev

5'

RanGTP
CRM1

RanGTP

RanGAPCRM1

RRE

RanGTP
CRM1

RanGDP

ImpbRev
cytoplasm

nucleus

RNA-binding motif

oligomerization motifs

loop

(a) (b)

(c)

(d)

RanGTP

Figure 2. (a) The Rev N-terminal domain is composed of a helix–loop–helix motif and dimerizes in a hashtag motif. An arginine-rich RNA-binding motif is flanked
by oligomerization motifs on both helices, which allow Rev to multimerize. NTD helices are stabilized by core hydrophobic interactions; some contributing residues
are labelled (PDB: 6BSY). (b) A Rev dimer was crystallized in complex with the RRE; Rev binds stem IIB of the RRE using its arginine-rich motif, which makes
contacts with the negatively charged RNA backbone (PDB: 4PMI [13]). (c) The structure of the 351-nucleotide Rev response element; regions are named using
Roman numerals. (d ) The canonical cycle of Rev exporting underspliced viral RNA to the cytoplasm. Rev binds the Rev response element on underspliced RNA
at stem IIB, multimerizes and recruits CRM1 and RanGTP to cross the nuclear pore complex. In the cytoplasm, this complex can dissociate by RanGAP promoting
RanGTP hydrolysis, freeing viral RNA. Rev can re-enter into the nucleus by binding importin-β.

royalsocietypublishing.org/journal/rsob
Open

Biol.10:200320

4

RRE-bound Rev dimers spatially orient their CTDs to opti-
mally recruit CRM1 [47]. In this RNA-bound state, Rev’s
NLS is occluded while the NES remains accessible, facilitat-
ing CRM1 recruitment and export [21]. It remains poorly
understood if additional host cofactors contribute to Rev/
CRM1-mediated export. However, recent data posit a string
of proteins which may be part of this complex, including
phosphoproteins [55], RNA helicases [56,57], nucleoporins
[58] and additional factors [59–62], some of which will be dis-
cussed in later sections. The Rev-viral RNA–CRM1–RanGTP
complex then traverses the hydrophobic channel of the
nuclear pore and, once in the cytoplasm, disassembles
upon RanGTP hydrolysis. Liberated viral RNAs can then be
translated and Rev can be recycled back to the nucleus by
importin recruitment (figure 2d ), which has been shown to
occur exclusively following RNA dissociation [21]. In this
way, Rev tightly couples the transcription of viral RNAs
with their nuclear export, enabling expression of all viral
genes in the right quantities and at the right time.
2.3. Rev drives underspliced HIV-1 RNAs towards the
CRM1 export pathway

Rev reduces the levels of cellular and viral RNAs exported by
CRM1-independent pathways by blocking TAP/NXF1, the
main cellular pathway that exports the bulk of cellular
mRNAs. Taniguchi et al. [63] showed that Rev inhibits
TAP/NXF1-specific export of RNAs containing the RRE.
Overexpression of TAP components decreased the levels of
underspliced viral RNA, an effect that could be reversed by
Rev overexpression [63]. This suggests that Rev downregulates
the TAP/NXF1 pathway to bypass cellular checkpoints that
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induce the degradation of underspliced viral RNA. Since fully
spliced viral mRNAs such as rev use TAP/NXF1 to be
exported, accumulation of Rev protein may lead to the sup-
pression of TAP/NXF1 export pathway to increase the ratio
of underspliced to spliced transcripts in the cytoplasm.
Accordingly, Rev was proposed to interfere with the associ-
ation of TAP/NXF1 components, such as ALY/REF, with
RNA [63]. Although the exact mechanism remains unknown,
Taniguchi et al. [63] propose a model by which RNA-bound
Rev may interact with the nuclear cap-binding complex
(CBC) to inhibit its interaction with Aly/REF and sub-
sequently suppress downstream TAP/NXF1 export. Rev can
indeed bind subunits of the nuclear CBC [61], which lends
credence to this model.
pen
Biol.10:200320
2.4. Rev stabilizes viral RNAs
In addition to stimulating nuclear export, Rev may serve sev-
eral post-transcriptional roles to promote HIV-1 expression.
For example, Rev binding to the RRE appears to overcome
the inhibitory effects of instability (INS) sequences in HIV-1
RNAs. These INS regions have been identified in the env,
gag and pol coding regions and promote nuclear retention,
instability and reduced polysome loading of viral RNA
[64–69], independently of splicing. INS regions are AU-rich,
which confers a different codon usage to that of human
mRNAs [70–72]. The presence of non-optimal codons pro-
motes mRNA instability, likely due to ribosome stalling and
inefficient translation at these sites. The mutagenesis of an
AU-rich INS site in gagpol increases protein expression by
ameliorating steady-state mRNA levels [73,74], illustrating
the effects of these regions and the importance of codon
optimality. High A and low C content produces a codon
bias on HIV-1 RNA that may also decrease protein expression
because of a lack of cognate tRNAs in steady-state cellular
conditions, which induces long ‘waiting times’ for the
ribosome to engage with the correct tRNA [75,76]. Indeed,
circumventing INS sites with codon-optimization was
shown to increase protein expression of HIV-1 Env, indepen-
dently of effects on RNA export or stability [72]. The
Rev–RRE interaction seems necessary to counteract INS-
mediated effects [64–68], since mutations nullifying INS
regions have been shown to switch HIV-1 protein expression
from Rev-dependent to Rev-independent [73,74,77]. How
Rev helps to overcome instability signatures is yet to be fully
elucidated. However, it has been demonstrated that enhanced
expression of codon-optimized gag and pol genes results pre-
dominantly from an increase in cytoplasmic mRNA [74,77].
When cells were pre-treated with leptomycin B, an inhibitor
of Rev–RRE export partner CRM1, expression of Rev-depen-
dent HIV-1 proteins was significantly reduced. Expression of
codon-optimized counterparts, however, was not affected
[76]. This suggests that codon-optimization allows HIV-1
RNAs to use other export pathways, triggering this increase
in cytoplasmic RNA. It is therefore likely that INS regions
cause nuclear retention of HIV-1 RNAs, which Rev–RRE bind-
ing and export is necessary to overcome. It has also been
proposed that certain host proteins can bind AU-rich INS
sequences and that these interactions regulate HIV-1 RNA
stability [78–82]. Rev interacts with some of these cellular fac-
tors and it is plausible that by engaging with them, Rev
interferes with their regulatory activity on HIV-1 RNA. In
summary, Rev emerges as regulator of viral RNA stability by
counteracting the inhibitory effects of INS regions.

2.5. Rev inhibits cellular splicing
Rev may inhibit splicing in an RRE-dependent manner.
The ARM peptide of Rev was found to inhibit splicing of
RRE-containing RNA up to 15-fold more than control RNA
lacking the RRE [83]. Incubation of the Rev ARM with a
β-globin-RRE pre-mRNA at different time points showed
that splicing was only inhibited when Rev was added early,
suggesting that the Rev/RRE interaction interferes with
initial spliceosome assembly on the RNA [83]. Fractionation
and sucrose centrifugation of these splicing extracts revealed
that the addition of Rev to RRE-containing pre-mRNA
removed the 60S peaks corresponding to fully assembled
spliceosomes [83], and caused an accumulation of a 45-50S
splicing-deficient complex. The same group discovered that
the Rev ARM blocked binding of U4/U5/U6 tri-snRNP in
an RRE-dependent manner [84]. While it is not known how
Rev exerts these effects, it may interact with host cell splicing
factors to do so. A recent study used a genome-wide
CRISPR/Cas knock-out approach to identify host cell pro-
teins responsible for HIV-1 RNA nuclear retention. The
majority of the resulting hits were host cell proteins involved
in pre-mRNA splicing and associated with the spliceosome
[85]. Perhaps Rev suppresses formation of the early spliceo-
some by interacting with these factors, ultimately
promoting intron retention. One example of this is SF2/
ASF, an essential splicing factor that binds to RNAs with a
50 splice site to aid U1 snRNP docking [86]. SF2/ASF binds
the Rev-bound RRE in vitro and its overexpression can inhibit
Rev function and HIV-1 gene expression in a dose-dependent
manner [86]. It also regulates HIV-1 gene expression [87–89].
It is plausible that Rev sequesters this splicing factor, and
possibly other spliceosome-associated components, to pre-
vent spliceosome recruitment. Importantly, SF2/ASF
overexpression has been shown to alter the alternative spli-
cing pattern of HIV-1 [90]. Hence, Rev may bind this factor
in infected cells to ensure optimal stoichiometry of HIV-1
RNA forms. At a global level, HIV-1 infection increases the
proportion of introns within cellular RNAs in primary T
cells [91], aligning well with this inhibitory activity of Rev
on SF2/ASF. Collectively, these posited roles paint a picture
of Rev working against host cell regulation to repress splicing
and promote the expression of underspliced HIV-1 RNA.

2.6. Rev promotes translation of viral RNA
It has been proposed that Rev influences the translation
efficiency of viral RNA. Early research highlighted dispropor-
tionate increases in viral Envelope protein expression relative
to total mRNA levels in Rev and Tat-transfected cell lines
[92]. Additional studies confirmed large discrepancies
between cytoplasmic gag mRNA and protein levels in the
absence of Rev [93–96], providing the first clue that Rev
may affect translation. Moreover, Rev appears to facilitate
association of viral RNA with polysomes. One study found
that 90% of cytoplasmic, singly spliced env RNA associated
with monosomes when infected with HIV-1 lacking Rev
(HIV-1Rev(-)), whereas over 75% associated with polysomes
when infected with wild-type Rev HIV-1 [94]. Conversely,
polysomal association with fully spliced viral RNAs such as



royalsocietypublishing.org/journal/rsob
Open

Biol.10:200320

6
tat was unaffected by the presence or absence or Rev, indicat-
ing efficient assembly of ribosomes onto these viral RNAs in
a Rev-independent manner. Interestingly, Rev-dependent
association of underspliced viral RNA with polysomes was
found to be dependent on the presence of the RRE,
suggesting the need of Rev/RRE interaction for this phenom-
enon to occur [93]. However, tethering of the leucine-rich
domain of Rev, which interacts with CRM1, to HIV-1 RNA
allowed efficient Gag production in the absence of Rev, indi-
cating that RNA export is the predominant function of Rev
[97]. These results also suggested that CRM1-mediated
export, instead of Rev itself, may be sufficient to enable
HIV-1 RNA downstream translation through an export/
translation coupling mechanism. Intriguingly, a conserved
Rev-binding site was discovered in the 50 UTR of HIV-1
RNA, overlapping with the loop A of the packaging signal
(SL1) [98]. Rev enhanced the translation of loop A containing
reporters in vitro translation [99]. However, these findings
were not recapitulated by the same group in COS-1 cells
[100]. Whether Rev controls HIV-1 RNA translation remains
ultimately unclear.
2.7. Does Rev regulate packaging of HIV-1 genome into
virions?

The presence of a packaging signal in the 50 untranslated
region (UTR) of HIV-1 genomic RNA does not suffice for effi-
cient assembly of the viral RNA into viral particles. The
interaction of Rev with the RRE is also proposed to contribute
to viral RNA packaging [101–104]. The ratio of genomic RNA
in virions over the cytoplasm was measured using an HIV-1
chimeric construct containing the RRE in the presence or
absence of Rev [105]. Lack of Rev induced a decrease in
genome packaging of 10-fold when compared with
conditions where Rev was present [105]. However, the
RRE–RNA construct used in this study lacked the original
INS present in the HIV-1 genome, and thus probably does
not display the same dependency on Rev for nuclear RNA
export as wild-type HIV-1 genomic RNA. The same group,
therefore, repeated this work, using an almost full-length
HIV-1Rev(-) expression plasmid [106]. They reported that
Rev induces a 4500-fold increase in HIV-1 genome packaged
into virions, while it only increases cytoplasmic levels by
5-fold [106]. However, the same enhancement in RNA assem-
bly was observed when a chimeric HIV-1Rev(-) genomic RNA
including MS2 stem-loops was co-transfected with MS2-TAP
[106]. This suggests that is not necessarily Rev, but the export
process itself which boosts the packaging of RNA genomes.
Regardless, Rev–RRE interaction appears to be more efficient
at promoting packaging than TAP, leaving room for potential
direct roles of Rev in packaging [104,105]. The mechanistic
details of how Rev confers increased genome encapsidation
remain unknown. It is possible that certain export pathways
lead to the formation (or avoidance) or specific ribonucleic–
protein complexes which may promote or hinder down-
stream packaging. Indeed, helicase DDX24 has been shown
to directly interact with Rev and increase RNA packaging
only in the context of Rev/RRE export [107].

The Rev-binding site situated in the HIV-1 50 UTR (loop A
of SL1) is also proposed to stimulate viral RNA assembly into
viral particles [98,100,108]. However, recent reports suggest
that HIV-1 RNA is more efficiently packaged as a dimer
than as a monomer [104,109]. Dimer formation required
base pairing across the 50 UTR, including the Gag AUG
start codon and the dimerization initiation site (DIS) [104].
It is thus possible that the loop A, situated between DIS
and the Gag AUG initiation codon, contribute to dimer for-
mation. Therefore, whether the loop A contributes to viral
RNA assembly into viral particles through a Rev-dependent
or independent mechanism remains controversial.

2.8. The Rev–host interactome
HIV-1 cannot encode all the machinery required for its repli-
cation and spread. Thus, it is heavily reliant on host cell
resources. One prevalent strategy used by viruses to hijack
cellular resources is to express viral proteins that interact
with and recruit key cellular factors. By knowing which cellu-
lar factors Rev interacts with, it is thus possible to obtain
deeper mechanistic insights into its regulatory roles. A
common approach for discovering protein–protein inter-
actions (PPIs) globally involves immunoprecipitation (IP)
followed by mass spectroscopy analysis (MS). This approach
has been employed to reveal the interactomes of HIV-1
proteins [110–114]. Few studies have focused on Rev inter-
actions using this approach [111,114–116], and have
enriched our current knowledge of the Rev–host protein
interactome considerably, which to date comprises almost
300 interactors (figure 3) [111,117]. However, a number of
technical limitations forced researchers to use non-physiologi-
cal systems to study Rev, which implies that many of the
interactions identified may not take place when Rev is
expressed at physiological levels and concomitantly interact-
ing with the viral RNA in infected cells (table 1).
Furthermore, the cell system, cofactors, controls, tags and
proteomic quantification used in these studies vary widely.
This is important because even small changes in the exper-
imental conditions can have a profound impact in the
observed interactions. For example, addition of Mg2+ was
recently reported to impact the structural dynamics of the
RRE and potentially Rev binding [118]. It has also been
found that the importin which mediates Rev nuclear import
is cell-type specific and will therefore differ between cell sys-
tems [119], which may impact downstream Rev function. It is
difficult, as a result, to collate published datasets obtained by
employing different systems. Another important problem
regarding interactome analysis is the quantitation, controls
and statistical analysis of proteomics data. The lack of a uni-
versal, standardized data analysis pipeline and the
differences in experimental set-up makes it extremely difficult
to compare different datasets. The limitation of self-defined
scoring is that results depend somewhat on arbitrary assign-
ments for significance. For example, one study identified only
19 overlapping protein–protein interactions between their
results and VirusMint, a database of virus–host cell PPIs,
but this increased to 67 when the MS processing threshold
score was altered [114]. Such subjective quantitation par-
ameters are problematic when cross-referencing large
datasets produced by different groups. As a result of these
obstacles and differing IP systems, overlap between reported
Rev interactors is limited (figure 4) [59,114,116,121,122]. The
lack of overlapping can also be explained by the expression
of Rev in non-physiological levels and outside the natural
infection context. To circumvent these limitations, future
work should focus on the biochemical characterization of
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Rev expressed from an HIV-1 provirus (fully infective HIV-1
construct or replicons), ideally tagged to facilitate biochemi-
cal characterization under stringent conditions. The use of
chimeric HIV-1 viruses or replicons allows experiments to
be performed in more physiological models such as T CD4
lymphocytic lines and primary cells. Such an approach
would ensure that Rev and its HIV-1 RNA substrates are pro-
duced at physiological levels and in the correct stoichiometry.
Despite the challenges of uniting various interactome
data, there is a set of proteins identified consistently in a
number of different studies, imbuing them with credibility
[117,123,124]. The known Rev interaction network is explored
in figure 3, showing which types of interaction have most
often been identified and the GO molecular functions of the
interactors. The evidence behind the interaction of some of
these widely reported Rev factors is discussed below.



Table 1. Technical challenges.

experimental
consideration technical challenge experimental compromise experimental issue

Rev is an RNA-binding

protein

Rev can establish strong

interaction with RNA

RNase treatment is critical to

differentiate direct from indirect

interactions in protein–protein

interaction analysis

Rev can be co-purified with proteins that do not

interact directly with it through RNA bridges;

hence, protein–protein interaction studies

lacking RNases should be considered against

this background

Rev gene is entirely

overlapped by other

viral genes

(figure 1a)

Rev is, therefore, difficult to

genetically manipulate, to

clone or tag, in the context

of a replicon or virus

full length or selected regions of

Rev are often ectopically

expressed and, in several cases,

it is not co-expressed with HIV-1

RNA

ectopic expression may result in artificial

localization and non-physiological expression

levels

expression of select motifs may lead to non-

native folding conformations and behaviour

Rev function relies on its multimerization of HIV-

1 RNA; in the absence of HIV-1 RNA, Rev are

may thus assemble in non-physiological

complexes; moreover, Rev and underspliced

HIV-1 RNA are at a given stoichiometry that

is difficult to recapitulate using plasmids

Rev is a low abundant

HIV-1 protein

Rev is difficult to pull down

and isolate at sufficient

concentration for

biochemical characterization

Rev is typically overexpressed Rev expression at non-physiological levels is

likely to lead to non-native behaviour

without co-expression of the viral RNA under

physiological stoichiometry, Rev may establish

artificial interactions

antibodies available against Rev do not allow

efficient and selective immunoprecipitation;

hence, tags might be required

HIV-1 infects and

propagates in CD4+

lymphocytic cells

T-lymphocytes are difficult to

transfect

Rev is typically expressed in

uninfected non-relevant cell lines

(e.g. HEK293T, HeLa), and cell

extracts

the proteome of a CD4- cell is expected to differ

from that of a CD4+ lymphocytic counterpart;

hence, Rev may establish non-physiological

interactions in HIV-1 unrelated cell lines

HIV-1 infection also causes a profound

remodelling of the cell proteome and

transcriptome; hence, Rev complexes detected

in uninfected conditions might be non-

functional or just not exist in infected cells
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DEAD (Asp–Glu–Ala–Asp)/H box RNA helicases have
been functionally implicated in all steps of RNA metabolism
as well as ATP-dependent RNA duplex unwinding. Several
DEAD/H box proteins interact with Rev, most prominently,
DDX1. DDX1 was initially identified to bind a motif of Rev
in yeast-two hybrid screens and then confirmed to interact
with Rev using protein overexpression and co-immunopreci-
pitation [62,125]. DDX1 silencing reduced the expression of
Gag from a Gag–RRE expression vector by greater than
85% in the presence of Rev, signifying that DDX1 may
promote Rev–RNA export [62]. The observation of Rev–
RRE binding using total internal reflection microscopy and
mobility shift assays confirmed this, revealing that DDX1
enhances higher-order Rev/RRE stoichiometries [41,42].
Although no strict functional mechanism is yet determined,
a recent model acknowledging these data proposed that
DDX1 may act as an RNA chaperone, remodelling stem IIB
of the RRE to facilitate Rev binding [42]. DDX3 is another
DEAD/H box helicase linked to HIV-1: it is a nucleocytoplas-
mic shuttling protein able to co-precipitate both Rev and
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CRM1, leading to the suggestion that it participates in Rev/
RNA/RanGTP/CRM1 complex export [126]. Indeed,
knock-out of endogenous DDX3 can suppress RRE–RNA
export 13-fold in a Rev-dependent manner, as measured by
Gag expression [126]. Importantly, this effect is not observed
when the RRE is replaced with a different transport element.
Additionally, Northern blotting analysis showed that DDX3
significantly increased levels of gagpol mRNA in the cyto-
plasm transcribed from a Gagpol-RRE expression vector,
confirming that it influences Rev-dependent RNA export
[126]. Other helicases, including DDX5, DDX17 and
DDX21, interact with Rev and enhance Rev-mediated RNA
export [127,128]. It is thus plausible that these helicases
cross-talk to influence viral RNA export cooperatively. The
exact functional mechanisms underpinning Rev regulation
by helicases, however, await discovery.

CRM1 was one of the earliest Rev interactors identified. It
was initially shown to bind Rev through separation of
nuclear envelope proteins by gel electrophoresis, followed
by treatment with radiolabelled Rev protein [129], which
revealed a band of approximately 110 kDa. Similarly, the
radioactively labelled Rev NES was incubated in cell extracts
and interacting proteins were eluted and separated by gel
electrophoresis, which also highlighted an approximately
110 kDa band, suggesting that this unknown protein could
bind Rev at its NES. This ‘p110’ mysterious protein was
later identified as an exportin, named CRM1 [130], which is
inhibited by leptomycin B [131]. This novel association
linked Rev to a nuclear translocation system for the first
time and began to reveal the mechanics of Rev transactiva-
tion. Elegant experiments by Fukuda et al. [130] expressing
the NES peptide of Rev in the nuclei of fibroblasts revealed
that it was rapidly exported to the cytoplasm. Cells pre-trea-
ted with leptomycin B, however, inhibited this nuclear
export, corroborating the notion that CRM1 was probably
responsible for Rev translocation across the nuclear pore.
Mutations of the homologue Crm1p in yeast were similarly
shown to reduce Rev transactivation activity. Moreover, the
ability of Crm1p to interact with both nuclear pore proteins
and Rev was reported in this system, providing further evi-
dence that CRM1 guides Rev across the nuclear envelope
[132]. Interestingly, Ristea et al. [133] found that Rev and
CRM1 colocalize in the nucleolus. This colocalization is
dependent on a functional Rev NES, suggesting that both
proteins are directly interacting. In the same study, overex-
pression of CRM1 appeared to reduce Rev-mediated
RRE(+)–RNA export in a dose-dependent manner, which
the authors suggest may occur due to CRM1 sequestering
Rev in the nucleolus. It is notable, however, that overex-
pressed CRM1 is dislocated, and this aberrant distribution
might be the cause Rev of dysfunction.

Eukaryotic Initiation Factor 5A (eIF5A) is an essential
protein that facilitates translation elongation of polyproline
regions and prevents ribosomal stalling [134]. It can bind
specifically to the NES of Rev [135,136]. Non-functional
eIF5A mutants that retain the ability to bind Rev hamper
the export of Rev–CRM1 complexes to the cytoplasm
[135,137]. Indeed, T CD4 lymphocytic cell lines overexpres-
sing these mutants failed to sustain HIV-1 replication
efficiently [136]. A pool of eIF5A localizes at the periphery
of the nuclear pore complex [137] and has been found to
interact with nucleoporins [60]. Moreover, recombinant
GST-Rev protein export to the cytoplasm was abrogated by
using antibodies against eIF5A [138]. Taken together, these
data suggest that eIF5A plays a critical role in the Rev/
CRM1-mediated export of HIV-1 underspliced RNAs. How-
ever, several groups failed at confirming the existence of an
interaction between EIF5A and Rev [21,139], and thus
whether this complex plays a physiological role in HIV-1
infection remains controversial.
2.9. Rev and its interactions with cofactors are HIV-1
drug targets

Rev is critical for HIV-1 gene expression and, therefore,
represents a potential anti-viral target. Despite this, there
are currently no Rev-based therapeutics in clinical use. It
has long been known that dominant negative mutants of
Rev can abrogate wild-type Rev function in lymphocytic
cells [140,141]. For example, ‘Rev M10’ contains two point
mutations in the Rev NES which completely abrogates its
transactivation function, while competing with wild-type
Rev for binding to the RRE [48]. M10 has been investigated
in clinical trials [142–144]. However, it is challenging to deli-
ver into cells, and resistant strains of HIV-1 with altered RREs
arose after constitutive M10 expression [145].

Other therapeutic approaches target the Rev/RRE inter-
action itself using small molecules. An early iteration of this
approach used aminoglycoside antibiotics which specifically
bound to the RRE at the Rev-binding site [146], blocking
Rev’s interaction and inhibiting HIV-1 gene expression
[147]. Since then, a series of small molecules able to inhibit
Rev/RRE association have been reported, including amino-
glycosides, antisense nucleic acids [148,149], synthetic
diphenylfuran cations [150,151], RNA aptamers [152,153],
metallopeptides [154,155] and several pre-existing drug com-
pounds [156]. Several of these agents bind to the RRE
synonymously to Rev, inserting basic regions into the same
wobble-base groove in the RRE. Peptide ligands have been
developed which similarly adopt the same α-helicity as the
Rev ARM; in some cases, these ligands are able to bind to
the RRE with higher affinity than Rev itself (about sevenfold)
and can successfully block HIV-1 replication [157–161]. Other
small molecules, including 8-azaguanine, suppress viral gene
expression by redirecting localization of Rev to the cyto-
plasm, impairing its function [162]. While these agents are
anti-viral, off-target effects often render them toxic for
human cells. Moreover, those that rely on structure specificity
inadvertently apply a selection pressure for RRE and Rev,
leading to mutations that provide resistance [163]. It also
remains challenging to deliver these treatments to target cells.

As CRM1 is required to escort RNA-bound Rev across the
nuclear envelope, blocking the CRM1/Rev interaction is a
potential anti-viral opportunity. It is well established that
CRM1-inhibiting drugs, such an anti-fungal agent leptomy-
cin B, can restrict HIV-1 replication [131,164]. However,
CRM1 typically exports host proteins and is instrumental
for exporting ribosomal subunits (for a comprehensive
review, the reader is pointed to Okamura et al. [165]). There-
fore, CRM1 inhibition affects downstream targets and the
cellular environment and, indeed, leptomycin B is toxic to
human cells. However, small molecular inhibitor KPT-185
was able to restrict both HIV-1 replication and AIDS-induced
primary effusion lymphoma in primary cells by blocking
Rev/CRM1 interactions [166] and elicited cytotoxic effects
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only at concentrations 850-fold higher than the active
concentration [166].

Targeting other Rev–host cofactor interactions is similarly
difficult but not impossible: Campos et al. developed ABX464
[167], a drug that restricts HIV-1 replication in mice. ABX464
binds to and stabilizes the CBC complex, enhancing RNA
export by the TREX export pathway of fully spliced RNAs,
antagonizing Rev posited inhibition of this pathway [63].
Importantly, while it changes the levels of spliced/unspliced
viral RNA, ABX464 does not affect cellular RNA [167]. It has
since completed three phase II clinical trials and has success-
fully restricted HIV-1 replication in vivo. This highlights the
importance of reproducibly defining the Rev interactome: it
may unlock dozens of potential therapeutic targets.
normalized to HGNC IDs using the R package biomaRt [120] and pseudogenes/
proteins which could not be mapped were filtered out.
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3. The known unknowns of the HIV-1 Rev
protein

3.1. The native Rev interactome remains unknown
The role of Rev in RNA trafficking was identified shortly after
its discovery in 1986; in the subsequent 30 or more years of
research, Rev has continued to pose more questions than
answers. For example, we have discussed here the known
cofactors of this elusive protein, though the reader may
note that much of this research is ‘correlative’ with the under-
lying molecular mechanism remaining unknown. As Rev is a
difficult protein to study (table 1), the number of Rev–host
protein interactome studies is limited, and those available
have been defined under a broad range of conditions and cri-
teria. It is, therefore, difficult to list interactors validated
under common physiological environments. As aforemen-
tioned, the overlap between these datasets is low (figure 4).
Some researchers have used an approach to examine which
host proteins are involved in Rev’s RNA export function by
capturing the singly or unspliced viral RNA and using MS
to examine which proteins are bound [59,121,122]. These
studies may also reveal Rev-binding partners. Consideration
of these protein datasets corroborate some of the unshared
host proteins reported in Rev protein–protein studies, indicat-
ing that candidate proteins identified can be true interactors
despite the limited overlap between datasets. For example,
approximately 30% of the proteins found by Marchand
et al. [114] are also reported by Naji et al. [111]. However,
the overlap between these datasets remains modest, and the
problem of varying experimental conditions persists.

3.2. There is no known function behind Rev nucleolar
localization

While Rev participates in nucleocytoplasmic shuttling, it also
displays a well-documented tendency to localize in the
nucleolus [22,48,120,125,168,169], which is currently unex-
plained. This has recently been suggested to arise from
masking of the NES, as mutation of the NES constrains Rev
to the nucleolus. Moreover, Behrens et al. [170] have shown
that deliberate masking and unmasking of the NLS is able
to alter this phenotype. Though the function behind this
nucleolar residence is undetermined, Rev mutants that do
not localize in the nucleolus are impaired in their ability to
export viral RNA [120,168], suggesting it is critical to the
Rev functional cycle. Reinforcing this idea, FRET measure-
ments also suggest that Rev dimerization occurs in the
nucleolus [171]. Additionally, when Rev and CRM1 are over-
expressed separately, they yielded nucleolar and nuclear
envelope localization, respectively [166]. However, when
both were overexpressed together, CRM1 mobilized to the
nucleolus in a Rev-dependent manner. These results suggest
that the nucleolus may be an interaction point for both pro-
teins [166]. The roles of Rev nucleolar localization remain
under intensive investigation.

3.3. The Rev C-terminal domain is structurally
unresolved

Some of the challenges of working with Rev have been solved
thanks to recent technological advances. For example, Rev
tends to aggregate and precipitate [172], and these properties
have represented a challenge to resolve its structure [12,172].
In fact, it took 14 years after the initial Rev–RNA NMR
models [27] until the first crystal structures of Rev were
resolved [11,14]. Thanks to advances in crystallography tech-
nologies, the field has since reported invaluable crystal
structures of Rev [12,47] and even RRE-bound Rev dimers
[13] which have massively contributed to our understanding
of the Rev–RRE interaction. However, the Rev CTD still
remains mysterious due to its structural plasticity that
forces researchers to either delete it or leave this region unre-
solved in order to obtain structural information [12]. Recent
mutagenesis research suggests that the CTD may help stabil-
ize Rev and prevent aggregation [173]. Conversely, an
increase in HIV-1 fitness is observed when stop codons are
included in the CTD, suggesting it may play an inhibitory
role [174]. More work must be carried out to resolve the mol-
ecular function of the CTD. As the structural biology field
continues to advance, more structures will emerge, and
these will probably provide an unprecedented view on the
interactions orchestrated by Rev.
4. Conclusion and future perspectives
Much is known about the HIV-1 Rev protein, particularly of
its essential role in RNA export. However, many questions
remain unsolved. It is thus vital that systems and method-
ologies are established which strive to more closely emulate
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natural HIV-1 infection and native Rev activity when eluci-
dating the unknowns. These improved approaches will
hopefully advance us towards understanding the structure,
functions and interactions of the HIV-1 Rev protein. In
turn, a better understanding of Rev biology will probably
open novel therapeutic avenues on the quest to combat
HIV-1 infection.

Authors’ contributions. C.T.-S.T. was the primary author of the
review, supported by corrections from A.C., A.J. and I.D. A.J.
also contributed the data analysis and final figures for figures 1b
and 3.

Competing interests. We declare we have no competing interests.
Funding. A.C is funded by an MRC CDA no. MR/L019434/1, the
MRC grant no. MR/R021562/1 and the John Fell Funds from the
University of Oxford. C.T.-S.T. is funded by a BBSRC DTP scholarship
DD01.20. A.J. is funded by Wellcome Investigator Award to I.D.
(209412/Z/17/Z).

Acknowledgements. We acknowledge the Castello and Davis lab for
discussion and feedback.
journal/rsob
References
Open
Biol.10:200320
1. Laskey SB, Siliciano RF. 2014 A mechanistic theory
to explain the efficacy of antiretroviral therapy. Nat.
Rev. Microbiol. 12, 772. (doi:10.1038/nrmicro3351)

2. Mészáros B, Erdós G, Dosztanyi Z. 2018 IUPred2A:
context-dependent prediction of protein disorder as
a function of redox state and protein binding.
Nucleic Acids Res. W329–W337. (doi:10.1093/nar/
gky384)

3. Katahira J. 2015 Nuclear export of messenger RNA.
Genes 6, 163–184. (doi:10.3390/genes6020163)

4. Luo M-j, Reed R. 1999 Splicing is required for rapid
and efficient mRNA export in metazoans. Proc. Natl
Acad. Sci. USA 96, 14937. (doi:10.1073/pnas.96.26.
14937)

5. Jacob AG, Smith CWJ. 2017 Intron retention as a
component of regulated gene expression programs.
Hum. Genet. 136, 1043–1057. (doi:10.1007/s00439-
017-1791-x)

6. Pasquinelli AE, Ernst RK, Lund E, Grimm C, Zapp
ML, Rekosh D, Hammarskjöld ML, Dahlberg JE. 1997
The constitutive transport element (CTE) of Mason-
Pfizer monkey virus (MPMV) accesses a cellular
mRNA export pathway. EMBO J. 16, 7500–7510.
(doi:10.1093/emboj/16.24.7500)

7. Sandri-Goldin RM. 2004 Viral regulation of mRNA
export. J. Virol. 78, 4389–4396. (doi:10.1128/JVI.78.
9.4389-4396.2004)

8. Feinberg MB, Jarrett RF, Aldovini A, Gallo RC, Wong-
Staal F. 1986 HTLV-III expression and production
involve complex regulation at the levels of splicing
and translation of viral RNA. Cell 46, 807–817.
(doi:10.1016/0092-8674(86)90062-0)

9. Sodroski J, Goh WC, Rosen C, Dayton A, Terwilliger
E, Haseltine W. 1986 A second post-transcriptional
trans-activator gene required for HTLV-III
replication. Nature 321, 412–417. (doi:10.1038/
321412a0)

10. Zapp ML, Hope TJ, Parslow TG, Green MR. 1991
Oligomerization and RNA binding domains of the
type 1 human immunodeficiency virus Rev protein:
a dual function for an arginine-rich binding motif.
Proc. Natl Acad. Sci. USA 88, 7734–7738. (doi:10.
1073/pnas.88.17.7734)

11. Daugherty MD, Liu B, Frankel AD. 2010 Structural
basis for cooperative RNA binding and export
complex assembly by HIV Rev. Nat. Struct. Mol. Biol.
17, 1337. (doi:10.1038/nsmb.1902)

12. DiMattia Michael A, Watts Norman R, Cheng N,
Huang R, Heymann JB, Grimes Jonathan M,
Wingfield PT, Stuart DI, Steven AC. 2016 The
structure of HIV-1 Rev filaments suggests a bilateral
model for Rev-RRE assembly. Structure 24,
1068–1080. (doi:10.1016/j.str.2016.04.015)

13. Jayaraman B, Crosby DC, Homer C, Ribeiro I, Mavor
D, Frankel AD. 2014 RNA-directed remodeling of the
HIV-1 protein Rev orchestrates assembly of the Rev-
Rev response element complex. eLife 3, e04120-e.
(doi:10.7554/eLife.04120)

14. DiMattia MA, Watts NR, Stahl SJ, Rader C, Wingfield
PT, Stuart DI, Steven AC, Grimes JM. 2010
Implications of the HIV-1 Rev dimer structure at
3.2Å resolution for multimeric binding to the Rev
response element. Proc. Natl Acad. Sci. 107, 5810.
(doi:10.1073/pnas.0914946107)

15. Watts NR, Misra M, Wingfield PT, Stahl SJ, Cheng N,
Trus BL, Steven AC, Williams RW. 1998 Three-
dimensional structure of HIV-1 Rev protein
filaments. J. Struct. Biol. 121, 41–52. (doi:10.1006/
jsbi.1998.3964)

16. Fischer U, Meyer S, Teufel M, Heckel C, Lührmann R,
Rautmann G. 1994 Evidence that HIV-1 Rev directly
promotes the nuclear export of unspliced RNA.
EMBO J. 13, 4105–4112. (doi:10.1002/j.1460-2075.
1994.tb06728.x)

17. Ocwieja KE et al. 2012 Dynamic regulation of HIV-1
mRNA populations analyzed by single-molecule
enrichment and long-read sequencing. Nucleic
Acids Res. 40, 10 345–10 355. (doi:10.1093/nar/
gks753)

18. Martin Stoltzfus C. 2009 Chapter 1 Regulation of
HIV-1 alternative RNA splicing and its role in virus
replication. In Advances in virus research, vol. 74,
pp. 1–40. New York, NY: Academic Press.

19. Coyle JH, Bor Y-C, Rekosh D, Hammarskjold M-L.
2011 The Tpr protein regulates export of mRNAs
with retained introns that traffic through the Nxf1
pathway. RNA (New York, NY) 17, 1344–1356.
(doi:10.1261/rna.2616111)

20. Purcell DF, Martin MA. 1993 Alternative splicing of
human immunodeficiency virus type 1 mRNA
modulates viral protein expression, replication, and
infectivity. J. Virol. 67, 6365–6378. (doi:10.1128/
JVI.67.11.6365-6378.1993)

21. Henderson BR, Percipalle P. 1997 Interactions
between HIV rev and nuclear import and export
factors: the rev nuclear localisation signal mediates
specific binding to human importin-β. J. Mol. Biol.
274, 693–707. (doi:10.1006/jmbi.1997.1420)
22. Arnold M, Nath A, Hauber J, Kehlenbach RH. 2006
Multiple importins function as nuclear transport
receptors for the Rev protein of human
immunodeficiency virus type 1. J. Biol. Chem. 281,
20 883–20 890. (doi:10.1074/jbc.M602189200)

23. Szebeni A, Mehrotra B, Baumann A, Adam SA,
Wingfield PT, Olson MO. 1997 Nucleolar protein B23
stimulates nuclear import of the HIV-1 Rev protein
and NLS-conjugated albumin. Biochemistry 36,
3941–3949. (doi:10.1021/bi9627931)

24. Fankhauser C, Izaurralde E, Adachi Y, Wingfield P,
Laemmli UK. 1991 Specific complex of human
immunodeficiency virus type 1 rev and nucleolar
B23 proteins: dissociation by the Rev response
element. Mol. Cell Biol. 11, 2567–2575. (doi:10.
1128/MCB.11.5.2567)

25. Malim MH, Tiley LS, McCarn DF, Rusche JR, Hauber
J, Cullen BR. 1990 HIV-1 structural gene expression
requires binding of the rev trans-activator to its RNA
target sequence. Cell 60, 675–683. (doi:10.1016/
0092-8674(90)90670-A)

26. Tiley LS, Malim MH, Tewary HK, Stockley PG, Cullen
BR. 1992 Identification of a high-affinity RNA-
binding site for the human immunodeficiency virus
type 1 Rev protein. Proc. Natl Acad. Sci. 89, 758.
(doi:10.1073/pnas.89.2.758)

27. Battiste JL, Mao H, Rao NS, Tan R, Muhandiram DR,
Kay LE, Frankel AD, Williamson JR. 1996 α helix-
RNA major groove recognition in an HIV-1 Rev
peptide-RRE RNA complex. Science 273,
1547–1551. (doi:10.1126/science.273.5281.
1547)

28. Fisk GJ, Rusche JR, Cook KS, Daly TJ, Hauber J,
Usman N. 1991 Characterization of HIV-1 REV
protein: binding stoichiometry and minimal RNA
substrate. Nucleic Acids Res 19, 1577–1583. (doi:10.
1093/nar/19.7.1577)

29. Heaphy S, Finch JT, Gait MJ, Karn J, Singh M. 1991
Human immunodeficiency virus type 1 regulator of
virion expression, rev, forms nucleoprotein filaments
after binding to a purine-rich ‘bubble’ located
within the rev-responsive region of viral mRNAs.
Proc. Natl Acad. Sci. USA 88, 7366–7370. (doi:10.
1073/pnas.88.16.7366)

30. Kjems J, Brown M, Chang DD, Sharp PA. 1991
Structural analysis of the interaction between the
human immunodeficiency virus Rev protein and the
Rev response element. Proc. Natl Acad. Sci. USA 88,
683–687. (doi:10.1073/pnas.88.3.683)

http://dx.doi.org/10.1038/nrmicro3351
http://dx.doi.org/10.1093/nar/gky384
http://dx.doi.org/10.1093/nar/gky384
http://dx.doi.org/10.3390/genes6020163
http://dx.doi.org/10.1073/pnas.96.26.14937
http://dx.doi.org/10.1073/pnas.96.26.14937
http://dx.doi.org/10.1007/s00439-017-1791-x
http://dx.doi.org/10.1007/s00439-017-1791-x
http://dx.doi.org/10.1093/emboj/16.24.7500
http://dx.doi.org/10.1128/JVI.78.9.4389-4396.2004
http://dx.doi.org/10.1128/JVI.78.9.4389-4396.2004
http://dx.doi.org/10.1016/0092-8674(86)90062-0
http://dx.doi.org/10.1038/321412a0
http://dx.doi.org/10.1038/321412a0
http://dx.doi.org/10.1073/pnas.88.17.7734
http://dx.doi.org/10.1073/pnas.88.17.7734
http://dx.doi.org/10.1038/nsmb.1902
http://dx.doi.org/10.1016/j.str.2016.04.015
http://dx.doi.org/10.7554/eLife.04120
http://dx.doi.org/10.1073/pnas.0914946107
http://dx.doi.org/10.1006/jsbi.1998.3964
http://dx.doi.org/10.1006/jsbi.1998.3964
http://dx.doi.org/10.1002/j.1460-2075.1994.tb06728.x
http://dx.doi.org/10.1002/j.1460-2075.1994.tb06728.x
http://dx.doi.org/10.1093/nar/gks753
http://dx.doi.org/10.1093/nar/gks753
http://dx.doi.org/10.1261/rna.2616111
http://dx.doi.org/10.1128/JVI.67.11.6365-6378.1993
http://dx.doi.org/10.1128/JVI.67.11.6365-6378.1993
http://dx.doi.org/10.1006/jmbi.1997.1420
http://dx.doi.org/10.1074/jbc.M602189200
http://dx.doi.org/10.1021/bi9627931
http://dx.doi.org/10.1128/MCB.11.5.2567
http://dx.doi.org/10.1128/MCB.11.5.2567
http://dx.doi.org/10.1016/0092-8674(90)90670-A
http://dx.doi.org/10.1016/0092-8674(90)90670-A
http://dx.doi.org/10.1073/pnas.89.2.758
http://dx.doi.org/10.1126/science.273.5281.1547
http://dx.doi.org/10.1126/science.273.5281.1547
http://dx.doi.org/10.1093/nar/19.7.1577
http://dx.doi.org/10.1093/nar/19.7.1577
http://dx.doi.org/10.1073/pnas.88.16.7366
http://dx.doi.org/10.1073/pnas.88.16.7366
http://dx.doi.org/10.1073/pnas.88.3.683


royalsocietypublishing.org/journal/rsob
Open

Biol.10:200320

12
31. Daly TJ, Cook KS, Gray GS, Maione TE, Rusche JR.
1989 Specific binding of HIV-1 recombinant Rev
protein to the Rev-responsive element in
vitro. Nature 342, 816–819. (doi:10.1038/
342816a0)

32. Zapp ML, Green MR. 1989 Sequence-specific RNA
binding by the HIV-1 Rev protein. Nature 342,
714–716. (doi:10.1038/342714a0)

33. Karn J, Dingwall C, Finch JT, Heaphy S, Gait MJ.
1991 RNA binding by the tat and rev proteins of
HIV-1. Biochimie 73, 9–16. (doi:10.1016/0300-
9084(91)90068-C)

34. Heaphy S, Dingwall C, Ernberg I, Gait MJ, Green SM,
Kern J, Lowe AD, Singh M, Skinner MA. 1990 HIV-1
regulator of virion expression (Rev) protein binds to
an RNA stem-loop structure located within the Rev
response element region. Cell 60, 685–693. (doi:10.
1016/0092-8674(90)90671-Z)

35. Cole JL, Gehman JD, Shafer JA, Kuo LC. 1993
Solution oligomerization of the rev protein of HIV-1:
implications for function. Biochemistry 32,
11– 769–11 775. (doi:10.1021/bi00095a004)

36. Pond SJK, Ridgeway WK, Robertson R, Wang J,
Millar DP. 2009 HIV-1 Rev protein assembles on
viral RNA one molecule at a time. Proc. Natl Acad.
Sci. USA 106, 1404–1408. (doi:10.1073/pnas.
0807388106)

37. Jain C, Belasco JG. 1996 A structural model for the
HIV-1 Rev–RRE complex deduced from altered-
specificity Rev variants isolated by a rapid genetic
strategy. Cell 87, 115–125. (doi:10.1016/S0092-
8674(00)81328-8)

38. Daly TJ, Doten RC, Rennert P, Auer M, Jaksche H,
Donner A, Fisk G, Rusche JR. 1993 Biochemical
characterization of binding of multiple HIV-1 Rev
monomeric proteins to the Rev responsive element.
Biochemistry 32, 10 497–10 505. (doi:10.1021/
bi00090a028)

39. Malim MH, Cullen BR. 1991 HIV-1 structural gene
expression requires the binding of multiple Rev
monomers to the viral RRE: implications for HIV-1
latency. Cell 65, 241–248. (doi:10.1016/0092-
8674(91)90158-U)

40. Mann DA et al. 1994 A molecular rheostat: co-
operative Rev binding to Stem I of the Rev-response
element modulates human immunodeficiency virus
type-1 late gene expression. J. Mol. Biol. 241,
193–207. (doi:10.1006/jmbi.1994.1488)

41. Robertson-Anderson RM, Wang J, Edgcomb SP,
Carmel AB, Williamson JR, Millar DP. 2011 Single-
molecule studies reveal that DEAD box protein DDX1
promotes oligomerization of HIV-1 Rev on the Rev
response element. J. Mol. Biol. 410, 959–971.
(doi:10.1016/j.jmb.2011.04.026)

42. Hammond JA, Lamichhane R, Millar DP, Williamson
JR. 2017 A DEAD-Box helicase mediates an RNA
structural transition in the HIV-1 Rev response
element. J. Mol. Biol. 429, 697–714. (doi:10.1016/j.
jmb.2017.01.018)

43. Olsen HS, Cochrane AW, Dillon PJ, Nalin CM, Rosen
CA. 1990 Interaction of the human
immunodeficiency virus type 1 Rev protein with a
structured region in env mRNA is dependent on
multimer formation mediated through a basic
stretch of amino acids. Genes Dev. 4, 1357–1364.
(doi:10.1101/gad.4.8.1357)

44. Fang X et al. 2013 An unusual topological structure
of the HIV-1 Rev response element. Cell 155,
594–605. (doi:10.1016/j.cell.2013.10.008)

45. Daugherty MD, D’Orso I, Frankel AD. 2008 A
solution to limited genomic capacity: using
adaptable binding surfaces to assemble the
functional HIV Rev oligomer on RNA. Mol. Cell 31,
824–834. (doi:10.1016/j.molcel.2008.07.016)

46. Carroll IP, Thappeta Y, Fan L, Ramirez-Valdez EA,
Smith S, Wang Y-X, Rein A, Sundquist WI. 2017
Contributions of individual domains to function of
the HIV-1 Rev response element. J. Virol. 91,
e00746–17. (doi:10.1128/JVI.00746-17)

47. Watts NR, Eren E, Zhuang X, Wang Y-X, Steven AC,
Wingfield PT. 2018 A new HIV-1 Rev structure
optimizes interaction with target RNA (RRE) for
nuclear export. J. Struct. Biol. 203, 102–108.
(doi:10.1016/j.jsb.2018.03.011)

48. Malim MH, Böhnlein S, Hauber J, Cullen BR. 1989
Functional dissection of the HIV-1 Rev trans-
activator–derivation of a trans-dominant repressor
of Rev function. Cell 58, 205–214. (doi:10.1016/
0092-8674(89)90416-9)

49. Mermer B, Felber BK, Campbell M, Pavlakis GN.
1990 Identification of trans-dominant HIV-1 rev
protein mutants by direct transfer of bacterially
produced proteins into human cells. Nucleic Acids
Res. 18, 2037–2044. (doi:10.1093/nar/18.8.2037)

50. Huang XJ, Hope TJ, Bond BL, McDonald D, Grahl K,
Parslow TG. 1991 Minimal Rev-response element for
type 1 human immunodeficiency virus. J. Virol. 65,
2131–2134. (doi:10.1128/JVI.65.4.2131-2134.1991)

51. Fischer U, Huber J, Boelens WC, Mattajt LW,
Lührmann R. 1995 The HIV-1 Rev activation domain
is a nuclear export signal that accesses an export
pathway used by specific cellular RNAs. Cell 82,
475–483. (doi:10.1016/0092-8674(95)90436-0)

52. Fornerod M, Ohno M, Yoshida M, Mattaj IW. 1997
CRM1 is an export receptor for Leucine-rich nuclear
export signals. Cell 90, 1051–1060. (doi:10.1016/
S0092-8674(00)80371-2)

53. Booth DS, Cheng Y, Frankel AD. 2014 The export
receptor Crm1 forms a dimer to promote nuclear
export of HIV RNA. eLife 3, e04121. (doi:10.7554/
eLife.04121)

54. Güttler T, Madl T, Neumann P, Deichsel D, Corsini L,
Monecke T, Ficner R, Sattler M, Görlich D. 2010 NES
consensus redefined by structures of PKI-type and
Rev-type nuclear export signals bound to CRM1.
Nat. Struct. Mol. Biol. 17, 1367. (doi:10.1038/nsmb.
1931)

55. Wang Y, Zhang H, Na L, Du C, Zhang Z, Zheng Y-H,
Wang X. 2019 ANP32A and ANP32B are key
factors in the Rev dependent CRM1 pathway for
nuclear export of HIV-1 unspliced mRNA. J. Biol.
Chem. 294, 15 346–15 357.

56. Huang F, Zhang J, Zhang Y, Geng G, Liang J, Li Y,
Chen J, Liu C, Zhang H. 2015 RNA helicase MOV10
functions as a co-factor of HIV-1 Rev to facilitate
Rev/RRE-dependent nuclear export of viral mRNAs.
Virology 486, 15–26. (doi:10.1016/j.virol.2015.08.
026)

57. Ajamian L, Abel K, Rao S, Vyboh K, García-de-Gracia
F, Soto-Rifo R, Kulozik A, Gehring N, Mouland A.
2015 HIV-1 recruits UPF1 but excludes UPF2 to
promote nucleocytoplasmic export of the genomic
RNA. Biomolecules 5, 2808–2839. (doi:10.3390/
biom5042808)

58. Monette A, Panté N, Mouland AJ. 2011 HIV-1
remodels the nuclear pore complex. J. Cell Biol. 193,
619–631. (doi:10.1083/jcb.201008064)

59. Kula A, Guerra J, Knezevich A, Kleva D, Myers MP,
Marcello A. 2011 Characterization of the HIV-1 RNA
associated proteome identifies Matrin 3 as a nuclear
cofactor of Rev function. Retrovirology 8, 60. (doi:10.
1186/1742-4690-8-60)

60. Hofmann W et al. 2001 Cofactor requirements for
nuclear export of Rev response element (RRE)- and
constitutive transport element (CTE)-containing
retroviral RNAs. An unexpected role for actin. J. Cell
Biol. 152, 895–910. (doi:10.1083/jcb.152.5.895)

61. Toro-Ascuy D, Rojas-Araya B, García-de-Gracia F,
Rojas-Fuentes C, Pereira-Montecinos C, Gaete-Argel
A, Valiente-Echeverría F, Ohlmann T, Soto-Rifo R.
2018 A Rev-CBP80-eIF4AI complex drives Gag
synthesis from the HIV-1 unspliced mRNA. Nucleic
Acids Res. 46, 11 539–11 552. (doi:10.1093/nar/
gky851)

62. Edgcomb SP, Carmel AB, Naji S, Ambrus-Aikelin G,
Reyes JR, Saphire ACS, Gerace L, Williamson JR.
2012 DDX1 is an RNA-dependent ATPase involved in
HIV-1 Rev function and virus replication. J. Mol.
Biol. 415, 61–74. (doi:10.1016/j.jmb.2011.10.032)

63. Taniguchi I, Mabuchi N, Ohno M. 2014 HIV-1 Rev
protein specifies the viral RNA export pathway
by suppressing TAP/NXF1 recruitment. Nucleic
Acids Res. 42, 6645–6658. (doi:10.1093/nar/
gku304)

64. Schwartz S, Felber BK, Pavlakis GN. 1992 Distinct
RNA sequences in the gag region of human
immunodeficiency virus type 1 decrease RNA
stability and inhibit expression in the absence of
Rev protein. J. Virol. 66, 150–159. (doi:10.1128/JVI.
66.1.150-159.1992)

65. Cochrane AW, Jones KS, Beidas S, Dillon PJ, Skalka
AM, Rosen CA. 1991 Identification and
characterization of intragenic sequences which
repress human immunodeficiency virus structural
gene expression. J. Virol. 65, 5305–5313. (doi:10.
1128/JVI.65.10.5305-5313.1991)

66. Felber BK, Hadzopoulou-Cladaras M, Cladaras C,
Copeland T, Pavlakis GN. 1989 rev protein of human
immunodeficiency virus type 1 affects the stability
and transport of the viral mRNA. Proc. Natl Acad.
Sci. USA 86, 1495–1499. (doi:10.1073/pnas.86.5.
1495)

67. Hadzopoulou-Cladaras M, Felber BK, Cladaras C,
Athanassopoulos A, Tse A, Pavlakis GN. 1989 The
rev (trs/art) protein of human immunodeficiency
virus type 1 affects viral mRNA and protein
expression via a cis-acting sequence in the env
region. J. Virol. 63, 1265–1274. (doi:10.1128/JVI.63.
3.1265-1274.1989)

http://dx.doi.org/10.1038/342816a0
http://dx.doi.org/10.1038/342816a0
http://dx.doi.org/10.1038/342714a0
http://dx.doi.org/10.1016/0300-9084(91)90068-C
http://dx.doi.org/10.1016/0300-9084(91)90068-C
http://dx.doi.org/10.1016/0092-8674(90)90671-Z
http://dx.doi.org/10.1016/0092-8674(90)90671-Z
http://dx.doi.org/10.1021/bi00095a004
http://dx.doi.org/10.1073/pnas.0807388106
http://dx.doi.org/10.1073/pnas.0807388106
http://dx.doi.org/10.1016/S0092-8674(00)81328-8
http://dx.doi.org/10.1016/S0092-8674(00)81328-8
http://dx.doi.org/10.1021/bi00090a028
http://dx.doi.org/10.1021/bi00090a028
http://dx.doi.org/10.1016/0092-8674(91)90158-U
http://dx.doi.org/10.1016/0092-8674(91)90158-U
http://dx.doi.org/10.1006/jmbi.1994.1488
http://dx.doi.org/10.1016/j.jmb.2011.04.026
http://dx.doi.org/10.1016/j.jmb.2017.01.018
http://dx.doi.org/10.1016/j.jmb.2017.01.018
http://dx.doi.org/10.1101/gad.4.8.1357
http://dx.doi.org/10.1016/j.cell.2013.10.008
http://dx.doi.org/10.1016/j.molcel.2008.07.016
http://dx.doi.org/10.1128/JVI.00746-17
http://dx.doi.org/10.1016/j.jsb.2018.03.011
http://dx.doi.org/10.1016/0092-8674(89)90416-9
http://dx.doi.org/10.1016/0092-8674(89)90416-9
http://dx.doi.org/10.1093/nar/18.8.2037
http://dx.doi.org/10.1128/JVI.65.4.2131-2134.1991
http://dx.doi.org/10.1016/0092-8674(95)90436-0
http://dx.doi.org/10.1016/S0092-8674(00)80371-2
http://dx.doi.org/10.1016/S0092-8674(00)80371-2
http://dx.doi.org/10.7554/eLife.04121
http://dx.doi.org/10.7554/eLife.04121
http://dx.doi.org/10.1038/nsmb.1931
http://dx.doi.org/10.1038/nsmb.1931
http://dx.doi.org/10.1016/j.virol.2015.08.026
http://dx.doi.org/10.1016/j.virol.2015.08.026
http://dx.doi.org/10.3390/biom5042808
http://dx.doi.org/10.3390/biom5042808
http://dx.doi.org/10.1083/jcb.201008064
http://dx.doi.org/10.1186/1742-4690-8-60
http://dx.doi.org/10.1186/1742-4690-8-60
http://dx.doi.org/10.1083/jcb.152.5.895
http://dx.doi.org/10.1093/nar/gky851
http://dx.doi.org/10.1093/nar/gky851
http://dx.doi.org/10.1016/j.jmb.2011.10.032
http://dx.doi.org/10.1093/nar/gku304
http://dx.doi.org/10.1093/nar/gku304
http://dx.doi.org/10.1128/JVI.66.1.150-159.1992
http://dx.doi.org/10.1128/JVI.66.1.150-159.1992
http://dx.doi.org/10.1128/JVI.65.10.5305-5313.1991
http://dx.doi.org/10.1128/JVI.65.10.5305-5313.1991
http://dx.doi.org/10.1073/pnas.86.5.1495
http://dx.doi.org/10.1073/pnas.86.5.1495
http://dx.doi.org/10.1128/JVI.63.3.1265-1274.1989
http://dx.doi.org/10.1128/JVI.63.3.1265-1274.1989


royalsocietypublishing.org/journal/rsob
Open

Biol.10:200320

13
68. Nasioulas G, Zolotukhin AS, Tabernero C, Solomin L,
Cunningham CP, Pavlakis GN, Felber BK. 1994
Elements distinct from human immunodeficiency
virus type 1 splice sites are responsible for the Rev
dependence of env mRNA. J. Virol. 68, 2986–2993.
(doi:10.1128/JVI.68.5.2986-2993.1994)

69. Maldarelli F, Martin MA, Strebel K. 1991
Identification of posttranscriptionally active
inhibitory sequences in human immunodeficiency
virus type 1 RNA: novel level of gene regulation.
J. Virol. 65, 5732–5743. (doi:10.1128/JVI.65.11.
5732-5743.1991)

70. Nguyen K-L, Llano M, Akari H, Miyagi E, Poeschla
EM, Strebel K, Bour S. 2004 Codon optimization of
the HIV-1 vpu and vif genes stabilizes their mRNA
and allows for highly efficient Rev-independent
expression. Virology 319, 163–175. (doi:10.1016/j.
virol.2003.11.021)

71. van der Kuyl AC, Berkhout B. 2012 The biased
nucleotide composition of the HIV genome: a
constant factor in a highly variable virus.
Retrovirology 9, 92. (doi:10.1186/1742-4690-9-92)

72. Haas J, Park E-C, Seed B. 1996 Codon usage
limitation in the expression of HIV-1 envelope
glycoprotein. Curr. Biol. 6, 315–324. (doi:10.1016/
S0960-9822(02)00482-7)

73. Schwartz S, Campbell M, Nasioulas G, Harrison J,
Felber BK, Pavlakis GN. 1992 Mutational inactivation
of an inhibitory sequence in human
immunodeficiency virus type 1 results in Rev-
independent gag expression. J. Virol. 66,
7176–7182. (doi:10.1128/JVI.66.12.7176-7182.
1992)

74. Schneider R, Campbell M, Nasioulas G, Felber BK,
Pavlakis GN. 1997 Inactivation of the human
immunodeficiency virus type 1 inhibitory
elements allows Rev-independent expression of
Gag and Gag/protease and particle formation.
J. Virol. 71, 4892–4903. (doi:10.1128/JVI.71.7.
4892-4903.1997)

75. Anson DS, Dunning KR. 2005 Codon-optimized
reading frames facilitate high-level expression of the
HIV-1 minor proteins. Mol. Biotechnol. 31, 85–88.
(doi:10.1385/MB:31:1:085)

76. Ngumbela KC, Ryan KP, Sivamurthy R, Brockman
MA, Gandhi RT, Bhardwaj N, Kavanagh DG, Nixon
DF. 2008 Quantitative effect of suboptimal codon
usage on translational efficiency of mRNA encoding
HIV-1 gag in intact T cells. PLoS ONE 3, e2356.
(doi:10.1371/journal.pone.0002356)

77. Kotsopoulou E, Kim VN, Kingsman AJ, Kingsman
SM, Mitrophanous KA. 2000 A Rev-independent
human immunodeficiency virus type 1 (HIV-1)-
based vector that exploits a codon-optimized HIV-1
gag-pol gene. J. Virol. 74, 4839–4852. (doi:10.
1128/JVI.74.10.4839-4852.2000)

78. Zolotukhin AS, Michalowski D, Bear J, Smulevitch
SV, Traish AM, Peng R, Patton J, Shatsky IN, Felber
BK. 2003 PSF acts through the human
immunodeficiency virus type 1 mRNA instability
elements to regulate virus expression. Mol. Cell. Biol.
23, 6618–6630. (doi:10.1128/MCB.23.18.6618-
6630.2003)
79. Afonina E, Neumann M, Pavlakis GN. 1997
Preferential binding of Poly(A)-binding protein 1 to
an inhibitory RNA element in the human
immunodeficiency virus Type 1 gag mRNA. J. Biol.
Chem. 272, 2307–2311. (doi:10.1074/jbc.272.4.
2307)

80. Black AC, Luo J, Watanabe C, Chun S, Bakker A,
Fraser JK, Morgan JP, Rosenblatt JD. 1995
Polypyrimidine tract-binding protein and
heterogeneous nuclear ribonucleoprotein A1 bind to
human T-cell leukemia virus type 2 RNA regulatory
elements. J. Virol. 69, 6852–6858. (doi:10.1128/JVI.
69.11.6852-6858.1995)

81. Najera I, Krieg M, Karn J. 1999 Synergistic
stimulation of HIV-1 rev-dependent export of
unspliced mRNA to the cytoplasm by hnRNP A1.
J. Mol. Biol. 285, 1951–1964. (doi:10.1006/jmbi.
1998.2473)

82. Valiente-Echeverría F, Vallejos M, Monette A, Pino
K, Letelier A, Huidobro-Toro JP, Mouland AJ, López-
Lastra M, Jan E. 2013 A cis-acting element present
within the Gag open reading frame negatively
impacts on the activity of the HIV-1 IRES. PLoS
ONE 8, e56962. (doi:10.1371/journal.pone.
0056962)

83. Kjems J, Frankel AD, Sharp PA. 1991 Specific
regulation of mRNA splicing in vitro by a peptide
from HIV-1 Rev. Cell 67, 169–178. (doi:10.1016/
0092-8674(91)90580-R)

84. Kjems J, Sharp PA. 1993 The basic domain of Rev
from human immunodeficiency virus type 1
specifically blocks the entry of U4/U6.U5 small
nuclear ribonucleoprotein in spliceosome assembly.
J. Virol. 67, 4769–4776. (doi:10.1128/JVI.67.8.4769-
4776.1993)

85. Xiao H et al. 2020 CRNKL1 is a highly selective
regulator of intron-retaining HIV-1 and cellular
mRNAs. bioRxiv. 2020.02.04.934927.

86. Powell DM, Amaral MC, Wu JY, Maniatis T, Greene
WC. 1997 HIV Rev-dependent binding of SF2/ASF to
the Rev response element: possible role in Rev-
mediated inhibition of HIV RNA splicing. Proc. Natl
Acad. Sci. USA 94, 973–978. (doi:10.1073/pnas.94.
3.973)

87. Caputi M, Freund M, Kammler S, Asang C, Schaal H.
2004 A bidirectional SF2/ASF- and SRp40-
dependent splicing enhancer regulates human
immunodeficiency virus Type 1 rev, env, vpu, and
nef gene expression. J. Virol. 78, 6517. (doi:10.
1128/JVI.78.12.6517-6526.2004)

88. Ropers D, Ayadi L, Gattoni R, Jacquenet S, Damier L,
Branlant C, Stévenin J. 2004 Differential effects of
the SR proteins 9G8, SC35, ASF/SF2, and SRp40 on
the utilization of the A1 to A5 splicing sites of HIV-
1 RNA. J. Biol. Chem. 279, 29 963–29 973. (doi:10.
1074/jbc.M404452200)

89. Jablonski JA, Caputi M. 2009 Role of cellular RNA
processing factors in human immunodeficiency virus
type 1 mRNA metabolism, replication, and
infectivity. J. Virol. 83, 981–992. (doi:10.1128/JVI.
01801-08)

90. Jacquenet S, Decimo D, Muriaux D, Darlix J-L. 2005
Dual effect of the SR proteins ASF/SF2, SC35 and
9G8 on HIV-1 RNA splicing and virion production.
Retrovirology 2, 33. (doi:10.1186/1742-4690-2-33)

91. Sherrill-Mix S, Ocwieja KE, Bushman FD. 2015 Gene
activity in primary T cells infected with HIV89.6:
intron retention and induction of genomic repeats.
Retrovirology 12, 79. (doi:10.1186/s12977-015-
0205-1)

92. Knight DM, Flomerfelt FA, Ghrayeb J. 1987
Expression of the art/trs protein of HIV and study of
its role in viral envelope synthesis. Science 236, 837.
(doi:10.1126/science.3033827)

93. D’Agostino DM, Felber BK, Harrison JE, Pavlakis GN.
1992 The Rev protein of human immunodeficiency
virus type 1 promotes polysomal association and
translation of gag/pol and vpu/env mRNAs. Mol.
Cell. Biol. 12, 1375–1386. (doi:10.1128/MCB.12.3.
1375)

94. Arrigo SJ, Chen IS. 1991 Rev is necessary for
translation but not cytoplasmic accumulation of
HIV-1 vif, vpr, and env/vpu 2 RNAs. Genes Dev. 5,
808–819. (doi:10.1101/gad.5.5.808)

95. Perales C, Carrasco L, González ME. 2005 Regulation
of HIV-1 env mRNA translation by Rev protein.
Biochim. Biophys. Acta (BBA)—Mol. Cell Res. 1743,
169–175. (doi:10.1016/j.bbamcr.2004.09.030)

96. Emerman M, Vazeux R, Peden K. 1989 The rev gene
product of the human immunodeficiency virus
affects envelope-specific RNA localization. Cell 57,
1155–1165. (doi:10.1016/0092-8674(89)90053-6)

97. Yi R, Bogerd HP, Cullen BR. 2002 Recruitment of the
Crm1 nuclear export factor is sufficient to induce
cytoplasmic expression of incompletely spliced
human immunodeficiency virus mRNAs. J. Virol. 76,
2036–2042. (doi:10.1128/jvi.76.5.2036-2042.2002)

98. Gallego J et al. 2003 Rev binds specifically to a
purine loop in the SL1 region of the HIV-1 leader
RNA. J. Biol. Chem. 278, 40 385–40 391. (doi:10.
1074/jbc.M301041200)

99. Groom HCT, Anderson EC, Dangerfield JA, Lever
AML. 2009 Rev regulates translation of human
immunodeficiency virus type 1 RNAs. J. Gen. Virol.
90, 1141. (doi:10.1099/vir.0.007963-0)

100. Greatorex JS, Palmer EA, Pomerantz RJ, Dangerfield
JA, Lever AML. 2006 Mutation of the Rev-binding
loop in the human immunodeficiency virus 1 leader
causes a replication defect characterized by altered
RNA trafficking and packaging. J. Gen. Virol. 87,
3039. (doi:10.1099/vir.0.81658-0)

101. Berkowitz RD, Hammarskjöld M-L, Helga-Maria C,
Rekosh D, Goff SP. 1995 50 regions of HIV-1 RNAs
are not sufficient for encapsidation: implications for
the HIV-1 packaging signal. Virology 212, 718–723.
(doi:10.1006/viro.1995.1530)

102. Richardson JH, Child LA, Lever AM. 1993 Packaging
of human immunodeficiency virus type 1 RNA
requires cis-acting sequences outside the 5’ leader
region. J. Virol. 67, 3997. (doi:10.1128/JVI.67.7.
3997-4005.1993)

103. Anson DS, Fuller M. 2003 Rational development of a
HIV-1 gene therapy vector. J. Gene Med. 5,
829–838. (doi:10.1002/jgm.415)

104. Kharytonchyk S, Brown JD, Stilger K, Yasin S, Iyer
AS, Collins J, Summers MF, Telesnitsky A. 2018

http://dx.doi.org/10.1128/JVI.68.5.2986-2993.1994
http://dx.doi.org/10.1128/JVI.65.11.5732-5743.1991
http://dx.doi.org/10.1128/JVI.65.11.5732-5743.1991
http://dx.doi.org/10.1016/j.virol.2003.11.021
http://dx.doi.org/10.1016/j.virol.2003.11.021
http://dx.doi.org/10.1186/1742-4690-9-92
http://dx.doi.org/10.1016/S0960-9822(02)00482-7
http://dx.doi.org/10.1016/S0960-9822(02)00482-7
http://dx.doi.org/10.1128/JVI.66.12.7176-7182.1992
http://dx.doi.org/10.1128/JVI.66.12.7176-7182.1992
http://dx.doi.org/10.1128/JVI.71.7.4892-4903.1997
http://dx.doi.org/10.1128/JVI.71.7.4892-4903.1997
http://dx.doi.org/10.1385/MB:31:1:085
http://dx.doi.org/10.1371/journal.pone.0002356
http://dx.doi.org/10.1128/JVI.74.10.4839-4852.2000
http://dx.doi.org/10.1128/JVI.74.10.4839-4852.2000
http://dx.doi.org/10.1128/MCB.23.18.6618-6630.2003
http://dx.doi.org/10.1128/MCB.23.18.6618-6630.2003
http://dx.doi.org/10.1074/jbc.272.4.2307
http://dx.doi.org/10.1074/jbc.272.4.2307
http://dx.doi.org/10.1128/JVI.69.11.6852-6858.1995
http://dx.doi.org/10.1128/JVI.69.11.6852-6858.1995
http://dx.doi.org/10.1006/jmbi.1998.2473
http://dx.doi.org/10.1006/jmbi.1998.2473
http://dx.doi.org/10.1371/journal.pone.0056962
http://dx.doi.org/10.1371/journal.pone.0056962
http://dx.doi.org/10.1016/0092-8674(91)90580-R
http://dx.doi.org/10.1016/0092-8674(91)90580-R
http://dx.doi.org/10.1128/JVI.67.8.4769-4776.1993
http://dx.doi.org/10.1128/JVI.67.8.4769-4776.1993
http://dx.doi.org/10.1073/pnas.94.3.973
http://dx.doi.org/10.1073/pnas.94.3.973
http://dx.doi.org/10.1128/JVI.78.12.6517-6526.2004
http://dx.doi.org/10.1128/JVI.78.12.6517-6526.2004
http://dx.doi.org/10.1074/jbc.M404452200
http://dx.doi.org/10.1074/jbc.M404452200
http://dx.doi.org/10.1128/JVI.01801-08
http://dx.doi.org/10.1128/JVI.01801-08
http://dx.doi.org/10.1186/1742-4690-2-33
http://dx.doi.org/10.1186/s12977-015-0205-1
http://dx.doi.org/10.1186/s12977-015-0205-1
http://dx.doi.org/10.1126/science.3033827
http://dx.doi.org/10.1128/MCB.12.3.1375
http://dx.doi.org/10.1128/MCB.12.3.1375
http://dx.doi.org/10.1101/gad.5.5.808
http://dx.doi.org/10.1016/j.bbamcr.2004.09.030
http://dx.doi.org/10.1016/0092-8674(89)90053-6
http://dx.doi.org/10.1128/jvi.76.5.2036-2042.2002
http://dx.doi.org/10.1074/jbc.M301041200
http://dx.doi.org/10.1074/jbc.M301041200
http://dx.doi.org/10.1099/vir.0.007963-0
http://dx.doi.org/10.1099/vir.0.81658-0
http://dx.doi.org/10.1006/viro.1995.1530
http://dx.doi.org/10.1128/JVI.67.7.3997-4005.1993
http://dx.doi.org/10.1128/JVI.67.7.3997-4005.1993
http://dx.doi.org/10.1002/jgm.415


royalsocietypublishing.org/journal/rsob
Open

Biol.10:200320

14
Influence of gag and RRE sequences on HIV-1
RNA packaging signal structure and function. J. Mol.
Biol. 430, 2066–2079. (doi:10.1016/j.jmb.2018.
05.029)

105. Brandt S, Blißenbach M, Grewe B, Konietzny R,
Grunwald T, Überla K. 2007 Rev proteins of human
and Simian immunodeficiency virus enhance RNA
encapsidation. PLoS Pathog. 3, e54. (doi:10.1371/
journal.ppat.0030054)

106. Blissenbach M, Grewe B, Hoffmann B, Brandt S,
Überla K. 2010 Nuclear RNA export and packaging
functions of HIV-1 Rev revisited. J. Virol. 84, 6598.
(doi:10.1128/JVI.02264-09)

107. Ma J, Rong L, Zhou Y, Roy BB, Lu J, Abrahamyan L,
Mouland AJ, Pan Q, Liang C. 2008 The requirement
of the DEAD-box protein DDX24 for the packaging
of human immunodeficiency virus type 1 RNA.
Virology 375, 253–264. (doi:10.1016/j.virol.2008.
01.025)

108. Cockrell AS, van Praag H, Santistevan N, Ma H, Kafri
T. 2011 The HIV-1 Rev/RRE system is required for
HIV-1 5’ UTR cis elements to augment
encapsidation of heterologous RNA into HIV-1 viral
particles. Retrovirology 8, 51. (doi:10.1186/1742-
4690-8-51)

109. Boeras I, Seufzer B, Brady S, Rendahl A, Heng X,
Boris-Lawrie K. 2017 The basal translation rate of
authentic HIV-1 RNA is regulated by 5’UTR nt-
pairings at junction of R and U5. Sci. Rep. 7, 6902.
(doi:10.1038/s41598-017-06883-9)

110. Luo Y et al. 2016 HIV–host interactome revealed
directly from infected cells. Nat. Microbiol. 1, 16068.
(doi:10.1038/nmicrobiol.2016.68)

111. Naji S et al. 2012 Host cell interactome of HIV-1 Rev
includes RNA helicases involved in multiple facets of
virus production. Mol. Cell. Proteom. 11,
M111.015313. (doi:10.1074/mcp.M111.015313)

112. Gautier VW, Gu L, O’Donoghue N, Pennington S,
Sheehy N, Hall WW. 2009 In vitro nuclear
interactome of the HIV-1 Tat protein. Retrovirology
6, 47. (doi:10.1186/1742-4690-6-47)

113. Engeland CE, Brown NP, Börner K, Schümann M,
Krause E, Kaderali L, Müller GA, Kräusslich H-G.
2014 Proteome analysis of the HIV-1 Gag
interactome. Virology 460–461, 194–206. (doi:10.
1016/j.virol.2014.04.038)

114. Jäger S et al. 2011 Global landscape of HIV–human
protein complexes. Nature 481, 365. (doi:10.1038/
nature10719)

115. Cochrane A et al. 2009 Stable complex formation
between HIV Rev and the nucleosome assembly
protein, NAP1, affects Rev function. Virology 388,
103–111. (doi:10.1016/j.virol.2009.03.005)

116. Arizala JAC, Chomchan P, Li H, Moore R, Ge H,
Ouellet DL, Rossi JJ. 2019 Identification of nucleolar
factors during HIV-1 replication through Rev
immunoprecipitation and mass spectrometry. JoVE
148, e59329. (doi:10.3791/59329)

117. Suhasini M, Thipparthi RR. 2009 Cellular proteins
and HIV-1 Rev function. Curr. HIV Res. 7, 91–100.
(doi:10.2174/157016209787048474)

118. Chu C-C, Plangger R, Kreutz C, Al-Hashimi HM. 2018
Dynamic ensemble of HIV-1 RRE stem IIB reveals
non-native conformations that disrupt the Rev
binding site. bioRxiv 498907.

119. Gu L, Tsuji T, Jarboui MA, Yeo GP, Sheehy N, Hall
WW, Gautier VW. 2011 Intermolecular masking of
the HIV-1 Rev NLS by the cellular protein HIC: novel
insights into the regulation of Rev nuclear import.
Retrovirology 8, 17. (doi:10.1186/1742-4690-8-17)

120. Arizala JAC, Takahashi M, Burnett JC, Ouellet DL, Li
H, Rossi JJ. 2018 Nucleolar localization of HIV-1 Rev
is required, yet insufficient for production of
infectious viral particles. AIDS Res. Hum. Retroviruses
34, 961–981. (doi:10.1089/aid.2017.0306)

121. Marchand V, Santerre M, Aigueperse C, Fouillen L,
Saliou J-M, Van Dorsselaer A, Sanglier-Cianférani S,
Branlant C, Motorin Y. 2011 Identification of protein
partners of the human immunodeficiency virus 1
tat/rev exon 3 leads to the discovery of a new HIV-1
splicing regulator, protein hnRNP K. RNA Biol. 8,
325–342. (doi:10.4161/rna.8.2.13984)

122. Knoener RA, Becker JT, Scalf M, Sherer NM, Smith
LM. 2017 Elucidating the in vivo interactome of
HIV-1 RNA by hybridization capture and mass
spectrometry. Sci. Rep. 7, 16965. (doi:10.1038/
s41598-017-16793-5)

123. Liu J, Henao-Mejia J, Liu H, Zhao Y, He JJ. 2011
Translational regulation of HIV-1 replication by HIV-
1 Rev cellular cofactors Sam68, eIF5A, hRIP, and
DDX3. J. Neuroimmune Pharmacol. 6, 308–321.
(doi:10.1007/s11481-011-9265-8)

124. Groom H, Anderson E, Lever A. 2009 Rev: beyond
nuclear export. J. Gen. Virol. 90, 1303–1318.
(doi:10.1099/vir.0.011460-0)

125. Fang J, Kubota S, Yang B, Zhou N, Zhang H,
Godbout R, Pomerantz RJ. 2004 A DEAD box protein
facilitates HIV-1 replication as a cellular co-factor of
Rev. Virology 330, 471–480. (doi:10.1016/j.virol.
2004.09.039)

126. Yedavalli VSRK, Neuveut C, Chi Y-h, Kleiman L,
Jeang K-T. 2004 Requirement of DDX3 DEAD
box RNA helicase for HIV-1 Rev-RRE export
function. Cell 119, 381–392. (doi:10.1016/j.cell.
2004.09.029)

127. Yasuda-Inoue M, Kuroki M, Ariumi Y. 2013 Distinct
DDX DEAD-box RNA helicases cooperate to
modulate the HIV-1 Rev function. Biochem. Biophys.
Rese. Commun. 434, 803–808. (doi:10.1016/j.bbrc.
2013.04.016)

128. Hammond JA, Zhou L, Lamichhane R, Chu H-Y,
Millar DP, Gerace L, Williamson JR. 2018 A survey of
DDX21 activity during Rev/RRE complex formation.
J. Mol. Biol. 430, 537–553. (doi:10.1016/j.jmb.
2017.06.023)

129. Pfeifer K, Weiler BE, Ugarkovic D, Bachmann M,
SchrÖDer HC, Müller WEG. 1991 Evidence for a
direct interaction of Rev protein with nuclear
envelope mRNA–translocation system.
Eur. J. Biochem. 199, 53–64. (doi:10.1111/j.1432-
1033.1991.tb16091.x)

130. Fukuda M, Asano S, Nakamura T, Adachi M, Yoshida
M, Yanagida M, Nishida E. 1997 CRM1 is responsible
for intracellular transport mediated by the nuclear
export signal. Nature 390, 308–311. (doi:10.1038/
36894)
131. Wolff B, Sanglier J-J, Wang Y. 1997 Leptomycin B is
an inhibitor of nuclear export: inhibition of nucleo-
cytoplasmic translocation of the human
immunodeficiency virus type 1 (HIV-1) Rev protein
and Rev-dependent mRNA. Chem. Biol. 4, 139–147.
(doi:10.1016/S1074-5521(97)90257-X)

132. Neville M, Stutz F, Lee L, Davis LI, Rosbash M. 1997
The importin-beta family member Crm1p bridges
the interaction between Rev and the nuclear pore
complex during nuclear export. Curr. Biol. 7,
767–775. (doi:10.1016/S0960-9822(06)00335-6)

133. Ristea S, Dobbelstein M, Roth J. 2000 Rev protein of
human immunodeficiency virus Type 1 and cellular
Exportin 1 protein relocalize each other to a
subnucleolar structure. AIDS Res. Hum. Retroviruses
16, 857–865. (doi:10.1089/08892220050042792)

134. Pelechano V, Alepuz P. 2017 eIF5A facilitates
translation termination globally and promotes the
elongation of many non polyproline-specific
tripeptide sequences. Nucleic Acids Res. 45,
7326–7338. (doi:10.1093/nar/gkx479)

135. Ruhl M et al. 1993 Eukaryotic initiation factor 5A is
a cellular target of the human immunodeficiency
virus type 1 Rev activation domain mediating trans-
activation. J. Cell Biol. 123, 1309. (doi:10.1083/jcb.
123.6.1309)

136. Bevec D et al. 1996 Inhibition of HIV-1 replication in
lymphocytes by mutants of the Rev cofactor eIF-5A.
Science 271, 1858. (doi:10.1126/science.271.5257.
1858)

137. Rosorius O, Reichart B, Kratzer F, Heger P,
Dabauvalle MC, Hauber J. 1999 Nuclear pore
localization and nucleocytoplasmic transport of eIF-
5A: evidence for direct interaction with the export
receptor CRM1. J. Cell Sci. 112, 2369. (doi:10.1016/
s0248-4900(98)80260-8)

138. Schatz O, Oft M, Dascher C, Schebesta M, Rosorius
O, Jaksche H, Dobrovnik M, Bevec D, Hauber J. 1998
Interaction of the HIV-1 Rev cofactor eukaryotic
initiation factor 5A with ribosomal protein L5. Proc.
Natl Acad. Sci. 95, 1607. (doi:10.1073/pnas.95.4.
1607)

139. Bogerd H, Fridell RA, Madore SJ, Cullen B. 1995
Identification of a human cofactor for the rev/rex
class of retroviral regulatory proteins. AIDS Res.
Hum. Retroviruses 11, S86. (doi:10.1016/0092-
8674(95)90437-9)

140. Bonyhadi ML et al. 1997 RevM10-expressing T cells
derived in vivo from transduced human
hematopoietic stem-progenitor cells inhibit human
immunodeficiency virus replication. J. Virol. 71,
4707–4716. (doi:10.1128/JVI.71.6.4707-4716.1997)

141. Ranga U, Woffendin C, Verma S, Xu L, June CH,
Bishop DK, Nabel GJ. 1998 Enhanced T cell
engraftment after retroviral delivery of an antiviral
gene in HIV-infected individuals. Proc. Natl Acad.
Sci. USA 95, 1201–1206. (doi:10.1073/pnas.95.3.
1201)

142. Chan SY, Louie MC, Piccotti JR, Iyer G, Ling X, Yang
Z-Y, Nabel GJ, Bishop DK. 1998 Genetic vaccination-
induced immune responses to the human
immunodeficiency virus protein Rev: emergence of
the interleukin 2-producing helper T lymphocyte.

http://dx.doi.org/10.1016/j.jmb.2018.05.029
http://dx.doi.org/10.1016/j.jmb.2018.05.029
http://dx.doi.org/10.1371/journal.ppat.0030054
http://dx.doi.org/10.1371/journal.ppat.0030054
http://dx.doi.org/10.1128/JVI.02264-09
http://dx.doi.org/10.1016/j.virol.2008.01.025
http://dx.doi.org/10.1016/j.virol.2008.01.025
http://dx.doi.org/10.1186/1742-4690-8-51
http://dx.doi.org/10.1186/1742-4690-8-51
http://dx.doi.org/10.1038/s41598-017-06883-9
http://dx.doi.org/10.1038/nmicrobiol.2016.68
http://dx.doi.org/10.1074/mcp.M111.015313
http://dx.doi.org/10.1186/1742-4690-6-47
http://dx.doi.org/10.1016/j.virol.2014.04.038
http://dx.doi.org/10.1016/j.virol.2014.04.038
http://dx.doi.org/10.1038/nature10719
http://dx.doi.org/10.1038/nature10719
http://dx.doi.org/10.1016/j.virol.2009.03.005
http://dx.doi.org/10.3791/59329
http://dx.doi.org/10.2174/157016209787048474
http://dx.doi.org/10.1186/1742-4690-8-17
http://dx.doi.org/10.1089/aid.2017.0306
http://dx.doi.org/10.4161/rna.8.2.13984
http://dx.doi.org/10.1038/s41598-017-16793-5
http://dx.doi.org/10.1038/s41598-017-16793-5
http://dx.doi.org/10.1007/s11481-011-9265-8
http://dx.doi.org/10.1099/vir.0.011460-0
http://dx.doi.org/10.1016/j.virol.2004.09.039
http://dx.doi.org/10.1016/j.virol.2004.09.039
http://dx.doi.org/10.1016/j.cell.2004.09.029
http://dx.doi.org/10.1016/j.cell.2004.09.029
http://dx.doi.org/10.1016/j.bbrc.2013.04.016
http://dx.doi.org/10.1016/j.bbrc.2013.04.016
http://dx.doi.org/10.1016/j.jmb.2017.06.023
http://dx.doi.org/10.1016/j.jmb.2017.06.023
http://dx.doi.org/10.1111/j.1432-1033.1991.tb16091.x
http://dx.doi.org/10.1111/j.1432-1033.1991.tb16091.x
http://dx.doi.org/10.1038/36894
http://dx.doi.org/10.1038/36894
http://dx.doi.org/10.1016/S1074-5521(97)90257-X
http://dx.doi.org/10.1016/S0960-9822(06)00335-6
http://dx.doi.org/10.1089/08892220050042792
http://dx.doi.org/10.1093/nar/gkx479
http://dx.doi.org/10.1083/jcb.123.6.1309
http://dx.doi.org/10.1083/jcb.123.6.1309
http://dx.doi.org/10.1126/science.271.5257.1858
http://dx.doi.org/10.1126/science.271.5257.1858
http://dx.doi.org/10.1016/s0248-4900(98)80260-8
http://dx.doi.org/10.1016/s0248-4900(98)80260-8
http://dx.doi.org/10.1073/pnas.95.4.1607
http://dx.doi.org/10.1073/pnas.95.4.1607
http://dx.doi.org/10.1016/0092-8674(95)90437-9
http://dx.doi.org/10.1016/0092-8674(95)90437-9
http://dx.doi.org/10.1128/JVI.71.6.4707-4716.1997
http://dx.doi.org/10.1073/pnas.95.3.1201
http://dx.doi.org/10.1073/pnas.95.3.1201


royalsocietypublishing.org/journal/rsob
Open

Biol.10:200320

15
Hum. Gene Therapy 9, 2187–2196. (doi:10.1089/
hum.1998.9.15-2187)

143. Bahner I, Sumiyoshi T, Kagoda M, Swartout R,
Peterson D, Pepper K, Dorey F, Reiser J, Kohn DB.
2007 Lentiviral vector transduction of a dominant-
negative Rev gene into human CD34+

hematopoietic progenitor cells potently inhibits
human immunodeficiency virus-1 replication. Mol.
Ther. 15, 76–85. (doi:10.1038/sj.mt.6300025)

144. Ragheb JA, Bressler P, Daucher M, Chiang L, Chuah
MKL, Vandendriessche T, Morgan RA. 1995 Analysis
of trans-dominant mutants of the HIV type 1 Rev
protein for their ability to inhibit Rev function, HIV
type 1 replication, and their use as anti-HIV gene
therapeutics. AIDS Res. Hum. Retroviruses 11,
1343–1353. (doi:10.1089/aid.1995.11.1343)

145. Hamm TE, Rekosh D, Hammarskjöld M-L. 1999
Selection and characterization of human
immunodeficiency virus type 1 mutants that are
resistant to inhibition by the transdominant
negative RevM10 protein. J. Virol 73, 5741. (doi:10.
1128/JVI.73.7.5741-5747.1999)

146. Werstuck G, Zapp ML, Green MR. 1996 A non-
canonical base pair within the human
immunodeficiency virus Rev-responsive element is
involved in both Rev and small molecule
recognition. Chem. Biol. 3, 129–137. (doi:10.1016/
S1074-5521(96)90289-6)

147. Zapp ML, Stern S, Green MR. 1993 Small molecules
that selectively block RNA binding of HIV-1 rev
protein inhibit rev function and viral production. Cell
74, 969–978. (doi:10.1016/0092-8674(93)90720-B)

148. Matsukura M et al. 1989 Regulation of viral
expression of human immunodeficiency virus in
vitro by an antisense phosphorothioate
oligodeoxynucleotide against rev (art/trs)
in chronically infected cells. Proc. Natl Acad. Sci.
USA 86, 4244–4248. (doi:10.1073/pnas.86.11.
4244)

149. Nakaya T, Iwai S, Fujinaga K, Sato Y, Otsuka E, Ikuta
K. 1997 Decoy approach using RNA-DNA chimera
oligonucleotides to inhibit the regulatory function
of human immunodeficiency virus type 1 Rev
protein. Antimicrob Agents Chemother. 41,
319–325. (doi:10.1128/AAC.41.2.319)

150. Ratmeyer L, Zapp ML, Green MR, Vinayak R, Kumar
A, Boykin DW, Wilson WD. 1996 Inhibition of HIV-1
Rev−RRE interaction by diphenylfuran derivatives.
Biochemistry 35, 13 689–13 696. (doi:10.1021/
bi960954v)

151. Xiao G, Kumar A, Li K, Rigl CT, Bajic M, Davis TM,
Boykin DW, Wilson WD. 2001 Inhibition of the HIV-
1 rev–RRE complex formation by unfused aromatic
cations. Bioorg. Med. Chem. 9, 1097–1113. (doi:10.
1016/S0968-0896(00)00344-8)
152. Good PD et al. 1997 Expression of small, therapeutic
RNAs in human cell nuclei. Gene Ther. 4, 45–54.
(doi:10.1038/sj.gt.3300354)

153. Dearborn AD, Eren E, Watts NR, Palmer IW,
Kaufman JD, Steven AC, Wingfield PT. 2018
Structure of an RNA aptamer that can inhibit HIV-1
by blocking Rev-cognate RNA (RRE) binding and
Rev–Rev association. Structure 26, 1187–1195.e4.
(doi:10.1016/j.str.2018.06.001)

154. Jin Y, Cowan JA. 2006 Targeted cleavage of HIV Rev
response element RNA by metallopeptide
complexes. J. Am. Chem. Soc. 128, 410–411.
(doi:10.1021/ja055272m)

155. Jin Y, Cowan JA. 2007 Cellular activity of Rev
response element RNA targeting metallopeptides.
J. Biol. Inorg. Chem. 12, 637–644. (doi:10.1007/
s00775-007-0221-2)

156. Prado S, Beltrán M, Coiras M, Bedoya LM, Alcamí J,
Gallego J. 2016 Bioavailable inhibitors of HIV-1 RNA
biogenesis identified through a Rev-based screen.
Biochem. Pharmacol. 107, 14–28. (doi:10.1016/j.
bcp.2016.02.007)

157. Zhang Q, Harada K, Cho HS, Frankel AD, Wemmer
DE. 2001 Structural characterization of the complex
of the Rev response element RNA with a selected
peptide. Chem. Biol. 8, 511–520. (doi:10.1016/
S1074-5521(01)00027-8)

158. Mills NL, Daugherty MD, Frankel AD, Guy RK. 2006
An α-helical peptidomimetic inhibitor of the HIV-1
Rev−RRE interaction. J. Am. Chem. Soc. 128,
3496–3497. (doi:10.1021/ja0582051)

159. McColl DJ, Honchell CD, Frankel AD. 1999 Structure-
based design of an RNA-binding zinc finger. Proc.
Natl Acad. Sci. USA 96, 9521–9526. (doi:10.1073/
pnas.96.17.9521)

160. Dai Y, Peralta AN, Wynn JE, Sherpa C, Li H, Verma
A, Le Grice SFJ, Santos WL. 2019 Molecular
recognition of a branched peptide with HIV-1 Rev
response element (RRE) RNA. Bioorg. Med. Chem.
27, 1759–1765. (doi:10.1016/j.bmc.2019.03.016)

161. Prado S, Beltrán M, Moreno Á, Bedoya LM, Alcamí J,
Gallego J. 2018 A small-molecule inhibitor of HIV-1
Rev function detected by a diversity screen based
on RRE-Rev interference. Biochem. Pharmacol. 156,
68–77. (doi:10.1016/j.bcp.2018.07.040)

162. Wong RW, Balachandran A, Haaland M, Stoilov P,
Cochrane A. 2013 Characterization of novel inhibitors
of HIV-1 replication that function via alteration of
viral RNA processing and rev function. Nucleic Acids
Res. 41, 9471–9483. (doi:10.1093/nar/gkt727)

163. Shuck-Lee D, Chang H, Sloan EA, Hammarskjold M-
L, Rekosh D. 2011 Single-nucleotide changes in the
HIV Rev-response element mediate resistance to
compounds that inhibit Rev function. J. Virol. 85,
3940–3949. (doi:10.1128/JVI.02683-10)
164. Kudo N, Matsumori N, Taoka H, Fujiwara D,
Schreiner EP, Wolff B, Yoshida M, Horinouchi S.
1999 Leptomycin B inactivates CRM1/exportin 1 by
covalent modification at a cysteine residue in the
central conserved region. Proc. Natl Acad. Sci. USA
96, 9112–9117. (doi:10.1073/pnas.96.16.9112)

165. Okamura M, Inose H, Masuda S. 2015 RNA export
through the NPC in eukaryotes. Genes 6, 124–149.
(doi:10.3390/genes6010124)

166. Boons E et al. 2015 Human exportin-1 is a target
for combined therapy of HIV and AIDS related
lymphoma. EBioMedicine 2, 1102–1113. (doi:10.
1016/j.ebiom.2015.07.041)

167. Campos N et al. 2015 Long lasting control of viral
rebound with a new drug ABX464 targeting Rev-
mediated viral RNA biogenesis. Retrovirology 12, 30.
(doi:10.1186/s12977-015-0159-3)

168. Cochrane AW, Perkins A, Rosen CA. 1990
Identification of sequences important in the
nucleolar localization of human immunodeficiency
virus Rev: relevance of nucleolar localization to
function. J. Virol. 64, 881–885. (doi:10.1128/JVI.64.
2.881-885.1990)

169. Reddy TR, Xu W, Mau JKL, Goodwin CD, Suhasini M,
Tang H, Frimpong K, Rose DW, Wong-Staal F. 1999
Inhibition of HIV replication by dominant negative
mutants of Sam68, a functional homolog of HIV-1
Rev. Nat. Med. 5, 635–642. (doi:10.1038/9479)

170. Behrens RT, Aligeti M, Pocock GM, Higgins CA,
Sherer NM. 2017 Nuclear export signal masking
regulates HIV-1 Rev trafficking and viral RNA
nuclear export. J. Virol. 91, e02107–e02116.
(doi:10.1128/JVI.02107-16)

171. Daelemans D, Costes S, Cho HE, Erwin-Cohen AR,
Lockett S, Pavlakis NG. 2004 In vivo HIV-1 rev
multimerization in the nucleolus and cytoplasm
identified by fluorescence resonance energy transfer.
J. Biol. Chem. 279, 50 167–50 175. (doi:10.1074/
jbc.m407713200)

172. Wingfield PT, Stahl SJ, Payton MA, Venkatesan S,
Misra M, Steven AC. 1991 HIV-1 Rev expressed in
recombinant Escherichia coli: purification,
polymerization, and conformational properties.
Biochemistry 30, 7527–7534. (doi:10.1021/
bi00244a023)

173. Faust O, Grunhaus D, Shimshon O, Yavin E, Friedler
A. 2018 Protein regulation by intrinsically
disordered regions: a role for subdomains in the IDR
of the HIV-1 Rev protein. ChemBioChem 19,
1618–1624. (doi:10.1002/cbic.201800192)

174. Jayaraman B, Fernandes JD, Yang S, Smith C,
Frankel AD. 2019 Highly mutable linker
regions regulate HIV-1 Rev function and stability.
Sci. Rep. 9, 5139. (doi:10.1038/s41598-019-
41582-7)

http://dx.doi.org/10.1089/hum.1998.9.15-2187
http://dx.doi.org/10.1089/hum.1998.9.15-2187
http://dx.doi.org/10.1038/sj.mt.6300025
http://dx.doi.org/10.1089/aid.1995.11.1343
http://dx.doi.org/10.1128/JVI.73.7.5741-5747.1999
http://dx.doi.org/10.1128/JVI.73.7.5741-5747.1999
http://dx.doi.org/10.1016/S1074-5521(96)90289-6
http://dx.doi.org/10.1016/S1074-5521(96)90289-6
http://dx.doi.org/10.1016/0092-8674(93)90720-B
http://dx.doi.org/10.1073/pnas.86.11.4244
http://dx.doi.org/10.1073/pnas.86.11.4244
http://dx.doi.org/10.1128/AAC.41.2.319
http://dx.doi.org/10.1021/bi960954v
http://dx.doi.org/10.1021/bi960954v
http://dx.doi.org/10.1016/S0968-0896(00)00344-8
http://dx.doi.org/10.1016/S0968-0896(00)00344-8
http://dx.doi.org/10.1038/sj.gt.3300354
http://dx.doi.org/10.1016/j.str.2018.06.001
http://dx.doi.org/10.1021/ja055272m
http://dx.doi.org/10.1007/s00775-007-0221-2
http://dx.doi.org/10.1007/s00775-007-0221-2
http://dx.doi.org/10.1016/j.bcp.2016.02.007
http://dx.doi.org/10.1016/j.bcp.2016.02.007
http://dx.doi.org/10.1016/S1074-5521(01)00027-8
http://dx.doi.org/10.1016/S1074-5521(01)00027-8
http://dx.doi.org/10.1021/ja0582051
http://dx.doi.org/10.1073/pnas.96.17.9521
http://dx.doi.org/10.1073/pnas.96.17.9521
http://dx.doi.org/10.1016/j.bmc.2019.03.016
http://dx.doi.org/10.1016/j.bcp.2018.07.040
http://dx.doi.org/10.1093/nar/gkt727
http://dx.doi.org/10.1128/JVI.02683-10
http://dx.doi.org/10.1073/pnas.96.16.9112
http://dx.doi.org/10.3390/genes6010124
http://dx.doi.org/10.1016/j.ebiom.2015.07.041
http://dx.doi.org/10.1016/j.ebiom.2015.07.041
http://dx.doi.org/10.1186/s12977-015-0159-3
http://dx.doi.org/10.1128/JVI.64.2.881-885.1990
http://dx.doi.org/10.1128/JVI.64.2.881-885.1990
http://dx.doi.org/10.1038/9479
http://dx.doi.org/10.1128/JVI.02107-16
http://dx.doi.org/10.1074/jbc.m407713200
http://dx.doi.org/10.1074/jbc.m407713200
http://dx.doi.org/10.1021/bi00244a023
http://dx.doi.org/10.1021/bi00244a023
http://dx.doi.org/10.1002/cbic.201800192
http://dx.doi.org/10.1038/s41598-019-41582-7
http://dx.doi.org/10.1038/s41598-019-41582-7

	HIV Rev-isited
	Introduction
	The knowns of the HIV-1 Rev protein
	The architecture of Rev
	Rev specifically exports underspliced viral RNA from the nucleus
	Rev drives underspliced HIV-1 RNAs towards the CRM1 export pathway
	Rev stabilizes viral RNAs
	Rev inhibits cellular splicing
	Rev promotes translation of viral RNA
	Does Rev regulate packaging of HIV-1 genome into virions?
	The Rev–host interactome
	Rev and its interactions with cofactors are HIV-1 drug targets

	The known unknowns of the HIV-1 Rev protein
	The native Rev interactome remains unknown
	There is no known function behind Rev nucleolar localization
	The Rev C-terminal domain is structurally unresolved

	Conclusion and future perspectives
	Authors' contributions
	Competing interests
	Funding
	Acknowledgements
	References


